Part |: Buffer Sizes for Core Routers

0 - *
Damon Wischik
Computer Science, UCL

D.Wischik@cs.ucl.ac.uk

ABSTRACT

In this article we describe recent work on buffer sizing for
core Internet routers. This work suggests that the widely-
used rule of thumb leads to buffers which are much larger
than they need to be. For example, the buffer in a backbone
router could be reduced from 1,000,000 packets to 10,000
without loss in performance. It could be reduced even fur-
ther, perhaps to 1020 packets, at the cost of a small amount
of bandwidth utilization. This tradeoff is worth considering,
for example for a possible future all-optical router.

Categories and Subject Descriptors

C.2 [Internetworking]: Routers; C.4 [Performance of
systems]: Modeling techniques

General Terms

Design, Performance, Theory

Keywords

Internet router, buffer size, bandwidth delay product, TCP,
synchronization, multiplexing

1. INTRODUCTION

The buffer in an Internet router has several roles. It
accomodates transient bursts in traffic, without having to
drop packets. It keeps a reserve of packets, so that the link
doesn’t go idle. It also introduces queueing delay and jitter.
Arguably, router buffers are the single biggest contributor
to uncertainty in the Internet. Given their significance, we
might reasonably expect buffer sizing to be well understood,
based on well-grounded theory and supported by extensive
experiments. This is not yet so.

At the moment, router manufacturers typically use a rule
of thumb: routers should provide at least one round trip
time’s worth of buffering, often taken to be around 250ms.
In this article and the two that follow [5, 11], theory and sim-
ulations illustrate why buffers could be much much smaller,
perhaps as small as a few us, without making changes to

*Research supported by a Royal Society university research
fellowship, and DARPA Buffer Sizing Grant no. W911NF-
05-1-0254.

TResearch supported under DARPA/MTO DOD-N award

no. W911NF-04-0001/KK4118 (LASOR PROJECT) and
the Buffer Sizing Grant no. W911NF-05-1-0224.

. T
Nick McKeown
Computer Science, Stanford

nickm@stanford.edu

TCP. We hope this encourages network operators to exper-
iment with small buffers. For more detail on many of the
issues raised here see [2].

Hardware considerations.

For a 10Gb/s router linecard to provide 250ms of buffer-
ing, it needs a buffer of 250ms x 10Gb/s = 2.5Gb, which
is roughly 310MBytes or 210 thousand packets (assuming a
packet size of 1pkt = 1500Bytes). This is modest in compar-
ison to the amount of memory on a desktop computer. Why
do we care about buffer size? Why not just overprovision?

There are several hardware reasons for wanting smaller
buffers. First, the memory in a router linecard has to be as
fast as the line rate—much faster than the speed of mem-
ory in desktop computers. This requirement complicates
the design of high-speed routers, leading to higher power
consumption, more board space, and lower density. Second,
while switching speeds double every 18 months according to
Moore’s Law, memory access speeds double only every 10
years. Therefore memory requirements will increasingly be-
come a limiting aspect of router design. Third, all-optical
routers will perhaps be able to buffer 100 packets or so (using
e.g. fiber delay lines). If this amount of buffering is sufficient
to get good performance, an all-optical packet switched core
network is feasible.

Traffic considerations.

The most obvious way to measure the impact of buffer size
is by seeing how it affects bandwidth utilization. The naive
view is that the larger the buffer, the higher the utilization.
There are two problems with this:

First, utilization is not necessarily the right metric. It’s a
useful metric when capacity is scarce/expensive and the net-
work operator wants to be sure that all the capacity is able
to be used. But core networks today are run significantly
below 100% utilization, and the need for high utilization is
not nearly as strong as it once was. Other quality-of-service
metrics like latency and jitter must be considered, and these
will definitely be improved with smaller buffers. Further-
more, small buffers may enable cheaper/faster routers, so
even if utilization is lower throughput may still be higher.

Second, it isn’t always the case that larger buffers give
higher utilization. This paradox arises because of synchro-
nization. We will argue here that if TCP flows are synchro-
nized then we need a large buffer to get high utilization,
and that if they are desynchronized then we can get away
with much smaller buffers thanks to statistical multiplex-
ing. However, synchronization itself depends on buffer size,



because of the interplay between TCP’s control loop and
queueing dynamics at the router. Reference [11] argues that
large buffers tend to induce synchronization, which means
that large buffers can actually hurt utilization.

In most of this article we will be concerned with TCP
flows. Long-lived TCP flows account for the bulk of packets
in the Internet. Therefore TCP dynamics govern the be-
haviour of the queue at an Internet router, and hence the
quality of service experienced by non-TCP flows. If buffer
sizes are chosen so that TCP is well-behaved and queueing
delays are small, then other traffic (UDP flows, short-lived
TCP flows) will be happy. If in the future TCP ceases to
dominate, we hope that its replacement is engineered taking
account of the sort of theory we describe below.

2. WHAT ARE BUFFERS FOR?

Queueing theorists are used to thinking of sizing buffers so
as to prevent them from overflowing and losing packets. But
TCP’s “sawtooth” congestion control algorithm is designed
to fill any buffer, and deliberately causes occasional loss to
provide feedback to the sender. No matter how big we make
the buffers at a bottleneck link, TCP will cause the buffer
to overflow.

Rule of thumb for synchronized flows.

The rule of thumb comes from a desire to keep a congested
link as busy as possible, so as to maximize the throughput.
The basic idea is that when a router has packets in its buffer,
its outgoing link can be kept busy. Consider a single long-
lived TCP flow which passes though a single router, and
suppose it has settled into congestion avoidance. When TCP
detects a packet drop and responds by halving its window,
the buffer will drain, and if there aren’t enough packets in
the buffer then the link will idle. It turns out that the buffer
size we need to prevent this is C' X RTT, where C' is the link
speed and RTT is the round trip time (RTT) of the flow (see
[2] for references).

When there are several TCP flows with identical RTTs
and they are all synchronized (i.e. they all halve their win-
dows at the same time) the buffer requirement is exactly
the same. This idea has recently been extended [4] to the
case of synchronized flows with non-identical RT'Ts. They
find that the buffer size needed is CRIT, where RIT is the
harmonic mean of the RTTs, i.e. if there are N flows with
RTTs RIT:1,...,RITy then

1/%:%21//?771-.

=1

By convexity, this is always less than or equal to the arith-
metic mean of the RTTs; it gives more weight to small RTTs.

Desynchronized flows.

When there are many desychronized flows, the buffer re-
quirement is much smaller. Here is a simple model. Suppose
that there are N flows with identical RTTs, with mean win-
dow size wd. Treat each flow as following a periodic TCP
sawtooth with average window size wd, which means that
its window varies between 2wd/3 and 4wd/3. Suppose that
the flows are unsynchronized, i.e. that the sawtooths have
uniformly distributed phase. Then, by the central limit the-
orem, the sum of window sizes can be approximated by a

normal distribution:
W ~ Normal(Nwd, No2n)

where o,y is the standard deviation of the window size of a
single flow, namely

_ [Cawedj3 — 2udj3)? _
Owd = \/ D = awnd,

where a =~ 0.192. Suppose that TCP achieves the objec-
tive of matching the average total transmission rate to link
capacity. The total sending rate is Nwid/RTT, so Nwd =
CRITT. This lets us express the standard deviation of W in
terms of N and C'RTT: it is

sd(W) = /No2, = aCRIT/VN.
Therefore a 99.9% confidence interval for W is roughly
CRIT
VN '
Now, C'RIT is the number of packets that can be accomo-
dated in the pipe; the outstanding 3.3040R77/\/N packets
need to be buffered. Therefore a buffer of size 3.3aC'RTT//N
is sufficient to cope with the variability of the TCP sources.
(3.3ac & 0.63.) This argument was proposed by [2]. Recent
experiments on operational networks appear to validate it;
they will be described in a future paper.
For a 10Gb/s linecard with RTT = 250ms, carrying 10,000
flows, the rule of thumb recommends CRIT = 2.5Gb of
buffering, whereas this calculation recommends 16Mb.

CRITT £ 3.3

Partially synchronized flows.

When flows are partially synchronized, the buffer require-
ments are intermediate [4].

What large buffers really do.

When flows are desynchronized, what is the effect of large
buffers? A single TCP flow, which experiences packet drop
probability p, attains a throughput of roughly

h
RTT,/p

where h = 0.87 and RITT is the average round trip time,
comprising propagation delay and queueing delay [9].

Now consider a link shared by several flows, where flow
r sends packets at rate z,. Let y = > x, be the total
sending rate. Suppose the link has service rate C and that
the buffer is large enough to keep the link fully utilized.
Clearly y > C since otherwise the link could not remain fully
utilized, and the queue drops only what it cannot serve, so
the drop probability p satisfies

(1-py=_=C. (2)

The queue has more arrivals than it can serve, and so the
buffer will fill up and stay full or nearly full, adding queueing
delay to every flow.

Let flow r have propagation time PT,. and let the common
queueing delay be QT. Since the buffer stays full or nearly
full, this is B/C where B is the buffer size. From (1) and
(2), the drop probability p is the solution to

xr =

pkt/s (1)

hl-p) _
2; (PT. + QT)\/p =¢



If B is very big then every flow will have a larger RTT, so
its throughput x will be smaller, so the drop probability p
will be smaller.

In other words, the buffer’s function is not only to keep
the link busy. It also adds queueing delay, which keeps the
transmission rates of the flows low, which in turn keeps the
loss probability low. It acts as an artificial dampener on
demand. Is this a useful function for the buffer in a router?
We believe it is very unhelpful'. There are two ways that
a router can signal that it is overloaded: by increasing the
queueing delay, or by dropping packets; either signal will
make TCP back off. Both signals are effective, in that they
have the effect of keeping the link fully utilized. But the
former signal causes irreparable damage to e.g. real-time
flows, whereas flows can recover from the latter signal by
retransmitting the dropped packet or by using forward error
correction. In order that the Internet should be able to
evolve to carry new services, we emphatically believe that
packet loss is a better signal than delay. Furthermore, the
hardware resources needed for large delays/buffers would
be better spent in building faster routers. (Others however
argue [4] that it is better to keep loss probability small by
increasing delay.)

3. THE CASE FOR SMALL BUFFERS

Let us now give up the objective of keeping the link fully
utilized, and see what effect this has on buffer size. Recall
the normal approximation to the sum of window sizes, in the
case of N desynchronized flows each with average window
size wd:

W ~ Normal(Nwnd, No® wd®).

Suppose we could arrange things so that Nwxd = vC'RTT for
say v = 95%. Then a 99.9% confidence interval for W is
roughly

~CRIT + 3.3a'yCR77-.
VN
If the upper bound for this confidence interval is less than
CRIT + B then the queue size (that is, the total number of
packets in flight W, minus the number in the pipe CRIT),
should rarely exceed B. A sufficient condition is

~ 12.0.

N>3.3a17

This indicates that by sacrificing 5% utilization, and with
just a small amount of statistical multiplexing, we can nearly
eliminate the need for buffers altogether! (But see the anal-
ysis in the next section.)

Our argument rests on the supposition that the TCP flows
are desynchronized. The analysis of synchronization in [11]
relies on more sophisticated theory which we now describe.

!Current TCP does benefit from large queueing delays in
one case: very small propagation delays. If the round trip
time is very small then the TCP window is likely to be very
small, which can lead to problems with timeouts. Large
buffers add queueing delay, making the round trip time
larger, which alleviates the problems. Our concern in this
article is with core routers, which by assumption carry flows
with large propagation delays, so this is not an issue. For
small buffers to work in campus routers, TCP would need
to [b(]—?‘ modified to work better with small windows, e.g. as
in [§].

4. ANALYSISOF NEARLY-BUFFERLESS
MULTIPLEXERS

Queueing delay.

Our first remark is trivial. In a queue with service rate C' and
buffer size B, the maximum queueing delay is B/C. If buffer
size is kept fixed as line rates increase, then the maximum
queueing delay tends to zero. Therefore jitter tends to zero.
Further consequences of small delays are discussed in [7].

Poisson modeling.

In the last section we said that the total number of packets in
flight W should have a normal distribution, and suggested
that the queue size distribution should be (W — CRTT)*.
This doesn’t take into account the fact that some packets
are likely to be spaced close together and others spaced far
apart, just because of inherent randomness. When there is
a cluster of closely-spaced packets, the queue will build up
transiently. Pace [10], we will use a Poisson model for this.

The evidence in favour of Poisson traffic models is three-
fold [3]. First, theory says that as the number of indepen-
dent traffic flows increases, the aggregate arrival process con-
verges to Poisson over short timescales. Second, there is em-
pirical evidence that this holds for Internet traffic. Third,
theory says that for large multiplexers with small buffers,
overflow is most likely to happen over very short timescales.
(This is basically because the length of a typical busy period
is inversely proportional to the speed of a queue.) The case
for Poisson traffic models is argued in more detail in [12],
taking explicit account of the closed-loop feedback of TCP’s
congestion control. In summary, the loss probability in a
queue with total arrival rate y should be approximated by
the loss probability for Poisson arrivals of rate y.

To be concrete: in a queue running at 95% utilization,
with a buffer of 50 packets, the loss probability is approxi-
mately 3.3 x 1074

The key insight is that, if the buffer is small and the line
rate is large, then the queue size fluctuations are very fast—
so fast that it is impossible to control the queue length. In-
stead, TCP acts to control the distribution of queue length.

Fixed point approximation.

We have given several equations to describe the system. For
a flow which experiences drop probability p the throughput
is roughly
h
T = .
RTT./p

In a network with small buffers, RTT is essentially just the
propagation delay. Let Lp(y,C) be the drop probability in
a queue with Poisson arrivals of rate y, service rate C' and
buffer size B. Then the drop probability at a link is

p=Lg(y,C)

where y is the total load at that link, i.e. the sum of the
throughputs of flows that arrive at that link, thinned by the
drop probability they experience at upstream links. This
gives us a set of simultaneous equations to solve. The solu-
tion gives us the throughputs = and drop probabilities p.

This is called the fixed-point approach. For references see
[6]. It is a refinement of our simple assumption in Section 2,
namely that TCP achieves the objective of matching total
transmission rate to link capacity.




Modeling burstiness.

Simulations suggest that packet spacing makes a tremen-
dous difference [5]. If packets are spaced, either by an up-
stream link with limited speed or by an implementation of
TCP which implements rate-pacing, then the Poisson arrival
model is good. If not, then TCP tends to send its entire win-
dow in a single burst, and so a more appropriate model is
batch-Poisson arrivals, where the batch size distribution re-
flects the TCP window size distribution. A rough heuristic
is that, if the mean batch size is wd, the batch arrival rate
is y, the buffer is B, and the service rate is C', then the
probability that at least one packet in a burst is dropped is
roughly p = Lp/uu(y, C/wd).

Synchronization.

Our arguments for small buffers suppose that there is no
synchronization. The theory which enables us to predict
synchronization is left for [11].

5. SIMULATIONTIPS

When we scale up the number of flows N, it’s a good
idea to scale up the service rate in proportion. If C is the
total service rate, then the notional ‘ideal’ window size for
each flow is roughly wid = CRIT/N. If C were kept fixed
then wd would change, which would change the dynamics
of TCP. For example, if wd is too small, then timeouts are
more likely. We found it most convenient to study the effects
of multiplexing (N) and of window size (wxl) separately.

It’s important to pay close attention to traffic burstiness.
Look close-up at plots of queue size and of packet arrivals
from a single flow, and see how much the queue varies in
between packets arrivals. This makes a big difference to the
drop probability, to synchronization, and to buffer require-
ments.

6. CONCLUSION

We conclude by answering some of the arguments in favour
of large buffers.

Large buffers are needed to get 100% utilization. Not only
is this not true, it is not necessarily a worthwhile goal. By
sacrificing a little utilization, we reduce latency and jitter.
Maybe routers with small buffers could run faster, so that
even at 95% utilization they have higher throughput.

With small buffers, bursty flows and flows in slow-start
will be unfairly penalized because their packets arrive back-
to-back and are more likely to be dropped. TCP sources
can reduce their burstiness by using rate-pacing. So it is
a philosophical issue, whether to regard this discrimination
as unfairness or as just desserts. [1] reports synchronization
problems with rate-pacing, because “feedback is delayed un-
til the network is saturated, making it difficult for senders
to ‘avoid’ overwhelming the network”; we recommend that
buffers should be small because then feedback is not delayed
and synchronization is avoided.

If the flows become synchronized, buffers need to be sized
according to the rule of thumb. [11] argues that large buffers
induce synchronization. Small buffers are the solution, not
the problem.

Large buffers increase round trip time at a congested link,
which increases queueing delay, which reduces load and drop
probability. We have argued that this is a bad tradeoff. It
is better to have lower latency and higher drop probabil-
ity, since applications can protect themselves against packet
drops but lost time can never be recaptured.

Acknowl edgements.

We are grateful for helpful discussions with M. Enachesu,
Y. Ganjali, P. Glynn, A. Goel, C.V. Hollot, F.P. Kelly, Y.
Liu, G. Raina, T. Roughgarden, D. Towsley.

7. REFERENCES

[1] A. Aggarwal, S. Savage, and T. Anderson.
Understanding the performance of TCP pacing. In
IEEFE Infocom, 2000.

[2] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing
router buffers. In SIGCOMM, 2004. Extended version
available as Stanford HPNG Technical Report
TR04-HPNG-060800.

[3] J. Cao and K. Ramanan. A Poisson limit for buffer
overflow probabilities. In IEEE Infocom, 2002.

[4] A. Dhamdhere, H. Jiang, and C. Dovrolis. Buffer
sizing for congested Internet links. In IEEE Infocom,
2005.

[5] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and
T. Roughgarden. Part III: Routers with very small
buffers. ACM/SIGCOMM CCR, 2005.

[6] V. Firoiu, J.-Y. L. Boudec, D. Towsley, and Z.-L.
Zhang. Theories and models for Internet quality of
service. Proceedings of the IEEE, 2002.

[7] F. P. Kelly. Models for a self-managed Internet.

Phil. Trans. of the Royal Society, A358, 2000.

[8] T. Kelly. On engineering a stable and scalable TCP
variant. Technical Report CUED/F-INFENG/TR.435,
Cambridge University Engineering Department, 2002.

[9] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The
macroscopic behavior of the TCP congestion
avoidance algorithm. ACM/SIGCOMM CCR, 1997.

[10] V. Paxson and S. Floyd. Wide-area traffic: the failure
of Poisson modeling. ACM/SIGCOMM CCR,
24:257-268, 1994.

[11] G. Raina, D. Towsley, and D. Wischik. Part II:
Control theory for buffer sizing. ACM/SIGCOMM
CCR, 2005.

[12] G. Raina and D. Wischik. Buffer sizes for large
multiplexers: TCP queueing theory and instability
analysis. In EuroNGI, 2005. Extended version to
appear in Queueing Systems.



