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Abstract

Traffic flows with long-range dependence satisfy a certain type of scal-

ing relationship, and it is this scaling relationship which governs the scal-

ing behaviour of a queueing network fed by such flows. In this paper we

present a mathematical technique for reasoning about scaling behaviour

in queueing systems, based on large deviations theory. Our technique

makes it straightforward to calculate the impact of long-range dependent

traffic on tandem queues, priority queues, and many other systems.

1 Introduction

The term ‘long-range dependence’ is loosely used to cover a range of phenom-
ena relating to scaling behaviour. These phenomena have attracted a great
deal of attention in the teletraffic community in the past ten years. We feel
there is still space for more attention, and in this paper we present a new ap-
proach, based on a novel conception of long-range dependence which we call
‘Hurstiness’. Our approach makes it possible to reason about scaling behaviour
in networks (for example, the scaling behaviour of a departure process from a
processor-sharing queue) using a bare minimum of calculation. The underlying
mathematical technology is large deviations theory; our approach was inspired
by the remarks of O’Connell [8, Section 2.8], formalized in [6, Theorem 6.16],
about the generality of exponential tails.

One standard way to define long-range dependence is this. Let X(t) be the
amount of work that arrives at a queue in a time-interval of duration t. Say
that the arrival process X is long-range dependent if

VarX(t) ∼ σ2t2H as t → ∞ (1)
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for some Hurst parameter H ∈ ( 1
2 , 1) and some σ2 > 0. We will not use this

definition. For our purposes, it is more useful to suppose instead that

1

t2(1−H)
log

� (

t−1X(t) ∈ B
)

→ − inf
x∈B

I(x) as t → ∞ (2)

for suitable sets B, for some H ∈ (0, 1) and for some function I . When this
is true, we will say that X has Hurstiness H . (There are actually some fur-
ther subtleties given in the formal definition in Section 2 below.) The term
‘Hurstiness’ was coined by John Lewis to refer loosely to the range of phenom-
ena associated with long-range dependence; in this paper we have co-opted his
term for our precise technical use.

To see that the two definitions are related, suppose that X(t) is distributed
like a normal random variable N(0, σ2t2H). Then clearly X has Hurst parameter
H . Also, taking for example B = [x,∞),

� (

t−1X(t) ∈ B
)

=
� (

N(0, σ2) ≥ t1−Hx
)

≈ 1√
2πσ2

exp
[

−x2t2(1−H)

2σ2

]

.

It can further be shown that (2) is satisfied, with I(x) = x2/2σ2. Thus X has
Hurstiness H .

The benefit of our Hurstiness formulation is this: the driving term in (2)
is t2(1−H), and it is straightforward to show that this driving term also applies
to derived quantities like the departure process from a queue or the queue size
in a downstream queue. By contrast, it is not so straightforward to determine
whether (1) holds for derived quantities.

The organization of the paper is as follows. In Section 2 we give an abstract
definition of Hurstiness. In Section 3 we detail our notation for traffic processes
and queueing systems. In Sections 4 and 5 we explain how to use Hurstiness
to analyse large-buffer asymptotics for queueing networks fed by long-range de-
pendent processes such as fractional Brownian motion; we cover aggregates,
priority queues, processor sharing queues, and departure processes. In Section
6 we explain how Hurstiness helps us understand many-flows asymptotics, in-
cluding the causes of long-range dependence. In Section 7 we conclude with a
summary of the ‘calculus of Hurstiness’.

2 Abstract definition of Hurstiness

This paper is based on large deviations theory. For a comprehensive reference
on all the large deviations techniques used here, see [2]. The only thing we will
reproduce here is the definition of a large deviations principle:

Let XN be a sequence of random variables, indexed by N ∈ � or N ∈ � + ,
taking values in some regular Hausdorff space X . Suppose that all open and
closed sets are measureable. Say that XN satisfies a large deviations principle
at speed Nα (for some real number α > 0) and with some rate function I if for
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all measurable sets B

− inf
x∈B◦

I(x) ≤ lim inf
N→∞

1

Nα
log

�
(XN ∈ B)

≤ lim sup
N→∞

1

Nα
log

�
(XN ∈ B) ≤ − inf

x∈B̄
I(x).

We say I is a rate function if I(x) ≥ 0 for all x, and if all level sets {x : I(x) ≤ α}
for α ∈ � are closed. We say I is a good rate function if in addition all level sets
are compact. It is a standard result that if I is a good rate function and C is a
closed set and infx∈C I(x) < ∞ then the infimum is attained at some x ∈ C.

(Here B◦ denotes the interior of B, and B̄ the closure. The space is regular
if for every closed set F and point x 6∈ F there exist disjoint open neighbour-
hoods of F and x; this will be needed for reasoning about uniqueness of the
rate function. All the spaces we work with in this paper are regular Hausdorff
spaces.)

Definition 1 (Hurstiness) Say that the sequence XN has Hurstiness H ∈
(0, 1) if it satisfies a large deviations principle with speed N 2(1−H) and some
good rate function I, and furthermore
i. there is some x̂ ∈ X for which 0 < I(x̂) < ∞;
ii. there is some µ ∈ X such that I(x) = 0 if and only if x = µ.
A rate function which satisfies these two properties we call non-trivial. Call µ
the zero-value of the rate function.

Note that the ‘if’ part of (ii) is a consequence of the LDP: by the upper
bound infx∈X I(x) = 0, and by goodness I(x) = 0 for some x ∈ X .

This is a useful definition, because Hurstiness is preserved by continuous
functions, as indicated by the following lemma, a simple consequence of the
contraction principle.

Lemma 1 (Contraction) Let XN have Hurstiness H, and let the correspond-
ing LDP hold in the space X and have rate function I and zero-value µ. Let
f : X → Y be a continuous function from X to another regular Hausdorff space
Y.
i. f(XN) satisfies an LDP in Y at speed N 2(1−H) with good rate function

J(y) = inf
x:f(x)=y

I(x),

and J(y) = 0 if and only if y = f(µ).
ii. If there is some x̂ such that I(x̂) < ∞ and f(x̂) 6= f(µ) then f(XN) has

Hurstiness H.

The condition in (ii) is to guard against trivial functions like f(x) = 0. The
proof of this lemma follows the statement of two more general lemmas: the
first is a key result for comparing sequences with different Hurstinesses, and the
second tells us that Hurstiness is well-defined.
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Lemma 2 (Trivial LDP at higher speed) Suppose that XN has Hurstiness
H with zero-value µ and good rate function I. Let G > H, G ∈ (0, 1). Then
XN satisfies an LDP at speed N 2(1−G) with good rate function

I ′(x) =

{

0 if x = µ

∞ otherwise.

Lemma 3 (Uniqueness) Suppose that XN has Hurstiness H with zero-value
µ, and it also has Hurstiness G with zero-value ν. Then H = G and µ = ν.

Proof of Lemma 1. Proof of (i). The LDP for f(XN) and the goodness of J
follow immediately from the contraction principle.

If y = f(µ) then clearly J(y) = 0. Suppose conversely that J(y) = 0. Since
I is good, and the set f−1({y}) is closed, there exists some x such that f(x) = y
and I(x) = J(y) = 0. Since I is non-trivial, x = µ, and so y = f(µ). This fulfils
(ii) of the definition of non-triviality.

Proof of (ii). Let ŷ = f(x̂). If J(ŷ) = 0 then by the above f(x̂) = f(µ),
which we have assumed is not the case, hence J(ŷ) 6= 0. Since J is a rate function
it is non-negative, and so J(ŷ) > 0. From the definition of J , J(ŷ) ≤ I(x̂); by
our assumption that I(x̂) < ∞ we see J(ŷ) < ∞. This fulfils (i) of the definition
of non-triviality.

We have shown that J satisfies the two conditions of non-triviality. Thus
f(XN) has Hurstiness H . 2

Proof of Lemma 2. I ′ is a good rate function, since it is non-negative and its
only level set is {µ} which is certainly compact.

LD upper bound. Let B ⊂ X be some closed set. We need to prove that

lim sup
N→∞

1

N2(1−G)
log

�
(XN ∈ B) ≤ − inf

x∈B
I ′(x). (3)

Suppose first that infx∈B I(x) = 0. Since I is good, I(x) = 0 for some x ∈ B.
Since I is non-trivial, x = µ, and so µ ∈ B. Thus infx∈B I ′(x) = 0. So (3) is
trivially satisfied.

Now consider the case where infx∈B I(x) > 0. From the LDP at speed
N2(1−H),

lim sup
N→∞

1

N2(1−H)
log

�
(XN ∈ B) ≤ − inf

x∈B
I(x) < 0.

Thus there exists an ε > 0 and an N0 such that for N > N0

1

N2(1−H)
log

�
(XN ∈ B) < −ε,

which implies that

1

N2(1−G)
log

�
(XN ∈ B) = N2(G−H) 1

N2(1−H)
log

�
(XN ∈ B) < −εN2(G−H).
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Therefore

lim sup
N→∞

1

N2(1−G)
log

�
(XN ∈ B) = −∞

and so (3) is trivially satisfied. This completes the proof of the LD upper bound.
LD lower bound. Let B ⊂ X be some open set. We need to prove that

lim inf
N→∞

1

N2(1−G)
log

�
(XN ∈ B) ≥ − inf

x∈B
I ′(x). (4)

Suppose first that infx∈B I ′(x) = ∞. Then (4) is trivially satisfied.
Now consider the case where infx∈B I ′(x) < ∞. This means that µ ∈ B,

hence infx∈B I ′(x) = 0 and infx∈Bc I ′(x) = ∞. Since B is open, Bc is closed.
So we can use the LD upper bound established above to find that

lim sup
N→∞

1

N2(1−G)
log

�
(XN ∈ Bc) ≤ − inf

x∈Bc

I ′(x) = −∞.

In particular,
�
(XN ∈ Bc) → 0. Therefore

�
(XN ∈ B) = 1− �

(XN ∈ Bc) → 1
and so

lim inf
N→∞

1

N2(1−G)
log

�
(XN ∈ B) = 0.

But this is exactly equal to − infx∈B I ′(x), and so the LD lower bound is
proved. 2

Proof of Lemma 3. Let I be the rate function for the LDP at speed N 2(1−H)

and the zero-value be µ, and let J be the rate function for the LDP at speed
N2(1−G) and the zero-value be ν.

Suppose that H = G. Since X is a regular Hausdorff space, the rate function
is unique, so I = J . From the definition of non-triviality, I(ν) = J(ν) = 0 so
ν = µ.

So assume (without loss of generality) that G > H . By Lemma 2, XN

satisfies an LDP at speed N2(1−G) with good rate function I ′. By the uniqueness
of the rate function at speed N2(1−G) it must be that I ′ = J . Yet I ′ is trivial
and J is not, a contradiction. This contradicts the assumption that XN has
Hurstiness H and also Hurstiness G > H . 2

3 Notation for traffic processes

In Section 2 we gave an abstract definition of Hurstiness, for arbitrary random
variables. In Section 4 we will explore the interpretation of Hurstiness for traffic
processes. In this section, we first establish some notation for talking about
traffic.

Let C be the set of continuous functions

C =
{

x : � + → � , x is continuous, x(0) = 0
}
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and equip it with the norm

‖x‖ = sup
t≥0

∣

∣

∣

x(t)

1 + t

∣

∣

∣

Define also the set of truncated functions

CT =
{

x : [0, T ] → � , x is continuous, x(0) = 0
}

Since (C, ‖ · ‖) is a metric space, it is a regular Hausdorff space. The same is
true of (CT , ‖ · ‖).

When we wish to discuss traffic processes we will interpret x(t) as the amount
of work arriving in the interval (−t, 0], and use a more suggestive syntax: we
will write

x(−t, 0] for x(t)
x(−u,−v] for x(u) − x(v)
x|(−T,0] for x restricted to [0, T ], i.e. the projection of x into CT

ẋt for the rate dx(t)/dt, where this derivative exists
e for the constant-rate process e(−t, 0] = t.

Define the mean rate of x ∈ C to be

mean rate (x) = lim
t→∞

x(t)

t
(when the limit exists)

and let
Cµ =

{

x ∈ C : x has mean rate µ
}

.

4 Hurstiness of traffic processes

Now we will relate the abstract definition of Hurstiness in Section 2 to the idea of
long-range dependence in traffic processes. Long-range dependence concerns the
scaling properties of traffic over long timescales, and so we make the following
definitions:

Given a sample path x ∈ C, define the speeded-up version x � N for N ∈ � +

by
x � N (t) = x(Nt).

Let X be a random traffic process, i.e. a C-valued random variable. In the
following sections, we will be interested in the sequence

1

N
X � N .

Say that the traffic process X has Hurstiness H if this sequence has Hurstiness
H .

The prototypical example of a long-range dependent traffic process is frac-
tional Brownian motion (fBm). In this section we will show that fBm with
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Hurst parameter H has Hurstiness H (hence the name Hurstiness). We will
also demonstrate that a process can have high Hurstiness yet be arbitrarily
smooth; for good intuition about LRD it is important to understand this point
that ‘Hurstiness is not burstiness’. In Section 5 we will go on to calculate the
Hurstiness of derived quantities, such as queue size, in a network fed by Hursty
traffic.

4.1 Fractional Brownian motion

Let Z be a standard fractional Brownian motion with Hurst parameter H , so
that Z(t) is distributed as N(0, t2H). There is a standard traffic model obtained
from fBm:

A(−t, 0] = µt + σZ(t).

Now, it is well-known that fBm is self-similar, i.e. that

1

aH
Z � a is distributed as Z for all a > 0.

From this fact, and using a standard result concerning large deviations for Gaus-
sian processes (Theorem 10 in the appendix), we can show the following about
A:

Lemma 4 (Hurstiness of fBm) The process A, defined above, has Hursti-
ness H. The LDP for N−1A � N holds in the space Cµ, and the zero-value of the
LDP is µe. The rate function I is such that

I
(

µe + ξ(a − µe)
)

= ξ2I(a) (5)

for any ξ ∈ � and a ∈ Cµ.

We have deliberately not given the rate function here, since the whole point
of this paper is that one can prove a great deal without knowing the value of the
rate function—one need only check that some quantity of interest is non-trivial
in the sense of Lemma 1(ii). The above remark about I can sometimes be useful
to this end. To be concrete, we know that I is non-trivial, so there exists some
â 6= µe with I(â) < ∞; thus for some t there are sample paths b̂ with b̂(−t, 0]

arbitrarily large and I(b̂) finite; and as we will see in Section 5.1 this can be
useful for finding the Hurstiness of queue size.

Proof. Theorem 10 in the appendix tells us that the sequence Z/
√

L satisfies
an LDP at speed L with some good rate function I in the space C0. Now let
L = N2(1−H). From the self-similarity relationship,

1

N
Z � N is distributed as

1√
L

Z.

Rewriting the LDP for Z/
√

L in terms of N , we obtain an LDP for Z � N/N at
speed N2(1−H), with the same good rate function I .
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Lemma 11 in the appendix shows that the rate function is non-trivial, and
that the zero-value is 0e. That lemma, combined with the contraction principle,
also gives (5).

By applying Lemma 1 to the continuous function z 7→ µe+σz, the sequence
N−1A � N satisfies an LDP in Cµ with zero-value µe, and has Hurstiness H . 2

4.2 Hurstiness and burstiness

It is worth giving an example to illustrate the point that Hurstiness is not di-
rectly related to conventional ideas of ‘burstiness’. In essence, Hurstiness is only
concerned with long-timescale fluctuations, whereas the intuitive idea of bursti-
ness also takes account of short-timescale fluctuations. We will present a process
which has arbitrary Hurstiness H ∈ (0, 1), but which is arbitrarily smooth (in
the sense of being Lipschitz continuous with arbitrarily small constant).

The technical details rely on the departure map, which is not introduced
properly until Section 5.3, but the idea is simple: take a fBm with mean rate 0
and feed it into a queue with constant service rate ε > 0. Then the departure
process has the same Hurstiness as the input process, but its rate is bounded.

We now make this construction formal. Pick ε > 0. Let z ∈ C0. Consider
the departure map dε : C0 → C0, discussed further in Section 5.3. It may be
written

dε(z)(t) = εt + sup
s≥t

{

z(s) − εs
}

− sup
s≥0

{

z(s) − εs
}

.

Observe that dε(z)(s) − dε(z)(t) ≤ ε(s − t) for s ≥ t. Consider now

y(t) = εt − dε(z)(t).

Then y(s) − y(t) ≥ 0 for all s ≥ t. Finally define

x(t) = d2ε(y)(t).

It can readily be verified that x(s) − x(t) ≥ 0 for s ≥ t, and also as before that
x(s) − x(t) ≤ 2ε(s − t) for s ≥ t. Finally, let

w(t) = x(t) − εt

so that
|w(s) − w(t)| ≤ ε|s − t|.

Write f for the map z 7→ w. If z ∈ X0 then dε(z) ∈ X0, so y ∈ Xε, and
x ∈ Xε, and w ∈ X0, so f : X0 → X0. Furthermore, f is continuous since all the
constituent maps are continuous. (For the relevant results about dε, see Section
5.3 below.)

Now, let Z be a standard fBm with Hurst parameter H , and let W = f(Z).
It can be checked that

N−1W � N = f(N−1Z � N ).
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(For the relevant calculation for dε, see Section 5.3.) We now want to use Lemma
1 to show that N−1W � N has Hurstiness H , which means we need to find some
input path z with finite rate function, such that f(z) is not equal to f(0e), 0e
being the zero-value for fBm. Pick any ẑ with finite non-zero rate function.
From the proof of Lemma 8, we see that dε(ẑ) 6= dε(0e); nor do the trivial maps
to y and w make the sample path trivial. Thus f(ẑ) 6= f(0e).

So we have exhibited a process W which has Hurstiness H , but for which
|W (s) − W (t)| ≤ ε|s − t|. By making H large and ε small, we have a process
which is arbitrarily Hursty and arbitrarily smooth.

4.3 Form of the rate function

We briefly note a consequence of Hurstiness. If the traffic process X has Hursti-
ness H and the corresponding LDP has rate function I , then it is shown in [6,
Lemma 8.2] that

I(αx � 1/α) = α2(1−H)I(x) for any α > 0.

We will not use this result here. The proof is very similar to that of Theorem 5
below.

5 Hurstiness in queueing systems

Suppose we feed an arrival process A with Hurstiness H into a queueing system.
We can say a great deal about the scaling behaviour of queues in the network,
just from the fact of Hurstiness. In this section we will explore this for a selection
of increasingly complicated queueing systems.

5.1 Queue size

Consider first a stand-alone queue with an infinite buffer and constant service
rate C, fed by an arrival process A which has Hurstiness H . Suppose that the
LDP for N−1A � N holds in the space Cµ, and that C > µ. The queue size at
time 0 may be written as

Q = f(A) = sup
t≥0

A(−t, 0] − Ct, (6)

and the function f is continuous on Cµ [6, Theorem 5.3]. It is easy to see from
(6) that Q/N = f(N−1A � N ). Using Lemma 1 we find the following LDP for
Q/N :

Theorem 5 Let I be the rate function for N−1A � N .
i. Q/N satisfies an LDP with speed N 2(1−H) and good rate function J(q) =

infa:f(a)=q I(a);

ii. J(αq) = α2(1−H)J(q) for any α > 0, and J(q) = 0 if and only if q = 0;

9



iii. If there exists some sample path â with I(â) < ∞ and f(â) > 0 then J(q) =
q2(1−H)δ for some 0 < δ < ∞, and Q/N has Hurstiness H.

Proof. Claim (i). This is a direct consequence of the contraction principle.
Claim (ii). Let R = Q/α. Now R/N is a simple continuous function of

Q/N , so we can apply the contraction principle to find that R/N satisfies an
LDP with speed N2(1−H) and good rate function

J ′(r) = inf
q:q/α=r

J(q) = J(αr).

We can find an LDP for R/N in another way. The LD upper bound for Q/N
says that for any closed set B

lim sup
N→∞

1

N2(1−H)
log

�
(Q/N ∈ B) ≤ − inf

q∈B
J(q).

Let N = αL. Rewriting this equation,

lim sup
L→∞

1

L2(1−H)
log

�
(R/L ∈ B) ≤ − inf

q∈B
α2(1−H)J(q).

A LD lower bound for R/N can be found similarly. We conclude that R/N
satisfies an LDP with speed N2(1−H) and good rate function

J ′′(r) = α2(1−H)J(r).

These two LDPs for R/N hold in � + , which is regular. By uniqueness of the
rate function, J ′(r) = J ′′(r). This proves the first part of the claim.

For the second part of the claim, we will first prove that I has zero-value µe.
Let XN = N−1A � N (−1, 0] and let Y N = N−1A � N (−t, 0]. By the contraction
principle, XN satisfies a large deviations principle with some good rate function
J1(x) and Y N does too with some good rate function Jt(y). By Lemma 1(i), the
zero-value for J1 is â(−1, 0] and that for Jt is â(−t, 0], where â is the zero-value
for I .

Now, Y N = tXtN , and by a similar argument to that above Jt(y) =
t2(1−H)J1(y/t). Pick y = â(−t, 0]; then Jt(y) = 0, hence J1(y/t) = 0, hence
y/t = â(−t, 0]; hence â(−t, 0] = tâ(−1, 0]. Indeed, since t was arbitrary,
â = â(−1, 0]e. Since â ∈ Cµ, it must be that â = µe.

Now we can finish proving the claim. By Lemma 1(i), J(q) = 0 if and only
if q = f(µe), which is equal to zero since µ < C.

Claim (iii). The assumption that there exists such a sample path â implies,
by Lemma 1(ii), that J is non-trivial and that Q/N has Hurstiness H .

It remains to establish the form of the rate function. By (ii), J(0) = 0 and
J(q) = q2(1−H)J(1) where J(1) > 0 and possibly J(1) = ∞. But if J(1) = ∞
then this rate function would be trivial, which is not the case. Therefore J(1) <
∞. 2

It’s helpful for the intuition to write the LDP for Q/N another way:
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Lemma 6 In the setting of Theorem 5,

lim
q→∞

1

q2(1−H)
log

�
(Q > q) = −δ

for some 0 < δ ≤ ∞.

Proof. Consider the open interval B = (1,∞) and its closure B̄ = [1,∞). From
the equation for J ,

inf
r∈B

J(r) = inf
r∈B̄

J(r) = J(1),

so the LD upper and lower bounds agree, and so

lim
N→∞

1

N2(1−H)
log

�
(Q/N > 1) = −J(1).

Letting δ = J(1) and relabelling N as q we find

lim
q→∞

1

q2(1−H)
log

�
(Q > q) = −δ.

Finally, δ > 0 by Theorem 5(ii). 2

Finally, a remark about non-triviality. It may be that δ = ∞, or equivalently
J(q) = ∞ for all q > 0. For example, consider two queues in tandem, let the
upstream queue have service rate C and the downstream queue have service rate
C ′ > C. Suppose the upstream queue is fed by a fBm source with Hurstiness
H and mean rate µ < C. We will see in Section 5.3 that the output process,
call it A′, also has Hurstiness H and mean rate µ. Since A′ is rate-limited, the
downstream queue can never overflow. So if Q is the size of the downstream
queue, then Q/N satisfies a trivial LDP with rate function J(q) = ∞ for all
q > 0.

In general, though, if J(q) = ∞ for all q > 0, it does not necessarily mean
that the queue never builds up, merely that the tail of the distribution is smaller
than can be measured by an LDP at speed N 2(1−H). In such cases we need more
refined techniques to learn about the actual tail of the distribution.

5.2 Aggregates

Theorem 7 Let A and B be two traffic processes, the former having Hurstiness
H and lying in Cµ, and the latter having Hurstiness G and lying in Cν .
i. If A and B are independent then A + B has Hurstiness H ∨ G.
ii. If H 6= G and (N−1A � N , N−1B � N ) satisfies an LDP at speed N 2(1−H∨G)

with some good rate function K, then A + B has Hurstiness H ∨ G.

Here, H ∨ G means max(H, G).
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Proof. Suppose that the LDP for N−1A � N has good rate function I and zero-
value a0, and that that for N−1B � N has good rate function J and zero-value
b0.

Claim (i). Consider first the case that H 6= G, and without loss of generality
suppose H < G. By Lemma 2, N−1A � N satisfies an LDP at speed N2(1−G)

with trivial good rate function

I ′(a) =

{

0 if a = a0

∞ otherwise.

Since this LDP holds in Cµ, and that for N−1B � N holds in Cν , both of which
are regular Hausdorff spaces, the pair (N−1A � N , N−1B � N ) satisfies an LDP in
Cµ × Cν with good rate function K(a, b) = I ′(a) + J(b). We can now refer to
(ii).

Consider next the case that H = G. Again, the pair (N−1A � N , N−1B � N )
satisfies an LDP in Cµ ×Cν , this time with good rate function K(a, b) = I(a) +
J(b). Let C = A + B. By the contraction principle, N−1C � N satisfies an LDP
with speed N2(1−H) and good rate function

L(c) = inf
a,b:a+b=c

I(a) + J(b).

We will now argue that L is non-trivial.
Suppose that L(c) = 0 for some c. Since L is good, and the set {(a, b) :

a + b = c} is closed, c = â + b̂ for some â and b̂, and I(â) + J(b̂) = 0, thus

I(â) = J(b̂) = 0. Since I and J are both non-trivial, â is equal to the zero-value
a0 of I , and b is equal to the zero-value b0 of J . So c = a0 + b0, and this is the
unique c for which L(c) = 0. This fulfils (ii) of the requirement of non-triviality.

Since J is non-trivial, there exists some arrival process b 6= b0 for which
J(b) < ∞. Now L(a0 + b) ≤ J(b) < ∞, and L(a0 + b) > 0 by the earlier
discussion. This fulfils (i) of the requirement of non-triviality. We conclude
that L is non-trivial, and thus that A + B has Hurstiness H = G.

Claim (ii). Suppose without loss of generality that H < G. From Lemma
2, N−1A � N satisfies an LDP in Cµ at speed N2(1−G) with good rate function

I ′(a) =

{

0 if a = a0

∞ otherwise.

By applying the contraction principle to the pair (N−1A � N , N−1B � N ), we also
know that N−1A � N satisfies an LDP at speed N2(1−G) with good rate function

I ′′(a) = inf
b

K(a, b).

By uniqueness of the rate function, these two forms are equal, and so K(a, b) =
∞ if a 6= a0.

Similarly, we find that N−1B � N satisfies an LDP at speed N2(1−G) with
good rate function J(b), and also with good rate function infa K(a, b). By the
above infa K(a, b) = K(a0, b), and so K(a0, b) = J(b).
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Let C = A + B. By the contraction principle, N−1C � N satisfies an LDP
with good rate function

L(c) = inf
a,b:a+b=c

K(a, b).

From what we have learnt about K, this must be equal to J(b − a0). It is easy
to see that L inherits non-triviality from J . 2

This result echoes the remark about aggregates of Gaussian processes made
in [3, Section 1]. See however [4] which shows that, if we are concerned with
more refined probability estimates than are provided by large deviations theory,
such results do not always hold.

5.3 Departures

Consider an infinite-buffer queue fed by a source with Hurstiness H and mean
rate µ, where the service rate C is greater than µ. The departure map d : Cµ → C
is defined by

d(a)(−t, 0] = a(−t, 0] + q−t(a) − q0(a)

where q−t(a) is the queue size at time −s,

q−t(a) = sup
s≥t

a(−s,−t] − C(s − t).

The following lemma shows that the Hurstiness of the departure process d(A)
is the same as the Hurstiness of the arrival process A.

Lemma 8 Suppose that A has Hurstiness H, and that its LDP holds in Cµ.
Suppose that µ < C and let D = d(A). Then D has Hurstiness H, and its LDP
holds in Cµ.

Proof. The function d has a convenient scaling property:

N−1D � N (−t, 0] = N−1D(−Nt, 0]

= N−1
{

A(−Nt, 0] + q−Nt(A) − q0(A)
}

= N−1A � N (−t, 0] + q−t(N
−1A � N ) − q0(N

−1A � N )

= d(N−1A � N ).

Therefore the Hurstiness of N−1D � N is exactly the Hurstiness of d(N−1A � N ).
Now, it is shown in [6, Theorem 5.13] that d is a continuous function Cµ → Cµ.

It was argued in the proof of Theorem 5(ii) that the zero-value for I must be
µe. We will now seek a sample path â with I(â) < ∞ and d(â) 6= d(µe). If we
manage this, then by Lemma 1(ii) d(N−1A � N ) has Hurstiness H .

First note that, from the definition of d, d(µe) = µe.
We know that I is non-trivial. Therefore there exists some â such that

0 < I(â) < ∞. Pick any such â. We will show that d(â) 6= µe.

13



Suppose to the contrary that d(â) = µe. Rearranging the defining equation
for d(â),

â(−s,−t] = µ(s − t) + q−s(â) − q−t(â).

If q−t(â) = 0 for all t then â(−t, 0] = µt, i.e. â is the zero-value for I , so
I(â) = 0, which contradicts our choice of â. So it must be that q−t̂(â) > 0 for

some t̂. Now, by [6, Theorem 5.3], the supremum in

q−t̂(â) = sup
s≥t̂

â(−s,−t̂] − C(s − t̂)

is attained at some ŝ, and by [6, Lemma 5.4] q−ŝ(â) = 0. The defining equation
for d(â) then says

d(â)(−ŝ,−t̂] = â(−ŝ,−t̂] + q−ŝ(â) − q−t̂(â)

= C(ŝ − t̂).

This is not equal to µ(ŝ − t̂), so d(â) 6= µe, which contradicts our supposition
that d(â) = µe. This completes the proof. 2

5.4 Other derived quantities

It is worth summarizing the form of the proof from Section 5.3, since the same
form can be used for many problems. We wanted to know the Hurstiness of D,
i.e. of N−1D � N . We wrote this as a continuous function of the scaled inputs
to the system, N−1D � N = f(N−1A � N ). This gives an LDP for N−1D � N . To
show that the LDP is non-trivial, we picked a sample input path a such that
0 < I(a) < ∞ and f(a) 6= f(µe), where µe is the zero-value of A. This proves
that D has the same Hurstiness as A.

A snappier summary is this: any continuous non-trivial function of the input
has the same Hurstiness as the input.

In fact, this is exactly the same argument that we used in Section 5.1 to
argue that the queue size has the same Hurstiness as the arrival process. We
will now use this technique to look at some more complicated scenarios, where
it is not always immediately clear which inputs we need to consider.

Priority queues. Consider a priority queue with an infinite buffer (as de-
scribed, for example, in [6, Section 5.9]). Suppose that the high priority input
has Hurstiness H and the low-priority input has Hurstiness G, and that the
queue has constant service rate which is sufficient to serve both arrival pro-
cesses.

Considering the high-priority queue in isolation, the high-priority queue size
has Hurstiness H (assuming that it is not trivial, i.e. assuming that there is
some input sample path with finite rate function which causes the high-priority
queue size to be non-zero). The high-priority departure process has Hurstiness
H .
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Suppose that H < G, and consider an LDP for the pair of arrival processes
at speed N2(1−G). The high-priority queue size has Hurstiness H , and the
aggregate queue size has Hurstiness G (assuming that both are non-trivial). By
Theorem 7(ii) the low-priority queue size, which is the difference between the
aggregate and the high-priority queue sizes, has Hurstiness G. It is also simple
to check that the low-priority departure process has Hurstiness G.

Suppose that H > G, and consider an LDP for the pair of arrival processes
at speed N2(1−H). At this speed, we can take the low-priority input to be
deterministic, at a rate equal to its mean rate, which we will assume is strictly
positive. Assume that the high-priority queue is non-trivial, i.e. that there is
a high-priority input sample path which causes the high-priority queue size to
be non-zero. Clearly this sample path also causes the low-priority queue size to
be non-zero. Therefore the low-priority queue size has Hurstiness H , and the
low-priority departure process has too.

Finally, if H = G, then (assuming non-triviality) all quantities of interest
have the same Hurstiness.

Queues with stochastic service. So far we have assumed a constant service
rate C. Suppose instead that a random amount of service C(−t, 0] is offered in
the interval (−t, 0], and that the service process C has Hurstiness G. The queue
size at time 0 is then

q(X) = sup
t≥0

X(−t, 0]

where X(−t, 0] = A(−t, 0] − C(−t, 0]. Suppose that the arrival process A has
Hurstiness H , and that the mean arrival rate is strictly less than the mean
service rate (so that the system is stable).

Using the results for aggregates in Section 5.2, the ‘netput’ process X has
Hurstiness H ∨ G. To work out the Hurstiness of the queue size, we need to
know something about the rate function for N−1X � N .

First note that the form of this rate function, call it I , depends on which is
larger of H and G. As far as large deviations at speed N 2(1−H∨G) are concerned,
if H > G then the the service process is essentially deterministic; if H < G then
the arrival process is essentially deterministic; and only if H = G are both
processes essentially non-deterministic.

Suppose that there is some sample path x with I(x) < ∞ and q(x) > 0, i.e.
that queue buildup is possible at scale N 2(1−H∨G). Then, as in Section 5.1, the
queue size has Hurstiness H ∨ G.

This is not the only case. Suppose for example that the arrival process has
Hurstiness H and that the arrival rate is bounded above by µ; suppose that
the service process has Hurstiness G > H and that the service rate is bounded
below by µ. (Such processes exist, using the construction from Section 4.2.) It
is easy to check that the queue is always empty, and that the departure process
is exactly the same as the arrival process. The departure process therefore has
Hurstiness H , i.e. the Hurstiness of the service has not ‘contaminated’ the
traffic.
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Queues with finite buffers. Consider a queue with a finite buffer B > 0
fed by a Hursty arrival process. Obviously the queue size is bounded by B, so
it does not make sense to inquire about the tail of the queue size distribution.
In order to be able to ask interesting questions about Hurstiness, we therefore
consider a sequence of queues, indexed by N , where the Nth queue has finite
buffer NB and N → ∞. What can we say about the asymptotic probability of
overflow?

Let A be a traffic process with Hurstiness H . Suppose the LDP for N−1A � N

holds in Cµ. We will additionally assume that A has stationary increments, i.e.
that A(−t, 0] ∼ A(−s − t,−s] for all s and t > 0. Let Q be the queue size
in an infinite-buffer queue fed by A, and let QN be the queue size for a queue
with finite buffer NB. We know from Theorem 5 that Q/N satisfies an LDP at
speed N2(1−H) with good rate function J(0) = 0 and J(q) = q2(1−H)δ (possibly
infinite). It turns out that QN/N is closely related to Q/N :

Lemma 9 In the above setting, QN/N satisfies an LDP at speed N 2(1−H) with
good rate function

J̄(q) =

{

J(q) if q ≤ B

∞ otherwise.

If δ < ∞ then J̄ is non-trivial and so QN/N has Hurstiness H.

Sketch proof. It is shown in [6, Section 5.7] that QN/N = f̄(N−1A � N ) where
f̄(a) is the queue size at time 0 for a queue with finite buffer B, and that this
function is continuous on Cµ. As A has Hurstiness H , then we obtain an LDP
for QN/N at speed N2(1−H) with some good rate function J̄ .

The proof of [6, Theorem 7.10] gives us the form of the rate function (even
though that proof was concerned with a different context).

Stationarity is used in the following way. Let I be the rate function for
N−1A � N , and let â be an optimizing path for J(q) = infa:f(a)=q I(a), so that
f(â) = q and I(â) = J(q). (As before, f is the queue-size function for queue
with an infinite buffer.) Suppose that the infinite-buffer queue fed by â is empty
at time −u and then reaches level q at time −v ≤ 0. Consider the truncated
traffic process a′ defined by a′(−t, 0] = â(−t − v,−v]; then the infinite-buffer
queue fed by a′ is empty at time −(u − v) and does not subsequently reach
level q until time 0. The finite-buffer queue fed by a′ must do the same, since it
has no chance of reaching buffer capacity. Hence J̄(q) ≤ I(a′). By stationarity
I(a′) ≤ I(â), and so J̄(q) ≤ J(q). 2

The conclusion is that

lim
N→∞

1

N2(1−H)
log

�
(QN/N > B − ε) = −(B − ε)2(1−H)δ.

To all intents and purposes, this means

log
� (

queue with buffer size B is full
)

≈ −B2(1−H)δ

(although the technicalities associated with the large deviations lower bound
prevent us from writing this as a limit.)
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Departures from queues with finite buffers, processor sharing queues,
and other challenges. To analyse the departure process from a queue with
a finite buffer, and a number of more complicated systems such as processor
sharing, there are several technical obstacles to be surmounted.

The first is that we may need to consider a sequence of queueing systems,
as described above.

The second is that often the quantity of interest is not a continuous function
on Cµ. In [6, Example 5.5] it is pointed out that this is the case for departures
from a queue with a finite buffer. Often, however, the corresponding ‘transient’
function is continuous. By the transient function we mean the function defined
on CT for some T > 0 rather than on Cµ. For example, the transient queue size
function for an infinite-buffer queue is

f(a|(−T,0]) = sup
t≤T

a(−t, 0] − Ct,

the queue size when the system is started empty at time −T . We might then
find an LDP for f(N−1A � N |(−T,0]), which is the scaled queue size at time 0
when the system is started empty at time −NT .

The third technical obstacle is that sometimes we do not have an explicit
formula for the quantity of interest, we only have a system of integral equations.
For example, the integral equations for the transient queue size function are

q−T = 0 and qt =

∫ t

s=−T

[

ȧs − C
]+(qs=0)

ds

where the notation [x]+(y=0) means

[x]+(y=0) =

{

x+ if y = 0

x otherwise.

As described in [6, Section 5.10], in the context of processor-sharing queues, it
can sometimes be shown that these equations have a unique solution, as long
as a is absolutely continuous. The trouble is that some interesting processes
are not absolutely continuous; for example, fBm is (almost surely) nowhere
differentiable. One way to get around this is to consider a queueing system fed
not by the interesting process A but rather by a piecewise linear approximation
Ã. In Lemma 13 in the appendix it is shown that if A is an fBm then N−1Ã � N

is exponentially equivalent to N−1A � N , meaning that it satisfies exactly the
same LDP.

These three obstacles do not interfere with the abstract idea of Hurstiness,
they simply mean that one must be a little more careful in interpreting what
Hurstiness means.

6 Many-flows limit

The prototypical traffic flow in the preceeding sections has been fractional Brow-
nian motion. It is by now well-known that fBm can arise as a limit when many
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flows are superimposed. We can use the idea of Hurstiness, though with a mod-
ification, to study this. The key is to use a mixture of two scaling limits, the �
scaling described above, and the ⊕ scaling. If X is a random traffic process,
then X⊕M is the aggregate (i.e. sum) of M independent copies of X .

The modified idea of Hurstiness is this. Consider the doubly-indexed family
of random processes

1

MN
X⊕M � N .

We will suppose that this family satisfies an LDP in Cµ as M ∧ N → ∞ with
some good rate function I at speed MN 2(1−H). We will also suppose that I is
non-trivial in the sense of Definition 1.

(We have chosen to write this in the context of traffic processes rather than
giving an abstract definition. It is possible to define Hurstiness abstractly for
doubly-indexed sequences of random variables, though we do not at the moment
see any benefit in doing so.)

We will first discuss when such an LDP holds, and we will then use the
contraction principle to investigate an LDP for queue size. Further elaboration
along the lines of sections 2 and 5 is possible, though we do not give it here as
the details are much the same.

6.1 Hurstiness of traffic processes

The characteristics of X⊕M � N for general traffic processes X are not yet well-
understood. For the case where X is Gaussian, however, a comprehensive pic-
ture has been provided by Dieker [3]; the result of his we will be using is given
in Theorem 12 in the appendix. We will now illustrate how this theorem tells
us about Hurstiness. We conjecture that similar results hold for non-Gaussian
processes.

By way of example, let X be the Gaussian approximation to a single Mλ/G/∞
traffic flow, where the on-time G has distribution

�
(G > t) = (t + 1)2H−3 for

H ∈ (1/2, 1), as described by [7]. Then the mean rate is µ = λ
�
G and the

variance σ2(t) = VarX(−t, 0] is

σ2(t) =
2λ

2H(2H − 1)(2H − 2)

[

1 − (t + 1)2H + 2Ht
]

.

This is regularly varying with index H ; in fact σ2(t) ∼ ρ2t2H . The following
argument works whenever σ2(t) ∼ ρ2t2H , not just for this example.

It is convenient to have zero mean, so let Y (−t, 0] = X(−t, 0] − µt. By
Theorem 12, if LN is a sequence with LN → ∞ as N → ∞ then the sequence

1

LNσ(N)
Y � N

satisfies a large deviations principle in C0 with speed L2
N , and the rate function

is exactly the rate function for fBm which did not appear in Lemma 4.
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To turn this into the form we want, we will reparameterize. Let L =√
MN/σ(N). Then L → ∞ as M ∧ N → ∞. We obtain an LDP for

1√
MN

Y � N

with speed MN2/σ2(N). But Y is Gaussian with zero mean, so Y ⊕M ∼
√

MY ,
and so the LDP can be written as an LDP for

1

MN
X⊕M � N

at the same speed MN2/σ2(N). Also, since σ2(N) ∼ ρ2N2H , we can equiva-
lently write the LDP as having speed MN 2(1−H). Finally, we can add the mean
back: (MN)−1X⊕M � N is a continuous function of (MN)−1Y ⊕M � N , so it too
satisfies an LDP at speed MN2(1−H), and the rate function is the rate function
for an fBm with drift µ; this is a non-trivial rate function.

We conclude that (MN)−1X⊕M � N has Hurstiness H .

6.2 Implications for queues

Consider a queue serving an aggregate of M independent copies of some flow A,
and let the service rate be MC, i.e. the service rate is scaled up in proportion
to the number of flows. Take the buffer to be infinite. The queue size at time 0
is

QM = sup
t≥0

A⊕M (−t, 0] − MCt

and so

1

MN
QM = sup

t≥0

1

MN
A⊕M (−t, 0] − 1

N
Ct

= sup
s≥0

1

MN
A⊕M � N (−s, 0] − Cs

= f
(

(MN)−1A⊕M � N
)

where f is the usual queue size function for a queue with constant service rate
C. Assuming that (MN)−1A⊕M � N has Hurstiness H , and assuming that C is
greater than the mean rate, we find that QM/MN satisfies an LDP at speed
MN2(1−H). If the rate function for queue size is non-trivial, the queue size has
Hurstiness H .

The argument of Theorem 5 works here too, and implies that the rate func-
tion for queue size satisfies

J(αq) = α2(1−H)J(q) for any α > 0.

As in Lemma 6, we also have

lim
M∧N→∞

1

MN2(1−H)
log

�
(QM/MN > q) = −δq2(1−H) (7)
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for some δ > 0. If δ < ∞, we may heuristically rewrite this as

log
�
(QM > Mb) ≈ −Mb2(1−H)δ (8)

where b = Nq, i.e. b is the amount of buffer space per flow.
This echoes the result of [7, Example 4.4], for the Gaussian approximation

to a Mλ/G/∞ flow, but is here expressed as a mixed limit rather than as an
asymptotic of the rate function. See however [5], which studies asymptotics
of the rate function for the actual Mλ/G/∞ system, and indicates that when�
(G > t) = (t + 1)2H−3 (as for the example in Section 6.1) then the estimate in

(8) might perhaps be replaced by −M log(1 + b)δ,

Rate function for fBm. We noted in Section 6.1 that, for aggregates of
Gaussian traffic processes, the resulting rate function is generally that of an
fBm. Therefore any conclusions we drew in Section 5.1 about rate functions for
derived quantities for a single fBm traffic process apply equally to aggregates
of Gaussian processes—the optimization problem arising from the contraction
principle is exactly the same in each case.

Other derived quantities. The contraction principle can also tell us about
other derived quantities, such as the departure process or the queue size in a
downstream queue. We only need to be slightly cautious in understanding the
scaling involved. For example, if dC is the departure map for a queue with
constant service rate C, then the scaled departure process

dC

(

(MN)−1A⊕M � N
)

is equivalent to

(MN)−1(DM ) � N where DM = dMC(A⊕M ).

In other words, the LDP for the scaled departure process tells us about the
aggregate departure process from the scaled-up queue. In other words, just as
we did when looking at queues with finite buffers in Section 5.4, we need to bear
in mind that we are considering a sequence of queueing systems, in this case
indexed by the number of flows, not just a single queueing system.

7 Conclusion

This concept of Hurstiness is a very convenient way of studying long-range
dependence in queueing networks. It lends itself better to calculations than
does the conventional definition (1). It can tell us about scaling behaviour in
networks, without requiring that we bother with probabilistic calculations or
that we solve tedious optimization problems.

It leads to a very simple ‘calculus of Hurstiness’. Any continuous non-trivial
function of an input has the same Hurstiness as that input. To decide if the
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queue size for a particular queue in a network is a non-trivial function, consider
all the flows that might affect it, treat all flows with Hurstiness less than the
maximum Hurstiness as being deterministic, and work out whether bursts of
traffic in the remaining flows can cause that queue to overflow; if they can then
that queue is a non-trivial function. The rate function for the input traffic says
which sorts of bursts are possible, and so it may be useful to know a little about
the rate function to work out non-triviality (although in this paper we have
given abstract arguments which don’t depend on the particular rate function).
A queue with Hurstiness H has a tail which decays like q2(1−H).

However, Hurstiness is rather limited. The output of a queue with constant
service rate is just as Hursty as the input, even though common sense screams
at us that it is smoother. Indeed, a flow can be arbitrarily Hursty yet arbitrarily
smooth. Given that Hurstiness is not affected by any of the ways in which we
might reasonably like to shape traffic, Hurstiness is too coarse an idea.

We believe that Hurstiness and long-range-dependence are interesting the-
oretical constructions, with some elegant mathematics, but that they are not
terribly informative in practice. In practice, we believe, formulae based on sim-
ple mean and variance traffic statistics, such as are given in [6, Chapter 10], will
prove to be more useful.
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Appendix

7.1 LDP for Gaussian process

This result concerning Gaussian processes is taken from [1]. Let Z(t), t ∈ � + ,
be a centred Gaussian process with continuous sample paths and stationary
increments, and Z(0) = 0. Centred means that

�
Z(t) = 0. Let v be the

variance function, v(t) =
�
Z(t)2 , and let γ(s, t) be the covariance function,

γ(s, t) =
�
Z(s)Z(t). Assume that

lim
t→∞

v(t)

tα
= 0

for some α < 2, and that v(t) > 0 for all t > 0.

Theorem 10 In the above setting, the sequence Z/
√

N satisfies a large devia-
tions principle in C0 at speed N , with a good rate function. The rate function
is

I(z) =

{

1
2‖z‖2

R if z ∈ R

∞ otherwise,

where R and ‖ · ‖R are defined as follows. Start with the space of functions
Γt(·) = γ(t, ·), and the inner product 〈Γt, Γs〉R = γ(s, t). Close this space with
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linear combinations and complete it with respect to the norm ‖ · ‖2
R = 〈·, ·〉R to

obtain the space R. This norm has the property that 〈f, Γt〉 = f(t) for f ∈ R.
The space R is known as the reproducing kernel Hilbert space.

For the purposes of this paper, all we need to know is that this rate function
is non-trivial:

Lemma 11 In the above setting,
i. there exists some ẑ such that 0 < I(ẑ) < ∞;
ii. I(z) = 0 if and only if z = 0e;
iii. I(ξz) = ξ2I(z).

Proof. Claim (i). Simply pick ẑ = Γt for any t > 0.
Claim (ii). It is clear that I(0e) = 0. Suppose that z 6= 0e, so that z(t̂) =

ξ 6= 0 for some t̂ > 0. Consider Z(t̂)/
√

N . Since Z(t̂) is a normal random
variable, Z(t̂)/

√
N satisfies an LDP with good rate function

J(η) =
η2

2v(t)
.

On the other hand, by the contraction principle from Z(·)/
√

N , Z(t̂)/
√

N sat-
isfies an LDP with good rate function

J ′(η) = inf
z∈C0:z(t̂)=η

I(z).

These two rate functions must be identical. Furthermore, J(ξ) > 0 and J ′(ξ) ≤
I(z), so I(z) > 0. We have thus proved that if z 6= 0e then I(z) > 0.

Claim (iii). This is trivial, because the rate function is ‖ · ‖2
R. 2

7.2 Aggregates of LRD Gaussian flows

Let X be a Gaussian process with mean rate µ and variance function σ2(t) =
VarX(t), and with stationary increments. In fact, it’s easier to work with
centred processes, so assume µ = 0. Assume that σ2 is regularly varying with
index 0 < 2H < 2, i.e. that

lim
N→∞

σ2(Nt)

σ2(N)
= t2H .

Also assume that σ2(t) is continuous, and that

lim
t→0

σ2(t)| log t|1+ε < ∞ for some ε > 0.

Then [3, Corollary 3] tells us the following:

Theorem 12 In the above setting, for any sequence LN with LN → ∞ as
N → ∞, the sequence

1√
LNσ(N)

X � N

satisfies a large deviations principle in C0 with speed LN , and the rate func-
tion is the rate function for a standard fractional Brownian motion with Hurst
parameter H.
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7.3 Piecewise linear approximations to fBm

Let X be a Gaussian process which satisfies the conditions of Theorem 10.
Suppose also that X has stationary increments and that VarX(t) → 0 as t → 0.
Let X̃ be a piecewise linear approximation to X , for which each piece has length
less than ∆. That is, there is a sequence 0 = t0 < t1 < · · · with ti → ∞ and
ti+1 − ti < ∆, and

X̃(t) = λX(ti) + (1 − λ)X(ti+1)

where λ = λ(t) is chosen such that, for some i, t = λti + (1 − λ)ti+1 and
0 ≤ λ < 1.

Lemma 13 In the above setting, the sequence N−1X̃ � N is exponentially equiv-
alent to N−1X � N at speed N2(1−H) in the space C0.

Proof. We need to show that

lim sup
N→∞

1

N2(1−H)
log

� (

‖N−1X � N − N−1X̃ � N‖ > δ
)

(9)

is equal to −∞ for all δ > 0.
Write pN for the map which takes a process x to its piecewise linear approx-

imation, approximated at 0 = t0/N < t1/N < t2/N < · · · . Then

(9) = lim sup
N→∞

1

N2(1−H)
log

� (

N−1X � N ∈
{

x : ‖x − pN (x)‖ > δ
})

≤ lim sup
N→∞

1

N2(1−H)
log

� (

N−1X � N ∈ Br(δ)
)

(10)

for all r, where

Br(δ) =
⋃

s≥r

{

x : ‖x − ps(x)‖ > δ
}

We will estimate (10) using the large deviations upper bound

lim sup
N→∞

1

N2(1−H)
log

� (

N−1X � N ∈ Br(δ)
)

≤ − inf
x∈B̄r(δ)

I(x). (11)

So suppose that x ∈ B̄r(δ). Then there exists a sequence xn → x, xn ∈ Br(δ).
Since xn ∈ Br(δ), there exists sn ≥ r such that

δ < ‖xn − psn
(xn)‖.

But this is

≤ ‖xn − x‖ + ‖x − psn
(x)‖ + ‖psn

(x) − psn
(xn)‖.

Since xn → x, and therefore ‖psn
(x) − psn

(xn)‖ → 0, it must be that ‖x −
psn

(x)‖ ≥ δ for n sufficiently large. That is to say, there is some sn ≥ r such
that ‖x − ps(x)‖ ≥ δ.
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Given that ‖x − ps(x)‖ ≥ δ for some s ≥ r, there must be some t and
u < ∆/r such that |x(t+u)−x(t)| ≥ δ. By stationarity, we may as well assume
that t = 0. The infimum of the rate function for this event is

inf
x:|x(u)|≥δ

I(x) =
δ2

2 VarX(u)
.

Since VarX(t) → 0 as t → 0, this quantity → ∞ as r → ∞. Taking the limit
of (11) as r → ∞ completes the proof. 2
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