

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2nd September 2014, Munich.

Concurrency expression in
high-level languages,

Best practice and
amenability to h/w compilation.

(povocative statements for
BoF Panel Discussion !)

David Greaves
University of Cambridge

Computer Laboratory

David.Greaves@cl.cam.ac.uk

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2nd September 2014, Munich.

Parallel Programming Disciplines

➲ Hardware is parallel (massively).
➲ Software must go parallel owing to end of

clock frequency growth.
➲ Hardware is software is hardware – we

need (an) effective expression language(s)
amenable to codesign.

So: three classes of parallelism:
● 1. Embarrassingly parallel – no control or data

interaction between strands.
● 2. Stream processing – pipelined parallelism –

great if there are no control hazards.
● 3. General, fine-grained parallel programming!

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2nd September 2014, Munich.

Eager versus Lazy Dichotomy

➲ Separating control and data flows often
mooted:
● It is the key enabler for 'Spatial Computing'

● `A New Dataflow Compiler IR for Accelerating Control-
Intensive Code in Spatial Hardware' A M Zaidi and DJ
Greaves @ IPDPS'14.

● But why are people happier with OCAML than
Haskell ?

General purpose language must keep them
quite close together – e.g. call-by-value in
ML/Java/C etc..

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2nd September 2014, Munich.

Von Neumann Imperative Parallelism

➲ Shared-memory imperative programming is
stupid – how have we got there?

➲ Using strongly typed C/C++/C# we can
compile pointers and abstract data struc-
tures quite safely.

➲ But aliasing problem restricts available par-
allelism (w.r.t. critical ALU path) by:

● Factor of 100 by conservative static analysis
● Factor of < 10 in reality (Jonathan Mak's PhD).

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2nd September 2014, Munich.

Eliminate shared memory ?

➲ Eliminate it entirely – Erlang, Occam, Pi calculus and so on...
● DRAM can still be used (thank god) but

 all regions are fully disambiguated and local to a task.

➲ Restrict to Imutable shared memory
 – preferably combined with an interlock to avoid RbW
on initialisation.

➲ Do reference counting on your pointers –

● Rust pointer mangament
● or linear type systems with an explicit duplicate operator for

sharing

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2nd September 2014, Munich.

Kiwi C# High-Level Synthesis

➲ Program can freely instantiate classes but not at run time!
➲ Array sizes must all be statically determinable (ie at

compile time).
➲ Program can use recursion but max depth must be stati-

cally determined.
➲ Stack and heap must have same shape at each run-time

iteration of non-unwound loops.
➲ Program can freely create new threads but creation sites

statically determined too.

● Compile C# with some language restrictions:

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2nd September 2014, Munich.

Kiwi HLS Concurrency

➲ Use the .net library concurrency primitives

➲ Below a certain level, replace implementations with
our own hardware alternatives

➲ Each thread has classical HLS static schedule. Ar-
biters added to all threadshared resouces.

➲ This is ultimately a shared-variable model with ex-
clusion locks.

➲ But what about async dispatch? Later.

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2nd September 2014, Munich.

Kiwi Example: One-place buffer Write
Method.

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2nd September 2014, Munich.

Bluespec
Verilog
(BSV)

// A simple rule
rule rule1 (emptyflag && req);
 emptyflag <= false;
 ready <= true;
endrule

Design is expressed as guarded atomic actions. So locking
primitives are innate.

- Parallelism comes from rules firing in parallel.
- Performance comes from packing multiple, potentially
interacting rules into one execution clock cycle.
- All rules gen'd by a rich static elaboration language.

Stuttering is the default semantic – unless `must fire' pragma
is applied: THIS LEADS TO RaW HAZARDS ON RAMs
AND REGs SO MUST USE FIFOs WHEREVER POSSIBLE
OR ELSE PAY ATTENTION TO WARNING MESSAGES.

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2nd September 2014, Munich.

Interest arises owing to wide use on GPGPU.

Programmer manually:
 - splits inner loop kernels off for separate compilation.
 - allocates storage over a 4-level hierarchy with pragmas
 - makes calls to the GPU work queues.

Open Computing Language (OCL)
- is not much of a language
- is more of an accelerator API.

Open CL

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2nd September 2014, Munich.

CILK,
OpenMP

&
WOOL

Programmer inserts parallelism directives in body of C code.

Program still can run single-threaded by just ignoring the
mark up.

Array accesses are essentially unaltered but
- great care over aliasing is needed, and
- no type-system or language-level assistance for

correctness.

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2nd September 2014, Munich.

Joins are elegant.

Joins substrate implements workqueues and schedullers.

Queue capacity requires careful dimensioning – too small
can deadlock.

A long way from hardware design but probably a good way
forward for general parallel programming targeting FPGA!

Join
Calculus

//A simple join chord:
public class Buffer
{
 public async Put(char c);
 public char Get(bool f) & Put(char c)
 { return (f)?toupper(c):c; }
}

Hardware join Java: a unified hardware/software language for
dynamic partial runtime reconfigurable computing applications -
Kearney,.

Polyphonic C Sharp – Benton and Cardelli.

Mapping the Join Calculus to
Heterogeneous Hardware
Peter Calvert,Alan Mycroft

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2nd September 2014, Munich.

Also in Java as
a FutureTask

Asynchronous Task Calls:
The C#5 / Scala – await primitive.

A simple version of the full join calculus.

Bounded queue and scheduler overhead => implies =>
practical for engineers (not like Haskell!)

Suitable for large scale systems. Can adapt to different quantities of
execution resource by work stealing etc..

 public async Task<int> SumPageSizesAsync(IList<Uri> uris)
 {
 int total = 0;
 foreach (var uri in uris) {
 statusText.Text = string.Format("Found {0} bytes ...", total);
 var data = await new WebClient().DownloadDataTaskAsync(uri);
 total += data.Length;
 }
 statusText.Text = string.Format("Found {0} bytes total", total);
 return total;
 }

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2nd September 2014, Munich.

Classical textual/ASCII language, but...

Programs are a multitude of connected stateless boxes.

Can be hierarchic with a complete box graph nested inside a single
 parent's box.

Amenable to algebraic manipulations for time/space folding.

Is there a problem, as always, with large data in DRAM ?
 No – use the Erlang/Occam localised arrays solution.

Hume Box
 Algebra

David.Greaves@cl.cam.ac.uk Field Programmable Logic and Applications (FPL) 2nd September 2014, Munich.

Conclusion

➲ Concurrent expression of HLS design intent is a
good thing: - makes more parallelism available.

➲ Large arrays in (D)RAM are the most important
entity in all types of computing
● especially non-stream, non-embarrassingly parallel.

➲ Parallel programming paradigms must eliminate
pointer ambiguity
● 1. as far as possible,
● 2. without precluding it for the few algorithms that actually delploy

pointer aliasing (and even they are mostly just read pointers).

➲ Optimising schedulers for concurrent specification
languages shall emerge (but engineers need write-time
handle on complexity).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

