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Abstract

System and circuit design can be considered as planning
problems, where resources are deployed in time and space
to meet a given goal. Recent and continuing developments
in the size of SAT problems and other AR problems that can
be solved with off-the-shelf tools leads us to consider their
direct use in system design. In this paper we start to tackle
the design of small hardware subsystems and the generation
of glue logic between systems by asking a SAT solver to
generate the programming bit stream for a fictional gate
array.

1 Introduction

Automatic synthesis of systems and circuits from formal
constraint(s) has been considered an attractive alternative to
conventional implementations for various reasons, includ-
ing

• There can be an accuracy benefit from using formal
rules,

• Often the detailed implementation does not matter pro-
vided it meets generalised interface and functional re-
quirements,

• Both the sending and receiving halves of any interface
can be generated from a single specification,

• Specifications in the form of design predicates are
composable in any order allowing, in principle, for
simple aggregation of design considerations,

• The automated system may be able to do a better job.

Automated refinement from a formal specification has been
advocated as one approach [1] and many other seemingly
different approaches, such as elaboration of regular expres-
sions are broadly similar, being largely syntax directed.
However, a fundamentally different approach is enabled by
the recent development in the size of problems that may
be tackled with SAT solvers. For instance, problems of
thousands of clauses in hundreds of variables are regularly
solved at the international SAT solving competitions[2]. If
we provide sufficient programmable resources to solve a
problem, the SAT solver can generate a programming that
implements a solution to the problem. This is exploitable
both for hardware and for software synthesis, provided the
problem and the possible solutions can be phrased as logic
functions. In our work, we have been looking at direct
generation of asynchronous logic, system interconnections,
protocol designs and machine code for software subroutines
using SAT. Here, we present an example of one basic ap-
proach to designing a pair of synchronous finite state ma-
chines that use a protocol ‘of their own choosing’ to com-
municate over a constrained channel. The example is partial
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in that we are still working on an automated solution to the
system start-up.

2 Approach

There are many ways of using a SAT solver to generate
hardware designs, but one of the most simple is to postu-
late a pseudo-FPGA architecture and allow the SAT solver
to generate the programming bitstream. In the basic case,
the problem to be solved is phrased as a formal logic func-
tion and the behaviour of the FPGA under a given program-
ming is expressed similarly. Then a bi-equivalence equation
can be solved by a SAT solver. Un-used gates in the FPGA
are then removed using standard identities to trim the solu-
tion for ASIC or other backend flows. Certain SAT solvers
can return dont-care variable settings and these are also an
indication of where to trim. Finally, we can select from
a number of solutions either by refining the query or se-
lecting from the generated solutions using cost evaluations
(e.g. lines of code or gate count). If we provide too-few
gates, SAT will fail, and if we provide too many, some may
be trimmed by the logic simplification identities or because
they lead to no output terminal, but other gates may be wired
up in vain. This waste can be minimised by running our
process again and again on successively smaller arrays and
stopping just before no solution is found.

Regarding design entry, we are not advocating that logic
programming should be the only form used in the future.
RTL and behavioural expression using threads are well-
loved forms, as is structural instantiation of modules (or ob-
jects), which is also vital for module reuse and other engi-
neering aspects. In our current approach, owing to growth
complexity, we envisage we shall still have to rely heav-
ily on manual partition into separately instantiated modules.
We fully support RTL for expressing parts of a design since,
in our method, the FPGA is expressed as RTL assignments.
Normal elaboration of Verilog RTL constructs [3] such as
‘if/then/else’ and ‘case’ is unaltered (but currently
we only have one clock domain). Further, the recent ma-
turity of formal semantics of programming languages, such
as C and Verilog, provides a path to convert most non-RTL
forms of behavioural expression into logic programming
form, although there is the potential penalty of loss of in-
genuity incorporated in the behavioural expression.

3 Details

The basic component of the FPGA is the LUT (look-up-
table). We define LUTs using an XFUN macro

XFUN(“xid“, s0, s1, ..., sn−1)

where the first argument is an user-provided unique identi-
fier and the remaining args are the input net names (n input
net names results in an array of 2n programmable points,
or ‘fuses’). The macro expands into a CNF expression of a
one-bit wide ROM. For example

XFUN(“xa“, s0) := xa0& s0|xa1&s0

The variables begining with the user’s identifier will remain
undriven and be given constant values during SAT. We cur-
rently have a convention that all variables beginning with
the letter ’x’ are fuses, i.e. constants whose values are to be
found by SAT.1

Our input language supports essentially two core constructs,
an assertion, which is a predicate expression, or an RTL
definition of the form ‘L := R’ where L is a single variable
name. So that they are always respected in the resulting
system, the definitions are internally converted to assertions
by replacing the ‘:=’ with a biequivalence ‘==’ but they are
also used directly in the expansion of future states as ex-
plained below. Finally, when the SAT solution is returned,
it is plugged into the definitions to generate the output hard-
ware design.

In this paper we are just designing synchronous finite state
machines that use a global clock but there is still consider-
able flexibility over the structure of FPGA we provide. The
wiring interconnection pattern is not restricted by 2-D lay-
out restrictions of real FPGAs, and so could be some sort of
n-dimensional hypercube. We use the notation X(s) to de-
note the output of a D-type flip-flop whose input is ’s’ and
whose clock is the global clock. A fully ’crossbar’ FPGA
can be expressed as follows:

X(s0) := XFUN(“xs1“, s0, s1, ..., sn−1, D);

X(s1) := XFUN(“xs2“, s0, s1, ..., sn−1, D);

... := ...

X(sn−1) := XFUN(“xsn“, s0, s1, ..., sn−1, D);

but restricted interconnection with global and local nets is
just as expressible and usable. The external inputs, denoted
with a vector D, are any free variables: i.e. those not begin-
ing with ’x’ and not bound by one of the definitions. The
state variables and all expressions can also be input in a vec-
tor form and internally expanded to individual nets. Outputs
can be taken from any variable.

1Certain SAT solvers, especially those based on BDDs, can be asked
to prefer solutions where variables are preferentially set to some value,
e.g. zero. It is preferable to link this setting with the definition of XFUN
so that the SAT solver ‘generates’ less logic. Equally, some SAT solvers
can generate dont-cares in their output and these can be used for logic
minimisation in the final output.



3.1 Design Specifications

Any number of predicate calculus rules can be used to ex-
press the design. We have implemented a syntactically rich
source language [9] and an expander to predicate calcu-
lus (that is then expanded to CNF as presented herein). It
is also possible to express using direct RTL programming
since this is elaborated down to the same form as used in
the FPGA definition, but clearly without any SAT fuses in
the expressions.

Predicate rules may refer to any variable, v, meaning its
value at a current nominal time, or X(v), meaning its value
after the next clock edge. Also available is Xn(v) (typed
X(v, n)) where n is a small integer, denoting clock cycles
into the future. We support this by iteratively, symbolically
using the ‘:=’ definitions for the supporting variables. For
example Xi(a|b) expands to X i(a)|Xi(b) and Xi+1(s1)
expands to

XFUN(”xs2”, X i(s0), Xi(s1), .., .Xi(sn−1), Xi(D));

Input variables intrinsically do not possess next state func-
tions available to be used in the expansion of X i(D), and,
in general, inputs may change from one clock cycle to the
next, so new net internal names are created for inputs to
cover each referenced future timestep. These become fur-
ther free variables since they are undriven.

As shown in figure 1, once the FPGA and the target de-
sign have been converted to predicate calculus, we expand
these into a Boolean expression and then into CNF clause
form for SAT solving. Rather than expanding out the design
fully into CNF, which can generate an exponential number
of clauses, a standard trick is deployed: where a disjunc-
tion falls below a conjunction an additional SAT variable is
used as an intermediate. This generates three clauses from
a nested binary conjunction (l.r):

(nv+!l+!r)(!nv + l)(!nv + r)

Note that the first of these three clause can be dropped with-
out altering sat-ness [7] and that the new variable, nv, has
to be uniquified (skolemised) during universal quantifica-
tion (described below).

3.2 Universal Quantification and SAT solving

The design has a number of free variables which, unless we
constrain further, are considered as universally quantified.
This means the SAT solution must be for all possible set-
tings thereof. The free variables are the state variables at
the nominal reference time, and the external inputs at the
nominal time and at all future referenced times. Of course,
SAT is targeted at existential problems, so we need a pro-
cess for explicit universal quantification. In essence, we
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Figure 2. Structure of MFM encoder and de-
coder demo (clock recovery unit ignored).

need to write out all of the clauses for each possible setting
of the free variables.

It is desirable to reduce the rate of exponential growth dur-
ing the this phase. A first approach to this can be used
when we know that certain input conditions will never oc-
cur. Therefore we support a second set of predicates that ex-
press things the design specifically does not have to achieve.
We do not feed these in to the earlier phase because con-
straining the free variables with assertions while at the same
time as universally quantifying them leads to an instantly
invalid design.

To further reduce growth during quantification, when we
can group the clauses into sections with totally disjoint sup-
port, we can use the identity

∀x, y.(P (x) ∧Q(y)) ≡ (∀x.P (x) ∧ ∀y.Q(y))

to quantify each section separately. Better still would be to
have a SAT solver that accepts variables classed into two
partitions: variables in the first partition are solved for, as
usual, whereas the solutions found must be valid for all set-
tings of the second partition.

4 Two Examples.

In a first example, we requested a design for a coder and
a decoder that implement a serial data modulation format
rather similar to Manchester or MFM, as used on magnetic
disks. Figure 2 shows the basic setup where every other
clock cycle, data from net ‘din’ is transferred over the chan-
nel ‘r’ to arrive at ‘dout’. For the encoder a ‘crossbar’ FPGA
with four internal states was selected. One state was also the
output net ‘r’.

We impose the main restriction on the encoded function:
a run length limitation to a maximum of three consecutive
zeros. This is expressed as

!r ⇒ (X(r) ∨X(r, 2) ∨X(r, 3));

meaning that whenever r did not occur, it will within the
next three periods.

For the receiver, we assume a single LUT that operates like
an FIR on older copies of the input is sufficient, so we write

X(dout) := XFUN(”xd”, r,X(r), X2(r), X3(r));



X(qual) := XFUN(”xq”, r,X(r), qual);

Such an implementation will demodulate input data and
also limit error propagation and latency.

Overall, we need a data conservation property: every other
input bit appears on the output after some latency. (As in all
MFM codecs, the intermediate input bits can be ignored by
the system.) We first define this by implementing a toggler
that alternates on each clock cycle

X(phaser) := XFUN(”xphix”, phaser);

X(phaser) == !phaser;

although this could perhaps more simply have been written
using the direct RTL style

X(phaser) := !phaser;

We can now write the overarching system specification in
terms of a data conservation rule: one of the following
should hold:

M0 := din == dout;

M1 := din == X(dout);

M2 := din == X2(dout);

M3 := din == X3(dout);

M4 := din == X4(dout);

The following attempt captures the basic idea that the out-
put data will be the input data, every other bit, after some
unspecified delay, but, in this phrasing, the delay is not con-
strained to be constant from one clock time to another

(phaser ∨M0 ∨M1 ∨M2 ∨M3 ∨M4);

Instead, we allow the SAT solver to choose the constant de-
lay by forcing exactly one of m0, m1, ... m4 to be true using
a binary decoding of some further SAT fuses.

m0 := !xm0 & !xm1 & !xm2;

m1 := xm0 & !xm1 & !xm2;

:= ...

m4 := !xm0 & !xm1 & xm2;

(phaser ∨M0 & m0 ∨M1 & m1... ∨M4 & m4);

It would be helpful to introduce in our source language an
operator that macro expands in this manner.

Additionally, it is necessary to force the modulation scheme
to be insensitive to inversions in the channel. Many forms
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Figure 3. Two Rail Signalling.

of real channel are subject to this perturbation. To do this,
we introduce one further free variable and an exclusive OR
gate, as shown in figure 2, and refer to ‘r1’ in the receiver
module.

r1 := r ⊗ Inversion

Since ‘Inversion’ is not driven anywhere, the universal
quantifier will require a design that operates whether the
channel is inverted or not. However, we do not require a
design where the channel can change polarity every clock
cycle: such a channel would have unity signal to noise ratio
and no information capacity! Hence we add the rule:

X(Inversion) == Inversion;

4.1 Initial Condition Issues.

It is well known that there are many hardware solutions to
the above-phrased problem. They vary in ones-density, dis-
parity control and transition density. For the given condi-
tions, biphase mark Manchester encoding[6] will work as
well as standard MFM. This, we demonstrated by using
a direct RTL implementations of biphase mark and MFM
as our input instead of using the XFUNs.2 However these
codecs all rely on a start-up period during which the not-yet-
synchronised receiver may make errors. Hence we could
only demonstrate the RTL MFM solution when accompa-
nied with a side condition that forced it to be initially syn-
chronised. The resultant circuits were dumped as a Verilog
netlist and an example resultant schematic is shown in fig-
ure 6.

Neither SAT solver we tried could find a solution to the
problem without the side condition since the presented
phrasing does not allow a start-up period and we believe
that the solvers have stumbled on a reality: there is no solu-
tion that does not have a start-up transient.

4.2 Example 2: Two Rail Coder

The Cambridge Ring [10] and the Inmos Transputer net-
work both used a pair of binary signals between nodes, but
were tolerant to the wires being inverted and/or crossed.

2When presented with a fully RTL, direct implementation, our tool acts
simply as an assertion checker on a hardware design.



//--------------------------
// Transmitter encoder
// Encoder state
node bool: s0, tx1, tx2;

X(tx1) := XFUN("xtx1", din, tx1, s0);
X(tx2) := XFUN("xtx2", din, tx2, s0);
X(s0) := XFUN("xtxs", din, tx1, tx2, s0);

// Transmitter Constraints
// Unsuprisingly, this fails if we request an AND in the next line.
always tx1 != X(tx1) \/ tx2 != X(tx2);

//--------------------------
// Channel Model
// This two wire channel may be permanently
// swapped and/or inverted in one half or the other.
node bool: rx1, rx2, ch_inv1, ch_inv2, ch_swap;

X(ch_inv1) := ch_inv1; // These assigns mean that
X(ch_inv2) := ch_inv2; // the initial value of this variable is not known
X(ch_swap) := ch_swap; // but that it will not change.

rx1 := ((ch_swap) ? tx1:tx2) ˆ ch_inv1;
rx2 := ((ch_swap) ? tx2:tx1) ˆ ch_inv2;

//--------------------------
// Receiver decoder
node bool: srx;
X(dout) := XFUN("xDOUT", rx1, rx2, dout, srx);
X(srx) := XFUN("xSRX", rx1, rx2, dout, srx);

node bool: match0, match1, match2, match3, match4, working;

match1 := X(dout,1) == din;
match2 := X(dout,2) == din;
match3 := X(dout,3) == din;

// By selecting a value for xdel, the tool can decide how much pipeline delay
// in the coder+decoder.
node bool: xdel0, xdel1;

working := (xdel1) ? match3: (xdel0) ? match1 : match2;
always working;

Figure 4. Source Code for the Two Rail Coder.

The seven possible perturbations to the channel can be ex-
pressed by adding three free variables as shown in figure 3.
Using the code of figure 4, the tool designed a protocol for
this with the constraint that one or other channel is changed
each clock cycle. This task has no start-up transient prob-
lem. One of the resulting circuits has been manually tran-
scribed in figure 5.

5 Results and Growth Rates

A complete hardware synthesis system has been imple-
mented in SML on a 1GHz Linux system. It takes several
minutes to convert a source file of the MFM codec com-
plexity, i.e. with about 200 fuses, to clause form. Such a
design produces SAT problems of about 20000 clauses of
10000 literals. Nearly all of the SAT literals are the inter-
mediate SAT nets generated during the conversion to CNF
and the remainder are the FPGA fuses. We have tried two
SAT solvers, Chaff (Version Spelt 3) [4] and Walksat [5].
Both SAT solvers have always returned answers in a second
or two. Considering that a proportion of this time must be
used to handle a megabyte or so of file I/O rather than SAT
solving proper, we conclude we must be creating rather easy
SAT problems compared with the normal benchmarks.

If ten thousand clauses is a good upper limit to feed to a
contemporary SAT solver, we can estimate the maximum
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Figure 5. Two Rail Signalling Circuit.

design that can be handled by our approach. We reckon
on a factor of five exponential growth from each additional
power of X delay and a near doubling of size for each free
variable, so a relatively small system with four levels of
pipeline and eight universally quantified variables would be
above the limit

1.58 × 54 = 16000

but this problem warrants much greater study and ingenuity
in its solution.

In all systems, for engineering flow purposes, functional-
ity is encapsulated in component modules or objects. In
our system, the very same predicates that describe the be-
haviour of a component can be used both when instantiat-
ing the component in surrounding context, to help synthe-
sise the glue logic, and in the synthesis of the component
implementation itself. Predicates that relate to the internal
components of a module do not need to be exported, thus
providing a significant approach to increasing the capacity
of the system. Unfortunately, this approach cannot be ap-
plied to our protocol design example, because this currently
relies on a full flattening of the coder along with the channel
and decoder.

6 Conclusions

In this paper, we have presented the current state of a
method for automatic hardware synthesis and protocol de-
sign. The system is implemented and being developed fur-
ther. We allow users to program directly in a variety of
styles, while leaving the system to fill in required function-
ality that is not explicitly expressed. Also, the user can
make formal assertions about the parts of the system they
have specified structurally or behaviourally and to be in-
formed of violations.
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Figure 6. An example MFM coder.

However, the system currently has three shortcomings:

1. There is just one significant error message: ’unsatisfi-
able’, and no feedback as to where or why,

2. A whole additional mechanism really needs to be
added to encapsulate the concepts of start up or reset,

3. The depth of design pipeline that can be handled in one
run is limited smaller than ideally desired.

The selection of an appropriate pseudo-FPGA architecture
is also currently ad hoc, especially when we realise that
for the approach to be useful to real engineers, we need to
have further clock domains and instantiate RAMs, ALUs
and even microprocessors in the target hardware, if it is to
be a comprehensive solution to today’s design tasks.

The main challenge of converting a high-level specification
of the problem to a logic function seems to be the inevitable
exponential blow-up when projecting through the next-state
function and then again when performing universal quan-
tification.

To handle the start up problem, we are now investigating
solving the SAT-generated solution only for the reachable
states encountered using a symbolic model checker such as
SMV [8]. A BDD-based model checker also avoids taking
the penalty of conversion to CNF and hopefully allow us
to target reasonable-sized problems (by which we mean a
task of comparable size to that typically handled in a run of
Synopsys Design Compiler).3

This is the additional code, using an initial statement to the model
checker, that implements a two cycle start up guard:

// Reset Logic
node bool: reset_0, reset_1, resetting;
initial reset_0 == 1 && reset_1 == 1;
X(reset_0) := 0;
X(reset_1) := reset_0;
resetting := reset_0 | reset_1;
always !resetting => (phaser != qual);

3Since this paper was written, the a model checker approach has been
tried out and it appears promising. It has cleanly solved the MFM start up
problem. The model checker allows an initial true value to be specified for
a ‘reset’ signal, and for reset to be clear thenceforth, or after some number
of start up cycles. Although the reset signal does not need to appear in the
generated logic, it can be used as a guard for the main system constraints,
so they need not be true at start of day. The model checker generates an
expression, Q(s) for the reachable states. The synthesised output is a SAT
solution of ∀s.Q(s)⇒ C(s)

Also, for a tool flow to be practical, there needs to be consis-
tency and reuse of solutions from one run to another. Oth-
erwise, the whole of a design might change as a result of a
very minor change. We need to solve that too.
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