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Abstract

Moderate deviations theory concerns a collection of scales between
large deviations theory and the central limit theorem. When applied to
queueing problems, moderate deviations theory combines the simplicity of
large deviations techniques with the parsimony of heavy traffic approxima-
tions. This leads to some very simple heuristics for traffic engineering—for
example, that a traffic stream passing through several queues is not sig-
nificantly smoothed except at the most congested queue.

1 Introduction

It is now widely known that the behaviour of a heavily loaded queue can be
approximated rather well using reflected Gaussian processes. This is appealing
because it leads to parsimonious models: all we need to know about an arrival
process is its mean and covariance structure. The theory behind this is known
as heavy traffic theory [11, 16, 24, 26], and it is based on the scaling used in the
central limit theorem.

Another type of approximation is based on large deviations theory and the
closely related idea of effective bandwidth [15, 20]. A key idea in this theory is
that (in the large deviations scaling) a rare event occurs only in the most likely
way. For example, to estimate the probability that a large buffer overflows, we
need only consider the probability of the most likely way for the buffer to fill
up. This clearly simplifies the calculation.

It is tempting to combine the two approaches: by the central limit theorem,
we can model the arrival process as a Gaussian process; by large deviations
theory, it is sufficient to study most likely paths. We see papers with titles like
“Most probable paths and performance formulae for buffers with Gaussian input
traffic” [1]. Tempting, but dangerous1. The central limit theorem involves one
sort of scaling, and large deviations theory involves another. To what extent is
it legitimate to mix the two?

In this paper I attempt to answer this question, by studying the moderate
deviations scalings, which I shall index by a burstiness parameter β ∈ (0, 1).
These scalings lies between the central limit scaling (β = 0) and the large
deviations scaling (β = 1). A typical traffic flow has bursts at all scales 0 <

1I hasten to note that all the performance formulae in [1] represent a legitimate mixture
of heavy traffic and large deviations scales, and are justified elsewhere [2] by simulation.
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β < 1, with larger bursts (large β) less frequent than smaller bursts (small β).
The parameter β thus plays a dual role: it measures both burst sizes and burst
frequencies.

As one would expect, the resulting limit theorems mirror aspects of both
heavy traffic theory and large deviations theory; these theorems lead to very
simple heuristics. But some aspects are not mirrored. Specifically, I will describe
two objects that merit great care: the effective bandwidth of a Gaussian process,
and the output of a queue fed by a Gaussian process.

The most striking moderate deviations result concerns the manner in which
a traffic flow is smoothed as it passes through a queue. Overflow at a queue
has a certain frequency, depending on its utilization, and so we can assign to
the queue its own characteristic burstiness scale β. We will see that the queue
smooths out all bursts in the traffic at scales larger than β, but leaves unchanged
all bursts at smaller scales. In effect, the queue acts as a low-pass filter.

The aim of this paper is not to prove new theorems but to illuminate the
links between heavy traffic and large deviations. I therefore hope that readers
familiar with heavy traffic theory will find some parts obvious, and that readers
familiar with large deviations theory will find different parts obvious. It will
however be necessary to prove some new results to fill in gaps in the existing
literature: on moderate deviations for multiclass networks and for networks with
many flows, and on mixed limits.

The rest of this paper is organized as follows. Section 2 briefly defines the
notation. Section 3 describes the standard traffic limits (heavy traffic limits and
large deviations limits) and how moderate deviations fits between them. This is
the most important section. Section 4 defines moderate deviations theory; and
Section 5 explains how it applies to traffic processes. Section 6 uses standard
tools of large deviations theory to deduce moderate deviations results for queue
size and related quantities; Section 7 uses those tools in a different way to
look at systems whose various parts are scaled differently (and proves the low-
pass-filter result). Section 8 considers heuristics and approximations, and ties
together moderate deviations with heavy traffic and large deviations. Section 9
is the conclusion.

2 Notation

This paper refers to at least eight different scalings, so it is important straight
away to be clear about the notation.

The first thing to define is the traffic process. To save some analytical
complexity, we will deal only with queues operating in discrete time. Define a
traffic process to be a sequence of real numbers indexed by the negative integers
x = (. . . , x−2, x−1). Interpret x−t as the amount of work arriving at a queue
at time −t. We apologise for the bother of negative indices, but hope that it
will prevent confusion later. We will deal with a variety of scaled versions of x,
indicated by x̂. The hats indicate that we need to be careful in interpreting x̂.
Since this paper is all about scaling phenomena, there will be very many hats.

Denote by x[−s,−t) the truncation of the process: x[−s,−t) = (xu)−s≤u<−t,
for −s < −t. Denote by x[−s,−t) the cumulative sum process: x[−s,−t) =
x−s + · · · + x−t−1, with x[−s,−s) = 0. When the process is random, we will
write X and X . Let 1 = (. . . , 1, 1).
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To keep things simple, we will deal only with queues with constant service
rate. Consider a queue with service rate C and buffer size B fed by an input
process x. Define the queue size at time −s to be the limit

Q−s(x) = lim
t→∞Q−s(x[−t, 0))

where Q−s(x[−t, 0)) is given by the recursion

Q−u = [Q−u−1 + x−u − C]B0 , Q−u = 0 for −u ≤ −t.

When B = ∞, this reduces to the familiar form

Q−s(x) = sup
t≥0

x[−s − t,−s) − Ct.

Later on, we shall define queue size in multiclass queues, and departure pro-
cesses.

Two quantities which recur, and which merit their own symbols, are the
fast-time and the many-flows versions of a random traffic process X. Define
the fast-time version X⊗L to be X speeded up by L: X⊗L[−t, 0) = X [−Lt, 0).
And define the many-flows version X⊕L to be the aggregate (i.e. sum) of L
independent copies of X.

3 Background

The moderate deviations scales lie between the heavy traffic scale and the large
deviations scale, so we shall first review those two scales. In fact, there are four
scales to review: both types of theory have two flavours, the fast-time flavour
and the many-flows flavour.

In this section, we will deal with an arrival process X, which we will assume
to be stationary. Let µ = �X−1 .

3.1 Central limit theorem, fast time

This is the best known of all the scales. It is usually called the heavy traffic limit
or the diffusion approximation. Let σ2 = VarX−1. For now, assume that the
X−t are independent. By the central limit theorem, under mild conditions on
the X−t, t−1/2(X [−t, 0)−µt) converges as t → ∞ to a normal random variable
with mean 0 and variance σ2; and

X̂L = L1/2(L−1X⊗L − µ1)

converges to a (discrete sample of a) Brownian motion with zero drift and vari-
ance parameter σ2. This is often true even when the X−t are not independent.
(It is not appropriate here to be precise about the nature of the convergence.)
Note that the limit process depends only on the variance of X.

Consider a queue Q̂ with service rate Ĉ and buffer size B̂ fed by X̂L:

Q̂0 =
[
Q̂−1 + X̂L

−1 − Ĉ
]B̂

0

=⇒
√

LQ̂0 =
[√

LQ̂−1 + X [−L, 0)− (Lµ +
√

LĈ)
]√LB̂

0

=⇒ QL
0 =

[
QL

−1 + X [−L, 0)− LCL
]BL

0
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where QL =
√

LQ̂ is the queue size in a queue fed by X and served at rate
CL = µ + L−1/2Ĉ, with buffer size BL =

√
LB̂ (and in which time has been

speeded up2 by L). In heavy traffic theory it is more common to parameterize
the sequence by the traffic intensity ρ. In these terms,

ρL = µ/CL ∼ 1 − L−1/2Ĉ/µ (1)

and so
√

L(1 − ρL) → Ĉ/µ and ρL → 1.
Since X̂L converges to a Brownian motion, Q̂t(X̂L) (that is, L−1/2QL

t ) con-
verges to a reflected Brownian motion. A great deal is known about this limit—
see for example [12, 16, 26]. Later in this paper we will be interested in two
special properties: the snapshot principle [24] and state space collapse [13, 23].

3.2 Central limit theorem, many flows

Recall that X⊕L is the aggregate of L independent copies of X. Define

X̂L =
√

L(L−1X⊕L − µ1).

By the central limit theorem we would expect X̂L to converge to a Gaussian
process (though not necessarily to a Brownian motion, if we allow X to have an
arbitrary covariance structure) 3.

As before, let Q̂ be the queue size function for a queue served at rate Ĉ and
with buffer size B̂. It is easy to check that

Q̂(X̂L) = L−1/2QL
0 (XL),

where QL
0 (XL) is the queue size in a queue fed by an aggregate of L copies of

X, served at rate CL = Lµ +
√

LĈ, with buffer size BL =
√

LB̂. The traffic
intensity is the same as before, (1).

One can conclude that L−1/2QL
0 (XL) converges to a Gaussian process. The

precise nature of the convergence has been studied by Addie et al. [2], who
assert that “virtually all conceivable performance measures, must approach the
performance of a communication system carrying Gaussian traffic with the same
second order statistics”. They justify this assertion for systems with a central
limit scaling. It is well-known that the assertion does not extend to systems
with a large deviations scaling [20, 29]; however, moderate deviations theory
will show us that it does extend well beyond the central limit scaling.

3.3 Large deviations, fast time

We can now move on to a different sort of theory. The large deviations fast-
time limit (also known as the large-buffer limit) is the best known of the three

2In this discrete time model, the effect of speeding up is to make the sampling interval
more coarse. In a continuous time model, speeding up would not have this effect. It is not
a priori clear which is better, though fortunately the two models give the same qualitative
answers in most cases.

3Incidentally, this limit is not the same as the many-servers limit, described by Halfin
and Whitt [10]. They study systems in which a single flow of customers is served by several
servers, in the limit where the traffic intensity increases as the number of servers increases.
(It is difficult to even describe this limit with our notation.) It shares some similarities with
the many-flows limit: in particular, the limiting queue size process is Gaussian, and in general
more complicated than a simple reflected Brownian motion. There are also differences: most
noteably, the snapshot principle does not apply.
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different large deviations scales we shall meet. Let X̂L = L−1X⊗L. Under mild
conditions on X, X̂L satisfies a large deviations principle of the form

L−1 log�(X̂L ∈ Ŝ) ≈ − inf
x∈Ŝ

I(x̂) (2)

where the rate function I has the form

I(x̂) =
∑
−t<0

Λ∗(x̂−t)

for some convex function Λ∗ (which depends on the entire distribution of X).
We shall go into much more detail about what this means later. For now, simply
note the form of the right hand side of (2): it is an infimum, which means that
the event X̂L ∈ Ŝ happens only in the most likely way, arg inf x̂∈Ŝ I(x̂). This is
an example of the principle of the largest term.

Now consider a queue with service rate Ĉ and buffer size B̂ fed by X̂L:

Q̂0 =
[
Q̂−1 + X̂L

−1 − Ĉ
]B̂

0

=⇒ QL
0 =

[
QL

−1 + X [−L, 0)− LCL
]BL

0

where QL is the queue size in a queue fed by X and served at rate CL = Ĉ,
with buffer size BL = LB̂ (in which time has been speeded up by a factor of
L). The traffic intensity is just

ρL = µ/CL = µ/Ĉ < 1. (3)

By the contraction principle, Q̂0(X̂L) (that is, L−1QL
0 ) satisfies a large de-

viations principle of the form

L−1 log�(L−1QL
0 ≥ b) ≈ −J(b).

In other words, the queue length has an exponentially decaying tail. There has
been a great deal of work on this limit; see [20] for an account which fits in well
with this paper.

3.4 Large deviations, many flows

Let X̂L = L−1X⊕L. It can be shown that X̂L satisfies a large deviations
principle of the form

L−1 log�(X̂L ∈ Ŝ) ≈ − inf
x̂∈Ŝ

I(x̂)

for some rate function I. As before, let Q̂ be the queue size in a queue served
at rate Ĉ with buffer B̂. It is simple to check that

Q̂0(X̂L) = L−1QL
0 (X⊕L),

where QL
0 (X⊕L) is the queue size in a queue fed by an aggregate of L copies of

X, served at rate CL = LĈ, with buffer size BL = LB̂. (The traffic intensity
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is the same as (3), so ρL < 1.) By the contraction principle, L−1QL
0 satisfies a

large deviations principle of the form

L−1 log�(L−1QL
0 ≥ b) ≈ −J(b)

and hence the overflow probability decays exponentially in the degree of multi-
plexing.

This scale was first introduced by Weiss [25]. For a full account see Wischik
[29], who shows that the fast-time result is essentially a special case of the
many-flows result.

3.5 Moderate deviations, fast time

So far, we have learnt about Q̂
(√

L(L−1X⊗L − µ1)
)

and Q̂(L−1X̂⊗L). The
former is approximately Gaussian, governed by the variance of X; the latter has
exponential tails, and is governed by the principle of the largest term.

There is a collection of intermediate limits, the moderate deviations limits.
Consider the scaled arrival process X̂L defined by

X̂L = L(1−β)/2(L−1X⊗L − µ1)

where β ∈ (0, 1). When β ≈ 0, this is close to the heavy traffic scale; when
β ≈ 1, it is close to the large deviations scale. We will see later that (for all
β ∈ (0, 1), under mild conditions on X) XL satisfies a moderate deviations
principle of the form

L−β log�(X̂L ∈ Ŝ) ≈ − inf
x̂∈Ŝ

I(x̂) (4)

where I(·) depends only on the long-term variance of X. Note that X̂L is
governed both by the variance of X, and by the principle of the largest term.

What of the queue size? As usual, consider a queue with service rate Ĉ and
buffer size B̂ fed by X̂L:

Q̂0 =
[
Q̂−1 + XL

−1 − Ĉ
]B̂

0

=⇒ QL
0 =

[
QL

−1 + X [−L, 0)− LCL
]BL

0

where QL = L(1+β)/2Q̂ is the queue size in a queue fed by X and served at rate
CL = µ + L−(1−β)/2Ĉ, with buffer size BL = L(1+β)/2B̂ (in which time has
been speeded up by L). The traffic intensity is

ρL = µ/CL ∼ 1 − L−(1−β)/2Ĉ/µ, (5)

so that ρL → 1 but not as quickly as in the regular heavy traffic case. Perhaps
inevitably, we call this moderately heavy traffic.

Since X̂L satisfies a moderate deviations principle, so does Q̂0(X̂L) (that is,
L−(1+β)/2QL

0 ), of the form

L−β log�(L−(1+β)/2QL
0 ≥ b) ≈ −J(b), (6)

or equivalently

L−2(1− 1
1+β ) log�(L−1Q̂L

0 ≥ b) ≈ −J(b).
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There has been little work so far on approximations of this form. They are
briefly mentioned by Wischik [28]. They are developed more fully by Chang
et al. [3], Puhalskii [22] and Majewski [18]. Chang et al. study moderate
deviations in a single queue, and present their results as an extension of the large
deviations results of Duffield and O’Connell [8] and others. Puhalskii studies
networks of queues with feedback, with an homogeneous customer population,
and stressed the link with heavy-traffic theory. Majewski also studies networks
of queues with an homogeneous customer population, and gives a sophisticated
presentation of his results as an interchange between the heavy traffic limit and
the large deviations limit.

3.6 Moderate deviations, many flows

As one might by now expect, moderate deviations can be applied to the many-
flows regime. Define the scaled process X̂L by

X̂L = L(1−β)/2(L−1X⊕L − µ1)

for β ∈ (0, 1). This is nearly identical to the fast-time moderate-deviations scale
in Section 3.5, and indeed, exactly the same moderate deviations principle (4)
holds (though the rate function I is more complicated in the many-flows case,
since it depends on the full covariance structure of the process X).

However, the interpretation in terms of queue size is rather different. It
is simple to check that Q̂0(X̂L) = L−(1+β)/2QL

0 , where QL
0 is the queue size

in a queue fed by the aggregate of L copies of X and served at rate CL =
Lµ+L(1+β)/2Ĉ, with buffer size BL = L(1+β)/2B̂. As in (5), the traffic intensity
is

ρL = µ/CL ∼ 1 − L−(1−β)/2Ĉ/µ. (7)

One can show that QL
0 satisfies a moderate deviations principle of the form

L−β log�(L−(1+β)/2QL
0 ≥ b) ≈ −J(b)

where J depends on the full covariance structure of X.
There seem to be no results on this scale in the literature. This is unfortu-

nate, because it does seem to offer the best compromise between accuracy and
simplicity of all scales we study here.

Because of this accuracy and simplicity, there are many papers which assume
such results. Such papers typically assert that “the aggregate arrival process
can be effectively characterized by a stationary Gaussian process” [4] and then
go on to study asymptotics of Gaussian processes based on the principle of the
largest term [1, 4, 5, 19] (finding either large deviations type asymptotics, or
refined asymptotics). This mixture of limits is typically justified by simulation;
see Choe and Shroff [4] for a particularly good account.

The purpose of this paper is to show that such an approach is valid, so long
as the queue is in moderately heavy traffic (7). When the queue is lightly loaded
(3), or very heavily loaded (1), the approach is not valid.
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3.7 Summary of scales

An important point to appreciate is that by choosing a particular sort of limit
theorem, we implicitly restrict attention to a particular way of scaling the re-
sources at a queue.

Heavy traffic theory deals with a single scale β = 0, and large deviations
theory deals with a different single scale β = 1, whereas moderate deviations
theory covers a range of scales β ∈ (0, 1). This makes it very useful in under-
standing the different sorts of scaling phenomena that can occur, particularly
in systems which different parts are scaled differently.

Moderate deviations models are parsimonious, like heavy traffic models, be-
cause the limit theorems depend only on the mean and variance of the input
process; large deviations results, by contrast, involve its entire statistical char-
acteristics. Moderate deviations techniques are simple, like large deviations re-
sults, because they are based on the principle of the largest term; heavy traffic
results, by contrast, require one to consider many possible paths to overflow.

The contortions of parameterization in stating a moderate deviations princi-
ple undoubtedly obscure the simplicity of the idea. Really, moderate deviations
theory can greatly simplify the application of both heavy traffic theory and
large deviations theory. We will see later just how this works, after we have
been more precise about the technical aspects of moderate deviations.

We have chosen a particularly concrete representation of the moderate de-
viations limit, indexed by a parameter β. One could study moderate deviations
more abstractly, by proving that the large deviations limit and the heavy traffic
limit can be interchanged—indeed, Majewski [18] has taken this route in study-
ing fast-time moderate deviations in networks with a homogeneous customer
population. In these terms, the parameter β represents a particular mixture of
the two limits. The advantage of our concrete representation is that it makes it
easier to talk about the range of scaling phenomena that moderate deviations
theory describes.

But before continuing, we should briefly note that the burstiness scale β is
not related to the Hurst parameter of a long-range dependent process. Both
parameters are intended to describe burstiness, but in different ways; in Section
8.6 we will look at the links between the two.

4 Moderate deviations principle

Before we can proceed, we need a proper definition of a moderate deviations
principle. This section also includes some examples of arrival processes that
satisfy the principle, and some useful results.

A moderate deviations principle is nothing other than a special case of a
large deviations principle (LDP).

Definition 1 (Large deviations principle) A sequence of random variables
XL taking values in a Hausdorff space X with σ-algebra B is said to satisfy a
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large deviations principle with good rate function I if for any S ∈ B

− inf
x∈S◦

I(x) ≤ lim inf
L→∞

1
L

log�(XL ∈ S)

≤ lim sup
L→∞

1
L

log�(XL ∈ S) ≤ − inf
x∈S̄

I(x),
(8)

S◦ is the interior of S, S̄ is the closure of S, and the function I : X → �
+∪{∞}

has compact level sets.

We will assume throughout that B contains the σ-algebra of interest, which
in most cases is the Borel σ-algebra.

The two sides of (8) are known as the large deviations lower and upper
bounds.

When we write an equation like

1
L

log�(XL ∈ S) ≈ − inf
x∈S

I(x), (9)

we mean that the approximation holds in the large deviations sense (8).
We say that XL satisfies a moderate deviations principle (MDP) with scaling

parameter β ∈ (0, 1) and mean µ if

1
Lβ

log�
(
L(1−β)/2(XL − µ) ∈ S

) ≈ − inf
x∈S

I(x).

In all the examples we study in this section, the rate function I will be quadratic
and depend only on the limiting covariance structure of XL. (We will explain
what this means when we decide on the space X .) With some abuse of language,
we have already use the term moderate deviations principle to describe large
deviations principles which nearly fit this form, such as (6).

A very important tool is the contraction principle, which lets us take one
LDP and derive another. This principle applies to MDPs as well as LDPs, since
the former are simply special cases of the latter.

Theorem 1 (Contraction principle) Suppose XL satisfies an LDP of the
form (9) in some space X , and that f : X → Y is a continuous function. Then
we obtain an LDP in Y of the form

L−1 log�(f(XL) ∈ S) ≈ − inf
y∈S

J(y)

where

J(y) = inf
x∈X :f(x)=y

I(x).

5 Moderate deviations for traffic processes

Let XL be a sequence of traffic processes.

Definition 2 (Sample path MDP) We will say that XL satisfies the sam-
ple path MDP with mean µ and covariance structure (γt)t>0 if the following
conditions hold:
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For each β ∈ (0, 1), XL satisfies a moderate deviations principle of the form

1
Lβ

log�
(
L(1−β)/2(XL − µ1) ∈ Ŝ

) ≈ − inf
x̂∈Ŝ

I(x̂) (10)

with good rate function I(·), in the space

Xδ =
{
x :

x[−t, 0)
t

≤ δ eventually
}

equipped with the uniform norm

‖x‖ = sup
t>0

∣∣∣x[−t, 0)
t

∣∣∣
for any δ > 0.

The rate function I(·) has the form

I(x̂) = sup
t>0

sup
θ∈�t

θTx̂[−t, 0) − 1
2θTΣtθ

where Σt is the t × t matrix

(Σt)ij = γ|i−j|.

Furthermore, setting Vt = 1TΣt1, Vt = o(t2/ log t).

5.1 Proving the MDP

In this section we find conditions under which XL satisfies the sample path
MDP. It may safely be skipped: most reasonable processes satisfy it.

Since a moderate deviations principle is just a special case of a large devia-
tions principle, it is not surprising that the MDP can be proved using the same
techniques as for the LDP. In particular, we appeal to the general large devia-
tions result from Wischik [29] for most of the proofs of the following theorems.

Condition 3 (Finite-time regularity) Define the scaled cumulant moment
generating function ΛL

t (θ) for θ ∈ �
t by

ΛL
t (θ) =

1
Lβ

log � exp
(
θTLβL(1−β)/2(L−1XL[−t, 0) − µL1)

)
where β ∈ (0, 1). Assume that for each t the limiting moment generating func-
tion exists and is given by

lim
L→∞

ΛL
t (θ) = 1

2θTΣtθ (11)

where Σt is a t × t matrix.

Condition 4 (Covariance structure) Assume that (Σt)ij = γ|i−j| for some
process γt. Let Vt = 1TΣt1, and assume that Vt = o(t2/logt).
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Remark
It is worth noting that for stationary flows, we can recover the full covariance
structure γt from the marginal variances Vt (given by Vt = 1TΣt1). To see this,
note that

Vt+1 = 1T
t+1Σt+11t+1

= 1T
t Σt1t + γ0 + 21T(γt, . . . , γ1),

and so γ0 = V1, γ1 = 1
2 (V2 − V1), and for t > 1, γt = 1

2 (Vt+1 − 2Vt + Vt−1).
In other words, as far as moderate deviations is concerned, the marginal

distributions of the cumulative arrival process (X [−t, 0))t>0 fully characterize
the process.

The covariance structure (γt) is what makes moderate deviations interesting.
In the many-flows moderate deviations scale, the rate function depends on the
covariance structure of the source over all timescales. This makes the technique
well-suited to any sort of traffic modelling where one wants to capture the fine-
grained statistical characteristics of a flow. We will continue the discussion of
timescales in the next section.

Condition 5 (Long-term regularity) Define for θ ∈ �

ΛL
t (θ) =

1
t

Vt

t
ΛL

t

(
1θ

t

Vt

)
.

(Note that Λ depends on β.) Assume that for θ in some neighbourhood of the
origin, and for all t, the limit

lim
L→∞

1
θ2

(
ΛL

t (θ) − 1
2
θ2

)
= 0 (12)

is uniform.

This final condition relates the speed at which XL[−t, 0) converges to a
Gaussian process, to the speed at which XL[−t, 0) becomes well-behaved as
t → ∞.

The following theorem is taken directly from Wischik [29].

Theorem 2 Assume that condition 3 holds for each β ∈ (0, 1). Then for each t,
XL[−t, 0) satisfies a moderate deviations principle in �

t with good rate function

It(x) = sup
�∈�t

θTx − 1
2θTΣtθ.

The following theorem is very similar to Theorem 3 in Wischik [29]. The
only difference is that our long-term regularity condition, condition 5, has been
phrased slightly differently, in order to make it more useful for moderate devi-
ations.

Theorem 3 Assume that conditions 3 and 5 hold for each β ∈ (0, 1), and that
condition 4 holds too. Then XL satisfies the sample path moderate deviations
principle, Definition 2.
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Proof. The only additional claim that needs justification is this: that there
exists a t0 such that

lim
α→∞ lim sup

L→∞

1
L

log
∑
t≥t0

exp
[−Lwt sup

θ

(
θαdt − ΛL

t (θ)
)]

(13)

is equal to −∞, where dt =
√

(Vt log t/t2) and wt = t2/Vt.
Pick θ = dt. By (12), given ε > 0, for L and t sufficiently large,

1
θ2

∣∣ΛL
t (θ) − 1

2θ2
∣∣ < ε.

Thus

sup
θ

(−Lwt(θαdt − ΛL
t (θ)

) ≤ −Lwtd
2
t (α − 1

2 − ε)

and so (13) is less than or equal to

lim
α→∞(α − 1

2 − ε) lim sup
L→∞

1
L

log
∑
t≥t0

t−L.

It is simple to check that this is equal to −∞. �

We have assumed that the conditions hold for all β ∈ (0, 1). One would
expect there to be processes XL for which the conditions hold only for β in a
subset of (0, 1). We will not investigate tighter conditions in this paper.

5.2 Example traffic processes

For much of the paper, we have in mind the many-flows scale, which is important
enough to merit this lemma.

Lemma 4 (Many flows over finite timescales) Let X be a random station-
ary flow. For θ ∈ �

t , let

Mt(θ) = log � exp θTX[−t, 0).

Assume that Mt is finite in a neighbourhood of the origin. Then X has finite
mean µ, and L−1X⊕L satisfies Condition 3 for all β ∈ (0, 1). The matrix Σt is
given by (Σt)ij = Cov(X−i, X−j).

Proof. Mt is a log moment generating function. Since it is finite in a neighbour-
hood of the origin, it is infinitely differentiable in that neighbourhood, and so
the mean exists. Now,

ΛL
t (θ) =

Mt(θδ) − θT1µδ

δ2
,

where δ = L−(1−β)/2. Thus ΛL
t (θ) = Var θTX[−t, 0), which is θTΣtθ. �

We still need to check that condition 5 holds. There are two special cases in
which it is trivial.

12



Example 1 (Aggregated Gaussian flows)
Suppose that bX is a stationary Gaussian process, with variance VarX [−t, 0) =
o(t2/ log t). Since X has finite moment generating function, L−1X⊕L satisfies
Condition 3 by Lemma 4. It satisfies Condition 4 by stationarity, and it trivially
satisfies Condition 5 since ΛL

t (θ) = 1
2θ2. �

Example 2 (Aggregate flows with independent increments)
Suppose that X has independent increments, say X−t ∼ Y , and that the
moment generating function of Y is finite in a neighbourhood of the origin.
Then L−1X⊕L satisfies Condition 3 by Lemma 4. It satisfies Condition 4, with
γ0 = VarY and γt = 0 otherwise, and Vt = V t. It satisfies Condition 5 since
ΛL

t (θ) = ΛL
1 (θ). �

This characteristic of the covariance structure is important to merit a defi-
nition.

Definition 6 (Asymptotically independent increments) We say that XL

has asymptotically independent increments if the covariance structure γ satis-
fies γ0 = V and all other γt = 0. Note that then Vt = V t.

This property means that most likely paths to overflow are linear. It often
arises in the fast-time scaling.

Example 3 (Fast time, independent increments)
Let X be a process with independent increments, say X−t ∼ Y . Suppose that
the moment generating function of Y is finite in a neighbourhood of the origin.
Define X⊗L by X⊗L[−t, 0) = X [−Lt, 0). Then L−1X⊗L satisfies Condition 3 by
a similar argument to Lemma 4. It has asymptotically independent increments,
so satisfies Condition 4. It satisfies Condition 5, since ΛL

t (θ) = ΛL
1 (θ). �

Our final example is of fractional Brownian motion in the fast-time limit.
This process has attracted a great deal of attention, because of its unusual
scaling behaviour, which will be discussed further in Section 8.6.

Example 4 (Fast time, fractional Brownian motion)
Define X by X [−t, 0) = µt + σZt, where Zt is a standard fractional Brownian
motion with Hurst parameter H , so that X is Gaussian and Var X [−t, 0) =
σ2t2H . Consider X⊗N , where N = L1/(2−2H). It is easy to check that N−1X⊗N

satisfies Condition 3, since it is Gaussian. The covariance structure is

γt = 1
2σ2

(|t − 1|2H − 2|t|2H + |t + 1|2H
)

and Vt = t2H . Condition 5 is trivially satisfied, since ΛL
t (θ) = 1

2θ2. �

6 Queue size and related quantities

From here on, we will simply assume a process which satisfies the sample path
moderate deviations principle, Definition 2. Our main tool for deriving new
MDPs from this will be the contraction principle, Theorem 1. We will find
MDPs for three sorts of quantity: in Section 6.1 for the total queue size, in
Section 6.2 for paths to overflow, in Section 6.3 for the queue size due to each
flow in a shared buffer, and in Section 6.4 for the departure process.
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6.1 Total queue size

The theory for this section is largely identical to the large deviations theory,
described by Wischik [29], so we will stress the results and skip the proofs.

Consider a sequence of arrival processes XL, assumed to satisfy the sample
path MDP—that is, a moderate deviations principle of the form

1
Lβ

log�
(
L(1−β)/2(L−1XL − µ1) ∈ Ŝ

) ≈ − inf
x̂∈Ŝ

I(x̂)

where

I(x̂) = lim
t→∞ sup

�∈�t

θTx̂[−t, 0) − 1
2θTΣtθ.

The processes XL could arise from the fast-time limit (XL = X⊕L, Section 3.5)
or the many-flows limit (XL = X⊗L, Section 3.6), or indeed from any other sort
of limit.

Consider a sequence of queues: let QL be the queue size in a queue fed by
XL and served at rate CL = Lµ + L(1+β)/2Ĉ, with buffer size BL = L(1+β)/2B̂
(where B̂ may be infinite). We have chosen this scale so that

QL = L(1+β)/2Q̂
(
L(1−β)/2(XL − µ1)

)
where Q̂(·) is the queue size function for a queue with service rate Ĉ and buffer
size B̂.

By Lemma 3.7 in [28], the queue size function is continuous on Xδ for 0 <
δ < Ĉ. Pick any 0 < δ < Ĉ and write X for Xδ. By applying the contraction
principle, we immediately obtain an MDP for QL of the form

1
Lβ

log�(L−(1+β)/2QL ∈ Ŝ) ≈ − inf
b̂∈Ŝ

J(b̂)

where

J(b̂) = inf
x̂∈X :Q̂(x̂)=b̂

I(x̂).

There is a whole slew of results like this, exactly analogous to those in [29].
Here is a restatement of some of those results.

Lemma 5 Let JB̂ be the rate function for the queue size in a queue with finite
buffer B̂, and let J be the rate function when B̂ = ∞. If b̂ ≤ B̂ then JB̂(b̂) =
J(b̂); otherwise, JB̂(b̂) = ∞. Also, J(b̂) is increasing and is given by

J(b̂) = inf
t>0

(b̂ + Ĉt)2

2Vt
. (14)

If J(b̂) < ∞ then the optimal t∗ is attained, and it is the time period over which
the queue is most likely to fill up.

Proof. The large deviations theorem gives as rate function

J(b) = inf
t>0

sup
θ∈�

θ(b + Ct) − Λt(θ1),

where Λt(θ) = 1
2θTΣtθ. This reduces immediately to (14). �
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Lemma 6 If B̂ > 0, the event {Q̂ > 0} has moderate deviations lower bound
−I(0+) and upper bound −I+(0). If B̂ < ∞, the event that Q̂ overflows has
moderate deviations lower bound −I(B̂+) and upper bound −I(B̂) (or −I+(0)
if B̂ = 0). Here, I(b̂+) = limâ↓b̂ I(â) and I+(0) = Ĉ2/2V1.

6.2 Paths to overflow

It is not very difficult to describe the most likely path to overflow. Restating
the appropriate large deviations theorem,

Lemma 7 If J(b̂) is finite then the most likely path x̂∗ to lead to overflow, and
the most likely timescale t∗, are both attained. The most likely path is given by

x̂∗[−t, 0) = Σt

(
01 +

b̂ + Ĉt∗

2Vt∗
1t∗

)
.

Remember: this means that the most likely unscaled path is XL = Lµ1 +
L(1+β)/2x̂∗, and it causes QL to fill to level L(1+β)/2b̂.

6.3 Shared queues

Now consider a single queue fed by several different traffic streams X = (X(i)),
where 1 ≤ i ≤ M . In the next section, we will seek a moderate deviations
principle for the collection of departure processes D(X). That is rather hard.
So first we will answer a problem which is simpler, but still interesting in its
own right: how much work of type i is there in the queue?

In what follows, we will write X for the vector (X(i))i=1...M , and X for the
aggregate X =

∑
i X(i).

In the last section, we looked at aggregate queue size QL
−t in a queue fed

with aggregate input XL and served at rate Lµ + L(1+β)/2Ĉ. (For convenience,
we will take the buffer to be infinite. The modifications for finite buffers are
trivial.) Then

QL
−t = L(1+β)/2Q̂−t

(
L(1−β)/2(L−1XL − µ1)

)
,

where Q̂−t(X̂) is the queue size function for a queue fed by process X̂; this
function is continuous, thus we were able to use the contraction principle to
find an MDP for QL

−t.
Now, let the amount of work of type i in the queue be

QL
−t(i).

To make sure this is well-defined, we need to specify a service policy. Assume
that work from each source X−t arrives uniformly spread throughout the interval
[−t,−t − 1), and that work is served in the order it arrives. Let Q̂L

−t(i) =

L−(1+β)/2QL
−t(i). We will seek an MDP for Q̂

L
.

This is harder than finding an MDP for QL, because QL is not a simple
continuous function of L(1−β)/2(L−1XL − µ1). We shall see, however, that
it is very nearly a simple continuous function, and instead of the contraction
principle, we will find we can use the approximate contraction principle.

15



Recall that in the moderate deviations limit, the actual (unscaled) amount
of work of type i that arrives at time −t is XL−t(i) = Lµ(i) + L(1+β)/2X̂L−t(i),
where X̂L

−t(i) is a fluctuation at the moderate deviations scale4. This means
that the vast majority of work in the queue comes from the Lµ term. So one
would expect

QL
−t(i) ≈

µ(i)
µ

QL
−t. (15)

This can be made precise using the idea of exponential equivalence [7]. Broadly
speaking, if two random variables Y L and ZL are exponentially equivalent, then
any differences between them are too small to be picked up by large deviations
techniques. We will show that the (scaled) left and right hand sides of (15) are
(moderately) exponentially equivalent.

Theorem 8 Let

Y L = Q̂L
−t(i) and ZL = Q̂L

−t

µ(i)
µ

.

Then Y L and ZL are moderately exponentially equivalent, in that

lim sup
L→∞

1
Lβ

log�
(|Y L − ZL| > δ

)
= −∞ for all δ > 0.

(We will as usual assume that these sets are all measurable.)

Proof. Consider how Q−t(i) comes about. At time −t − 1 there was a cer-
tain amount of work Q−t−1 in the queue, with work from the different flows
distributed somehow. Then XL

−t arrives, and work from the different flows is
distributed evenly. Of this total work, Lµ + L(1+β)/2Ĉ is served, the original
work QL−t−1 coming first.

So either QL
−t−1 is served completely, in which case

Y L = Q̂L
−t

XL
−t(i)
XL−t

,

or it is not, which implies that

QL
−t−1 > Lµ + L(1+β)/2Ĉ.

Thus

�(|Y L − ZL| > δ)

≤ �

(
Q̂L

−t−1 > L(1−β)/2µ + Ĉ

)
+ �

(∣∣∣XL
−t(i)
XL−t

− µ(i)
µ

∣∣∣Q̂L
−t > δ

)
. (16)

By the principle of the largest term, it is sufficient to show that for each of
these parts, lim supL L−β log�(·) = −∞.

4When we say that X̂L is a fluctuation at the moderate deviations scale, we mean that

L−β log�(X̂L ∈ Ŝ) ≈ − inf
x̂∈Ŝ

I(x̂).
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We deal with the first term first. We know that Q̂L
−t−1 satisfies a moderate

deviations principle, say with rate function J(q̂). Thus

lim sup
L→∞

1
Lβ

log�
(
Q̂L

−t−1 > L(1−β)/2µ + Ĉ
) ≤ −J(q̂)

for every q̂ > 0. (This relies on the assumption that µ > 0.) But J(q̂) is
unbounded as q̂ → ∞. (This relies on the assumption that Vt = o(t2/ log t).)
So the lim sup is equal to −∞.

Now for the second term in (16). Let δ1 = |L−1XL−t(i) − µ(i)| and δ2 =
|L−1XL

−t − µ|. If δ2 < µ then

∣∣∣XL
−t(i)
XL−t

− µ(i)
µ

∣∣∣ ≤ µδ1 + µ(i)δ2

µ(µ − δ2)
.

Thus we can break up the second term in (16):

�

(∣∣∣XL−t(i)
XL−t

− µ(i)
µ

∣∣∣Q̂L
−t > δ

)
≤ �(δ1Q̂

L
−t > δµL) + �(δ2Q̂

L
−t > δµL) + �(δ2 > µ/2).

The three terms can be dealt with similarly. We will deal with the second term
by way of example. Rewriting it in full and adding in some scaling terms we get

�
(
L(1−β)/2|L−1XL

−t − µ|Q̂L
−t > L(1−β)/2δµ

)
≤ �

(
L(1−β)/2|L−1XL

−t − µ| > L(1−β)/4µ
)

+ �
(
Q̂L

−t > L(1−β)/4δ
)
.

Again, lim sup L−β log�(·) = −∞ for each of these terms, as L(1−β)/2(L−1XL
−t−

µ) and Q̂L−t both satisfy moderate deviations principles with rate functions that
tend to ∞. �

Corollary 9 QL is exponentially equivalent to QLµ/µ.

Proof. This is a straightforward consequence of the fact that if Y L
1 and ZL

1 are
exponentially equivalent, and Y L

2 and ZL
2 are also, then so are (Y L

1 , Y L
2 ) and

(ZL
1 , ZL

2 ). �

This leaves us with the following picture of the evolution of the queue. At the
level of the fluctuations we are interested in, a total amount of work x̂−t arrives
at time −t, made up as a vector x̂−t of work from the different flows. The queue
size fluctuates according to the standard recursion: Q̂−t = (Q̂−t−1 + x̂−t− Ĉ)+.
All of Q̂−t−1 is served at time −t, and the amount of work of type i left in the
queue is Q̂t(i) = Q̂tµ(i)/µ.

6.4 Departures

While one can use the contraction principle to obtain results for departures from
a queue, the results are almost invariably messy. We present the results here,
and give some examples of how things can go wrong. We advise the reader not
to be too disheartened: by using the various moderate deviations scales more
cleverly, one can find much nicer results. This we address in the next section.

17



6.4.1 Aggregate departures

As usual, we are interested in a queue with service rate Lµ + L(1+β)/2Ĉ fed by
an aggregate input XL. Let the queue size at time −t be QL

−t. Recall that

QL
−t = L(1+β)/2Q̂−t

(
L(1−β)/2(L−1XL − µ1)

)
.

Now let X̃L be the departure process, defined by

X̃L
−t = XL

−t + QL
−t − QL

−t+1.

Does X̃L satisfy a moderate deviations principle? We must look at L(1−β)/2(L−1X̃L−
µ1):

L(1−β)/2(L−1X̃L
−t − µ) = L(1−β)/2(L−1XL

−t − µ) +

Q̂−t

(
L(1−β)/2(L−1XL − µ1)

) − Q̂−t+1

(
L(1−β)/2(L−1XL − µ1)

)
.

Consider the map D̂ : X → X defined by

D̂(x̂)−t = x̂−t + Q̂−t−1(x̂) − Q̂−t(x̂).

The scaled departure process is given by

L(1−β)/2(X̃L − µ1) = D̂
(
L(1−β)/2(XL − µ1)

)
.

The departure map D̂(·) is continuous; this has been shown for example by
O’Connell [21]. This means that we can use the contraction principle to deduce
a moderate deviations principle for the output process.

Theorem 10 The output process X̃L satisfies a moderate deviations principle
of the form

1
Lβ

log�
(
L(1−β)/2(X̃L − µ1) ∈ Ŝ

) ≈ − inf
ŷ∈Ŝ

J(ŷ)

where

J(ŷ) = inf
x̂:D̂(x̂)=ŷ

I(x̂).

This derived rate function J(ŷ) is very difficult to deal with. In one case,
though, we can simplify it.

Theorem 11 Suppose XL has asymptotically independent increments. Then

J(ŷ) =

{
I(ŷ) if ŷ−t ≤ Ĉ for all t

∞ otherwise.

Proof. If y−t > Ĉ for some t then clearly J(y) = ∞. So restrict attention to
cases where ŷ−t ≤ Ĉ for all t.

Thus D̂(ŷ) = ŷ. If I(ŷ) < ∞ then J(ŷ) < ∞. So if J(ŷ) = ∞ then
I(ŷ) = ∞. So we can restrict attention to cases where J(ŷ) < ∞.
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In that case, since J is good, the optimum path in the infimum is attained,
say at x̂. Suppose that x̂ causes the queue size to exceed 0 in some interval of
time. Then there is a time −t0 such that x̂−t0 > Ĉ and x̂−t0+1 < Ĉ (unless
the interval of time ends at 0, in which case the modification to the argument is
simple.) By removing a small amount of work at −t0 and adding it at −t0 + 1,
we obtain a new path which leads to exactly the same departure process D̂(x̂).
But the independent increments property implies that I(x̂) = (2V )−1

∑
t x̂2

−t,
and so the new path has a strictly lower rate function, contradicting optimality.

�

So, when the input flow has asymptotically independent increments, the
rate function for the departure flow is the same as the rate function for the
input flow, at least for all feasible departure flows. This is not surprising: the
same thing happens in large deviations, and the departure map is just the same
for moderate deviations as for large deviations. Note that we have assumed a
constant service rate; when the service is random, this result may not hold.

6.4.2 Individual departures

Unfortunately, this nice result only holds for the aggregate departure process
from a queue fed by an input flow with asymptotically independent increments,
served at constant service rate. When we look at the individual departure flows
from a queue fed by two separate input flows, things are more complicated. But
before we go on to give counterexamples, we ought to establish an MDP for the
departure flows.

Theorem 12 Define the scaled input process X̂
L

by

X̂
L

= L(1−β)/2(XL − µ1),

define the actual departure process X̃
L

by

X̃
L

−t = XL
−t + QL

−t−1(i) − QL
−t(i),

and define the departure map D̂ by

D̂(x̂)−t = x̂−t + Q̂−t(x̂)µ/µ − Q̂−t+1(x̂)µ/µ.

Over finite intervals, the scaled departure process is exponentially equivalent to
the departure map applied to the scaled input process, in that

lim sup
L→∞

1
Lβ

log�
(∣∣L(1−β)/2(X̃

L − µ1)[−t, 0) − D̂(X̂
L
)[−t, 0)

∣∣ > δ
)

= −∞.

Proof. We have already proved exponential equivalence for the amount of work
of each type in the queue. But the departure map, over a finite interval, is a
continuous function of finitely many of these terms. Hence the result. �

If we wanted to, we might attempt to prove exponential equivalence over
infinite timescales. But it hardly seems worth it, given the following counterex-
ample.
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Example 5
Consider a queue serving two independent flows, X and Y, both of which have
asymptotically independent increments5. Let X have mean rate µ and variance
V , and let Y have mean rate ν and variance W . Let the service rate be Ĉ.
Consider the most likely path to lead to D(x̂)[−t, 0) = α. When t = 2, we
can perform the calculation explicitly. Let µ = 0.9, ν = 0.1, V = 1, W = 10,
Ĉ = 1, and α = −3. Then a most likely path is (x̂−2, x̂−1) = (−0.34, 0.63)
and (ŷ−2, ŷ−1) = (0, 4.02), leading to (D−2(x̂), D−1(x̂)) = (−0.34,−2.66). The
most likely path with D−2(x̂) = D−1(x̂) is (x̂−2, x̂−1) = (−1.5,−1.5) and
(ŷ−2, ŷ−1) = (0, 0). Thus, the most likely path to lead to D(x̂)[−t, 0) = α
is nonlinear. �

This example shows that even if the input flows have asymptotically in-
dependent increments, and the service rate is constant, the output flows may
not.

The phenomenon observed in this counterexample is called coupling. We
say that two flows are coupled, if the most likely path (x̂∗, ŷ∗) to lead to
D(x̂)[−t, 0) = α has I(ŷ∗) > 0. Otherwise, we say they are decoupled. Coupling
makes it difficult to describe traffic flow in networks.

6.4.3 Ramified networks

The troublesome phenomenon of coupling prompts us to seek alternative lim-
iting regimes in which there is decoupling. In the many-flows large-deviations
scale, such a limit has been described by Wischik [27].

Consider a queue serving very many independent flows, and suppose that
each of these flows is routed to a different destination. We call such a queue, a
switch, to emphasize that its purpose is to route input flows to different desti-
nations.

In the large deviations scale, the fundamental result is this: that the essential
characteristics of a single flow of traffic are not altered by passing through a
switch, in the limit where the number of flows increase and the capacity of the
switch increases in proportion.

It seems likely that a similar result holds in the moderate deviations scales.
We will not pursue this line of study here, since the flexibility of the moderate
deviations scales allow us to prove a novel result, which we do in the following
section.

7 Mixed Limits

In a moderate deviations principle of the form

1
Lβ

log�
(
L−(1−β)/2(L−1XL − µ1) ∈ Ŝ

) ≈ − inf
x̂∈Ŝ

I(x̂),

5This is shorthand for the following. Consider a sequence of queues, indexed by L, in
which the Lth queue serves two independent flows, XL and YL, which both satisfy the
sample path MDP with asymptotically independent increments, and in which the service rate
is L(µ + ν) + L(1+β)/2Ĉ, where µ and ν are the mean rates of the two flows..
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which we will write suggestively as

1
Lβ

log�
(
XL ∈ Lµ1 + L(1+β)/2Ŝ

) ≈ − inf
x̂∈Ŝ

I(x̂),

the most important feature is the not the form of the rate function I, but the
scaling behaviour—the relationship between the frequency of the rare event L−β

and its magnitude XL ∈ Lµ1 + L(1+β)/2Ŝ.
In this section we will consider systems whose various parts are scaled by

different β. Such a study will produce a theory of scaling phenomena in networks
which, one might expect, is cruder—and more useful—than the careful estimates
of the last section.

7.1 Smoothing

Suppose a traffic flow is fed into a queue whose service rate is scaled by one
parameter β, and that the output of this queue is fed into another queue whose
service rate is indexed by β′. What is the overflow probability at the downstream
queue? We will answer this, by answering a more general question: What are
the statistical characteristics of the output flow at scale β′?

The answer turns out to be astonishingly simple. The queue smooths out
all bursts of scale β′ for β′ > β, and leaves unchanged all bursts of scale β′ for
β′ < β. (The bursts of scale β are smoothed in a complicated way, as described
in Section 6.4.) In other words, the queue acts as a low-pass filter. We will
discuss the implications of this result in the conclusion, Section 9, and leave the
remainder of this section for the proof.

Consider as usual a queue fed by input process XL and served at rate Lµ +
L(1+β)/2Ĉ, with buffer L(1+β)/2B̂ (possibly B̂ = ∞). Let the queue size at time
−t be QL

−t, and let the output process be X̃L, defined as in Section 6.4 by

X̃L
−t = XL

−t + QL
−t − QL

−t+1.

Assume as usual that XL satisfies the sample path MDP.

Theorem 13 If β′ < β then XL and X̃L are moderately exponentially equiva-
lent at the β′ scale; that is, for any δ > 0,

lim sup
L→∞

1
Lβ′ log�

(‖L(1−β′)/2(L−1XL − µ1) − L(1−β′)/2(L−1X̃L − µ1)‖ > δ
)

= −∞.

(17)

This means that X̃L satisfies exactly the same moderate deviations principle
as does XL, at any scale β′ < β.

Proof. Rewriting (17), we need to show that

lim sup
L→∞

1
Lβ′ log�

(
sup

t

∣∣∣XL[−t, 0)
t

− X̃L[−t, 0)
t

∣∣∣ > δL(1+β′)/2
)

= −∞.

Since X̃L[−t, 0) = XL[−t, 0) + QL
−t − QL

0 , we need to show that

lim sup
L→∞

1
Lβ′ log�

(
sup

t

∣∣∣QL
0

t
− QL−t

t

∣∣∣ > δL(1+β′)/2
)

= −∞.
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Now,

sup
t

∣∣∣QL
0

t
− QL

−t

t

∣∣∣ ≤ QL
0 + sup

t

QL
−t

t
.

Since QL
0 satisfies a moderate deviations principle at scale β,

lim sup
L→∞

1
Lβ

log�
(
QL

0 ≥ δL(1+β)/2
) ≤ −J(δ),

where J(δ) is the rate function (5), and in particular J(δ) > 0 for any δ > 0.
As β′ < β,

lim sup
L→∞

1
Lβ′ log�

(
QL

0 > 1
2δL(1+β′)/2

)
= −∞.

Also, by the following lemma,

lim sup
L→∞

1
Lβ′ log�

(
sup

t

QL
−t

t
> 1

2δL(1+β′)/2
)

= −∞.

Putting these two together, we obtain the result. �

Lemma 14 For δ > 0,

lim sup
L→∞

1
Lβ′ log�

(
sup

s

QL
−s

s
> δL(1+β′)/2

)
= −∞.

Proof. We may assume without loss of generality that B = ∞, since the queue
size in a finite-buffer queue is always less than or equal to the queue size in an
infinite-buffer queue. Now,

�
(
sup

s
QL

−s/s > δL(1+β′)/2
)

=�
(
sup
s,t

1
s

(
XL[−t − s,−s) − (Lµ + L(1+β)/2Ĉ)t

)
> δL(1+β′)/2

)
=�

(
sup
s,t

1
s

(
L(1−β′)/2(L−1XL[−s − t,−s) − µt) − L(β−β′)/2Ĉt

)
> δ

)
=�

(
sup

s

1
s
R̂−s(X̂L, L(β−β′)Ĉ) > δ

)

where X̂L is the β′-scaled version of XL,

X̂L = L(1−β′)/2(XL − µ1),

and R̂−s(x̂, Ĉ) is the queue size function,

R̂−s(x̂, Ĉ) = sup
t

x̂[−s − t,−s) − Ĉt.

Thus

lim sup
L→∞

1
Lβ′ log�

(
sup

s
QL

−s/s > δL(1+β′)/2
) ≤ lim sup

L→∞

1
Lβ′ log�

(
X̂L ∈ M(Ĉ′)

)
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for any Ĉ′, where

M(Ĉ) = {x̂ : sup
s

R̂−s(x̂, Ĉ)/s ≥ δ}.

We know that XL satisfies a moderate deviations principle at scale β′, and so

lim sup
L→∞

1
Lβ′ log�

(
sup

s
L(1−β′)/2(XL − µ1) ∈ M(Ĉ′)

) ≤ − inf
x̂∈M̄(Ĉ′)

I(x̂).

The following lemma shows that this infimum tends to ∞ as Ĉ′ → ∞; hence
the result. �

Lemma 15 Let

M(Ĉ) = {x : sup
s

R̂−s(x̂, Ĉ)/s ≥ δ}

and let K(Ĉ) = inf x̂∈M̄(Ĉ) I(x̂). Then K(Ĉ) → ∞ as Ĉ → ∞.

Proof. As we remarked in Section 6.4, the departure map is continuous with re-
spect to the uniform norm ‖·‖. Thus the map x̂ �→ sups R̂−s(x̂, Ĉ) is continuous.
So M̄(Ĉ) = M(Ĉ).

Suppose, without loss of generality, that K(Ĉ) < ∞. Since I is a good rate
function and M(Ĉ) is closed, the infimum in K(Ĉ) is attained, say at x̂∗. Since
x̂∗ ∈ M(Ĉ), there exists some s > 0 such that R̂−s(x̂∗, Ĉ) > δs/2, and thus
there exists some t such that x∗[−s − t,−s) > Ĉt + δs/4. In particular, there
exist s and t such that x̂∗[−s,−t,−s) > Ĉt. By stationarity, and by Lemma 6,
I(x̂∗) ≥ Ĉ2/2V1. This tends to ∞ as Ĉ → ∞. �

The inverse result is trivial because of the way we have set up our queueing
model, with fixed service rates. Recall that X̃L has passed through a queue of
scale β, that is, with service rate Lµ+L(1+β)/2Ĉ. Suppose X̃L is fed into a queue
scaled by β′ where β′ > β, that is, a queue with service rate Lµ + L(1+β′)/2Ĉ′.
Whatever the values of Ĉ and Ĉ′, for large enough L, the arrival rate at the
downstream queue is strictly less than its service rate, so queues never build up
at all. Thus the downstream queue size is (moderately) exponentially equivalent
to 0.

Note that the departure process X̃L is not moderately exponentially equiva-
lent to 0. It is still possible for XL to make a moderately large excursion below
its mean rate, leading to a correspondingly large excursion of X̃L below its mean
rate. The upstream queue only smooths out large positive bursts of traffic.

Finally, note that the results in this section apply just as well to queues
serving a mixture of several traffic flows. The characteristics of each flow sharing
the queue, at scales β′ < β, are not changed by passing through the queue. Since
the flows do not influence each other (except trivially, through their mean rates),
we say they are decoupled.

This result is tantalizingly similar to a result of de Veciana et al. [6], who
study decoupling in the fast-time large deviations limit. They show that, if
the service rate is high enough, and if one considers a sufficiently small scale of
burstiness, the flows decouple in their marginal (short-timescale) distributions.
They measure scales of burstiness by the large deviations tilt parameter (rather
than by the moderate deviations scale β that we are using). Their technique is
not crude enough to establish decoupling in our full sample-path sense [9].
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7.2 A priority queue

The next example of mixed limits is of a priority queue in which the high priority
flows are scaled by β = 1 and the low priority queues are scaled by β < 1.

Consider a priority queue fed by two flows. The high priority flow is XL,
and the low priority flow is YL. Let XL have mean rate Lµ, let YL have mean
rate Lν, and let the service rate be CL = Lµ + Lν + L(1+β)/2Ĉ. Think of the
many-flows limit, in which each of the two flows XL and YL is the aggregate of
L independent copies of base flows X and Y (though the argument also works
in the fast-time limit.)

The limiting traffic intensity of the high priority flow is µ/(µ + ν), which is
less than 1. We may think of the high priority flow as a high quality multimedia
flow, which requires low traffic intensity in order to achive good enough quality
of service.

The limiting traffic intensity of the aggregate is 1. In other words, the low
priority flow pushes the traffic intensity up towards 1. We may think of the low
priority flow as data traffic, which seeks to take up all available capacity, and is
not very sensitive to loss or jitter.

Consider the high priority traffic on its own: it sees a total service rate of
CL = Lµ + Lν + L(1+β)/2C, so L−1CL → µ + ν. Let QL be the amount of
high priority work in the queue. Since the traffic intensity is less than 1, we can
apply large deviations results:

1
L

log�
(
QL > Lb̂

)≈ −IQ = − inf
t≥0

sup
θ

θ(b̂ + (µ + ν)t) − log � exp(θX[−t, 0)).

Now consider the aggregate traffic XL + YL, and let the total amount of
work in the queue be QL + RL. We have chosen the scaling so as to give a
moderate deviations principle for aggregate queue size:

1
Lβ

log�
(
QL + RL) > L(1+β)/2b̂

) ≈ −IR = − inf
t≥0

(b̂ + Ĉt)2

2(Vt + Wt)

where Vt = Var X [−t, 0) and Wt = VarY [−t, 0).
By a small extension of the argument in Section 6.3, it can be shown that

(at the moderate deviations scale) the aggregate queue size QL +RL is entirely
made up of low priority work—that is, QL = 0. This seems at first sight to
conflict with the previous estimate for QL. What it really means is that the
most likely way for QL + RL to fill up to level L(1+β)/2b̂ is for RL to do all the
work in reaching that level; this happens with probability roughly exp(−LβIR).
But QL can still produce work: it reaches level Lb̂ with probability roughly
exp(−LIQ). At the moderate deviations scale, this sort of event is completely
swamped.

It is confusing to have to worry about all the different scalings: of arrivals, of
service rates, of queue sizes, and of buffer sizes. To make things a little simpler,
suppose that the buffer size for each type of traffic is very small: b̂ ≈ 0. Then,

�(Q overflows) ≈ exp(−LIQ),

and �(R overflows) ≈ exp(−LβIR).

One interpretation is that, by scaling the system in the right way, one can
give significantly better service to the high priority flow. A large deviations
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analysis would not have revealed this: it would have found overflow probabilities
which decay exponentially in L for both the high and low priority flows.

A different interpretation is that by adding a tiny amount of extra service
Lε, both flows will have overflow probability which decays exponentially in L—
in other words, both will have very good service, and so there is no point in
using priorities.

8 Interpretation

We have finished with the formal part of the study. The purpose of this section
is to highlight some of the properties of the moderate deviations scale.

In Sections 8.1–8.3 we will look at heuristics and approximations based on
moderate deviations theory. We will see in which cases it is appropriate to use
large deviations, moderate deviations, and heavy traffic theory.

In Section 8.4 we will look at the connection between large deviations and
moderate deviations. After the last section, we hardly need to comment that the
two theories are closely linked—the proofs are largely the same, and the main
difference is the form of the rate function. We will dwell on effective bandwidth
theory, and explain why it is not useful at the moderate deviations scale.

In Section 8.5 we will look at the connection between heavy traffic and
moderate deviations, dwelling especially on the snapshot principle and on state
space collapse.

In Section 8.6 we make some comments about the relationship between the
burstiness of long-range-dependent traffic, described by the Hurst parameter,
and the burstiness described by our parameter β.

8.1 Moderate deviations approximations

Forget for a moment that moderate deviations results are limiting results. What
sort of estimates do they lead to for finite systems? Here is the heuristic for the
many-flows scale.

Fix L large, and let QL be the queue size in a queue fed by XL = X⊕L (the
aggregate of L independent copies of X), served at rate CL = Lµ + L(1+β)/2Ĉ,
where µ = �X1 . Let bL = L(1+β)/2b̂ and consider the event that QL ≥ bL.
From Section 6.1,

1
Lβ

log�(L−(1+β)/2QL ≥ b̂) ≈ − inf
t≥0

(b̂ + Ĉt)2

2Vt
(18)

where Vt = Var X [−t, 0).
Now rewrite this estimate in terms of XL, CL and bL, and let µL = �XL

1

and V L
t = VarXL[−t, 0):

log�(QL ≥ bL) ≈ −Lβ inf
t≥0

(L−(1+β)/2bL + L−(1+β)/2(CL − µL)t)2

2L−1V L
t

= inf
t≥0

(bL + (CL − µL)t)2

2V L
t

.

Conveniently, β has disappeared. This estimate should be good when L is large
and XL, bL and CL are scaled as in the previous paragraph.
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Now let us drop the superscript L: let Q be the queue size in a queue fed
by X and served at rate C. The event that Q > b may be estimated by

log�(Q ≥ b) ≈ −I (19)

where

I = inf
t≥0

(b + (C − µ)t)2

2Vt
. (20)

This is precisely (18) with L set to 1. It is to be understood that this approxi-
mation is justified when X, C and b stand in a certain relation (though of course
one can compute the approximation for any X, C and b).

I have belaboured this explanation, as the argument “we make this approx-
imation for L → ∞, thus for L large, thus for L = 1” might appear strange at
first sight.

There is also a moderate deviations estimate for the fast-time limit. It turns
out to be

log�(Q ≥ b) ≈ − inf
t≥0

(b + (C − µ)t)2

2V t
= 2

b(C − µ)
V

(21)

where

V = lim
t→∞ t−1 VarX [−t, 0). (22)

Here we have taken the infimum over t ∈ �
+ , for simplicity of calculation.

(There are modifications for when the limit does not exist.) This estimate is
generally worse than the many-flows estimate, even when there is only a single
flow, because it does not take into account the short-timescale variance structure
Vt.

These are estimates for isolated queues. For networks of queues, the low-
pass filter result suggests the following approximation. The loss probability at
a queue of scale β will be of order L−β . Thus the loss probability for a flow
through a network will be dominated by the loss probability at the queue along
its path with the smallest scale βmin. We will call this the bottleneck link of the
flow. (In case of priority discipline, the result about state-space collapse shows
that all flows except that with lowest priority will effectively see scale β = 1.)
We can empirically identify the bottleneck link very simply: it is the queue with
the highest frequency of overflow.

By the low-pass filter result, traffic is essentially unchanged (at scales less
than or equal to βmin) until it reaches the bottleneck link. Therefore we can use
the estimate (20) for loss probability at the bottleneck link, without having to
take account of any smoothing. Thus we can approximate the loss probability
of a flow through a network, by the loss probability at its bottleneck link.

In fact, we do not even have to compare loss probabilities. We can simply
apply the formula (20) to each queue along a path, and add up these estimates.
The queue with the smallest scale will automatically dominate (as L → ∞).
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8.2 Other approximations

In the next section we will compare these moderate deviations estimates to those
from large deviations and heavy traffic theory. First, a short summary.

The many-flows large deviations estimate, described in Wischik [29], is

log�(Q ≥ b) ≈ −I (23)

where

I = inf
t≥0

sup
θ

θ(b + Ct) − Λt(θ) (24)

and

Λt(θ) = log � exp(θX [−t, 0)).

Refinements to this approximation have been studied by Likhanov and Mazum-
dar [17]6. More on this approximation and its interpretation in terms of effective
bandwidth in Section 8.4.

There is also a fast-time large deviations estimate, but it is less accurate.

For many-flows heavy traffic, one would approximate

�(Q(X) ≥ b) ≈ �(Q(Y) ≥ b)

where Y is a Gaussian process with the same mean and covariance structure
as X. The right-hand side can be hard to calculate in the many-flows limit,
so often we are restricted to the fast-time heavy traffic estimate, in which Y
is a Brownian motion with drift, with parameters chosen so that �Y [−t, 0) =
�X [−t, 0) and VarY [−t, 0) = V t, with V as in (22). By standard results for
Brownian motion with drift,

�(Q ≥ b) ≈ exp
(
−b(C − µ)

2V 2

)
. (25)

8.3 Numerics

It is illuminating to see how well these three estimates (many-flows moderate
deviations, many-flows large deviations, and fast-time heavy traffic) do in prac-
tice.

6A better approximation is

�(Q ≥ b) ≈ 1

θ∗
�

2πΛ′′
t∗ (θ∗)

e−I

where I is as in (24), and t∗ and θ∗ are the optimizing values in I. This suggests a refinement
of the moderate deviations approximation:

�(Q ≥ b) ≈ 1

θ∗
√

2πVt∗
e−I

where I is as in (20), t∗ is the optimizing value in I, and θ∗ = (b + (C − µ)t∗)/2Vt∗ . This
paper is concerned with moderate deviations, not with refined asymptotics, so we will not
attempt to prove this conjecture.
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Example 6 (Independent increments)
Let X be a random process in which all the X−t are independent and identically
distributed, X−t ∼ Bin(2, p). This gives

log � exp(θX [−t, 0)) = 2(peθ + 1 − p),

µ = 2p, Vt = 2tp(1− p), and V = 2p(1− p). Suppose X is fed into a queue with
service rate 1. One can calculate exactly the queue size distribution:

�(Q ≥ b) =
( p

1 − p

)2b

.

This may be compared to the large deviations estimate (23), the moderate de-
viations estimate (19), and the heavy traffic estimate (25). Figure 1 plots these
three estimates as a function of traffic intensity ρ (where p = 1

2ρ). (Actually,
we plot the refined large and moderate deviations estimates.)
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Largest Term estimate

Large Deviations estimate (LD)

Moderate Deviations estimate

Heavy Traffic estimate (HT)

Figure 1: Estimates of log �(Q ≥ 1). The queue is fed by a source
with independent increments and traffic intensity ρ, as described in
Example 6—When traffic intensity is low, overflow depends on higher
moments than just mean and variance (so HT is poor), and the prin-
ciple of the largest term is a good approximation (so LD is reasonably
good, though the exponential approximation part of LD is not per-
fect). When traffic intensity is high, overflow depends on just mean
and variance (so HT is good), but the principle of the largest term is
not a good approximation (so LD is poor). The moderate deviations
estimate suffers from the flaws of both HT and LD.

When traffic intensity is greater than 30%, the heavy traffic estimate does
well. This means that events Q ≥ b are well explained by just the mean and
variance of X. In the same range, the large deviations estimate does poorly:
partly because the exponential approximation is inaccurate; mainly because the
principle of the largest term is inaccurate.

When traffic intensity is lower than 30%, the large deviations estimate is
better, because Q ≥ b comes about through peaks in the input, which are
governed by higher moments. The heavy traffic estimate does not attempt to
describe these peaks, so it does poorly.

The moderate deviations estimate is worst over the entire range of traffic
intensities. When traffic intensity is higher than 30% it fails for the same reason
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as the large deviations estimate; when traffic intensity is lower, it fails for the
same reason as the heavy traffic estimate. �

This looks like bad news for moderate deviations. We would expect the
moderate deviations estimate to be worse than large deviations in all cases,
since it is based on the same theory but uses a simplified traffic model, namely
that the traffic is approximately Gaussian. When that is true, the heavy traffic
estimate should be better.

Example 7 (Correlations)
Let X be a Markov chain on the state space {0, 2}, with transition probabilities
�(Xt+1 = 2 | Xt = 0) = p and �(Xt+1 = 0 | Xt = 2) = q. In words, X is
an on/off source which jumps from on to off with probability p, and from off
to on with probability q, and when on produces 2 units of work each timestep.
Consider feeding X into a queue with service rate 1. One can can calculate
exactly the queue size distribution: for b > 0,

�(Q ≥ b) =
α

λ(1 − λ)
λb

where λ = (1 − p)/(1 − q) and

α =
1 − λ + λ(p + q)

(p + q)(1−q
q + 1

1−λ)
.

Again, compare this to the large deviations estimate (23), the moderate devi-
ations estimate (19), and the heavy traffic estimate (25). Figure 2 plots these
three estimates as a function of traffic intensity ρ, where the X is parameterized
by p = 0.1 and q = pρ/(2 − ρ).

When traffic intensity is less than 80%, the large deviations estimate does
well, because it takes into account the correlation structure of X̂. When traffic
intensity is between 50% and 80%, the moderate deviations does nearly as well,
meaning that the event Q ≥ b is governed largely by the mean and variance
of X. When traffic intensity is less than 50%, the event is governed by higher
moments, so the moderate deviations estimate is poor. Note that the moderate
deviations estimate is significantly easier to calculate.

The heavy traffic estimate is poor over most of the range of traffic intensities.
This is because we are using the fast-time heavy traffic estimate, which ignores
the short-timescale correlation structure of X—which, in this example, governs
the behaviour of the queue. The many-flows heavy traffic estimate would be
much better, but it does not in general have a closed form solution. �

These examples show us when moderate deviations should be useful in prac-
tice. When traffic intensity is low, the behaviour of the queue is governed by
higher moments than just the mean and variance; large deviations is best, be-
cause it takes into account the full distribution of the input process. When
traffic intensity is high, the behaviour of the queue is governed largely by the
first two moments; that is, the input process can be well-approximated by a
Gaussian process, matched to have the same mean and covariance structure.
If, over the timescale over which the queue overflows, the correlation structure
is insignificant, use the fast-time heavy traffic approximation. If not, use the
many-flows moderate deviations approximation.
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Figure 2: Estimates of log �(Q > 1). The queue is fed by a source
with strong correlations and traffic intensity ρ, as described in Ex-
ample 7—At all traffic intensities, HT is bad because it ignores the
correlation structure of the source. When traffic intensity is low, the
principle of the largest term is a good approximation (so LD is rea-
sonably good) though overflow depends on higher moments than just
mean and variance (so MD is poor). When traffic intensity is mod-
erate, the principle of the largest term is still a good approximation
(so LD is reasonably good), and overflow depends only on mean and
variance (so MD is good too). When traffic intensity is high, the
principle of the largest term is not a good approximation (so LD and
MD are poor).

Lest the reader be disheartened by the seemingly poor showing of moderate
deviations estimates, it is appropriate here to reiterate some of their benefits.
Moderate deviations estimates are parsimonious—they involve only the mean
and covariance structure—so they are easier to work with than large deviations
estimates. Moderate deviations estimates are simple—they are based on the
principle of the largest term—so they are easier to work with than heavy traffic
estimates. (Indeed, when the correlation structure is significant, the heavy
traffic estimates are almost intractable.)

Furthermore, moderate deviations estimates are much easier to apply to
networks. In both heavy traffic theory and large deviations theory, traffic is
smoothed before it reaches the bottleneck link, and so one is simply not justified
in applying the estimates we have described to downstream queues. (There
are modified estimates, which involve knowledge of the entire structure of the
network and all traffic flows through it; as one might expect, the calculation
is significantly more complicated.) By contrast, the straightforward moderate
deviations estimate can justifiably be applied to the bottleneck link, thanks to
our result about queues as low-pass filters.

8.4 Large and moderate deviations

Let us return to the large deviations estimate

log�(Q ≥ b) ≈ − inf
t≥0

sup
θ

θ(b + Ct) − Λt(θ) (26)
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where

Λt = log � exp(θX [−t, 0))

= θµt + 1
2θ2Vt + O(θ3).

The optimal θ∗ and t∗ are known as the operating point.
To understand this estimate better, it is helpful to think of it as based on

two ideas: the principle of the largest term, and exponential approximations.
For the first, the event {Q ≥ b} can be written {∃t : X [−t, 0) ≥ b + Ct}, and
the principle of the largest term says

�(Q ≥ b) ≈ sup
t
�(X [−t, 0) ≥ b + Ct).

For the second, the exponential approximation is that

log�(X [−t, 0) ≥ b + Ct) ≈ − sup
θ>0

θ(b + Ct) − log � exp(θX [−t, 0)).

These two elementary ideas are a necessary part of any large deviations result;
putting them together gives precisely the large deviations many-flows estimate
(26).

If one replaces the full log moment generating function Λt by its second-order
approximation one obtains the moderate deviations estimate (19).

More deeply, the large deviations heuristic (26) can guide us to the full
moderate deviations approximation (18) as follows. Replace the parameters ac-
cording to the moderate deviations scale: replace b by L(1+β)/2b̂, C by L�X−1 +
L(1+β)/2Ĉ and X by the aggregate of L copies of X. If Λt is sufficiently nice,
then in the limit as L → ∞,

1
Lβ

sup
θ

θ(b + Ct) − Λt(θ) → sup
φ

φ(b̂ + Ĉt) − 1
2φ2Vt.

(The optimal θL is roughly L−(1−β)/2φ.) At a purely symbolic level, ignoring all
the complications of probability theory, this is exactly the moderate deviations
limit theorem (18).

The estimate (26) can help us interpret the idea of effective bandwidth.
The effective bandwidth of a source with log moment generating function Λt

is α(θ, t) = (θt)−1Λt(θ). This is a convenient parameterization: α(θ, t) lies
between the mean and the peak of X [−t, 0); and it has the interpretation that
(in a queue with many input processes, with operating point θ∗ and t∗) replacing
some flows by constant-rate flows of rate α(θ∗, t∗) does not alter the overflow
probability. For more details see Wischik [29] and Kelly [15].

In the moderate deviations scale, indexed by L, we have just seen that
θL ∼ L−(1−β)/2φ. In other words, in the moderate deviations scale, we are
looking at behaviour that is ever closer to the mean. The relevant effective
bandwidth is thus ever closer to the mean: α(θL, t) = µ + 1

2L−(1−β)/2φVt/t.

Thus, at the moderate deviations scale, the aggregate process is approxi-
mated well by a Gaussian process with the same mean and covariance structure.
If one takes a large deviations estimate, and simply replaces the log moment
generating function Λt by its second-order approximation θVt/t, one obtains
exactly the moderate deviations estimate.
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Now, ‘real’ traffic processes are never Gaussian—there is no such thing as
negative work arriving at a queue. When we study large deviations of Gaussian
processes, we are therefore implicitly dealing with some moderate-deviation-like
scaling.

We must therefore exercise caution in interpreting large deviations results
for Gaussian processes, especially in interpreting the effective bandwidth of a
Gaussian process.

8.5 Moderately heavy traffic

Two very important ideas from heavy traffic theory—state space collapse, and
the snapshot principle—apply also to moderate deviations theory.

In Section 6.3 we considered a single queue fed by several independent flows
X(i), i = 1..N , with mean arrival rates µ(i) and aggregate mean arrival rate
µ =

∑
i µ(i). We assumed that work arriving from a flow i at time −t, X−t(i),

was distributed uniformly throughout the timeslot [−t,−t + 1), and that work
was served in the order it arrived. Let the total queue size be Q, and let the
amount of work in the queue due to flow i be Q(i). The conclusion was that
Q(i) is approximately Qµ(i)/µ. (The precise sense of the approximation is that
the two quantities are moderately exponentially equivalent, which means that
they satisfy the same moderate deviations principles.)

Consider instead a priority queue discipline: suppose that all work X−t(i)
arrives at time −t and is served in order of priority, X−t(1) first then X−t(2)
and so on. With a small modification to the proof in Section 6.3, one can show
that Q(i) ≈ 0 for i < N , and so all the work in the queue belongs to flow N .
(Again, this is in the moderately exponentially equivalent sense.)

In each case, the single variable Q dictates the values of the other quantities
Q(i). This phenomenon is known in heavy traffic theory as state space collapse—
see Harrison and Van Mieghem [13] and Reiman [23]. We have just seen two
simple examples of state space collapse in systems with fixed service policies;
in fact, the concept is most powerful when applied to systems in which the
service policy can be changed dynamically, based on the state of the system.
We conjecture that there is a similar control theory for queueing systems at the
moderate deviations scale.

In large deviations, there is no state space collapse. For example, [29] shows
that in a priority queue with two input flows, the distribution of work in the
queue will depend on the queue size.

Section 6.3 has another insight to give. In the course of the proof, we showed
that all the work arriving at time −t is served either at −t or at −t+1. (Again,
this is a statement about moderate exponential equivalence.)

Our decision to work in discrete time obscures the key idea here. Perhaps a
more helpful way to describe it is as follows. Suppose the queue size has reached
Q = L(1+β)/2b̂, in the usual moderate deviations scaling. This is most likely to
happen over a critical timescale t∗—the optimizing value of t in (14), Section
6.1. The service rate is C = Lµ + L(1+β)/2Ĉ. If the service were continuous, an
arriving piece of work would depart the queue in roughly L−(1−β)/2b̂/µ.

Thus the timescale over which work passes through a queue is of order
L(1−β)/2 quicker than the timescale over which the queue size fluctuates. In
a feedforward network of queues, the state of the network (that is, the amount
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of work at each of the queues) will barely change in the time it takes a piece of
work to pass completely through the network. It is as if each piece of work, as
it passes through the network, observes a snapshot of the current state. This is
called the snapshot principle.

The snapshot principle in heavy traffic theory has been described by Reiman
[24]. As might be expected, in heavy traffic (β = 0) the timescale of queueing
delay is of order L1/2 quicker than the timescale of queue size fluctuations. In
large deviations theory (β = 1), the two timescales are roughly similar, and the
snapshot principle does not apply. One must therefore take great care in apply-
ing large deviations theory about departure processes to moderate deviations.

8.6 Long-range dependence

A common model for long-range dependence in Internet traffic is fractional
Brownian motion. In discrete time, this is characterized as follows. A standard
fractional Brownian motion with Hurst parameter H is a Gaussian process Z
which has mean 0 and variance VarZt = σ2t2H . Consider the arrival process
X = µ1 + σZ.

Because X does not have independent increments it is difficult calculate,
for example, the distribution of Q(X). This has motivates the study of large
deviations for long-range dependent processes.

In the many-flows limit, things are simple. Wischik [29] shows that X⊕L

satisfies exactly the same sort of large deviations principle as any other Gaussian
process; and Example 1 shows the same for moderate deviations.

In the fast-time limit, X is more interesting. Processes which satisfy the
normal fast-time large deviations principle of Section 3.3 must have variance
growing linearly; this is not the case for fractional Brownian motion. Nonethe-
less it is possible to recover a large deviations principle, by choosing a different
scaling. Let X̂L = N−1X⊗N , where N = L1/2(1−H). Then one can obtain a
large deviations principle of the form

L−1 log�(X̂N ∈ Ŝ) ≈ − inf
x̂∈Ŝ

I(x̂).

Rewriting in terms of the natural scale of queue size,

1

L2
(
1+ H

1−H

)−1 log�(Q0 ≥ Lb̂) ≈ −J(b̂).

This means that for H > 1
2 , the tail of the queue size is subexponential. This

fact has attracted much attention and caused some alarm. See Duffield and
O’Connell [8] for a good mathematical account. One interpretation is that one
needs very large buffers to give low overflow probability. A more robust interpre-
tation is that large buffers are not a good way to reduce loss probability—that
loss probability is best reduced by aggregating more flows.

The reciprocal of the prefactor is known as the speed of the large deviations
principle. In this case, the speed is L2(1−H), whereas for regular large deviations
the speed is L. For this reason, Chang et al. [3] refer to this as a moderate
deviations limit. Since the speed can be arbitrarily changed, by reparameterizing
the limit, I prefer to restrict the term ‘moderate deviations’ to cases where the
speed is not essentially determined by the input process X̂.
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Moderate deviations is a special case of large deviations, so it should not be
surprising to see the equivalent moderate deviations result, proved in Example
4:

1
Lβ

log�
(
L(1−β)/2(N−1X⊗N − µ1) ∈ Ŝ

) ≈ − inf
x̂∈Ŝ

I(x̂).

This yields estimates for queue size of the form

1

L2
(
1+ H

1−H
1
β

)−1 log�(QL
0 ≥ Lb̂) ≈ −J(b̂), (27)

where QL
0 is a queue with service rate

µ + L−(1−(H+β−Hβ)−1)Ĉ,

and thus traffic intensity

ρ ∼ 1 − L−(1−(H+β−Hβ)−1)Ĉ/µ.

This indicates a tradeoff between utilization and long-range dependence.
While H and β play similar roles in (27), it is important to be clear on their

differences. The Hurst parameter H is a single quantity which describes the
degree of self-similarity of a traffic flow. Scaling arguments suggest that when
a flow with Hurst parameter H passes through a queue, the output flow has
exactly the same H . On the other hand, a typical traffic flow has bursts over
many scales β ∈ (0, 1), and these scales coexist. When a flow passes through
a queue with a certain burst scale β′, the output has bursts over scales β < β′

but none over scales β > β′.

9 Conclusion

The technical contribution of this paper has been the presentation of a family of
moderate deviations probability estimates, intermediate between heavy traffic
and large deviations theory. Moderate deviations estimates share the benefits
of both extremes: they are parsimonious, like heavy traffic models; and they are
easy to work with, like large deviations models. They reflect a regime in which
utilization is high, as it is in heavy traffic models; yet in which overflow is rare,
as it is in large deviations models.

The real goal of the paper is more ambitious. I hope to have drawn attention
to the importance of scaling phenomena in queueing networks. It is typical for
mathematicians to rescale, centre, and otherwise massage problems into cases
with interesting mathematical structure. We might assume for example that a
system is scaled in an appropriate way so as to yield a limiting Brownian motion,
and then study in great detail the characteristics of systems fed by Brownian
motion. However, it is often the case that the scaling is far more important
than the detailed study of the limit.

Moderate deviations theory describes a family of scales, indexed by a param-
eter β ∈ (0, 1), whereas both heavy traffic theory and large deviations theory
restrict attention to a single scale. We have therefore been able to study a range
of scaling phenomena, using a single set of tools.
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In particular, we have seen that traffic has bursts at many scales, with large
bursts less frequent than small bursts. A queue, which overflows with a certain
frequency, has its own characteristic scale; and overflow is governed by the
burstiness of the traffic at that scale. We have seen that a queue acts as a
low-pass filter on traffic bursts. This allows us to identify the bottleneck link
on a path—the link with the highest frequency of overflow—and to justify the
common assumption that traffic is essentially unsmoothed until it reaches that
link. This effect is not seen in either large deviations theory or heavy traffic
theory.
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