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ABSTRACT
This article describes how control theory has been used to
address the question of how to size the buffers in core In-
ternet routers. Control theory aims to predict whether the
network is stable, i.e. whether TCP flows are desynchro-
nized. If flows are desynchronized then small buffers are
sufficient [14]; the theory here shows that small buffers ac-
tually promote desynchronization—a virtuous circle.
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1. INTRODUCTION
The starting point of control-theoretic analysis is to write

down a set of differential equations for all the rates of all the
flows in a network, and for the drop probabilities at all of
the routers, and then to determine whether this dynamical
system is stable. Stability is simply the control-theoretic
term for desynchronization between TCP flows. The theory
we describe here aims to predict whether and to what extent
there is synchronization.

A network will generally be stable for certain buffer sizes
and unstable for others. We will explain how to choose buffer
sizes to make it stable. Stability is also affected by Active
Queue Management (AQM) parameters, round trip times,
traffic mixes, and the TCP congestion avoidance algorithm
itself. We will go on to describe how certain changes to
TCP’s rules for increasing and decreasing window size make
the entire network less prone to synchronization.

2. FLUID MODEL
We now present differential equations for describing the

network. There is one natural equation for TCP dynamics.
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For the queue we will describe two different dynamics: one
suitable for queues with small buffers, the other for queues
with large buffers and AQM.

The equations are supported by limit theorems (and simu-
lations). The reason there are two possibilities for the queue
is that there are two natural ways to scale the system1: in
the large-buffer limit the number of flows increases and the
line rates increase in proportion and the buffer delay is kept
fixed; in the small-buffer limit the number of flows and line
rates increase as before but the buffer size is either kept
fixed or increases slowly, so that delay tends to zero.

Differential equation for TCP.
Consider a collection of N TCP flows with common round
trip time RTT, and subject to a common packet loss proba-
bility. Let the average window size of all N flows at time t be
w(t), measured in packets, so that the average rate at which
packets are sent is x(t) = w(t)/RTT. Let the packet loss
experienced by packets sent at time t be p(t). The equation
is [9]

dw(t)

dt
=

1

RTT
− w(t)

2

[
x(t − RTT)p(t − RTT)

]
. (1)

The first term represents additive increase of window size,
at rate 1 packet per round trip time for each of the N flows.
The second term represents multiplicative decrease of win-
dow size when packet losses are detected; the total trans-
mission rate at time t − RTT was roughly Nx(t − RTT), so
the rate of packet losses is Nx(t−RTT)p(t−RTT), and each
loss results in the total window size Nw(t) being reduced by
w(t)/2 on average.

Large buffers, AQM.
Let q(t) be the queue size at time t, and let y(t) be the
total rate at which packets arrive at the queue. Suppose the
AQM scheme drops packets with probability LAQM(q) when
the queue size is q. (If desired, it is easy to write down an
extra equation to take account of queue-size averaging [9].)
Let the total service rate be C. Then the extra equations
are

dq(t)

dt
=

{
y(t)

(
1 − p(t)

) − C if q(t) > 0

max
{
y(t)

(
1 − p(t)

) − C, 0
}

if q(t) = 0

p(t) = LAQM(q(t)).

(2)

1These equations also been used to describe systems with
few flows and large line rates [2].



The first equation comes from considering arrivals at the
queue. If total arrival rate is y(t) but the drop probability
is p(t), then the rate at which work actually enters the queue
is y(t)

(
1 − p(t)

)
, and so the rate at which the queue grows

is y(t)
(
1− p(t)

) − C. If q(t) = 0, since the queue cannot go

negative, we have to take the positive part of y(t)
(
1−p(t)

)−
C. We assume that when the queue is full L(q(t)) = 1.

Small buffers, droptail.
Let y(t) be the total rate at which packets arrive at the
queue, and let C be the service rate. Let LB(y) be the
packet loss probability for an M/D/1 queue with buffer B,
service rate C, and Poisson arrivals of rate y. As argued
in [14], Poisson arrivals are a good approximation when the
buffer is small. If the line rate is high then the typical length
of a busy cycle will be very short, which indicates that the
packet loss probability depends only on the current arrival
rate. Thus

p(t) = LB(y(t)). (3)

If B is very large then LB(y) ≈ (1−C/y)+. The crucial point
is that in this model the queue size fluctuates so quickly that
TCP cannot control the queue size, only its distribution.
That is why q(t) does not appear in this equation.

Discussion.
The descriptions of TCP we have given here are crude, but
they have been validated and found to match well to ns2

simulations [9]. The theory supporting them is described
further in [11]. More refined differential equation models are
possible [1, 8, 2]; these can incorporate timeout behaviour
and flow duration.

The reason for the difference between the large-buffer and
small-buffer equations is explored in [3, 11]. Those refer-
ences also describe large buffers with droptail and small
buffers with AQM.

Networks.
These equations can be augmented in the natural way to de-
scribe networks with multiple links and heterogeneous round
trip times.

3. ANALYSIS TECHNIQUE
We have specified a system of differential equations (either

(1)&(2) or (1)&(3), depending on the buffer size). This
system can be solved numerically, given initial conditions,
though care is needed because of the time delays (t − RTT).

It can also be analysed theoretically. Just as ordinary
differential equations can be analysed to determine whether
they are stable, critically damped, unstable and oscillatory,
or unstable and divergent2, so too can these time-delayed
differential equations. Complete results are known for sin-
gle links with homogeoneous delays and either large or small
buffers. Sufficient conditions for stability are known for het-
erogeneous networks with small buffers. For recent surveys
see [6, 12], and for details of the calculations here see [10].

We can then vary the buffer size, and see how stability is
affected. But why is stability important?

2To be precise, the results described here concern local sta-
bility, not global stability. Another term for ‘unstable and
oscillatory’ is ‘locally stable limit cycles’.
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Figure 1: Traces from a packet-level simulation of a
single bottleneck link with 1000 flows, round trip
times uniform in [120,280]ms, capacity 480Mb/s,
and buffer of either 70 or 15 packets.

4. STABILITY AND
DESYNCHRONIZATION

To illustrate the relationship between stability and desyn-
chronization, we plot in Figure 1 two traces from a packet-
level simulation of a single bottleneck link: one with pa-
rameters for which the theory in the next section predicts
instability, one for which it predicts stability. There are
1000 flows sharing a 480Mb/s link (i.e. available bandwidth
per flow is C = 40pkt/s). Round trip times are chosen uni-
formly at random from [120, 280]ms. Also, each flow has an
ingress link of capacity 3C, and the reverse path is loaded
with 1000 TCP flows with similar parameters. The buffer is
either 70pkt or 15pkt.

The top panel shows the mean throughput of the flows
x(t), estimated by dividing the average window size by the
average round trip time. For a buffer of 70pkt, theory pre-
dicts oscillations in x(t); for a buffer of 15pkt, theory pre-
dicts stability. The dotted line shows the available band-
width per flow C. The middle panel shows the queue size.
For a buffer of 70pkt, when x(t) oscillates around C, the
queue size fluctuates markedly: when x(t) > C the queue
size bounces around full, and Little’s Law indicates the packet
drop probability is p(t) ≈ 1 − C/x(t); when x(t) < C the
queue size bounces around empty and p(t) ≈ 0. It doesn’t
take much change in x(t) to change the queue size dramati-
cally. For a buffer of 15pkt, x(t) has small oscillations, and
they do not have such a big impact; instead the queue has
small and very fast fluctuations.

The bottom panel shows a sample of TCP window sizes.
For a buffer of 70pkt, in periods when x(t) > C and the
queue is full, several flows experience drops at nearly the
same time and so they become synchronized. For a buffer
of 15pkt this does not happen.



Synchronization has been reported again and again in sim-
ulations, so it’s no surprise to see synchronization here. Our
intention in showing these simulation results is rather to il-
lustrate the link between control theory and the mechanism
of synchronization.

In summary, relatively small fluctuations in average ar-
rival rate x(t) can lead to large fluctuations in p(t). This
is because the queue acts as an amplifier; if x(t) = C − ε
then the queue empties, but if x(t) = C + ε then the queue
fills, for even small ε > 0. (This means it is hard to de-
tect synchronization just by looking at arrival rate.) Large
fluctuations in p(t) induce partial synchronization between
flows.

5. SYSTEM DESIGN

Buffer size.
Consider first the small-buffer regime. Figure 2 shows the
oscillations in p(t) as a function of buffer size, for a single link
with homogeneous flows. The figure is based on algebraic
calculations, as outlined in [11] and described further in [10].
The oscillations in x(t) and p(t) are about a fixed point
(x∗, p∗) which is the solution to dx(t)/dt = dp(t)/dt = 0.

Figure 2 shows both p∗ and the extent of oscillations about
p∗. These depend on the notional ‘ideal’ window size wnd =
CRTT. When wnd is small3, the system is stable only for
small buffer sizes; buffer sizes larger than 50 packets or so
cause severe oscillations. When wnd is large, we have more
flexibility in choosing buffer size. In order that the link
should accomodate varying traffic conditions we recommend
that buffers should be no larger than 50 packets.

AQM design.
Consider now the large-buffer regime, with GentleRED AQM.
Figure 3 shows the oscillations in p(t) as a function of buffer
delay, again for a single link with homogeneous flows. Now
that the queueing delay is non-negligible, the round trip
time RTT comprises propagation delay PT plus queueing de-
lay. Since queueing delay depends on the AQM scheme and
the traffic mix, we have parameterized the plots by flt = CPT
rather than wnd = CRTT. When flt is small we can get away
with a buffer which is a quarter of the propagation delay;
when flt is large the buffer needs to be much bigger.

References [5, 12] describe alternatives to GentleRED, in-
spired by control theory, but do not specifically study the
impact of buffer size. We do not know if these alternatives
would be stable in the presence of large-flt flows.

TCP re-design.
Reference [13] considers alternatives to TCP with different
window increase and decrease rules, and finds a sufficient
condition for stability in a network with many links and
heterogeneous round trip times, in the small-buffer regime.
Suppose that the congestion window w increases by i(w)
per ACK and decreases by d(w) per drop. We replace the
differential equation for TCP (1) by

dw(t)

dt
=

(
i
(
w(t)

) − d
(
w(t)

)
p(t − RTT)

)w(t − RTT)

RTT
. (4)

3For even smaller wnd, the fluid model predicts the oscilla-
tions in p(t) will be smaller—but timeouts become signifi-
cant at small window sizes and the fluid model breaks down.
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Figure 2: Oscillations in packet drop probability p,
as a function of buffer size. The vertical bars indi-
cate the minimum and maximum of the oscillations,
for a given buffer size; the curve indicates the fixed
point p∗. The results depend on wnd = CRTT where C
is the bandwidth per flow and RTT is the round trip
time.
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Figure 3: Oscillations in packet drop probability
p, as a function of buffer delay, for a queue using
GentleRED. The delay is measured in multiples of
the propagation delay PT. The results depend on
flt = CPT, where C is the bandwidth per flow.



To find out if the network is stable, first calculate the fixed
point. Suppose that the fixed point gives window size w∗

r to
flow r, and total flow y∗

l on link l. A sufficient condition for
stability is that

i(w∗
r )

y∗
l L′

Bl
(y∗

l )

LBl (y
∗
l )

<
π

2

whenever flow r uses link l. Here Bl is the buffer size at link
l. An easy way to ensure that this condition is always met
is to require

i(w) <
(
sup
y≥0

yL′
B(y)

LB(y)

)−1 π

2
.

A sufficient condition for this is simply i(w) < π/2B.
Interestingly, stability does not depend on d(w). The de-

crease rule is important for determining the equilibrium win-
dow size—from (4) the window size w∗ for a flow experienc-
ing drop probability p∗ satisfies i(w∗)/d(w∗) = p∗—but it is
not important for determining stability.

TCP has i(w) = 1/w and d(w) = w/2. This window
increase rule is too aggressive to ensure stability when w
is small, and more timid than necessary when w is large.
This timidity has prompted work on making TCP more ag-
gressive at large window sizes, to enable it to achieve high
throughput [4, 7].

6. CONCLUSION
We have described a control-theoretic approach to analysing

the stability of a network carrying TCP traffic. The ap-
proach consists in writing down a system of differential equa-
tions, then analysing the system to see if it’s stable. A sta-
ble solution corresponds to desynchronization between TCP
flows. As argued in [14], if flows are desynchronized then we
can get away with very small buffers in routers.

Stability depends on buffer size in two ways. First, the or-
der of magnitude of buffer size determines which differential
equations to write down. Second, the actual value of buffer
size affects the stability of the equations.

The plots in Section 5 give mixed messages. It is not
possible to stabilize TCP over the full range of window sizes,
either with small buffers & droptail or with large buffers &
GentleRED. In the small buffer regime, buffers larger than
50 packets cause some instability for small window sizes (this
is because the TCP window increase rule is very aggressive
when the window is small). In the large buffer regime, flows
with larger window sizes require ever larger buffer sizes. For
best overall scalability, we recommend buffers be no larger
than 50 packets.

The considerations described here can guide the evolution
of TCP. If the window increase and decrease rules were dif-
ferent then the network could have small buffers and there
would be no instability at all. ScalableTCP [7] was designed
along these lines.

It is a topic for further research, to discover how stability is
affected when there is a mix of TCP and non-TCP flows, or
when some links have small buffers and other links have large
buffers. It is also a topic for further research, to discover
whether other AQM schemes might give better performance.
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