
Umar Saif, Daniel Gordon,
and David J. Greaves
University of Cambridge,
Computer Laboratory

Internet Access to a
Home Area Network

The AutoHan project implements a self-configuring
software architecture for home area networks that offers
an XML-based registry and HTTP-based event service.

A home area network could control
many devices, all of them working
together to keep your home com-

fortable, entertaining, and safe. But if you
go out of town, you cannot watch the
closed-circuit security camera you installed
so that your bicycle might not get stolen—
again. Secure Internet access to a home
area network would let you use a Web
browser or even a Web-enabled phone to
control the central heating equipment, set
a VCR to record TV programs, turn off an
appliance that was accidentally left on, or
even view snapshots from a surveillance
camera.

Support for such access has at least three
requirements:

■ A system within the house must enable
devices to export their resources to the
home network and to discover and
interact with other resources on it. We
have implemented a system architec-
ture called AutoHan to solve configu-
ration and interaction problems be-
tween multiple home devices and
home applications.

■ These export and interaction functions
need to be automated. We believe that

devices in the home will eventually
converge on a control architecture and
that newer devices will be made with
mechanisms that allow them to auto-
matically interoperate.

■ These mechanisms should lend them-
selves to Internet protocols and con-
tent formats to allow Internet access.
This article describes one such access
method.

We begin by introducing the low-level
architectures of the AutoHan project that
enable different networking technologies
to interoperate and define one logical IP
network. We then describe the two core
services that enable resources to export,
discover, and interoperate with AutoHan
by using these low-level architectures.
Finally, we discuss naming and addressing
issues for Internet access and show how
XML and HTTP allowed us to extend our
system to support Internet access through
IHan (Internet home area network).

The AutoHan System
AutoHan is our reference implementation
of a home area network1 (http://www.cl.
cam.ac.uk/Research/SRG/HAN/). It con-

54 JANUARY • FEBRUARY 2001 http://computer.org/internet/ 1089-7801/00/$10.00 ©2001 IEEE IEEE INTERNET COMPUTING

Em
be

dd
ed

 S
ys

te
m

s

sists of all AutoHan-compliant devices connected
to a multicast group that spans the home. A full
description of the AutoHan architecture is beyond
the scope of this article, but this overview describes
the basic components of its operation.

As shown in Figure 1, all of the various physical
layers inside the home are integrated by the bottom
layer into a single network that supports both the
control and data traffic of AutoHan. The AutoHan
control architecture is based on events, as devel-
oped in the Cambridge Event Architecture.2 Com-
posite Event Engines in the network provide higher-
order operations, like filtering and aggregation, on
the event streams. These engines are programmed
with scripts that embody the application programs
that, in turn, automatically control the home on a
day-to-day basis. Event scripts have the advantage
of cleanly controlling the merging of applications
that interact, and various pathological error cases
can be automatically checked by using rules of
home consistency.

In AutoHan, everything is described in XML3:
devices, programs, rooms, people, licenses, and, of
course, event types (or event schemas). Devices gen-
erate and listen to commands in the form of events
corresponding to their XML schema and modify
their state accordingly.

AutoHan defines three bases upon which the
home network is built:

■ Basic functions and control for them. The basic
functions are defined in the firmware read-only
memory (ROM) of a home device, together with
an architecture for controlling the resources
found inside that device, such as generic stor-
age, execution, user interface, and specialized
functions (for example, a DVD drive).

■ Standard software devices. All home networks
are expected to implement certain devices,
including a registry, calendar, media storage
server, voice recognizer, and an Internet gateway.

■ A set of application execution environments
and user interfaces. The execution environ-
ments are native machine code in device
ROMs, Java programs, event scripts, and mis-
cellaneous code via the Posix common gate-
way interface (CGI). The user interfaces include
the buttons, displays, and infrared controllers
found on home devices, and special program-
ming interfaces in development as part of the
AutoHan project (for example, Media Cubes1).
The IHan component enables Internet access to
the network (shaded components in Figure 1).

To control entities on a network requires mecha-
nisms whereby resources can describe their control
interfaces and attributes (nonfunctional), advertise
these to the rest of the world, find other resources
on the network, and interact with them. Two core

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2001 55

AutoHan

AutoHan System Components

PHY1
Warren

PHY2
HomePNA/802 Frame

PHY3
Bluetooth

PHY4
FireWire

Connection-oriented and connectionless integration layer

AutoHan middleware
Event marshaling

Java RMIMobile code | CGI | Event engineXML database

Web interface/IHan Ubiquitous interfaces
(device buttons, displays, controllers …)

 Machine code | Java | CGI/other

IP

Events

Other programming
interfaces

Figure 1. AutoHan system architecture. Shaded components represent the design
and implementation of IHan, which enables Internet access to the autoconfiguring
home area network.

services of AutoHan—GENA and DHan—make
these actions possible.

GENA
AutoHan devices normally use the universal plug-
and-play (UPnP) generic event notification archi-
tecture (GENA)4 to send and receive events over the
network via event streams based on HTTP or HTTP-
UDP (user datagram protocol). GENA extends HTTP
by adding three new methods: SUBSCRIBE, UNSUB-
SCRIBE, and NOTIFY. Devices can, therefore, imple-
ment a subscription arbiter, which is rather like a
Web server.

Subscription arbiters, which manage subscriptions
for event notifications, are used by devices that
monitor or control the network, such as the Auto-
Han event engine. The events are generated by a
wide variety of hardware devices and software enti-
ties, not all of which are compatible with AutoHan.
Our prototype implementation meets this challenge

by using device proxies to convert
other forms of event to the GENA
format. GENA defines a notifica-
tion type (NT) and a notification
subtype (NTS), both of which must
be uniform resource identifiers
(URIs). In AutoHan, the NT speci-
fies the type of notification the
subscriber requires, and the NTS
gives the parameters of the event
when notified by the subscription
arbiter.

In the standard model of
GENA, an entity that wants to
receive events must subscribe to

the subscription arbiter and then wait for notifica-
tions. This does not fit well with the AutoHan
model because, for example, an event engine may
want to send as well as receive events from the
same device. For simplicity’s sake, the subscriber
should be able to use the subscription ID by which
it receives events to also generate events and pass
them to the subscription arbiter. In our implemen-
tation, GENA can send events to the subscription
arbiter. An alternative method could use a second
subscription arbiter, per device, from which the
event engine would offer subscriptions and to
which the devices would have to subscribe.

Our implementation of GENA uses HTTP-UDP
instead of HTTP because UDP is sufficient and
appreciably more efficient for asynchronous event
notifications. Lack of reliable support at the UDP
layer is irrelevant, in fact desirable, for two reasons.
First, most of the advanced lower layers in a home

network are reasonably reliable (for example, ATM,
Bluetooth, even Ethernets such as HomePNA), and
time-outs and acknowledgments are a big overhead
at the transport layer. Second, HTTP (and HTTP-
UDP) is itself a request response protocol, making
reliability easy to support with this mechanism—a
classical example of end-to-end argument.5

DHan—The AutoHan Registry Service
DHan is our implementation’s XML-based yellow-
pages registry service. It allows entities to adver-
tise their properties and control interfaces and to
look up and work with other entities. Its function-
al model allows objects of any sort to be registered,
unregistered, updated, and looked up by name or
attribute list. Unlike relational directory services,
DHan’s XML-based information model allows stor-
ing of objects with varying numbers and types of
attributes.

Each registered object is assigned a lease that, if
not renewed within the leased time, automatically
deregisters the object from the directory. HTTP 1.1
(and HTTP-UDP) is used as the directory access pro-
tocol. XLink and multipurpose Internet mail exten-
sion (MIME) external-body headers allow for dis-
tributed operation of the directory service, in which
a lookup operation returns only a link to another
entity in the directory, which might even reside
with the entity itself.

An authentication scheme is used to support a
security model based on an access control list.

Why XML? Entities use XML to register their resources
with DHan. Network state is also represented in XML.
We chose XML because it can index irregular data as
a platform-independent representation of loosely
matched ASCII events and because it is supported by
Internet browsers. XSL6 provides a powerful mecha-
nism to dynamically generate sets of Web pages
depending on the attributes of the registered devices
and on user-defined views. XLink offers a flexible
linking mechanism to allow for composite event sub-
scriptions.

Most of the entities in a home network can be
grouped hierarchically. Top-level classes include
people, rooms, programs, bank accounts, event
scripts, licenses, and devices. Within the device class,
a potential grouping could be defined by device
functionality or brand name (for example, Display
Device/Television/ColorTelevison/SonyColor

Television). This hierarchical namespace also pro-
vides a direct mapping to device modeling.7 In this
respect, XML’s hierarchical namespace is a perfect
match for home networks. However, most of the

56 JANUARY • FEBRUARY 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Embedded Systems

AutoHan devices
use the UPnP
generic event
notification
architecture to
implement
subscriptions.

relationships between different entities in a home
network could be sensibly expressed into alternative
tag orderings within hierarchical namespace. XLink
and XPointer technologies allow exactly that, and
their fine-grained linking facilities provide an effi-
cient way to describe complex relationships between
different entities in a home network. For example,
Person/Owner/PayPerView/Account could be
linked to Event/WatchMovie/PayPerView (an oth-
erwise unrelated hierarchy) to pay for a movie.

The competitive and evolving nature of the con-
sumer electronics industry leads to product differ-
entiation, newer models, and newer features. There-
fore, different entities will have different numbers
and types of attributes. XML is ideally suited for
storing structured but irregular information of this
nature, and XML’s weak typing and loose matching
of tag strings enables interoperation between dif-
ferent generations and versions of devices.

An entity in the home network, such as a closed-
circuit camera, can be referenced by a fully quali-
fied name, or point (somewhat similar to the distin-
guished names of X.500), in its hierarchical
structure. A point is a concatenation of all the XML
tags, starting from the root of the directory, that both
identifies the object according to its place in the
object hierarchy and lists attribute-value pairs that
delineate the device according to its capabilities.
Attributes themselves are XML tags (text nodes) and,
unlike distinguished names, can occur only at leaves
of a point and can assume only one value. For
example, an object belonging to the object hierar-
chy of Camera/StillCamera/ColorCamera/ and
having the attributes of a 10-second snap frequency,
a living-room location, and a 5-request capacity is
the point represented below:

<Camera>

<StillCamera>

<ColorCamera>

<SnapFrequency> 10 seconds

</SnapFrequency>

<Location> Living Room </Location>

<Capacity> 5 requests </Capacity>

</ColorCamera>

</StillCamera>

</Camera>

The exact position in the hierarchy, however, is of
no interest to a client that wants to look up an enti-
ty by its attributes. Therefore, the lookup operation
also permits nonqualified names. A nonqualified
name is composed of a partial point name only,
which could be an attribute-value set, or, in an

extreme case, even a single node in the point name
(parallel to a relative distinguished name in X.500).
Thus, the object depicted above can be referenced,
though not uniquely, by a partial point name of
/ColorCamera and an attribute list of Loca-
tion/Living Room.

If a partial point name is used, then the register
function inserts the object in the XML tree in the
same subtree as any other previously registered ele-
ment of the same type. A fully qualified point name
belonging to no previously registered hierarchy will,
naturally, create a new hierarchy. The register func-
tion always returns a fully qualified point name of
the object just registered, which can then be used to
refer to that object uniquely in the future.

Clearly, no one description schema can be used
to group and represent entities in a home network.
For efficient tree-search operations, a description
schema should have minimal redundancies and
minimal inter-hierarchical relationships. Our archi-
tecture defines a generic frame-
work that can be used to support
any schema standard, and we
believe one will emerge as the
industry agrees on different
description standards, such as the
resource description framework
(RDF) and extensible rights
markup language (XRML, http://
www.xrml.org).

DHan itself is a first-class
resource in AutoHan, which
means that it registers itself with
itself, and interacts with other
devices through GENA events.
Hence, it offers events itself corresponding to its
access interface (for example, lease expired, new
device registered, device updated). Home control
platforms, such as the event engines, register them-
selves with the subscription arbiter exported by the
DHan registry. The registry notifies the event engines
of major changes, such as when a new device has
been switched on and registered itself, so that event
scripts can be run to support these devices. This
design leverages self-organization of the network.

Suitability of HTTP 1.1 (-UDP). The home net-
work comprises many resources with different
capabilities and from different manufacturers.
Combined with the requirement of ubiquitous
access, this makes HTTP 1.1 (and HTTP-UDP)
the protocol of choice for Internet-enabled
home networks. In addition to being a univer-
sally accepted protocol, HTTP (-UDP) has many

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2001 57

AutoHan

DHan’s XML-
based information
model can store
objects with
varying numbers
and types of
attributes.

merits as a protocol to access the home network
directory over the Internet.

■ HTTP is lightweight (compared, for example, to
a full-blown LDAP server) and, therefore, can
be supported in low-end embedded devices.

■ HTTP works both with underlying protocols that
are connection oriented or connectionless (HTTP-
UDP),8 thus satisfying a goal of AutoHan, which
is that the protocol can run before and after the
network layer is set up and working.

■ HTTP 1.1 methods9 fit well with the model the
IHan registry service uses for queries and
updates.

■ HTTP is supported by all Web browsers, lever-
aging access to the directory access over the
Internet.

■ The use of HTTP leverages Web proxy models
to take load off the IHan service.

■ The protocol allows new HTTP methods and
MIME headers to be defined, allowing new ser-
vices like GENAto be supported.

The five core HTTP methods—GET, PUT, POST,
DELETE, and HEAD—are mapped to five event types
used to interact with the directory services. GET is
mapped to the lookup function of DHan: It returns
the object that matches the lookup criterion encod-

58 JANUARY • FEBRUARY 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Embedded Systems

Sun Microsystem’s Jini architecture1 is closely related to our work,
but IHan differs from Jini in two important ways:

■ IHan uses a language-independent, text-based XML directory
service with an open wire protocol,HTTP, and is therefore not
bound to any one application program interface (API).

■ IHan is tailored for home networking, and its directory service
and access protocol focus solely on the functionality for such
networks.This allows deeply embedded low-end devices in the
home to support the framework. The choice of already
pervasive and agreed-upon standards for home networking
allows the infrastructure to scale to the Internet.

Our work has much in common with the goals of UPnP industry-
standard effort (http://www.upnp.org), and our use of GENA pro-
vides basic compatibility with UPnP. However, instead of standard-
izing device APIs, we advocate more extensive use of events, loose
matching of event tags, and emphasis on asynchronous interaction
between home system components. Asynchronous interaction
promises to be more scalable, reliable, and efficient when multiple
applications interact and in systems with a large number of compo-
nents.Our implementation leverages the use of UDP and allows an
efficient end-to-end design.

Our work provides a discovery and yellow-pages service that
appears to be more flexible than some protocols, such as Saluta-
tion,2 SLP,3 and solutions using strongly typed remote procedure
calls (RPCs) based on CORBA or, of course, Jini. Other discovery
protocols that use XML schemas for description of control inter-
faces are simple service discovery protocol (SSDP)4 and secure ser-
vice discovery service (SSDS).5 SSDP does not provide the flexi-
bility of a complete yellow-pages lookup service as rich as DHan’s.
SSDS,on the other hand, though flexible and fairly expressive, does
not provide a ubiquitous lightweight directory access protocol like
HTTP. SSDS design also fails to recognize that the registry service
itself is a first-class resource. DHan is a first-class resource itself,
and the events it offers are used to support self-organizing policies
for the network.

The VESA Home Networking Committee6 has also proposed a
home network architecture based on XML. In the VESA model,
each device has its current state held as an “XML page” that must
be read, parsed, modified, and written back to perform control
operations.These operations require considerable processing at
both the client and the device. In our case, the devices are required
to implement only “canned” XML (perhaps from a ROM), and a
GENA interface with DHan is used to represent the network’s cur-
rent state.This alleviates the devices of costly XML manipulations,
hence accommodating low-end embedded devices.This approach,
of pushing the core home network services into a general-purpose
high-end node such as the residential gateway, has also been pro-
posed by OSGi (http://www.osgi.org), but OSGi design, like Jini, is
highly Java API-centric because it is based in Java Embedded Server
technology.

None of the related work here has adequately discussed nam-
ing and addressing or used a fine-grained security model, as Auto-
Han does.To our knowledge, AutoHan with IHan is the first archi-
tecture to provide a secure framework to control a home network
from across the Internet.

References
1. W.K. Edwards, Core Jini. Prentice Hall, Upper Saddle River, N.J., 1999.

2. B. Pascoe,“Salutation Architectures and the Newly Defined Services Discovery

Protocols from Microsoft and Sun,” white paper, 1999; available online at http://

www.salutation.org/whitepaper/Jini-UPnP.pdf.

3. E. Guttman et al.,“Service Location Protocol,Version 2,” Internet Engineering

Task Force, RFC 2608 (standards track), 1999; available online at http://

www.ietf.org/rfc/rfc2608.txt.

4. Y.Y.Goland et al.,“Simple Service Discovery Protocol/1.0:Operating without an

Arbiter,” work in progress, Oct. 1999; available online at http://www.upnp.org/

draft_cai_ssdp_v1_03.txt.

5. S. Czerwinski et al.,“An Architecture for a Secure Service Discovery Service,”

Proc. MobiCom99, 1999; available online at http://iceberg.cs.berkeley.edu/papers/

Czerwin-Mobicom99/.

6. J. DiGirolamo and R. Humpleman,“The VESA Home Network Initiative,” white

paper update 2; available online at http://www.vesa.org/vhnwp.pdf.

Related Work in Home Networking

ed in the uniform resource locator (URL), along with
its lease in the Date header, if the lease has not
expired. Because the Date header contains the time
stamp until which the registration is valid, this reply
can be temporarily cached, taking load off the reg-
istry service. PUT is used to register a device, with
the name encoded in the URL and attributes includ-
ed in the body as XML document fragments. The
Location header of the response returns the fully
qualified point name with which the object was reg-
istered. The Date header gives the lease date until
which the registry is valid. POST can update an
existing entry by changing its attributes or by
renewing the lease agreement, and DELETE unreg-
isters an already registered object. HEAD checks
only whether an object exists. For a registered
object, HEAD returns the fully qualifying point
name in the Location header of the response, and
the lease time stamp in the Date header.

The attributes of these events are encoded as
XML and MIME headers. DHan uses HTTP-UDP
inside the AutoHan multicast network. For Inter-
net access, the IHan adaptation layer converts
between HTTP 1.1 and HTTP-UDP.

Security model. The security model is based on a
fine-grained access control list. This list, a group
membership directory, is initialized by the owner of
the house, who can add, modify, or delete any entry.
All other entities, including people and devices, can
add new entries in this database, but can modify
and delete only the group membership lists that give
them such privileges. By default (when no access
control attributes are registered with the tag), only
the owner of the house and the entity who regis-
tered the entry can modify or delete it. Therefore,
even the read permissions to “everyone” have to be
given explicitly. The sensitivity of the information
in a home network warrants this prudent approach.

The access control list is basically another hier-
archy in DHan. The group identifiers and member-
ship lists are stored as XML tags and are managed
by the DHan service, just like all other network
entities. Every XML tag in the DHan directory also
contains the access permissions of the group that
can access it. For example, the security hierarchy
for a color camera would be <Access Control>
<Everyone/><ColorCamera/></Access Control>.
If that camera could be viewed by anyone but
modified only by the owner, it would be represent-
ed as <ColorCamera Read=Everyone Modify=

ColorCamera>.
Loosely matched hierarchical XML strings used

as group identifiers leverage a much more flexible
security model than, for example, a flat bit set, a la
Unix. The cascading rule applies to the hierarchi-
cal entries, which can, though, be explicitly over-
ridden. By default, access-control permissions at
the root of any subtree apply to all the lower nodes,
but lower nodes can apply stricter access permis-
sions. This increases the speed of directory-access
operations and allows for shorter access requests.

AutoHan Operation. With GENA and DHan in
place, the home network is ready to operate. Every
entity that wants to send or receive control events
implements a GENA arbiter, either by itself or
through a proxy. The lower levels of the network
allow any new entity, such as a device like a
closed-circuit camera, to notify its event arbiter of
the event types it offers. The device then sends a
multicast packet on the network to locate the DHan
registry. Because DHan has already registered itself
with itself, it returns its IP address and port address,
two of its registered attributes, in reply to this UDP

lookup packet. The new device can then authenti-
cate itself via that arbiter with the directory service
(or create a new group) and register its attributes,
along with the location of its event subscription
arbiter and the event types it offers.

The device may cause the event subscription
arbiter to advertise multiple classes of event with
various allowable ranges for the parameters associ-
ated with an event. Now any entity can look up this
device by its attributes and, if interested, can sub-
scribe to its events using the device’s arbiter, which
DHan returns as one of the device’s attributes. These
events are handled by embedded event handlers to
control the device and/or to set up data channels to
and from the device. Because the DHan registry is
itself an entity and offers a few events through its
arbiter (for example, entity registered, lease expired),
event engines could subscribe to these events to pro-
vide higher-order control functions by using event
scripts. Likewise, all composite event engines also
register with DHan and run subscription arbiters.

This architecture provides a self-organizing net-
work. Resources can discover one another by using
XML lookups and can monitor and control other
resources by using event streams—all without
human intervention. XML descriptions (instead of,

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2001 59

AutoHan

Sensitivity of the information in a home network warrants a prudent approach.

for example, strongly typed RMI interfaces) allow
any resource to discover and use other resources
even if it does not understand all of their functions
(that is, it can ignore unrecognized tags). Con-
versely, automatic service degradation can be sup-
ported by one device being able to use another
device that supports only partial functions expect-
ed by the first device. For example, a follow-me-
video application could automatically bind itself to
a range of display resources, from LCD to HDTV,
and then adapt to the user’s immediate area. We
have also found this flexibility useful for interop-
eration of devices from different manufacturers.
The soft state of DHan, implemented with time leas-
es, ensures that failed or unavailable resources are
automatically removed from the network. Also, the
events generated by DHan can implement different
self-organization policies. For example, if the cen-
tral heating system fails (lease expires), also switch
off the boiler.

Addressing and Naming
To allow Internet access to the
home network, Internet Protocol
version 4 (IPv4) is used for
addressing—it is the most widely
supported addressing scheme in
the world. IPv4 also has multicast
capability and is ported on
almost all underlying protocols
that might exist in a home net-
work (for example, FireWire, Eth-
ernet [HomePNA/HomePnP],
Bluetooth).

Port Address Translation
A well-known problem with IPv4 is its relatively
limited address space; it cannot support millions
of entities in worldwide home networks. With IHan,
we augment the home network with port address
translation (PAT) and thus make optimal use of lim-
ited IP address space by using two techniques.

PAT at the residential gateway. This technique
gives every home network a unique, permanent
IPv4 address. A variant of the bootstrap protocol
(BOOTP) and the ranges allocated for private inter-
nets10 are used to assign unique IPv4 addresses to
all the entities in the network. To enable Internet
access to the network, the residential gateway runs
the IHan module to do PAT. These port-to-IP
address mappings are stored in the DHan registry
by the PAT entity. The registry associates the appro-
priate port number with clickable events (encoded

as XLinks) to represent different home devices on
XML pages.

PAT at the Internet service provider. In this tech-
nique, the Internet service provider (ISP) performs
PAT, mapping port numbers to IP addresses as is
already done by many ISPs. Used with the first
scheme, this provides two levels of PAT: one at the
residential gateway and one at the ISP. Theoreti-
cally, this would allow a single IP address to be
shared by 232 devices in 216 different houses, pro-
vided the number of active connections leaving the
ISP subnet did not exceed 216 per IP address. The
ISP could use a private routing scheme (for exam-
ple, virtual private network addressing) to make a
connection to the residential gateway on demand.

Naming
Two naming schemes can also be used, corre-
sponding to the two addressing techniques. In the
first case, each house would have a unique URL
that is registered with the domain naming system
(DNS) and is resolved to each home network’s IP
address.

The second case is more interesting. In this case,
only the PAT at the ISP registers itself with a unique
domain name. The ISP then assigns a unique object
name to each residential gateway of the houses it
manages. Its mapping to a (private) IP address is
stored in the DHan service running at the ISP. So,
when a user quotes, for example, http://www.
cl.cam.ac.uk/myhouse, http://www.cl.cam.ac.uk is
resolved to the unique IP address of the ISP. A “GET
myhouse” HTTP request is sent to the ISP PAT ser-
vice, which looks up the private IP address assigned
by the ISP to “myhouse” residential gateway, sets
up a dynamic port to this looked-up IP address
mapping, and forwards the request to the appro-
priate residential gateway DHan service. The user
can then control the home network through the
Internet.

Object (for example, house) names could them-
selves be URIs,9 providing a large, flexible name-
space. For instance, your house managed by AT&T
in Manhattan could be reached at http://Auto-
Han.att.com/NY/manhattan/yourhouse.

IHan
IHan is a software module added to the network to
enable access from the Internet. The software may
be run on any suitable platform, such as a residen-
tial gateway, as shown in Figure 2. The residential
gateway runs the IHan protocol stack and IHan
core services. It lets a user “log in” to homes

60 JANUARY • FEBRUARY 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Embedded Systems

XML descriptions
allow any
resource to
discover and use
other resources
even if it doesn’t
understand all
their functions.

through the Internet by quoting a URL for the IHan
service and responding to an extension of
RFC2617-like authentication exchange with the
appropriate user name and password. IHan then
presents the home network as a set of XML pages.
Then, the user can find available devices and con-
trol their behavior.

IHan adaptation layer
IHan provides the necessary glue to control Auto-
Han from the Internet (see Figure 3). It provides the
integration of connectionless and connection-ori-
ented services by supporting both HTTP and HTTP-
UDP, and exploits the “post hole” of HTTP to pro-
vide compatibility with existing browsers.

The use of XML and HTTP in the AutoHan
design lends itself naturally to Web access. But cur-
rent Web browsers implement only certain HTTP
methods, and HTML is not detailed enough to spec-
ify when these functions need to be performed. The
current Web browsers, of course, do not implement

GENA headers either, and support only transmis-
sion control protocol/Internet protocol (TCP/IP).

IHan performs three major functions. First, it
provides the PAT required to share an IPv4 address.

Second, it extracts the headers (GENA and oth-
ers) from the “POST-encapsulated” HTTP messages.
This is necessary because the HTTP entity header
must be encapsulated into a URL to allow connec-
tion through a standard Web browser. The respons-
es from a server, likewise, must be encoded in an
entity body in XML. A simple encoding scheme is
used—similar to that used by an HTML form to
specify variable names and values to a CGI script—
whereby the HTTP method, path name, and some
of the MIME headers are included in the path name
of a single HTTP POST request.

The GENA draft does not specify the contents of
the HTTP body in the NOTIFY messages. Instead, the
body contains the XML that encodes the NT and NTS
header fields. IHan can use these headers to allow
notification of events through a Web browser.

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2001 61

AutoHan

IHan residential gateway

Bluetooth
link

Video

Internet
connection

PCPrinter

HomePNA

Warren
switch

TelevisionMP3 player

Telephone

Fax Screen
Handheld

ubiquitous device

Figure 2. IHan example configuration and architecture.The IHan residential gateway
runs the IHan protocol stack and core services.

IP
x

Port
y

Extract GENA
and DHan

HTTP headers
from "POST"

body

HTTP to
HTTP-UDP

AutoHan
TCP

port nos.
URI
SID

Internet
browser

PAT

Figure 3. IHan adaptation layer. IHan exploits the HTTP “post hole” to provide com-
patibility with browsers.

Because HTTP is a client-pull protocol and does not
fit in the event subscription and notification para-
digm, this is also handled by IHan. The IHan soft-
ware registers the entity and its attributes, which
makes the DHan service generate XML pages with
the HTML <Auto Reload> tag set to the frequency
of the event notifications. Therefore, event notifica-
tions can now be done simply by the browser’s gen-
erating an encapsulated GET request to the appro-
priate event arbiter every n sec, where n is the event
notification frequency. Asynchronous events are
currently approximated by very short reload times,
but a stock-ticker-like Java applet is being coded.

Third, IHan converts HTTP TCP connections to
connectionless HTTP-UDP messages, and vice
versa, by maintaining a mapping between TCP port
numbers of HTTP connections and HTTP-UDP
unique identifiers (UIDs). When IHan receives a TCP

connection, it maps the port number to a unique
URI, which is then used in the UID header to relate
the HTTP-UDP request/reply. HTTP serves TCP/IP
Internet connections and other entities supporting
connection-oriented communication, whereas
HTTP-UDP receives and sends events to connec-
tionless entities. Thus, home-networked devices
need not support TCP, and commercial Web
browsers are compatible with the network.

IHan Simple Example of Operation
Figure 4 shows exchanges that occur when a new
device entity, a closed-circuit camera, is installed,
registers itself, and is accessed from an Internet
Web browser. In the example, the camera registers
that it can take still snapshots, together with its res-
olution and frequency of snapping. It also registers
its location, which in this case it has inferred by

62 JANUARY • FEBRUARY 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Embedded Systems

<device>
<location>front door</location>
<snaps>10sec</snaps>

<device> and attributes
<devicetype>CCTV</devicetype>
<location>front door</location>
<snaps>10sec</snaps>

DHan GENA

Subscribed:<snap>
CallBack: http://camera.cl.cam.ac.uk

6. Respond4. Respond

Give me all the attributes of
the device with point name
device and attributes
DeviceType/CCTV and
location/front door.

IHan adaptation layer for Internet access to home

5. Request

Please send me events of type
<snap> from this CCTV every
10 seconds

1. Advertise events

I will send you an
event of type
<snap> every 10
seconds.

2. Register
Register me with the name <device> and attributes
<devicetype>CCTV</devicetype>
<location>front door</location>
<snaps>10sec</snaps>

Internet browser Notified with a MIME-type
JPEG every 10 seconds

3. Request

Figure 4. IHan interaction scenario.The sequence shows the exchanges that occur when a new
device, a closed-circuit camera, is installed, registers itself, and is accessed from a browser.

using Warren’s topology-based addressing,11 and
registers the subscription arbiter that can be con-
tacted to receive its snapshots.

The user types into the browser the URL of his
home DHan service. DHan generates, and displays
through HTTP, a log-in page. Once logged in, the
user can query the home directory for the camera.
The directory will return all entities that match the
lookup criterion. The pages are rendered by using
XSL, and the user can now click on any of the enti-
ty’s attributes. Clicking generates an HTTP-encap-
sulated SUBSCRIBE request to the permanent home
network IP and to the port number for the desired
event arbiter. IHan removes the encapsulation head-
ers, and the PAT software at the residential gateway
forwards the request to the private IP address of the
event’s subscription arbiter. For instance, a user who
wants “snaps events” will click on the “snap”
attribute, which sends an event to the appropriate
subscription arbiter, via IHan, subscribing the user’s
browser to picture-snap events. The page that DHan
generates for this camera will reload after 10 sec-
onds. Likewise, if the camera offers other attributes,
by registering other control events with the directo-
ry service, then the user will be able to change other
attributes of the camera by simply clicking on the
relevant attribute and selecting the desired value (for
example, change its snap frequency).

Conclusion
AutoHan defines a self-organizing home network
architecture with facilities for executing and con-
trolling programs. We have shown how the use of
XML, HTTP, and GENA as the main wire protocols
for entity control, together with an implementation
of the IHan gateway, enables Internet access to it.

The AutoHan architecture is still in development,
with emphasis on generating the event scripts for
home control. From the Warren project,11 we have
a large set of networked home devices that can be
incorporated into AutoHan using appropriate prox-
ies. The current state of the system can be found
on our Web page at http://www.cl.cam.ac.uk/
Research/SRG/netos/han/.

Acknowledgments
We acknowledge contributions from Alan Blackwell and

Andrew McNeil.

REFERENCES
1. D.J. Greaves et al., “AutoHan Services,” white paper, Feb.

2000; available online at http://www.cl.cam.ac.uk/Research/

SRG/HAN/AutoHAN/autohan/autohan_paper1.html.

2. J. Bates et al., “Using Events for the Scalable Federation of

Heterogeneous Components,” Proc. ACM SIGOPS Euro-

pean Workshop, Sept. 1998.

3. W3C recommendation, “Extensible Markup Language

(XML) 1.0 (2nd ed.),” 2000; available online at http://

www.w3.org/TR/REC-xml/.

4. J. Cohen, S. Aggarwal, and Y.Y. Goland, “General Event

Notification Architecture Base: Client to Arbiter,” work in

progress, Internet draft, expired Apr. 2000; available online

at http://www.upnp.org/draft-cohen-gena-client-01.txt.

5. J.H. Saltzer, D.P. Reed, and D.D. Clark, “End-to-End Argu-

ments in System Design,” ACM Trans. Computer Science,

vol. 2, no. 4, Nov. 1984, pp. 277-288.

6. S. Adler et al., “Extensible Stylesheet Language (XSL) Ver-

sion 1.0,” W3C candidate recommendation, 2000; avail-

able online at http://www.w3.org/TR/xsl/.

7. Electronics Industries Alliance, “CEBus Standard EIA-600,”

EIA, Arlington, Va., Sept. 1996.

8. Y.Y. Goland, “Multicast and Unicast UDP HTTP Requests,”

Internet draft, expired Dec. 1999; available online at

http://ftp.uni-bremen.de/pub/doc/internet-drafts/draft-

goland-http-udp-00.txt.

9. R. Fielding et al., “Hypertext Transfer Protocol—HTTP/1.1,”

IETF RFC 2616, June 1999; available online at http://

www.ietf.org/rfc/rfc2616.txt.

10. Y. Rekhter et al., “Address Allocation for Private Internets,”

IETF RFC 1918, Feb. 1996; available online at http://

www.ietf.org/rfc/rfc1918.txt.

11. D.J. Greaves and R.J. Bradbury, “Warren: A Low-Cost

Home Area Network,” IEEE Network, vol. 12, no. 1, Jan.

1998, pp. 44-56.

Umar Saif is a PhD candidate at the Computer Laboratory, Uni-

versity of Cambridge. His research interests are in ubiqui-

tous systems. His current research focuses on system sub-

strates for self-organizing distributed overlays. He is

working on the AutoHan project as a case study in ubiqui-

tous device control.

Daniel Gordon received a BA in mathematics in 1990 from the

University of Cambridge and a PhD in 1999 for his disserta-

tion, “Scheduling in Optically-Based ATM Switching Fab-

rics.” His research interests focus on low-level aspects of ATM

switch design and residential ATM. On the AutoHan project,

he is responsible for integration with the lower layers.

David J. Greaves is a lecturer in the University of Cambridge.

He was awarded a PhD in 1989 from the University of Cam-

bridge. In 1993, he was network architect for the Cambridge

Interactive Television Trial, the world’s first testbed for ATM

connectivity to the home. He is a consultant to a number

of companies and a founder of the Virata Corporation.

Readers may contact the authors via e-mail at {us204, dlg10,

djg}@cl.cam.ac.uk.

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2001 63

AutoHan

