Chip Design Magazine http://chipdesignmag.com/print.php?articleld=6...

Chip Design Magazine
By Neil Richards, James Green, William Stoye, and David Greaves

Published in December / January 2004 issue of Chip Design Magazine
C Models Speed Co-Design
Virtual silicon meets the needs of hardware and software development simultaneously.

Developing system-on-chip (SoC) devices for DSL applications is a tricky business. These
products usually consist of a highly flexible communications processor with multiple CPU
cores, several external interfaces and multiple RAMs and are frequently integrated with DSL
physical layer devices. GlobespanVirata (Redbank, NJ) is in the business of designing SoCs
for DSL, and we know that the throughput, flexibility and timely delivery of the silicon and
software depend heavily on close cooperation between the hardware and software disciplines.

Prior generations of these types of SoCs were developed using hardware emulation to provide
early prototyping for verification. This process could produce a working model at about
1/100th of the speed of the final chip. An add-on board was then developed to provide
interfacing to the two CPUs, and for external devices such as DRAMs. Subsequently, a
special 1MHz PCI bus was constructed, which allowed the PCI interface, for one version, of
the chip to be tested. Other interfaces (Utopia, for example) were attached to real devices,
exposing them to real traffic. Ethernet MII and USB interfaces could be then tested by
connecting to a specially constructed hardware board that acted as a proxy, relaying data
between real (fast) hardware and the slower hardware of the simulation.

This overall approach could be very effective; a working model of the chip was available well
in advance of tape-out date. The software team was able to boot the operating system on one
CPU, pass network traffic over many of the interfaces, and verify the critical parts of the
design, thereby getting an early start on driver development. As development times shortened,
however, we found that slow simulation speeds hampered time to market. Additionally,
crucial feedback often came late in the development cycle, off too late and the architecture
could not be altered accordingly.

Establishing alternatives

With time, several alternative strategies have been developed, all of which are aimed at
providing a view of the device thata€™s useful for both software and silicon designers earlier
on in the design cycle. These include RTL simulation, FPGA prototyping, and C modeling

The RTL simulation option deploys HDL simulation tools on every software engineera€™s
desk. While workable, the process can be prohibitively expensive (every workstation has to
be equipped with a simulator) and integrating the procedure into the software development
environment is extremely difficult.

Alternatively, designers can rely on FPGA prototyping to provide extremely fast simulation
speeds, but designers also know that the process can require a lot of upfront work. Special
care needs to be taken in partitioning and integrating into the development environment.

Lately the third approach, C modeling, has become of considerably more interest as it allows
designers to build a 4€cevirtual silicona€? model of the device in C. Ita€™s true that some
parts of the device have traditionally been modeled as part of the architecture development
phase. But until recently, there has been no complete, working model of the overall chip

1of7 08/05/2019, 20:38



Chip Design Magazine

20f7

available at this level. (see Figure 1)

Fortunately, things have changed for the better. These types of high-level models are now
available and the advantages for the development teams are numerous: A large pool of non-
RTL experts (members of the software team) can build and use the models, working in what
for them is a familiar environment. The hardware development manager is happier; he can see
a considerable increase in the capabilities of his verification team. Also, simulation times are
likely to be shorter relative to RTL and gate simulations. And finally, integration with the
software development tools is straightforward.

Overall, the approach is cost effective compared to emulation and is conveniently available
earlier in the design cycle-particularly if delivered as part of the architecture development-and
ita€™s easy to share multiple models of the device among a very large software team

The process is not without disadvantages, however, as we discovered on an initial project
wherein the system was tested. There wasna€™t enough time available to hand-build a full-
chip C model from scratch. Also, there was considerable reuse of legacy silicon intellectual
property (IP) on the project for which no C models were available. Therefore the IP required
a considerable amount of effort to describe. And even after the IP models were developed,
they frequently a€cedrifteda€? as the IP vendors implemented changes without notifying us.

hardwakre team software team
architecture joint architecture
design, modeling € activiy | design, modeling
v
RTL
Coding, verificalion system development
\L drivers,
system integration,
time to back-end ;‘:Ofgfrses system test
market synthesis, layout Y
/ v system bringup
tape out application test
real prototypes J,
| customer test I
revenue! ~~1
v I

Figure 1: A system-modeling strategy should be used that permits continuous involvement of
the software team in the overall SoC project.

C architectural
models
C system
C compiler

new system
software
development model

synthesisable
Verilog or
VHDL

Figure 2: The VTOC Verilog/VHDL-to-C modeling allows the disparate hardware and
software designs to be viewed as a single software entity.

[ta€™s true that some C models of individual IP blocks did exist, which helped to finalize the

08/05/2019, 20:38

http://chipdesignmag.com/print.php?articleld=6...



Chip Design Magazine http://chipdesignmag.com/print.php?articleld=6...

design details for some blocks on this chip. However, these models were usually functional
only (not cycle accurate). As a result, details of the interactions between blocks would be lost.
Commercial tools which support C-based chip development had been explored, but the
investment cost and time required to implement a full design flow precluded their use at this
time

Applying commercial tools

Knowing the pitfalls as we did, we began to use tools VTOC from Tenison EDA (Cambridge,
U.K.) to convert the synthesizable Verilog into C, C++, or SystemC, which provided a
reliable, proven methodology for our project. VTOC performs a synthesis-like transformation
of the input program, resolving the majority of scheduling decisions statically and resulting in
a simple, straight-line representation of the execution of the Verilog program in each clock
cycle. Since the output on our initial project had no scheduler, it was very easy to integrate
with the C code that ran on the embedded device.

VTOC is entirely specialized to a 2-value simulation, with each Verilog vector corresponding
to a similar C variable, so ita€™s very easy for software engineers to interface with the tool
and understand it. Our software team discovered that these transformations made the output
code execute very quickly, as much as 10x faster than compiled Verilog-since the resulting
code is doing less work than a full Verilog. (See Figure 2)

We found that VTOC can split the translation at Verilog module boundaries, so size itself is
not an issue. However, some elements of the device required special attention: The outer layer
of the chip including pads, clock tree, and metal layer sewing kit was stripped off, as none of
these things contributed usefully to a cycle-accurate model. The main system clock generator
for the chip was a phase-locked loop that generated a clock from a slower external crystal.
This clock generator was not used and the system clock fed in directly from the external C++
testbench.

Each external peripheral was studied to see how it mapped onto the external world. The
UART could be converted by VTOC, but the module within the UART containing the data
shift register was replaced by hand-written C++ code. This process conveniently presented
basic character input and output on the usera€™s terminal. The USB and Ethernet physical
layer circuitry had various analog elements and was removed. The Ethernet interface was
attached at the MII interface to the appropriate debugging code, and in a later iteration was
linked through to a physical Ethernet for some tests. The DRAM interface was attached to a
simple hand-written model of suitable DRAM chips. This DRAM model was written in
Verilog, and also passed through VTOC.

Within the digital logic of the chip, only the SRAM blocks and the CPUs needed any special
attention. The SRAMs included a variety of single and dual ported memories, generated using
a third-party tool. The Verilog provided by the generator was not fully synthesizable, and was
replaced with trivial hand-written models. However, it was the CPUs that required the
greatest attention. Once these special cases had been handled, the rest of the design compiled
without any intervention. In fact, the vast majority of source files compiled without the need
to even examine the RTL source.

The whole conversion process on the project was organized under Unix 4€ ' makea€™ so that
no hand editing of any machine-generated files was required. We found that regenerating the
entire model from the source RTL can take between 10 and 40 minutes, depending on the
complexity of RTL changes.

Addressing disparate requirements

Helium 500 chip is the first project using this methodology. The design consists of two 32-bit
CPU cores, on-chip SRAMs and caches, interfaces to external SDRAM, external peripherals,

3of7 08/05/2019, 20:38



Chip Design Magazine http://chipdesignmag.com/print.php?articleld=6...

and multiple serial interfaces. [ta€™s a mixture of hard macrocells, generated RAMs and
synthesized logic. (see figure 3). The two CPUs are referred to as the Network Processor and
Protocol Processor (the NP and the PP). The NP is programmed in assembler and performs
low-level protocol operations. The PP is mainly programmed in C and C++ and performs
higher-level protocol and management operations. In order to satisfy different engineering
simulation requirements, two distinct strategies were used. These are referred to as the

a€ chip modela€™ and the &€ hybrid model.a€™

In the chip model an instruction set simulator CPU model was used, written in C++ and
inserted directly into the VTOC-generated simulation. This model provided a like-for-like
replacement for the RTL of the processor core-which accurately represented the caches and
the CPUs-so the load on the rest of the chip and the DRAMSs could be shown to be cycle
accuracy.

In the hybrid model, the high-level C driver code running on the PP was linked directly to the
VTOC-generated C code, eliminating the need for the instruction set simulator. When the
higher-level C code performed memory mapped-device read or write operations, these were
trapped and used to trigger memory cycles in the VTOC chip simulation. Hence the higher-
level protocol and management code executed at far greater speeds, than real-time. The NP
was driven as a CPU simulation, even in the hybrid model, as it was programmed entirely in
assembler.

The bulk of the VTOC simulation time was spent doing VTOC calculations. As a result,
adding tracing was very cheap, even if applied to every cycle. We found tracing very useful,
tracing many things and creating log files for everything. For every CPU instruction, we
produced a register dump and traced every SDRAM access. This procedure gave us the
ability to set up complex triggers when trying to analyze potential bugs. Similarly, software
profiling and run-time checking were also supported in this environment.

On-chip RAM models were actually memory mapped files, so they could be examined and
changed as necessary in an editor, even as the simulator was running-another important aid in
the debugging process.

We were pleased to see that the VTOC environment also supported connection to external
models, models not generated by VTOC. This was particularly useful in dealing with Flash
memory devices, where a third-party provided model was connected to the VTOC-generated
model of the external memory interface.

4 0f7 08/05/2019, 20:38



Chip Design Magazine http://chipdesignmag.com/print.php?articleld=6...

Figure 3: The design chip block diagram shows the major components in the design.

We found that it was also possible to connect the VTOC model to real hardware, external to
the PC host. In the case of the Helium 500 development, this entailed both a serial ROM and
an Ethernet interface.

We found the cycle-accurate model of the Helium 500 chip ran 4-5 times faster than the same
RTL running on Verilog VCS. However, at the time, we were using VTOC models on an
Athlon PC and VCS on a Sun UltraSPARC server. More recent comparisons with the current
version of VTOC on identical machines suggest a typical 10-fold speed advantage over
compiled Verilog simulation.

The hybrid model ran at the same speed, as measured in cycles per second. However, the
results were more useful because the higher-level code executes without taking up any
simulated cycles. Far more of the cycles were performing useful 10 operations on the
hardware model, than were spent executing simulated instructions for a CPU.

In order to speed the process, our principle technique was to simulate only portions of the
chip. The makefile for the VTOC model allowed subsets of the chip to be created, with
specific peripheral components excluded. This allowed simulation times of kilohertz
simulation speeds to be achieved for specific software tests, depending on which peripheral
elements were included.

As a cycle time, these speeds clearly were a great deal lower than the hardware the simulation
replaced. Using a hybrid simulator, however, meant that all of the useful large-scale tests
could still be performed. For example, the simulated operating system on the PP booted in
approximately ten seconds, making it feasible to develop code as if on the real silicon.
Meanwhile, the operating systems on the hardware emulation system required approximately
15 minutes to boot. An important benefit of all of this-executing simulations on inexpensive
desktop PCs meant that every software engineer on the team could run jobs concurrently. This
was a definite plus in reducing overall design time.

Saving the best for last

50f7 08/05/2019, 20:38



Chip Design Magazine http://chipdesignmag.com/print.php?articleld=6...

When a problem is being debugged, which must be traced through the VTOC-generated
models, software engineers tend to use conventional C++ tools (for example, GDB). In
addition to this, VTOC code can generate wave trace files in the VCD format. This is useful
when characterizing specific issues, and discussing them between the hardware and software
groups.

Software models are not as fast as hardware emulators or prototypes at pure cycles-per-
second, but they are better in several ways for low-level software development. They are
more deterministic than prototype hardware, and more transparent in their operation. For
some software developers there is a barrier to overcome in terms of d€cetrustinga€? the
model, but this can be achieved with a suitable team structure.

All told, we were able to report a significant number of primary achievements on our initial
use of VTOC. The RTL underwent extensive top-level and system-level verification using
real applications software prior to tape-out. Numerous critical bugs were identified in VTOC
and fixed in RTL, which would not otherwise have been found using conventional RTL
simulation and verification. Additionally, the software drivers were ready to go when the chip
was ready to tape-out

The best news for our software team came when first silicon arrived in the building. Within
two hours, the operating system had been booted over the Ethernet interface, and routing and
bridging operations successfully performed using software that had been developed during
the chip implementation. This in turn, led to a faster delivery of working software to
customers than had been achieved before by that same team on previous projects. Overall, we
estimate that 3 elapsed months were saved over the lifetime of the project, in comparison with
predictions based using previous methods.

Various system models were constructed using VTOC, including communication between
multiple chips. One VTOC model was constructed with three identical chips attached to a PCI
bus, with complete PCI cycles being tested between the simulated chips. We found that
parallelism was easily exploited; multi-chip VTOC models were also run on multiple (cheap)
PCAa€™s to improve simulation times.

The Ethernet interface in the software model was intercepted at the MII level, and
programmed to read and write packets on a real physical Ethernet interface. Using this
facility, the embedded softwarea€™s bridge and router software was run in its entirety on the
VTOC model, communicating with other IP hosts over the Ethernet port and exercising the
embedded web server Using the chip-model simulation, the device was also booted over
Ethernet from a real BOOTP server.

A VTOC model was used to measure the exact behavior of the DRAM interface under intense
load from both CPUs, with typical application code rather than an artificial loader being used.
Additionally, it was possible to perform a€ what-ifa€™ experiments on the DRAM controller
to see the effects of changing certain interface parameters.

Future considerations

One interesting option to consider for future evaluation is to merge the use of VTOC-
generated models with any C language models generated during the design phase of the
project. The use of SystemC for system modeling during the design phase, for instance, may
lead to higher-level models, which can in turn, be swapped in for one or more elements of the
system. VTOC has an alternative mode that can generate SystemC rather than ordinary C++,
so this line of study seems a promising area for future exploration.

Software and hardware programming languages have grown and evolved separately. We feel
it to be unlikely that a single language will emerge to cover the entire spectrum of needs
anytime in the foreseeable future. Given that fact, the use of language translation can help to

6 of 7 08/05/2019, 20:38



Chip Design Magazine http://chipdesignmag.com/print.php?articleld=6...

allow hardware and software teams use the best tool for their specific tasks, and to work
within environments that are familiar to each of them, while still producing results that work
smoothly together. Using these translation tools, developers do not have to change the way
they develop. They can continue to work in a natural manner, without any particular tool
dictating a different, less comfortable approach. This is good news for both the hardware and
the software world. 1,©

Neil Richards is vice president Digital CSI design at GlobespanVirata, Inc.
James Green is a senior software engineer, also at Globespan Virata.
David Greaves is the founder of Tenison EDA Ltd

William Stoye is CTO at Tenison EDA.

7 of 7 08/05/2019, 20:38



