SoC Chapter 1: Introduction

Modern SoC Design On Arm
End-of-Chapter Exercises 0.4

Q1 Bussizes

What is the addressable space of an A32D32 processor in terms of bytes and words?

Q2 Address decoding and alignment

Why is the register space of an I/0O device typically mapped so that its base address is a multiple of its
length?

Q3 What is a microcontroller?

What are the differences between a PC, a microprocessor, a SoC and a microcontroller? Are they clearly
distinct?

Q4 Address Spaces

How could some peripheral devices be made unaddressable by some cores?

©2023 — DJ Greaves.

SoC Chapter 2: SoC Parts

Modern SoC Design On Arm
End-of-Chapter Exercises

Note: The exercises in this chapter are somewhat different from those in other chapters, since they as-
sume a broad basic knowledge of processor architecture and assembly language programming. They
may require materials not presented in the book.

Q1 Hazards

Give examples of assembly language programs for a simple in-order processor that could suffer from
each of the following problems and describe hardware or software mitigations: (i) a control hazard, (ii)
a hazard arising from the ALU being pipelined and (iii) a load hazard, even though the data are in the
cache.

Q2 Misbehaving Cache

If the front side of a cache has the same throughput as the back side, owing to the back side having half
the word width and twice the clock frequency, for what sort of data access pattern will the cache provide
low performance?

Q3 Hyperthreading

If a super-scalar processor shares FPUs (floating-point units) between several hyper-threads, when would
this enhance system energy use and throughput and when will it hinder them?

Q4 Serial vs. Parallel 1/0

Why has serial communication been increasingly used, compared with parallel communication? Com-
pare the parallel ATAPI bus with the serial SATA connection in your answer.

Q5 Virtual and Physical Cache Tags

Assume a processor has one level of caching and one TLB. Explain, in as much detail as possible, the
arrangement of data in the cache and TLB for both a virtually mapped and a physically mapped cache. If
a physical page is mapped at more than one virtual address, what precautions could ensure consistency
in the presence of aliases? Assume the data cache is set-associative and the TLB is fully-associative.

Q6 Interrupt Routing

What are the advantages and disadvantages of dynamically mapping a device interrupt to a processor
core? What should be used as the inputs to the mapping function?

Q7 Flash Everywhere?

If a new variant of a microcontroller uses a single non-volatile memory technology to replace both the
static RAM and mask-programmed ROM, what are the possible advantages and disadvantages? Is this
even possible?

Q8 Primary vs. Secondary Store

Some PC motherboards now have slots for high-performance non-volatile memory cards. How can these
be used for primary or secondary storage? Should computers continue to distinguish between these
forms in their architecture?

Q9 Microcontroller Programming

Briefly describe the code and wiring needed for a seven-segment display to count the number of presses
on an external push button accurately. Note that mechanical buttons suffer from contact bounce. Use
polling for your first implementation. How would you adapt this to use a counter/timer block and inter-
rupts? What are the advantages in this button and display application?

Q10 Video Capture and Display

A SoC isrequired to have frame stores for video input and output. Could these follow essentially the same
design with minor differences? Would it be sensible to support a number of dual-purpose frame stores
that can operate as either an input or output?

©2023 — DJ Greaves.

SoC Chapter 3: Interconnect

Modern SoC Design On Arm
End-of-Chapter Exercises

Q1 Roundtrip Delay

What is the principal reason that protocols that fully complete one transaction before commencing an-
other have gone out of fashion? Estimate the throughput of a primitive MSOC1-like bus protocol imple-
mented with modern technology.

Q2 Split Bus Energy Use

What affects interconnect energy consumption as the number of channels that make up a port is in-
creased from two (for BVCI) to five (for AXI)?

Q3 Cache Coherent I/0 Devices

Why is a mix of coherent and non-coherent interconnects always found on a SoC? Why are some periph-
eral devices connected to a special purpose bus?

Q4 Regenerating Bus Protocols

Sketch circuit diagrams for a registered pipeline stage inserted into an AXI channel and a CHI channel.
What design decisions arise in each case and what effect do they have on performance and energy use?

Q5 Virtual Circuit Buffering

A NoC uses static TDM to separate VCs on a link with the schedule fixed at tape out. Should the receiving
link have a shared buffer pool or a pool that is statically partitioned for use by different VCs?

Q6 Dynamic Bandwidth Allocation

Another NoC uses dynamic TDM. Additional nets convey a VC number that identifies the data on the
remainder of the data nets. Discuss the likely performance and energy differences compared with static
TDM. (You should be able to improve your answer after reading the next chapter!)

Q7 Round Trip Time Again
For what types of application does NoC latency affect system throughput?

Q8 Programmers Doing Consistency

What are the advantages of having fully automatic hardware support for memory coherency compared
with leaving it up to the programmer to insert special instructions?

Q9 An array of mutexes

A C programmer writes pthread_mutex_t locks[32]. A friend says this will have very poor cache per-
formance. Why might the friend say this? Are they correct?

©2023 — D] Greaves.

SoC Chapter 4: System Design

Modern SoC Design On Arm
End-of-Chapter Exercises

Q1 Speedup

If an accelerator multiplies the performance of one quarter of a task by a factor of four, what is the overall
speedup?

Q2 Queuing Theory

The server for a queue has a deterministic response time of 1 us. If arrivals are random and the server is
loaded to 70% utilisation, what is the average time spent waiting in the queue?

Q3 Queuing Theory — Two Queues

If the server is still loaded to 70% but now has two queues, with one being served in preference to the
other, and 10% of the traffic is in the high-priority queue, how much faster is the higher-priority work
served than the previous design where it shared its queue with all forms of traffic?

Q4 Energy Saving

If a switched-on region of logic has an average static to dynamic power use of 1 to 4 and a clock gating
can save 85% of the dynamic power, discuss whether there is a further benefit to power gating.

Q5 Debug Trace

What is the minimum information that needs to be stored in a processor trace buffer to capture all as-
pects of the behaviour of a program model given that the machine code image is also available?

Q6 Fault Redundancy

A 100-kbit SRAM mitigates against a manufacturing fault using redundancy. Compute the percentage
overhead for a specific design approach of your own choosing. Assuming at most one fault per die, which
may or may not lie in an SRAM region, how do the advantages of your approach vary according to the
percentage of the die that is an SRAM protected in this way?

Q7 High-level Energy Modelling

Assuming an embarrassingly parallel problem, in which all data can be held close to the processing ele-
ment that operates on it, use Pollack’s rule and other equations to derive a formula for approximate total
power and energy use with a varying number of cores and various clock frequencies within a given silicon
area.

Q8 Static Schedulling

Consider a succession of matrix multiplications, as performed by convolutional neural networks (CNNs)
and similar applications in which the output of one stage is the input to the next. Is FIFO storage needed
between stages and if so, could a region of scratchpad RAM be sensibly used or would it be better to have

a full hardware FIFO buffer?

©2023 — DJ Greaves.

SoC Chapter 5: ESL: Electronic System Level Modelling

Modern SoC Design On Arm
End-of-Chapter Exercises

Q1 TLM Speedup

Estimate the number of CPU instructions executed by a modelling workstation when net-level and TLM
models alternatively simulate the transfer of a frame over a LocalLink interface.

Q2 Net-level and TLM SystemC coding

Using the additional materials from the four-phase folder, perform a net-level simulation of the source
and sink. Then code, in SystemC, a net-level FIFO to go between them and modify the test bench to
include it. Finally, write and deploy a transactor to the TLM-1 style sink that is also provided.

Note: You may want to look at the Toy ESL exercises in parallel with this exercise. Also the keyword virtual
was missing in the original definition of the TLM interface in this question. It should read:

class simple_tlm1_blocking_sink_if

{
public:
virtual void putbyte(sc_uint<8> data) = 0;

};

Q3 Virtual Platforms

If access to the real hardware is not yet possible, discuss how development, debugging and performance
analysis of device driver code can be facilitated by a virtual platform. What might be the same and what
might be different?

Q4 ToyESL Demos

In the additional materials toy-esl folder, work through the four SystemC TLM coding examples in
which processors access memory. (Note, for ease of getting started and debugging, this material does
not use TLM 2.0 sockets. It essentially does the same thing as the Prazor system, but at a much more
basic level.)

Q5 Queueing Delay Modelling

A NoC switching element is modelled using SystemC TLM. What mechanisms exist for capturing the
queuing delay if passthrough TLM sockets are to be used in the NoC element model?

Q6 Rentian Wire Length Estimation
Assuming a typical Rent value, using a spreadsheet or simple program, tabulate the average wiring length
versus number of hierarchy levels crossed for a transactional interface in a typical SoC.

Which of the following do you need to assume: total number of hierarchy levels, average number of child
components to a component, variation in area of a component, Rentian exponent, average number of

connections to a component and percentage of local nets to a component? Obtain a numerical figure
for the partial derivatives of the result with respect to each of your assumptions. Which is the most
important?

Q7 Static vs Dynamic Power Analysis

To what extent can a simple spreadsheet or static analysis determine the average activity ratio for a net
or subsystem? What further information is needed? Given activity numbers, what further information
may be needed to generate an idealised mapping of subsystems to power domains? What other consid-
erations should be applied to determine a practical power domain mapping?

Q8 Transactional Order

Give simple examples where out-of-order transaction processing arising from the loosely timed mod-
elling approach causes and does not cause functional accuracy errors. Are transaction counts likely to be
wrong under loose timing?

©2023 — DJ Greaves.

SoC Chapter 6: Design Exploration

Modern SoC Design On Arm
End-of-Chapter Exercises

Q1 Product Design

Consider the design of a high-quality digital movie camera. Sketch a feasible top-level block diagram,
remembering to include a viewfinder and audio subsystem, but you may ignore auto-focusing. How
many circuit boards, SoCs and processors should it have? To mitigate against the camera shaking, what
are the relative costs of implementing a vision stabiliser using voice-coil prism hardware compared with
an electronic/software-only implementation.

Q2 Memory Bandwidth

An algorithm performs a task that is essentially the same as completing a jigsaw puzzle. Input values and
output results are to be held in DRAM. Describe input and output data formats that might be suitable
for a jigsaw with a plain image but no mating edge that can falsely mate with the wrong edge. The input
data set is approximately 1 Gbyte. By considering how many DRAM row activations and data transfers
are needed, estimate how fast this problem can be solved by a uniprocessor, a multi-core PRAM model
and a hardware accelerator. State any assumptions.

Q3 Parallel Processing

Two processes that run largely independently occasionally have to access a stateless function that is best
implemented using about 1 mm? of silicon. Two instances could be put down or one instance could
be shared. What considerations affect whether sharing or replication is best? If shared, what sharing
mechanisms might be appropriate and what would they look like at the hardware level?

Q4 Custom Instructions/Accelerators

Consider the following kernel, which tallies the set bit count in each word. Such bit-level operations are
inefficient using general-purpose CPU instruction sets. If hardware support is to be added, what might
be the best way of making the functionality available to low-level software?

for (int xx=0; xx<1024; xx++)
{
unsigned int d = Data[xx];
int count = 0;
while (d > @) { if (d&1) count ++; d>>=1; 3}
if (!xx || count > maxcount) { maxcount = count; where = xx; }

Q5 Flow Control

Data loss can be avoided during a transfer between adjacent synchronous components by using a bi-
directional handshake or performance guarantees. Explain these principles. What would be needed for
such components to be imported into an IP-XACT-based system integrator tool if the tool allows easy
interconnection but can also ensure that connections are always lossless?

Q6 Pipelined FUs

What is a fully pipelined component? What is the principal problem with an RTL logic synthesiser au-
tomatically instantiating pipelined ALUs? A fully pipelined multiplier has a latency of three clock cycles.
What is its throughput in terms of multiplications per clock cycle?

Q7 Modulo Schedulling

A bus carries data values, one per clock cycle, forming a sequence X(f) = X; as illustrated in Figure
Also shown is a circuit that supposedly computes a value Y;_3. It uses two adders that have a pipeline
latency of 2 and an initiation interval of 1. The circuit was designed to compute the running sum of bus
values. Check that it does this or else design an equivalent circuit that works but uses the same adder
components.

A possible running sum circuit
using ll=1, L=2 diadic adders.

X(®)

Figure 1: A circuit intended to compute the running sum of streaming data values.

Q8 Operator Identities

Does strength reduction help save area, energy or both? Give an expression that can benefit from three
different strength reduction rules.

Q9 Cut-through and Deadlock

Is a NoC that uses store-and-forward elements with cut-through routing a multi-access NoC? Does multi-
access lead to more or fewer chances of deadlocking?

Q10 Loop-carried dependencies.

Does either of the following two loops have dependencies or anti-dependencies between iterations? How
can they be parallelised [48]?

loopl: for (i=@; i<N; i++) A[i] := (A[i] + A[N-1-i])/2
loop2: for (i=0; i<N; i++) A[2xi] = A[i] + 0.5f;

©2023 — DJ Greaves.

SoC Chapter 7: Formal Verification

Modern SoC Design On Arm
End-of-Chapter Exercises

Q1 What is declarative proof?

Define the following classifications of programming languages and systems: declarative, functional, im-
perative, behavioural and logic. What class are the following languages: Prolog, SQL, Verilog, C++, Spec-
man Elite, PSL and LISP?

Q2 Assertions over an RTL design.

The synchronous subsystem in Figure[I| has three inputs: clock, reset and start. It has one output called
Q. It must generate two output pulses for each zero-to-one transition of the start input (unless it is already
generating pulses). Give an RTL implementation of the component. Write a formal specification for it
using PSL or SVA. Speculate whether your RTL implementation could have been synthesised from your
formal specification.

0 1 2 3 4 5 6 7
ok ok N\ S
Q i
Q reset
reset
— reset _
start start /
— start
a |

Figure 1: A pulse generator: schematic symbol and timing waveforms.

Q3 Model checking a FIFO

Create a formal glue shim like the one in Figure[2|to check the correctness of a FIFO component.

Q4 Model checking a RAM

Create a similar formal proof of the correctness of a RAM, showing that writes to different locations do
not interfere with each other.

Q5 Sequential Equivalence Checking

Prove the equivalence of the two designs in Figure[3|by naming each state in each design and defining a
minimal FSM whose states are each labelled with the list of states in each input design that they model.

Q6 Dynamic Validation using Formal VIP

In the book it says 'Implement the checker described in the bus-checker folder of the additional mate-
rial’ and that content is pasted below on this exercise sheet.

la: Design at the gate-level an arbiter for three customers and a single resource and say what basic type

/ SD /
7 D Q T
sampledPush
ce
Equality
Broadside Register. mitre
Holds some arbitrary input value.
~N
DUT - device under test
dataln / / dataOut
'n \ / n
LIFO stack —
stacl
pushCommand | popCommand
- J
— | =0 updownlsZero FAIL
+
Detect failure
Synchrounous condition
up/down counter
QB
sampleNow

Figure 2: A harness around a data path component (a LIFO stack).

of arbiter it is. (You do not need to include details of the resource or customers.)

1b: Each customer will interact with the arbiter using a protocol, typically using one request and one
grant signal. Give a formal specification of this protocol using a state transition diagram. For a syn-
chronous protocol, explain how the concept of the clock is embodied in the diagram.

[Step 2 - Simple protocol safety checking using hardware monitors.]

2a: (easy) Give a completely separate RTL or gate-level design that is a monitor (or checker) for the follow-
ing safety property: ‘At all times, never is the resource granted to more than one requester’. This checker
should be a component (eg separate RTL module) that has as many inputs as is needed to monitor the

QA always @(posedge clk) begin
CEN D D q T<=1T;
if (T) QA <= D;
D Q D DFF —+ else QB <= D;
i |~ end
DQ DQ b al+—0 -
— — > D Q
MUX2 N~ b l

always @(posedge clk) begin Q

ql <=D; |

Q<=ql; always @(posedge clk)

end if (cen) Q <=D; D a QB MUX2

:> assign Q = (T) ? QA:QB;

Figure 3: A two-bit shift register (left) with a conventional design. By using a clock-enabled flip-flop
(centre), an alternative implementation is possible (right). The state encoding is totally different, but the
observable black-box behaviour is identical.

necessary nets in the system (e.g. all connections to the arbiter) and an output that is asserted in any
state where the assertion is violated.

2b: (harder) Similarly, design an RTL or gate-level protocol checker that could be instantiated for each
connection between a customer and the arbiter that checks each instance of the request/grant protocol
is being properly followed. Do you have, or can you envision, a request/grant hardware protocol that has
no illegal behaviours? What is allowed to happen in you system if a customer wants to give up waiting for
the resource (known as 'baulking’)?

2c: For your particular request/grant protocol design, if you extended 2a to also check that no grant is
issued without a request would this be a state or path property checker?

Step 3 - Liveness Checking Machine

3. Give a completely separate RTL or gate-level design that is a monitor/checker of the following liveness
property: "Whenever reset is not asserted, when a request is made for the resource, it will eventually be
granted".

Step 4 - Formal Logic Implementations

4a. Using PSL, SVA or a similar assertion language, give an assertion that checks the safety property of
step 2a above.

4b. Give a similar temporal logic assertion that asserts that the liveness property of step 3 above is never
violated.

©2024 — DJ Greaves.

SoC Chapter 8: Fabrication

Modern SoC Design On Arm
End-of-Chapter Exercises

Q1 Chip Fabrication

List and describe the main layers of a modern silicon chip.

Q2 Place-and-Route

What problems can be found during net routing that would suggest a better placement is needed? How
can these be anticipated during placement? Would a constructive placer take these considerations into
account?

Q3 FPGAvsASIC
Why is an FPGA larger and slower than the equivalent ASIC?

Q4 FPGA Multiplication

How many FPGA DSP blocks are needed for a 32 x 32 multiplier? What is its latency? What difference
does it make if only 32 bits of the result are needed?

Q5 Production Test

Design alogic structure that will be very difficult to assess in a production test, but which does notinclude
redundant logic. What is the problem? Could such a structure be needed in a real application?

Q6 Floorplanning (also Clock and Power Domains)

What principal data need to be held in a floor plan? Can a good floor plan reduce the number of domain
crossing and isolation components needed?

Q7 Slew Rate Limiting

Choose one of the reasons listed in the book for limiting the transition times in a design and expand
upon the reasoning with examples, simulations or mathematical modelling. Why is the transition time
especially important for clock signals?

Q8 Conductor Delay Scaling

Why does the net delay become a larger proportion of the path delay as process geometries shrink?

Q9 Statistical Delay Modelling

Why would it be helpful to model the statistical variation of net delays instead of assuming all intercon-
nect segments are at one BEOL corner?

Q10 Static Timing Analysis

-o0- Create a list of the sources of timing uncertainty considered during STA. Are there any that were not
discussed?

-0- On-chip Parameter Variation: Give an example of OCV that is dependent on location and one that is
dependent on time. Is there an example that depends on both location and time?

-0- Negative Slack Amelioration 1: What kind of optimisations might be done to fix STA minimum timing
violations with negative slack?

-0- Negative Slack Amelioration 2: What kind of optimisation might be done to fix timing violations with
negative slack in maximum timing analysis?

-o- Exploiting Positive Slack Time: What kind of optimisations might be done to lower the power by
reclaiming positive slack in a maximum timing analysis?

-o- Hold Time Violations: Why can minimum timing violations not be fixed by decreasing the clock fre-
quency?

-0- Why is it important that inputs to STA, like Liberty abstract timing models and SPEF netlists, conform
to an IEEE standard?

Q11 Yield Improvement Through Redundancy

Describe how the die yield can be improved if a structure is replicated hundreds of times over a chip?
Should the end user be involved in this process? Consult a recent DRAM chip data sheet and discuss the
mechanisms likely to be used during a production test and at boot time.

©2024 — DJ Greaves.

