.
o L [PEAC
II SO ARCHITECTURE
NRS - Grenoble INP - UJ

A Fast and Stand-alone HLS Methodology
for Hardware Accelerator Generation
Under Resource Constraints

Adrien Prost-Boucle, Olivier Muller, Frédéric Rousseau

TIMA Laboratory — CNRS/Grenoble-INP/UJF
46 Avenue Félix Viallet, 38000 Grenoble, France

HIPEAC 2013 / HLS4HPC January 23, 2013, Berlin 1/24

Organization of the presentation

1 - Context
- Design of digital circuits and HLS
- Limits of current HLS flows
2 - The proposed HLS methodology
- Design space exploration
- Structure of the HLS tool
3 - Implementation and results
- Modification of the UGH tool
- Experiments

4 - Conclusion

HIPEAC 2013 / HLS4HPC January 23, 2013, Berlin 2/24

1 - Context
Use of FPGA technologies

e Advantages of FPGA solutions (vs CPU/GPU):
- High performance
- Low consumption
- Massive and fine-grain parallelism
- High optimization level
® Used in a broad range of application fields

e But difficult to program.

HIPEAC 2013 / HLS4HPC January 23, 2013, Berlin 3/24

1 - Context
Our context

HPC with hardware accelerators:
- Several accelerated modules
- Frequent evolution

- Users have low FPGA expertise

Computer / CPU node

‘\

High-speed
link

——1

| | -

oo
oo
oo
oo
oo
oo

Hardware target :
- CPU + FPGA
- Several reconfigurable regions

!

Needed design flow for accelerators:
- Fast

- DSE: find an efficient solution

- Respect given resource constraints
- Automated (compilation-like)

HIPEAC 2013 / HLS4HPC January 23, 2013, Berlin

Prototyping board
for FPGA

] FPGA

Reconf. || Reconf.
region 1 || region 2

Reconf. Reconf.
region 3 || region 4

4/24

1 - Context
Current HLS flow...

Algorithm
to synthesize
(C code)
New parameters
HLS HLS
Operation tool
Area, performance -’
Structural RTL
(VHDL, ...)

HIPEAC 2013 / HLS4HPC

January 23, 2013, Berlin

and needed HLS flow

Profiling Algorithm
statistics to synthesize Constraints
(hot spots) (code C) (area, freq.)
HLS HLS tool,
Operation autonomous
Structural RTL
(VHDL, ...)

5/24

1 - Context
Related works

Context:
Automatic & fast DSE for HLS

e Exploration with genetic algorithms
® Altera: OpenCL-based flow

® Design-Trotter (ref. 8 in abstract)

- Limited scalability

(ROM-based FSM, exhaustive BB implem)
- Other works, using GAUT:

DSE from latency constraint

HIPEAC 2013 / HLS4HPC January 23, 2013, Berlin 6/24

1 - Context
- Current HLS flows and their limits
- Related works

2 - The proposed HLS methodology

- Design space exploration
- Structure of the HLS tool
3 - Implementation and results
- Modification of the UGH tool
- Experiments

4 - Conclusion

2 - The proposed HLS methodology
Design Space Exploration

Exploration priorities:
1) Respect contraints A

2) Find an efficient solution

Exploration algorithm:
Latency

- Start: small circuit

Actual

- Then, iterative transformations
Pareto front

Area

HIPEAC 2013 / HLS4HPC January 23, 2013, Berlin 8/24

2 - The proposed HLS methodology

Respecting constraints

Exploration priorities:
1) Respect contraints

2) Find an efficient solution

Exploration algorithm:

- Start: small circuit

- Then, iterative transformations

Convergence:
- Greedy progression

- Guaranteed convergence

HIPEAC 2013 / HLS4HPC

Latency

A «— Initial solution

¢

Actual
Pareto front

Area
constraint

Constraint
respected

Area

January 23, 2013, Berlin

9/24

2 - The proposed HLS methodology
Structure of current HLS tools

& HLStool i
desgﬁgtion : ,[Compilation,] |
(C code) i Optimization i
I i i
I |
User : »| Transformation Internal :
(commands ; of the circuit representation !
! |
i U l :
|
|
tatiiz?sra : Operator Full circuit |
e I library ~=--. 6 !
ecision : generation i
- \ I FINAL CIRCUIT
! 1 > (RTL level)
{ f Evaluations |
| \ (resources, performance) :
\ |
: /7

HIPEAC 2013 / HLS4HPC January 23, 2013, Berlin 10/24

2 - The proposed HLS methodology
Proposed HLS tool structure

5 =N
-~ ™ |
Input 1 Compilation, |
description = » Optimization I
(Ccode) | \ / I
| v l
| Initial ... Operator |
: synthesis library :
; . ; :
| | Transformation Internal Full circuit | 1 _ FINAL CIRCUIT
! of the circuit representation generation | (RTL level)
i and re-evaluation :
1
| T — l Set of :
Resource | transformation -
constraints ! Autonomous Analysis of .-~ types |
| decision core freedom degrees [v-._ I
| Estimators of :
- t J resources & time :
! List of weighted freedom degrees I
. HLS tool

HIPEAC 2013 / HLS4HPC January 23, 2013, Berlin 11/24

2 - The proposed HLS methodology

Analysis of freedom degrees

Transformation /\I t |
of the circuit niernal
. representation
and re-evaluation
A — Set of
transformation
Autonomous Analysis of types
decision core freedom degrees [v-._
Estimators of
t resources & time

List of weighted freedom degrees

Weighting (estimations):
- Resource cost
- Circuit acceleration

Estimators:

Transformation types:
- Loop unrolling
- Adding operators

Freedom degree =
One transformation applied
to one place of the circuit

- Forecast of the consequences of a freedom degree

- Dedicated to a transformation type

HIPEAC 2013 / HLS4HPC

January 23, 2013, Berlin

12/24

2 - The proposed HLS methodology
Choice of the most appropriate freedom degrees

Transformation /*I orral Final weighting of freedom degrees:
c c nterna .
of the circuit representation @ Measure of the “global” quality
and re-evaluation

1‘ ~— l Computed from:

; - Resources cost (estimated)
Autonomous Analysis of
e freedom degrees | = Circuit acceleration (estimated)

{

List of weighted freedom degrees

Circuit acceleration

Quality =
y Resource cost

Final choice : the freedom degree with best "quality”.

For DSE rapidity: select extra freedom degrees
(within 10% of remaining resources)

HIPEAC 2013 / HLS4HPC January 23, 2013, Berlin 13/24

2 - The proposed HLS methodology
Respect contraints: re-evaluation of the solution

Transformation /\I t |
aifiines Eret reprgseerr?tztion
and re-evaluation ', Objectives of the re-evaluation:
T - Verify accuracy of estimations (area)

decision core freedom degrees

{)

List of weighted freedom degrees

[AutonomOUS] [Analysis of J - Update the internal representation

Provide precise evaluations:

- Generate structural RTL (low optimization)

- Use operator library characterizations

- Take all entities into account (MUX, FSM, etc)

HIPEAC 2013 / HLS4HPC January 23, 2013, Berlin 14/24

1 - Context
- Design of digital circuits and HLS
- Limits of current HLS flows
2 - The proposed HLS methodology
- Design space exploration
- Structure of the HLS tool
3 - Implementation and results
- Modification of the UGH tool

- Experiments

4 - Conclusion

3 - Implementation and results
Host HLS tools

Choosing the host HLS tool

e Availability of the source code
e Precise operator library

e Allocation-first strategy

e Complexity level: accessible

The UGH tool

UGH = User Guided High-level synthesis
Open-source, academic tool

Developped at LIP6 (Paris) & TIMA (Grenoble)
Simple internal generation flow

HIPEAC 2013 / HLS4HPC January 23, 2013, Berlin 16/24

3 - Implementation and results
Modification de UGH

Main modifications

e Operator library:

Calibration fo technologies Xilinx Virtex-5
® Extend internal representation: hierarchy
® Replaced scheduler, mapper and retiming
® Added exploration core

Source code

® UGH: ~450k lines of C/C++
Added ~36k lines of C code, much removed...
AUGH: ~150k lines of C code

Transformation types

e Adding operators
e Loop unrolling
® Condition wiring

HIPEAC 2013 / HLS4HPC January 23, 2013, Berlin 17124

3 - Implementation and results

|ﬂTEST)
else

HIPEAC 2013 / HLS4HPC

Condition wiring

* A=TEST?B:C:

BB1

BB5

BB4

January 23, 2013, Berlin

-)

B
C

reg. A
) I
E
P C

TEST

BB6

18/24

3 - Implementation and results
Synthesis of the 2D IDCT 8x8

Structure of the algorithm IDCT 2D (Loeffler implem.)

[LooP1 Input from FIFO

[Loop2H |[LooOP3}H BB2]
BB3

[Loor4H (LooP5}{BB4)

BB5
LOOPG6

[LO0P7 Output to FIFO

HIPEAC 2013 / HLS4HPC January 23, 2013, Berlin 19/24

3 - Implementation and results

Results
Execkjtion time (clock cycles)
1800T Init 3 —UGH(1.2s)
1l (0.14s)
1 iter 1 (0.44s)
4 iter 2 gg.ggsﬁ
iter 3 (0.86s
1000 ¥ — iter 4 (1.4s)
4 iter 5 (1.9s)
] Catapult _
1l (Z300s) 7,
o———+—+—++—+—+— 4+ + 4+
0 5k 10k 15k 19k
Resource usage (LUTs)
Experiment Catapult:
Experiment UGH: duration 300s Experiment AUGH:
duration 1.2s Experiment Vivado HLS: Sluirilicn /s

duration 60s iterations: 20

HIPEAC 2013 / HLS4HPC January 23, 2013, Berlin

3 - Implementation and results
Respect of resource constraints (older results)

Execution time (clock cycles)

Target constraint Target constraint

UGH-orig 10%-6910 LUTs 20% - 13820 LUTs
1800 + : .

Init

1000
/ Bil
I — —e
Catapult i A21
0 +—+———t—t—t——t——t——t—t——i
0 5k 10k 15k

Resource usage (LUTs)

HIPEAC 2013 / HLS4HPC January 23, 2013, Berlin 21/24

1 - Context
- Design of digital circuits and HLS
- Limits of current HLS flows
2 - The proposed HLS methodology
- Design space exploration
- Structure of the HLS tool
3 - Implementation and results
- Modification of the UGH tool
- Experiments

4 - Conclusion

4 - Conclusion
Conclusion

We have proposed a new HLS methodology:
e DSE is autonomous
e DSE is fast
e Resource constraints are respected

® Flow close to compilation

Design for FPGA more accessible to non-experts.

HIPEAC 2013 / HLS4HPC January 23, 2013, Berlin 23/24

4 - Conclusion
Perspectives

Further works being done:
e Additional transformation types
e Multi-port memories
e Scheduler improvements

e (Calibrations for other technologies

Important contribution to the open-source community

HIPEAC 2013 / HLS4HPC January 23, 2013, Berlin 24/24

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24

