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Abstract—Today’s electronic devices imply significant efforts
in pre-silicon low-power design. Key techniques such as scaling
of operating points, or switching power off to unused blocks play
a major role and are usually managed at entire system scope.
Finally, the delay paid in today’s design cycles is the time needed
for verification, since power-aware design starts late and, hence,
relies on painful system-level simulation performances.

In this work, we describe a SystemC-based virtual prototyping
approach capturing low-power design characteristics in earlier
design stages. In contrast to existing solutions, we focus on
advanced modeling techniques such as blocking transactions
and temporal decoupling, which are integral part of modern
industrial-sized designs. As proof of concept, we use represen-
tative virtual platform models at several levels of abstraction.
Based on empirical results we argue that our annotations cause
reasonable overhead, but provides sufficient details to validate
typical power planning scenarios.

Keywords—Virtual Prototyping, SystemC/TLM, IEEE 1801-
2013 (UPF), Temporal Decoupling, Power Intent Validation,

I. INTRODUCTION

System-level design requires planning the power architecture
just as much as the functional architecture. It involves testing for
functional correctness, emulating electrical states, and asserting
accurate power-down and power-up sequences [1]. However,
this has only been done in RTL-to-GDSII design stages [2].
Hence, starting at higher abstraction levels, as illustrated in
Figure 1, provides earlier design time validation and may help
to avoid costly redesigns.

Traditionally, a design’s power architecture, denoted as
power intent, is defined at RTL based on standards such
as UPF1 or CPF2. In both formats voltage connectivity and
implementation strategies for state retention, isolation, as
well as voltage level-shifting can be defined. Recent power-
aware simulators add then cycle- and register accurate models
and mimic the logical behavior of such power management
structures. However, even quite accurate, existing solutions are
limited to RTL and, hence, inefficient in managing today’s
entire low-power design spaces.

At system-level, SystemC-based virtual prototypes have
been used for some years now. Since they are mainly for
architectural exploration and early software development,
typical of-the-shelf models are optimized for simulation speed
by dropping unnecessary implementation details. A virtual
prototype comprises a set of transaction-level modeling (TLM)
components, which represent hardware blocks and interact
via function calls in a loosely-timed (TLM-LT) simulation
context. Moreover, greater performance benefits are gained by

1Unified Power Format (IEEE Std. 1801)
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Figure 1. TLM virtual prototyping as front-end for low-power design flows

optimization techniques such as temporal decoupling [3]. It
allows concurrent processes to run ahead of simulated time,
and thereby reduces synchronization needs. Basically, which
is equivalent with lower process scheduling efforts and hence
less CPU time spent in context switching simulation.

Consequently, we deal with the question whether these TLM
techniques allows fast and accurate power intent simulation
as well as consistent validation. Although virtual prototypes
maybe initially correct, a native application might become
highly inaccurate, when power architectures are inserted and
electrical effects like voltage ramps take place. For this,
we developed a low-power abstraction method for managing
temporal decoupled and DMI-based TLM models. It works
with legacy SystemC components and performs power intent
overlay at standard TLM interfaces. Main steps include a
generic instrumentation method as well as automatic low-power
design elaboration. Finally, our approach guaranties fast and
accurate simulation and provides observation of most important
power management events. In detail, our contributions can be
stated as follows:

1) System-level low-power abstraction concepts as exten-
sion for CPF/UPF. This includes abstract definition of
voltage relationships, but also dynamic aspects such as
operating conditions and TLM power state semantic.

2) Efficient annotation considering standard TLM cod-
ing styles, i.e., generic protocols and core transport
interfaces.

3) Accurate power intent preserving in temporal decou-
pled simulation contexts.

4) An evaluation on power intent validation using repre-
sentative virtual prototyping models.
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II. BACKGROUND & PROBLEM DEFINITION

In general, power-aware design from a hardware perspective
consists of additional power management (PM) structures and
functionality enabling low power techniques such as power
gating and multi-voltage scaling. As a result, required infor-
mation are captured either directly in a hardware description
languages (HDLs) or provided as side-files. To demonstrate this,
Figure 2 outlines a power gating scenario with state retention
capabilities. There are two functional blocks of which one
can be power gated. Power up and down is controlled by an
additional power control unit and a switching circuit driving
the internal power supply net VDDi. As shown in Listing 1,
equivalent RTL behavior can be easily accomplished and HDL
pragmas (line 2,8, and 13) enable to switch between normal
and power-aware simulation mode. Presuming a synchronous
clocking style and an asynchronous reset, the behavior of the
power gated block should be altered in the following way:
• If power gated, i.e. VDDi is zero, all port outputs

becomes their default initial value (e.g. "X" for 4-
state types) and internal states are deleted as result of
insufficient power supply

• If notified, save register values and reinitialize as re-
sponse to a restore request

• Keeping priorities of power, retention, reset, and clock
signals to ensure sequential correctness

Today, several EDA simulators automatically integrate such
overlays for functional simulation. Technically, these tools
first identify the sequential elements that are inferred by RTL.
Afterwards, they add models that mimic cycle-accurate behavior
for data corruption as well as retention, isolation, and level-
shifting strategies. Finally, they perform voltage-level simulation
and power state coverage. However, as obvious power-aware
RTL simulators are even slower than conventional ones and,
hence, fall short at industrial-sized system-level scenarios. Since
2006, there exist also standardization efforts [4, 5]. Hereby,
power intent is expressed in Tool Command Language (Tcl)
syntax. Nevertheless, as these standards mainly address RTL-
to-GDSII flows, their kind of low-power abstraction is not well-
suited for higher-level system design stages. In particular, there
is neither a mapping to loosely-timed simulation semantic nor
any TLM directives for concepts like power states or retention.

In case of low-power verification, as described in [6,
7], issues such as power domain crossings and detailed
power control sequences are investigated. Basically, verification
engineers rely on recent RTL property checking techniques.
Thus, dynamic assertions are either implemented as simulator
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Figure 2. A power gating design with state retention support (adapted from [1])

2 ’idef RTL_PG_EMULATE!
wire vddi;

4 assign vddi = pon
reg[3:0] save_current_state;

6 ’endif

8 always @(posedge clk or negedge nrst
’idef RTL_PG_EMULATE

10 or vddi or posedge save or posedge restore
’endif

12 ) begin

14 ’ifdef RTL_PG_EMULATE
if (!vddi)

16 current_state <= 4’bXXXX;

18 // retention behavior
else if (save)

20 save_current_state <= current_state;
else if (restore)

22 current_state <= save_current_state;
else

24 begin
’endif

26
//normal behavior

28 if (!nrst)
current_state <= 4’b0000;

30 else
current_state <= next_state;

32 ’ifdef RTL_PG_EMULATE
end

34 ’endif
end

Listing 1. RTL code extended with power-gating semantic

built-in checks or derived from user specifications in languages
such as SystemVerilog or the Property Specification Language
(PSL). Besides simulation approaches, there are also formal
methods [8, 9, 10], but still require RTL as input.

Addressing power-aware design and verification at higher-
level abstractions is certainly a very novel research area and
there exist only few approaches. First SystemC based solutions
continue to be limited to RTL coding styles. In [11], for
instance, the authors adapt the SystemC kernel for power gating
simulation via hardware data types and clocked processes.
Likewise, in [12], they model pin and signal driven power
structures according to UPF 1.0 and execute them in conjunction
with cycle-accurate SystemC models. A first discussion aligned
to TLM appears in [13]. While the author provides only general
remarks, [14, 15] go a step further and propose working
solutions for specific modeling scenarios. In [14] they extend a
proprietary virtual platform model by means of voltage, reset-
, and clock-tree integration. The authors of [15] apply UPF
low-power abstraction for power estimation and exploration.
However, both modeling styles still tend to overspecification
and rely on detailed supply network specifications (i.e. supply
ports, nets, switches) instead of abstract voltage relationships.
Consequently, their power intent models imply implementation
knowledge of the power supply network, a good understanding
of the power control infrastructure, and general access to the
entire design. Moreover, different power supply on individual
ports has not been considered so far which may result in
incorrect simulation outcomes. Especially, if it comes to
multilevel hierarchies or integration of intellectual property
(IP). Finally, no existing approach addresses a voltage-aware
corruption semantic in a temporal-decoupled simulation context.
Thus, accurate power management simulation remains either
detailed lock-step dependent or is left to users’ skills.
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III. TRANSACTIONAL LOW-POWER ABSTRACTION

Today’s low-power design and verification standards [4,
5] still lack adequate semantic for higher abstraction levels
than RTL. In this section we describe TLM directives which
are proposed as extensions on top of these existing standards.
In general, three TLM issues must be resolved: (i) lack of
micro-architectural details, i.e., no registers, wires, etc., (ii)
complex intellectual property (IP) adoption, and (iii) loose
timings and synchronization. With respect to these handicaps,
the linchpin of a TLM-driven approach is the transaction. As
shown in Figure 3, transactions can be seen as a sequence
of interface method calls (IMCs) from an initiator to one or
multiple targets and vice versa. IMCs are called on ports and
are specified by interfaces associated with the ports. A port is
defined at component boundary and constitutes a TLM model in
terms of the only accessible design elements. Furthermore, each
method call results in two control paths of which both must
be considered as individual message passing event. Messages
may forward data in terms of incoming and outgoing signals
grouped as payload Φm where m is the associated message.
Additionally, each message has a simulated timestamp Tm
with Tm ≤ Tm+1 for messages of the same transaction and
over the same port. However, partial out-of-order simulation in
terms of execution order is quite permissible. Based on these
characteristics, we formalize low-power abstraction by means
of several views.

A. Conceptual View
Usually, power distribution specification is propagated

throughout the design hierarchy. Based on a predefined scope,
descendants, if not otherwise requested, are overlaid with
same power intent characteristics. Since this influences func-
tionality, TLM models should behave identically, at least at
their boundaries. For this purpose, we adapt the concept of
UPF power domains for modeling TLM component ports as
power domain elements and, thus, partition the design by
grouping component interfaces according to their power intent
requirements. However, TLM may differ from RTL in type
and number of primary in- and outputs. Thus, we assume
port definitions that are continuously powered by the same
supply, i.e., all underpinnings of transactions are in one power
domain and does not need to be further refined. But in fact, it
is the case in existing TLM models that are mainly based on
memory-mapped bus communications as well as single clock,
reset, and interrupt entries. Furthermore, in contrast to UPF, we
map a power domain directly to one clock domain. Thus, we
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Figure 3. General TLM definition

assume atomicity (not splittable), which guarantees a distinct
mapping to functional equivalent UPF power domains, i.e., that
are expected to always have the same voltages and states.

Data Corruption
Power domains PDs change logic behavior due to in-

sufficient voltage. In UPF, proper semantic is described as
data corruption by means of simstates. Each simstate defines
a distinct operational level from normal functional to non-
operational. As a result, signals may become unpredictable,
which is defined as an instantaneous assignment of HDL default
values to these signals. Design objects to which corruption
applies are restricted to RTL primitives such as registers and
wires as well as process triggers.

In contrast, TLM models lack these implementation details.
Even more, there is rather one single process responsible for
complete internal behavior which makes a straightforward
adoption of simstates difficult. In particular, a TLM abstraction
has to cope with corruption effects limited to component
boundaries as well as data types that do not have initial
default values. Moreover, transactions to or from corrupted
components must be accurately discarded or answered with a
power down response. Consequently, we abstract from standard
simstates and distinguish two power domain states, i.e., "on"
and "off". If "on", a transaction should consider clock changes
by multiplying timestamps with a current domain specific
frequency factor FPD/Fdefault, whereas in the off state it
should mimic simstate semantic on its paths. Based on these
requirements, we define a TLM corruption semantic (see
Equation 1) per message passing event m = {mcall,mreturn} and
corruption behavior discard(x ) as well as error(x ) for Φm.
Function discard(x ) prevents undesired data propagation on
call paths, whereas error(x ) informs about insufficient power
supply on return. Technically, we implemented several options
based on standard command and response status modifications
or ignorable transaction extensions, but other solutions might
be possible.

corrupt(PD,m,Φm , Tm) =
discard(Φm) if state(PD) = off ∧ m = mcall,

error(Φm) if state(PD) = off ∧ m = mreturn,

Tm · FPD/Fdefault otherwise
(1)

Protection & Retention
Power domains represent also physical chip areas, and even

being switchable, these chip areas remain connected. In order
to protect adjacent regions in case of partial power downs,
isolation logic for crossing signals is necessary. Furthermore,
power domains may operate at different voltage ranges. In this
case, also level-shifters must be inserted for translating data
values from lower to higher voltage levels and vice versa. At
TLM, appropriate behavior should reflect the targeted power
domain as well as its own power supply. On the one hand, this
keeps data corruption semantic, on the other hand, it preserves
power domain ordering dependencies. Further implementation
details, however, can be ignored, since neither isolation logic
nor level-shifting influences a system’s functionality, but would
require expensive and frequent data overwriting. For isolation,
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Figure 4. Power state taxonomy based on controllability and scope

we also assume automatic enabling, which is sufficient for
early power management specification. However, if focus is
on power control implementation, explicit isolation control
might be added. In case of power gating, logic states are
usually lost. For this, a retention strategy maintains state
information that cannot simply be recomputed on power up.
Regardless of the implementation method, i.e. either software
or hardware-based, retention is typically accomplished in two
ways: partial or total. A partial strategy focuses mainly on
individual registers, whereas total retention addresses entire
power domains. Both have in common that they require
additional time. However, consistent TLM retention modeling
is critical due to the lack of micro-architecture details and
a limited access at component boundaries. Hence, real data
preservation is not applicable without too much restrictions to
coding styles. Moreover, as internal register corruption is not
simulated, retention functionality seems dispensable. Naturally,
this raises the question to what extent retention modeling makes
sense. As a reasonable compromise, we propose retention
control modeling by checking missing or overlapping save
and restore control command sequences.

B. Operational View
Using active power management techniques, system portions

operate at different and dynamically changing voltage and
frequency levels. Usually, this state space is described in a
Power State Table (PST), which defines all legal power state
combinations. At system-level, today’s power state specification
often results in state explosion and must be captured in a
hierarchical form. As shown in Figure 4, UPF power states are
defined at different scopes, namely on power domains, supply
sets, and supply nets. A generic TLM abstraction should rely
on power domains as further power architecture details may not
be available at time of modeling. In addition, state control plays
an important role, which spans a 2-dimensional space for power
state abstraction. Currently, there exist two modeling practices.
Initially, simulation control has been accomplished at the supply
network level. For this, power states are invoked on late objects
such as supply nets, power-ground ports and power switches.
Later on, UPF supports RTL expressions and provides power
state semantic based on individual signal updates. However,
both approaches do not really fit with higher-levels of design
abstraction. For instance, prior to having an implementation
model, a supply network may not or only partially be defined.
Likewise, adequate power control state machines may not
be available. In contrast, we propose a mode-based control
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Figure 5. Voltage transition delay characterization

semantic as follows. The foundation is a set of operating
conditions (OPs). Each OP identifies a tuple of electrical state
characteristics, namely voltage, frequency, and the simstate, i.e.,
"on" or "off". Furthermore, a set of power modes (PMs) model
coherent PSTs with one PM as default mode which applies
unless no other is specified. PMs include a collection of power
domains and associated OPs where each pair forms a power
domain state. PMs in different PSTs may also be non-mutually
exclusive, i.e., a mode can be associated with or span multiple
other modes. Thus, a TLM design may be simultaneously in
more than one power mode. Finally, a set of transition objects
define valid mode transitions by their starting and end mode.

C. Physical View
Mode-based power state abstraction incorporates additional

physical effects that may influence the system behavior once it
is applied. When a power down events happen, power switching
is usually not instantaneous according to internal capacities
and the nature of silicon technology. Similarly, the process of
turning on requires time that cannot be ignored. Consequently,
a sufficient transition delay model must be derived, which pro-
vides power state accuracy without over-specification. Figure 5
illustrates a typical power mode switching sequence from a high
to lower voltage level and outlines, even simplified, voltage
progress over time Vdd(t). The important timing instants are
t0 as the time of the control event and t1 as actual voltage-
level switching time. Voltage transition delay is defined as the
difference between both points in time. Unfortunately, exact
timings are always implementation dependent and, hence, can
only be estimated at time of modeling. For this, we propose
an efficient abstraction using linear approximation of voltage
changes characterized by the slope σ = ∆Vdd/∆t with voltage
step ∆Vdd per minimal time resolution ∆t. Moreover, these
transition rates may be defined as restrictions of minimum σmin
and maximum σmax boundaries for later implementation.

Based on these constraints, we define a voltage transition
delay model as follows:

Txmin =


|Vend−Vstart|

σmax
if σmax > 0

0 otherwise
(2)

2014 24th International Workshop on Power and Timing Modeling,  Optimization and Simulation (PATMOS)



If σmax is defined, we denote the minimum transition delay (see
Equation 2) as quotient of the absolute voltage-level difference
and σmax. Otherwise, transition delay is zero which we consider
as an ideal voltage switching assumption. The same formula
applies for the maximum transition delay if σmax is replaced
with σmin. In the end, voltage transition delay can be modeled as
range Tx = [Txmin ,Txmax ] In fact, this delay model involves
all possible design scenarios, i.e., unknown (Txmin = 0), small
or even longer transition times and, hence, a worst-case in terms
of power mode changes at arbitrary points in time. Nevertheless,
as power states (see Equation 1) have a direct impact on system
functionality, a precise semantic preserving is necessary to get
correct results.

IV. TEMPORAL-DECOUPLED SIMULATION

A power-aware simulation flow incorporates several tasks;
(i) power intent elaboration, (ii) original design instrumentation,
and (iii) efficient simulation to reflect power related deviations
in system behavior. In [16], we published a proof of concept
framework based on UPF parsing and a SystemC library for
system-level low-power design constructs. By this, we are
able to translate UPF compliant specifications into executable
power intent models. Furthermore, we introduced systematic
TLM instrumentation with regard to power domains and power
states [17]. As a result, we achieved transaction observation
only where necessary and reduced the number of TLM design
hooks significantly. However, we rely on simulation speedups
that heavily depend on power intent specification. In fact, we
derived synchronization needs based on given voltage transition
delays. This section describes a simulation mechanism that
eliminates such dependencies and addresses early design phases,
in which implementation details are unknown. For this, we
propose a look-ahead approach based on dynamic quantum
boundaries. Our main goal is power intent preserving with
reasonable simulation overhead. In essence, we achieve a
precise transaction synchronization despite the use of temporal
decoupling.

A. Scope & Limitations
In general, SystemC allows models at different degrees

of accuracy and speed. However, raising both at the same
time is typically not possible. Usually, a high performance
involves less modeling details, and a higher degree of accuracy
comes along with lower speed. As specified in [3], TLM
distinguishes therefore two coding styles: an approximately-
timed (AT) and a loosely-timed (LT) coding style. TLM-AT
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may break a transaction down in individual data transfer phases
and implies lockstep synchronization at each phase. As a
result, frequent process scheduling introduces a lot of context
switching overhead. In contrast, TLM-LT uses transactions
according to complete bus transfers and allows processes to
run ahead of simulation time. By this way, TLM-LT is able to
reduce the amount of context switches significantly. To ensure
that processes synchronize, the SystemC TLM standard defines
a static global time quantum which is the greatest amount of
time that a process may differ from general simulation time.
However, as shown in Figure 7 power state preservation can
not be assured anymore. For this, TLM entities sending and
receiving transaction data must be aware of ongoing power
domain states. In other words, transactions have to be preempted
and corrupted at right time, i.e. at time t1. If, for instance, a
process reads from a location that is actually switched off,
it will get a normal reply instead of the correct power down
response. Obviously, this is not acceptable in terms of consistent
functional simulation.

Recently, there exist some approaches for improving simu-
lation accuracy together with TLM-LT. However, they focus on
non-functional properties such as timing or energy. Basically,
they apply resource [18, 19] or traffic models [20, 21] and
postpone results to quantum boundaries. In the end, actual
transactions are still executed in a non-preemptive manner,
i.e., either optimistic at start or in the end. Hence, functional
violations based on inaccurate power state assumptions still
remain. A comparable approach has been presented in [22],
however, it seems to work only in their use case, as they
presume detailed knowledge and full access to individual TLM
components. In contrast, our synchronization approach works
also with general TLM IPs.

B. Power-Aware Synchronization Layer
Since power switching is hardly predictable in advance,

today’s virtual prototypes would result in SystemC processes
that have to synchronize at each single message. In the end,
TLM-LT simulation performance will degrade down to the
level of TLM-AT. To solve this issue, we try to look ahead in
reliable boundaries to determine future power state changes.
As in TLM-LT, the main idea is to reduce the number of
yield operations and hence the amount of SystemC scheduling.
However, instead of fixed time slices, application dependent
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Figure 6. Embedded video processor SoC (TLM design + power intent)

synchronization is used. Existing TLM-LT models integrate
so called quantum-keepers by default. It is a utility class that
performs synchronization if local process times exceed the firm
global quantum boundary. Nevertheless, a quantum-keeper by
itself is not applicable for our variable synchronization needs.
Instead, we accomplish power-aware synchronization by an
additional layer of abstraction. As shown in Figure 8, it is built
up on two alternating phases during normal process simulation.

In the first phase, the recording phase, TLM components
simulate in their original temporal decoupled manner. Thus,
all SystemC processes issue transaction messages as usual.
Instead of real execution, transactions are only registered in
terms of power domain accesses (PDAs) and are returned
immediately. After all TLM initiators have reached a point
where synchronization is explicitly demanded, the protocol
switches to a subsequent execution phase. For this, temporal
decoupling stops in two cases. First, if there might be data
dependencies within a process’ execution trace, i.e., read before
write scenarios; second, if there are explicit synchronization
demands, i.e., upper lookahead boundaries.

In the execution phase, power domains start to process the
registered PDAs. At first, a power domain checks for any power
change requests it has received in the previous recording phase.
If nothing is found, transactions are completed without further
changes. Otherwise, transactions are executed step-wise until
the next power state change. This is mandatory, since timing
budgets as assumed in [22] are not guaranteed. However, we are
able to benefit from given voltage transition delay constraints
(as described in Section III). This procedure is repeated either
until all transactions are executed or until an original quantum
period is reached. Furthermore, if PDA’s trigger additional
transactions these are also registered and processed in the same
way. Besides corruption, transactions may also be delayed or
accelerated due to switching operating conditions. Depending
on this updated time, next synchronization constraints are
calculated and SystemC processes are rescheduled.

Compared to TLM, the proposed method requires only
context switches where they are unavoidable, i.e. if data
dependencies exist or if users wish to synchronize. In general,
the algorithm is more efficient than explicit synchronization
due to SystemC’s context switching overhead. Finally, our
synchronization scheme requires no kernel modification and
no insides into the TLM components.

Implementation Details
In this subsection we explain some implementation prin-

ciples in more detail. A requirement not explicitly stated
before is that eventual existing quantum-keeper must be
deactivated. For this, we apply the standard API to set a design’s
global quantum to its greatest potential value. This eliminates
unwanted synchronization, and allows for adjustments which
are completely transparent to the involved TLM components.
However, since later execution still requires global quantum
information the original value is buffered.

During a recording phase, all observed transaction messages
are stored in tree structures. As illustrated in Figure 8, a power
domain holds a structure for each process that provokes power
domain accesses (PDAs). In detail, to register a PDA means an
efficient shallow copy of forwarded payload pointers plus some
metadata, which prevents expensive data movements as well
as intensive memory wastage. However, as already mentioned,
time stamps are not meaningful, since local process times are
not updated. Finally, if there are no more pending SystemC
events, i.e., no remaining SystemC process, the execution phase
is started. In this phase, transactions are processed with regard
to updated power state properties. The procedure starts with
first PDA and performs rotating execution in conformance
with original SystemC order. The step size itself is given by
minimal power transition delay constraints. If this triggers
further transactions and hence creates additional PDAs in the
tree structure, these PDAs are immediately processed in depth-
first search manner. When all transactions have been executed
successfully, SystemC processes are waked up at right time
and next process quantums are calculated by the original global
quantum and new simulation time in mind. Afterwards, it
restarts with next recording phase.

V. EXPERIMENTAL RESULTS

We evaluated our approach by several differently abstracted
TLM designs. We extended a SystemC-based system-on-chip
(SoC) design [23] that implements real-time object tracking
within video sequences and was systematically refined to FPGA,
hence providing representative TLM abstraction levels down to
RTL. The refinement starts from a very abstract specification
model and results in different computation and communication
granularity including complete image transfers (TLM-LT), bus
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accurate arbitration phases (TLM-AT), as well as cycle-and
pin accurate data word passing (TLM-CA). As a result, it
applies TLM principles intensively which permits meaningful
investigations on transaction based annotations.

A. Case Study
As shown in Figure 6, the case study consists of set of

TLM components arranged in a two level bus hierarchy. Main
components are video in- and output, color matching, erosion,
dilation, labeling, as well as object tracking. Video input grabs
images either from MPEG-2 file or a camera and if required
converts them into YUV422 frames. Video output displays
results on the workstation screen. Object segmentation itself
is performed as a sequence of image processing steps. At
first, each YUV frame is analyzed by color matching. It sets
pixels that are out of a given color range to black and all other
pixels to white. The resulting binary image is then processed
by two morphological operations, i.e., erosion and dilation,
to remove noise and interference. Afterwards, objects, which
remain as cohesive pixel arrays, are labeled and archived into
an analyzable region list. Finally, object tracking is performed
by means of numerical features such as distance and size. In
the given design, all pipeline stages have been connected to
a bus and share external memory (DDR-RAM) to store their
computed results. While this saves internal local memory, only
one read or write transaction takes place at once. Moreover,
running across fixed priority bus scheduling in combination
with ascending pipeline priorities, it enforces additional idle
times in the segmentation process (~1µs - 30µs). Having this
in mind, additional power intent is constructed as follows. It is
built up on six power domains as well as power management
constraints like isolation, retention, and level-shifting. In detail,
there is one top-level power domain for the entire system and
five switchable subdomains, one for each pipeline stage. The
top-level power domain is either in an on, slow, or off power
state. Each of the subdomains is either on or off. Due to this,
the power intent space spans a total number of 51 (2 · 25 + 1)
potential power state combinations. Accordingly, as proposed
in [17] the TLM design instantiates transaction delegates and
registers callbacks from the power intent model.

B. Performance Evaluation
For performance analysis, first we added a power-

management policy that exploits the existing idle periods as
power down candidates. Furthermore, we applied functional
stimuli (320x240 MPEG-2 images) to measure simulation
overheads at each design stage, namely TLM-LT, TLM-AT,
TLM-CA, and RTL. At TLM-LT, all active components proceed
temporal decoupled and access the external memory via block-
ing transport calls. In one case, the global quantum matches
image boundaries, in another case processes synchronize at each
line transfer. At TLM-AT, communication has been refined to
synchronized bus phases, i.e., request and data phase. At TLM-
CA, also computation has been converted into state machines
to shift the individual bus words cycle-accurately. Finally, RTL
design is the result of an automatic SystemC synthesis step3.
As comparison criteria, first we perform pure functional as
well as power-aware simulation at RTL. For this, we applied
a commercial simulator4 and measured performance waste

3Celoxica’s Agility compiler was used
4Questa Advanced Simulator (Mentor Graphics) with output-only corruption
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Figure 9. Simulation performance impacts due to power intent annotations
(Note: There is equivalent power state accuracy at all levels)

of around a half due to additional power intent. Based on
this experience, we tried to qualify our TLM-based power
intent abstraction. As shown in Figure 9, overhead at TLM-
CA complies with the one in power-aware RTL simulators,
hence it should be an acceptable impact. Furthermore, we
evaluated performance impacts on more abstract TLM scenarios,
i.e., TLM-AT and TLM-LT. As one can see, we keep similar
ratios. However, we maintain greater overall simulation speed
while preserving the same power state simulation accuracy
than at TLM-CA or RTL. Additionally, due to efficient look-
ahead synchronization, we further benefit from longer quantum
periods.

C. Validation Analysis
Traditionally, dynamic power intent verification relies on

property checking while simulating RTL models. Therefore,
commercial simulators provide built-in checks, but also un-
derstand standard assertion languages to assist the verification
process. If enabled, proper guards are automatically inserted
into the design and triggered by RTL signal changes. A
typical example is as follows; some power-aware designs
require that incoming signals do not toggle as long as power
supply is down. In reality, non-gated clocks cause a great
battery drain, so that eliminating unwanted clock toggling is an
effective way to reduce power dissipation. For comparison, we
developed a manageable TLM assertion subset and implemented
proper power intent checks raising exceptions into our virtual
prototyping front-end. For instance, the rule shown in Algorithm
1 helps in monitoring that a clock belonging to a specific power
domain is gated as long as power supply is off. However, in
contrast to explicit event-based assertion models, it must be
immediately called in the program flow each time a power
domain’s operating condition is changed. In consequence, only
properties at power state changes can be considered. For
instance, verifying correct ordered isolation and state retention
sequences based on control signal watching is out of scope.
A survey of assertion categories covered by our framework

Algorithm 1 Clock Toggling Observation Rule
Require: Power domain PD, triggering at each domain’s operating condition change
Ensure: Raise exception in case of unwanted clock toggling

1: if voltage(PD) == 0 then
2: if frequency(PD) != 0 then
3: throw("Invalid clock toggling during power off in power domain" + name(PD))
4: end if
5: end if
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Table I
A SURVEY ON POWER INTENT VALIDATION SUPPORT

Category Layer Support

Protection (Iso./Level-Shifting)
Missing/Incorrect ESL Yes
Powered ESL Yes
Enabled/Disabled ESL Yes
Race/Functionality ESL/RTL –
Clamp Value/Toggle RTL –

Retention
Powered ESL Yes
Enabled/Disabled ESL Yes
Level/Toggle RTL –

Power Domain/States
Power domain ordering ESL Yes
Mode/State observation ESL Yes
Control signal sequencing RTL –

is shown in table I. Hereby, we further distinguish ESL and
implementation dependent (RTL) categories as latter require
information either not modeled in TLM specifications or not
accessible from interfaces of components. As a result, our
simulation front-end covers up to 70% of the overall amount
of power intent checks implemented in Mentor Graphic’s
Questasim and, hence, helps in reducing verification efforts at
later design stages.

VI. CONCLUSION

It is commonly agreed that today’s low-power design
decisions can only be managed from a system-level point of
view. To address this issue, we developed a virtual prototyping
methodology by modeling and simulating common power intent
semantic in combination with early available SystemC TLM
specifications. Hence, we bridge an existing ESL design gap to
validate low-power design decisions in an abstract but functional
correct manner. At first, we presented low-power abstraction
concepts which can be seen as system-level extensions for
recent low-power design and verification standards. For this,
we aligned standard UPF concepts such as power domains
and power states to TLM . Second, we proposed a novel
simulation approach considering both complex hard IP adoption
and free choice of TLM coding style. Moreover, by using look-
ahead synchronization, we obtained cycle-accurate power state
simulation in spite of temporal decoupled process scheduling.
Finally, we demonstrated the usability on a representative
TLM case study. For quantification, we compared performance
impacts at different TLM abstraction levels as well as validation
goodness against state-of-the art solutions. Our experimental
results have shown that a simulation overhead at cycle-accurate
TLM is comparable with the overhead in available RTL
simulators. At higher abstraction levels, however, simulation
performances will benefit significantly, while the power intent
semantic is 100% preserved. Finally, up to 70% of architectural
property checks derived from a state-of-the-art RTL reference
simulator could be incorporated.
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