
A New Dataflow Compiler IR for Accelerating
Control-Intensive Code in Spatial Hardware

Ali Mustafa Zaidi
Computer Laboratory

University of Cambridge

Email: Ali-Mustafa.Zaidi@cl.cam.ac.uk

David Greaves
Computer Laboratory

University of Cambridge

Email: David.Greaves@cl.cam.ac.uk

Abstract—While custom (and reconfigurable) computing can
provide orders-of-magnitude improvements in energy efficiency
and performance for many numeric, data-parallel applications,
performance on non-numeric, sequential code is often worse
than what is achievable using conventional superscalar proces-
sors. This work attempts to address the problem of improving
sequential performance in custom hardware by (a) switching
from a statically scheduled to a dynamically scheduled (dataflow)
execution model, and (b) developing a new compiler IR for high-
level synthesis that enables aggressive exposition of ILP even in
the presence of complex control flow. This new IR is directly
implemented as a static dataflow graph in hardware by our
prototype high-level synthesis tool-chain, and shows an average
speedup of 1.13× over equivalent hardware generated using
LegUp, an existing HLS tool. In addition, our new IR allows us
to further trade area and energy for performance, increasing the
average speedup to 1.55×, through loop unrolling, with a peak
speedup of 4.05×. Our custom hardware is able to approach the
sequential cycle counts of an Intel Nehalem Core i7 superscalar
processor, while consuming on average only 0.25× the energy of
an in-order Altera Nios IIf processor.

Keywords: Dark Silicon, High-level Synthesis, Compilers,
Custom Computing, Instruction Level Parallelism.

I. INTRODUCTION

Despite ongoing exponential growth of on-chip resources
with Moore’s Law, the performance scalability of future de-
signs will be increasingly restricted. This is because the total
usable on-chip resources will be growing at a much slower
rate, due to the recently identified problem of Dark Silicon [1],
[2]. To mitigate the effects of dark silicon, architects are
increasingly employing custom (and reconfigurable) hardware
in an effort to trade silicon area for efficiency and performance.

Custom hardware accelerators are already utilized as part of
heterogeneous architectures in order to improve both efficiency
and performance for data-parallel, numeric applications by
multiple orders of magnitude [3]. Recently, researchers have
also started looking into utilizing custom (and reconfigurable)
hardware to improve the per-core energy efficiency for the
general-purpose application domain [4], [5], [6], [7]. For this
domain, sequential code frequently involves irregular memory
accesses and complex control-flow, such as data-dependent
branching, function calls & multilevel nested loops.

Unfortunately, while custom-hardware can efficiently ac-
celerate numeric or data-parallel applications, general-purpose
sequential code often exhibits much lower performance in cus-
tom hardware than a typical out-of-order superscalar proces-

sor [8], [6], [4]. Conservation Cores are able to almost match
the performance of an in-order MIPS 24KE processor [4]
while providing 10× better energy-efficiency. Recent updates
have improved this to being approx 20% faster than the MIPS
baseline [5]. Similarly , the asynchronous static-dataflow hard-
ware generated by Budiu et al. manages around 100× better
energy efficiency, but still proves to be consistently slower
than a simulated 4-wide out-of-order superscalar processor [8].
On the other hand, DySER is consistently able to match or
exceed the sequential performance of a 2-way out-of-order
processor, but relies heavily on its host processor (to which
it is tightly-coupled), to implement control-flow speculation,
thereby severely restricting its efficiency advantage [7].

In this work, our goal is to enable much more pervasive
utilization of custom or reconfigurable hardware for general-
purpose computation in order to mitigate the effects of dark
silicon. For this, we must (a) overcome the performance
limitations on sequential code in custom hardware, (b) without
compromising its inherent energy-efficiency, while (c) requir-
ing minimal programmer effort.

The Importance of Sequential Performance: Esmaelzadeh
et al. [1] identifed insufficient parallelism in applications as
the primary source of dark silicon. Despite the decade-old
push towards multicores, the degree of threaded parallelism
in consumer workloads remains very low [9]. In this case,
achievable speedup will be strictly constrained by the se-
quential fraction of an application due to Amdahl’s Law.
Given the complexity and effort of effectively parallelizing
such non-numeric, general-purpose applications [10], [11], we
assume that trying to expose any more explicit parallelism in
such applications will be impractical using existing threaded
programming models.

Even for server and datacenter applications that exhibit
very high parallelism, per-thread sequential performance re-
mains essential due to practical concerns not considered under
Amdahl’s Law – the programming, communication, synchro-
nization & runtime scheduling overheads of many fine-grained
threads can often negate the area & efficiency advantages of
wimpy cores. Consequently, it is more cost effective to have
fewer threads running on fewer brawny cores than to have a
fine-grained manycore in most cases [12]. Add to this the fact
that a vast amount of legacy code remains sequential, we find
that achieving high sequential performance will remain critical
for performance scaling for the forseeable future.

2014 IEEE 28th International Parallel & Distributed Processing Symposium Workshops

978-1-4799-4116-2/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPSW.2014.18

122

II. THE SUPERSCALAR PERFORMANCE ADVANTAGE

There are two main reasons that out-of-order superscalar
processors are able to achieve higher performance on control-
flow intensive sequential code [13]:

• Aggressive control-flow speculation to exploit ILP
from across multiple basic-blocks, and

• Dynamic execution scheduling of instructions, ap-
proximating the dynamic dataflow execution model at
runtime.

Control-flow speculation via Branch Prediction: Modern
superscalar processors utilize aggressive branch prediction to
relax the constraints imposed by control flow on ILP: branch
predictors with very high accuracy (≥ 95%) enable effective
speculation across multiple branches, providing a much larger
region of code from which multiple independent instructions
may be discovered and executed out of order. To handle
cases of branch mis-speculation, conventional processors make
use of an in-order commit buffer (or re-order buffer). to
selectively commit executed instructions in program order.
When a misprediction is detected, executed instructions from
the mispredicted paths can simply be discarded from this
buffer, preserving correct program state.

Conversely, the key reason that custom-hardware imple-
mentations of sequential code have poor performance is the
lack of an efficient & effective control-flow speculation mech-
anism. While it is possible to perform speculation in hardware
on some forward branches through if-conversion, currently
no mechanisms exist for safely speculating on backwards
branches (i.e. loops), as it is difficult to implement mis-
speculation roll-back and recovery mechanisms in spatial hard-
ware without introducing a synchronization bottleneck.

High-level synthesis tools attempt to overcome this limi-
tation by statically unrolling, flattening and pipelining loops
in order to decrease the number of backwards branches that
would be dynamically executed [14], but this can significantly
increase the complexity of the centralized finite-state machines
that implement the static schedule for the hardware datapath,
resulting in very long combinational paths that can overwhelm
any gains in IPC [15], [16]. Overcoming the performance lim-
itations due to explicit control flow is the key issue that needs
to be addressed for custom hardware to become performance-
competitive with conventional processors on sequential code.

Approximation of Dynamic Dataflow Execution Model:
In addition to aggressive control-flow speculation, superscalar
processors employ dynamic execution scheduling, which helps
in dealing with unpredictable behavior at runtime. Instructions
are allowed to execute as soon as their input operands (as well
as the appropriate execution resources) become available. For
instance, in the event of a cache miss, only those instructions
that are dependent on the stalled instruction would be delayed,
while independent instructions continue to execute.

Processors can even have multiple instances of the same
instruction (say from a tightly wound loop) in flight, with
their results written to different locations via register renaming.
Using renaming, contemporary processors are able to approxi-
mate the dynamic-dataflow model of execution, allowing them
to easily adapt to runtime variability to improve performance.

On the other hand, custom hardware employs static execu-
tion scheduling, where the execution schedule for operations
is determined at compile-time, and implemented at run-time
by a centralized finite-state machine. This means that such
hardware can only be conservatively scheduled for the multiple
possible control-flow paths through the code, leaving it unable
to adapt to runtime variability that may occur due to data-
dependent control-flow, variable-latency operations, or unpre-
dictable events such as cache misses.

A Case Study: The combination of these factors results
in custom hardware exhibiting poor performance when imple-
menting general-purpose sequential code via high-level synthe-
sis. Consider for instance, the internal int transpose function
from the epic Mediabench benchmark given in Figure 1. Budiu
et al. identified this as a region of code that performs poorly
when implemented as custom hardware [8].

At runtime, the inner do-while loop rarely executes more
than once and never more than twice each time, while the
outer-loop executes for a large number of iterations. The
branch prediction logic in conventional processors adapts to
this execution pattern and is effectively able to execute multiple
copies of the outer loop, i.e. performing outer-loop pipelining,
thereby effectively hiding much of the latency of the % and *
operations in the inner loop.

1/*==
2In-place (integer) matrix tranpose algorithm.
3Handles non-square matrices, too!
4==*/
5void internal_int_transpose(int* mat, int rows,

int cols, int modulus){
6int swap_pos, curr_pos, swap_val;
7
8for (curr_pos=1; curr_pos<modulus; curr_pos++)

{
9swap_pos = curr_pos;
10do {
11swap_pos = (swap_pos * cols) % modulus;
12}
13while (swap_pos < curr_pos);
14
15if (curr_pos != swap_pos) {
16swap_val = mat[swap_pos];
17mat[swap_pos] = mat[curr_pos];
18mat[curr_pos] = swap_val;
19}
20}
21}

Fig. 1. The ‘internal int transpose’ function from the ‘epic’ Mediabench
benchmark

Conventional high-level snthesis tools would implement
the control-data flow graph (CDFG) of this code, shown in
Figure 2, as custom hardware. The blue operations belong
to the inner do-while loop, the red operations belong to the
subsequent if-block, while the yellow operations are the outer-
loop iterator increment and condition-checking operations.
Without branch prediction, each basic block (grey boxes) will
be executed one at a time, in sequence. The exit predicates for
the active block must be computed before control can flow to
the next block.

One may attempt to alleviate the strict control-flow or-
dering somewhat by statically unrolling the loops. Unrolling

123

Fig. 2. The CDFG for ‘internal int transpose’ function.

the innermost loop will not yield significant benefit as it
rarely executes more than once. Unrolling the outer-loop would
replicate the blocks that comprise it, including the inner-loop
and the if-block. Due to the lack of mis-speculation recovery
mechanisms for backwards branches and memory operations,
neither the inner-loops nor the memory operations in the if-
block can be executed speculatively. Thus, unrolling the outer-
loop provides no benefit in this case, since the predicate
computations of each basic block in the new sequence would
still be on the critical path.

III. IMPROVING SEQUENTIAL PERFORMANCE IN CUSTOM

HARDWARE

To overcome the sequential performance issues of custom
hardware, we propose two key changes during high-level
synthesis:

• Instead of using a static scheduling based execution
model for custom hardware, a dynamically scheduled
execution model like Spatial Computation should be
used [6], that implements code as a static dataflow
graph in hardware.

• A new compiler IR is needed to replace the CDFG
based IRs that are traditionally used for hardware
synthesis. This new IR should be based on the Value
State Dependence Graph (VSDG) [17], as it has no
explicit representations of control-flow, instead only
representing the necessary value and state depen-
dences in the program.

Spatial Computation and dynamic execution scheduling:
The Phoenix project undertaken at CMU proposed the Spatial
Computation model, which combines the static-placement of
existing custom hardware, with the dynamic execution schedul-
ing of dataflow machines. Spatial computation is based on
the static-dataflow execution model from the 1970s and 80s:
execution of individual operations is dynamically scheduled,
based on the status of its input and output edges. Spatial
computation alone goes some way towards improving sequen-
tial code performance beyond statically scheduled hardware
by not only exploiting greater parallelism through dataflow
software pipelining, but by being more tolerant of variable or
unpredictable latencies at runtime.

Overcoming control-flow constraints with the Value State
Flow Graph: A new compiler IR for implementing spatial
computation called the Value State Flow Graph (VSFG), has
been developed based on the VSDG, but modified for direct
implementation in hardware as a static dataflow machine.
Unlike the CDFG, the VSFG represents control-flow only
implicitly – there is no explicit routing of values based on pred-
icates. Instead, the VSFG records only the value dependences
between operations in a program, along with state dependences
that serve to sequentialize side-effecting operations within a
program and preserve correct ordering of memory operations
during execution. Unlike the CDFG, there is no subdivision of
operations into basic blocks, and consequently, no notion of
flow of control from one block to another. The entire program
is represented as an acyclic nested graph, so even loops are
implemented without explicit cycles, by representing them as
tail-recursive functions. Figure 3 presents the VSFG equivalent
to the CDFG from Figure 2.

The VSFG is also a hierarchical graph – all loops and
function calls are represented as nested subgraphs. From the
perspective of their parent level in the graph hierarchy, nested
subgraphs appear as ordinary dataflow operations with their
defined dataflow inputs and outputs. The only difference being
that nested subgraphs may exhibit a variable execution latency.
Furthermore, just like regular dataflow operations, multiple
such subgraphs may execute concurrently, so long as their
dataflow dependences are satisfied. In Figure 3, the outer loop
contains the inner-loop in a nested-subgraph represented by
the block labeled ‘Inner do-while Loop’, the contents which
are also shown in Figure 3 inside the shaded blue region on
the right. Similarly, the next iteration of the outer-loop itself
is represented as a tail-recursive call to the purple nested-
subgraph marked ‘Outer For Loop’.

All of the operations in the graph retain their necessary
dataflow or value edges from the CDFG (solid black arrows).
Side-effect sensitive operations such as loads, stores, function
call and loops subgraphs have two additional types of edges:

• An incoming and outgoing state edge (red dashed
arrows) that pass a token between state-sensitive op-
erations in order to enforce sequentialization of side
effects in program order.

• An incoming predicate edge (green dotted arrows)
that enforces correct control over the execution of
operations, replacing the flow of control in the CDFG.

In the absence of an explicit flow of control between blocks,
the execution of side-effects is controlled through the use of

124

Fig. 3. The VSFG for the outer for-loop of ‘internal int transpose’, showing the inner do-while loop as a nested subgraph. The next iteration of both the
outer and inner loops is also represented as nested subgraphs, essentially implementing loops as tail-recursive functions.

dataflow predicate inputs. Each basic block in the original
CDFG will have an equivalent predicate expression imple-
mented as additional operations in the VSFG. These predicate
operations in conjunction with the multiplexers (both shown
as purple blocks in Figure 3), serve to effectively convert all
control-flow in the program into dataflow, while the state-edge
does the same for side-effect ordering.

One key advantage of this lack of explicit control flow,
combined with nesting of subgraphs is the ability to perform
loop unrolling and pipelining at multiple levels of a loop nest.
Any of the nested subgraphs in a VSFG can be flattened into
the body of the parent graph. In the case of loops, flattening the
subgraph representing the tail-recursive loop call is essentially
equivalent to unrolling the loop. Figure 4 shows what happens
when we flatten the ‘Outer For Loop’ subgraph in Figure 3
once. Furthermore, as each loop is implemented within its own
subgraph, this type of unrolling may be implemented within
different subgraphs independently of others. Therefore, it is
possible in the VSFG to exploit ILP within a loop nest by
unrolling the inner loops independently of the outer loops.
Note that in the actual hardware implementation, cycles must
be reintroduced once the appropriate degree of unrolling has
been done for each loop.

Thus for the example in Figure 1 that performs poorly
when implemented as both custom hardware or even CDFG
based spatial computation [8], by utilizing the VSFG as our
dataflow IR, we are able to exploit outer-loop pipelining in the
same manner as the superscalar processor, simply by flattening
the nested-subgraph representing the outer-loop tail-recursive
function call any number of times. The performance results
for this code are listed as the epic benchmark in Figure 8.

Another advantage of having control flow converted in
to boolean predicate expressions is the ability to perform

1for (i = 0; i < 100; i++)
2if (A[i] > 0) foo();
3bar();

Fig. 5. Example C Code for illustration purposes

(a) The CDFG for Figure 5. (b) The VSFG for Figure 5.

Fig. 6. The equivalent CDFG and VSFG for the code given in Figure 5.

control dependence analysis to identify regions of code that are
control-flow equivalent and may therefore execute in parallel
– provided all state and dataflow dependences are satisfied.
Consider the bar() function in the code given in Figure 5 (the
equivalent CDFG is given in Figure 6a). Despite aggressive
branch prediction, a superscalar processor will not be able
to start executing bar() until it has exited the loop. Simi-
larly, when the if branch is predicted-taken, the superscalar
processor must switch from executing multiple dynamically
unrolled copies of the for-loop and instead focus on executing
the control-flow within foo(). This is because a conventional
processor can only execute along a single flow of control [18].

125

Fig. 4. Loop unrolling is implemented by flattening the loop’s tail recursive call subgraph a number of times. Here, the VSFG of the ‘internal int transpose’
outer for-loop, is unrolled once, implementing two copies of the inner loop. Each loop in a loop nest may similarly be flattened/unrolled independently of the
others to expose loop parallelism.

The VSFG on the other hand can use control dependence
analysis to identify the control-flow equivalence between the
contents of the for-loop and the bar() function, and so long as
the dataflow and state-ordering dependences are resolved, bar()
may start executing in parallel with the for-loop. Similarly,
the contents of the foo() subgraph can also execute in parallel
with its parent graph. If we combine this concurrency with
loop unrolling as shown in Figure 7, it becomes possible in to
execute multiple copies of the loop and foo(), in parallel with
the execution of bar()! This ability to execute multiple regions
of code concurrently is equivalent to enabling execution along
multiple flows of control, and can potentially expose greater
ILP than even a superscalar processor [18], [19].

IV. EVALUATION METHODOLOGY

The objective of the following experimental evaluation is
two-fold: (1) evaluate the potential of the VSFG for statically
exposing ILP from control-intensive sequential code, relative
to equivalent, conventional CDFG-based custom hardware,
and (2) understand the energy and area cost incurred for the
observed improvements in ILP.

To evaluate our IR and execution model, we implemented a
HLS toolchain to compile LLVM IR to custom hardware. We
present results for 3 versions of our hardware: VSFG 0 has
no loop unrolling/flattening, VSFG 1 has all loops unrolled
once, and VSFG 3 has all loops unrolled thrice. At present,
our tool-chain is an early-stage prototype, and as such can
only compile applications with some constraints – currently
there is no support for C language structs or multi-dimensional
arrays. Additionally, like most HLS tools, support for general
recursion and dynamic memory-allocation is also restricted.
Although this has limited our choice of benchmarks appli-
cations, we have selected six benchmarks from the CHStone
benchmark suite [20], and two home grown: bimpa, a spik-
ing neural-network simulator, and epic, the micro-benchmark

identified as being difficult to accelerate in spatial hardware
by Budiu et al. [8], and discussed in Section II. Four of these
8 benchmarks exhibit sufficiently complex behaviour to justify
this preliminary analysis: epic, bimpa, adpcm and dfsin.

To provide a baseline for comparison, we use the LegUp
HLS tool [21] to generate CDFG-based, statically-scheduled
custom hardware. The input LLVM IR to both toolchains was
compiled with -O2 flags, and no link-time inlining or optimiza-
tion. Both tools were run with operation-chaining disabled –
meaning that generated hardware is fully pipelined, with each
instruction in the IR having its own output register instead
of being merged as combinatorial logic with a predecessor or
successor. This was done because enabling operation-chaining
would have masked the ILP improvements by reducing the
degree of pipelining in the generated hardware to match the
achievable operating frequency.

We also compare cycle counts against two conventional
processors: a Intel Nehalem Core i7, as well as an Altera
Nios II/f. The former was simulated using the Sniper interval
simulator [22], while the latter was implemented, along with
all of our generated hardware, on an Altera Stratix IV FPGA.
The Core i7 used perfect L1 caches (100% hit rate), and a hit
latency of 1 cycle, while the Nios was configured to access
local RAM blocks on the FPGA, again with 1 cycle access
latency. This is done to match the 1 cycle BRAM access
latency of the generated custom hardware.

We focus on utilizing ‘cycle-counts’ as a measure of
performance because they provide a good analogy for the
degree of ILP exploited across different architectures. It would
otherwise be difficult to provide a meaningful comparison of
circuits implemented as ASIC hardware, or on an FPGA, with
a full-custom superscalar processor (with its 3−30× frequency
advantage). It also allowed us to evaluate the potential of our
IR without being too confounded by low-level implementation

126

Fig. 7. The VSFG from Figure 6b with the loop unrolled 4 times.

details and design trade-offs (such as optimising designs for
high-frequency) at this stage of our work.

As it has proven difficult for us to provide a fair comparison
of power and energy efficiency between our generated hard-
ware (implemented on an FPGA) and full-custom processor
like the Intel Core i7, we present an energy cost comparison
with the Nios soft-processor only, with the assumption that
the in-order six-stage pipeline of the Nios should provide
much higher energy efficiency than the out-of-order Core i7,
if both were implemented using the same full-custom VLSI
process. One may refer to the empirical relationship between
power and performance for sequential processors presented by
Grochowski et al. [23]: Power = Perfα, where α = 1.75,
and use our cycle-count results to estimate the difference in
both power and efficiency between the Nios and the Core i7.

V. RESULTS & DISCUSSION

Performance (Cycle Counts): Figure 8 shows the normal-
ized cycle count results for the various benchmarks for LegUp
and the three VSFG versions. In most cases, the baseline
VSFG 0 configuration is able to achieve a lower cycle count
than the hardware generated by LegUp. Further performance
improvements beyond VSFG 0 are achieved through aggres-
sive multi-level loop unrolling. Figure 8 shows that VSFG 3
achieves 35% lower cycle counts than LegUp, by trading area
for performance.

Fig. 8. Performance Comparison (Cycle Count) Normalized to LegUp.

Figure 9 compares LegUp & VSFG cycle counts to those
of the Core i7 and Nios II/f processors for the 4 complex
benchmarks (epic, adpcm, dfsin, and bimpa) benchmarks,
showing the performance advantage of the superscalar Core
i7 over the in-order Nios, as well as the CDFG-based LegUp.
With unrolling, VSFG 3 is able to approach or exceed Core i7
cycle counts for all benchmarks with the exception of bimpa.

Furthermore, for all benchmarks except epic, performance
gains stagnate quickly between VSFG 1 and VSFG 3. The
reason for this stagnation, and the limited performance on the
memory-intensive bimpa, is the lack of memory parallelism
or reordering in the current VSFG: all memory operations are
constrained by the state-edge to occur strictly in sequential
program order, whereas the Core i7 is able to dynamically
disambiguate, re-order and issue multiple memory ops each
cycle. For non-trivial code, exposing memory-level parallelism
through memory disambiguation is essential for improving
performance in modern superscalar processors. Although we
have focused only on overcoming control-flow in this work,
effective memory disambiguation must also be incorporated
in order to truly match superscalar performance for general-
purpose applications. In subsequent work, we plan on incorpo-
rating static memory disambiguation (alias-analysis) into our
toolchain to try and address this limitation without incurring
the energy cost of dynamic disambiguation.

(a) fMAX for benchmarks. Altera Nios II/f runs at 290 MHz.

(b) Normalized Delay (fMAX × cycle count) for benchmarks.

Fig. 10. Frequency (fMAX) and Delay comparison of LegUp and VSFG
custom hardware. note that some values for VSFG 3 are missing, as these
circuits were too large to fit in our target FPGA. These have been removed
from the Geomean calculation for VSFG 3.

127

(a) epic (×1K cycles) (b) adpcm (×1K cycles) (c) dfsin (×1K cycles) (d) bimpa (×1M cycles)

Fig. 9. Performance Comparison (Cycle Count) vs an out-of-order Intel Nehalem Core i7 processor, and an Alteral Nios IIf in-order processor.

Clock Frequency, Delay & Area: The Nios II/f achieves
an fMAX of 290MHz. Unfortunately, despite the high degree
of pipelining by both LegUp and in the VSFG, clock rates are
inversely related to the size of the circuit being implemented.
For both tools, all of the memory operations distributed across
each generated circuit are connected to a single, centralized
memory controller. The critical-path wire-length thus increases
with the total number of memory operations in the circuit, and
are thus often below the achievable fMAX for the carefully
optimized Nios II/f design. Nevertheless, the baseline VSFG 0
configuration achieves 15MHz higher frequencies on average
than LegUp. This was expected, as the dynamically scheduled
VSFG is fully decentralized, and does not have a centralized
FSM, unlike LegUp.

Fig. 11. Resource requirements comparison (number of FPGA LUTs) vs
LegUp.

Resource requirements for both LegUp & VSFG 0 are very
similar, as shown in Figure 11, with the VSFG 0 exhibiting
an average 15% resource overhead over LegUp. We expect
that this may be reduced with further optimization of our
toolchain. However, requirements for VSFG 1 and VSFG 3
grow dramatically over VSFG 0, particularly for benchmarks
with nested loops. This is because each loop in a nest is
unrolled independently. For instance, for epic (Figure 4),
VSFG 3 will have 4 copies of the outer for-loop. As the
inner-loop is also unrolled 4 times, there will be a total of
16 copies of the inner loop in the circuit, leading to a 12×
area overhead over LegUp! We unroll all loops blindly here in
order to evaluate the limits of achievable instructions per cycle
(IPC). But in practice, it would be essential to carefully balance
IPC improvement with the area and frequency cost incurred
from unrolling each loop in the code. For now, we leave
considerations of area & frequency optimization for future
work, as our focus is on evaluating the ILP exposition potential
of our new IR.

Power Dissipation: We instrumented the generated VSFG
hardware to estimate the amount of circuit activity over-
head due to speculative execution. Figure 12a presents the

(a) Activity overheads due to aggressive speculation in the VSFG.

(b) Power dissipation comparison of VSFG, normalized to LegUp.

Fig. 12. Estimated Power Dissipation Comparison vs LegUp. The overheads
for the VSFG are proportional to the increase in activity due to aggressive
speculation.

misspeculated activity overheads for 6 of the benchmarks
(measuring the average number of bits switching per-cycle),
while Figure 12b presents the estimated power dissipation for
each circuit configuration. Power is measured using Altera’s
PowerPlay Power Analysis tool, using activity ratios generated
for each circuit from ModelSim simulation. For simplicity we
assume a 250 MHz clock rate for all circuits, including the
Nios II/f. Unfortunately, misspeculated activity results for mips
were unavailable due to problems with our prototype compiler
toolchain, and power results for VSFG 3 versions of adpcm
and dfsin, and all versions of bimpa were unavailable as these
circuits were too large to fit in our target FPGAs.

VSFG 0 mostly exhibits higher power dissipation than
LegUp, echoing the pattern for speculation overhead in Fig-
ure 12a – dfadd for instance has both the highest speculation
overhead and the highest power dissipation for VSFG 0, while
both epic and adpcm have much lower of both. It may be
possible to mitigate the energy overheads of speculation by
making use of the hierarchical nature of the VSFG. Mutually
exclusive control-regions in the VSFG may be extracted into
their own sub-graphs. Speculative execution of these subgraphs
would be enabled only after code-profiling determines that

128

these regions execute frequently, and therefore may affect the
performance critical path. This type of analysis and optimiza-
tion would be based on existing work on profiling driven
hyperblock formation [24]. We plan on implementing careful
subgraph extraction and/or refactoring into our toolchain to
explore how far we can mitigate the energy overheads of
speculation without compromising performance.

The additional increase in power dissipation for VSFG 1
and 3 is driven primarily by non-computational overheads:
dynamic power increases because clocking overhead grows
proportionally to the registers in the circuit, while static power
increases in proportion to the increased circuit size. For a more
realistic implementation, loop unrolling ought to be applied
only when performance can be improved, and the degree of
loop unrolling should be carefully balanced against the power
and area overheads that may be incurred.

Fig. 13. Energy Consumption comparison vs LegUp and an Altera Nios IIf
in-order Processor.

Energy Cost: Combining our cycle-count and power mea-
surements, Figure 13 presents an energy cost comparison
between LegUp, each VSFG version, as well as pure software
implemented on the Altera Nios. Again, we assume that all
hardware is able to run at 250MHz – this is not an unreasonable
assumption, given recent work on pipelining the memory
infrastructure in recent literature ([5], [25], [6]). The mean
energy cost for the 35% higher performance of the VSFG 1
and VSFG 3 configurations is between 3 − 4× over LegUp.
However, it is also about 0.25× the energy cost of the in-
order Nios II/f processor. Therefore, despite our implementing
no optimizations towards minimizing energy, the VSFG is
able to approach superscalar performance levels for our set
of benchmarks, while incurring only a quarter of the energy
cost of an in-order processor.

The objective of this analysis was to explore the achievable
performance of our new IR, without much effort given to
optimize energy or area. We expect further improvements in
both performance and efficiency to be possible once we in-
corporate alias-analysis to increase memory-level parallelism,
and implement profile-driven sub-graph speculation and loop-
unrolling.

VI. RELATED WORK

Our work is related to the general class of Explicit Data-
Graph Execution Architectures [26], of which there are several
notable examples [27], [28], [29], [6]. The closest relative to
our work is the Pegasus IR by Budiu et al. [30], [6], the original
attempt at full program compilation to static dataflow custom
hardware. Programs are compiled to CDFGs, optimized for
performance using aggressive loop unrolling and hyperblock

formation [24] to increase ILP from forward branches. Alias
analysis is employed to expose memory level parallelism in
the IR. Budiu et al. identified two primary bottlenecks in their
work: significant latency overheads due to a deeply pipelined
memory arbitration tree that is necessary to support parallel
memory requests [6], as well as performance constraints due
to complex control flow [8]. Other projects have attempted to
optimize the memory access network for custom hardware by
either optimizing for the most frequent accesses [31], partition-
ing and distributing memory [25], or incorporating cache-like
structures [32], [5]. Tartan, a reconfigurable architecture for
spatial computation was also developed [33].

In our work, we focus instead on overcoming the control
flow hazards, particularly those identified in [8]. We’ve as-
sumed an unpipelined memory bus with a single cycle access
latency, but this comes at the cost of limiting achievable
clock frequencies, particularly for larger programs. We aim
to incorporate features of the aforementioned prior work into
our memory architecture in the future to improve our clock
rates and exploit locality for further efficiency gains.

The Wavescalar project developed a scalable, high ILP dy-
namic dataflow architecture [27]. Applications were compiled
from high level languages to the dataflow Wavescalar ISA
for execution. Performance was comparable to an Alpha EV7
processor, with 20% better performance per unit area. As the
primary goals were performance and scalability, the energy
costs of their implementation were not presented. Wavescalar
did not implement control-flow speculation, relying on predi-
cation only for control-flow. Like us, it too relied on exploiting
multiple-flows of control to improve performance.

More recent work addressing the Dark Silicon problem
through the use of HLS to generate custom hardware is being
undertaken by the GreenDroid project [4], [5], [34]. Identified
hot regions of code are compiled to custom hardware c-
cores, emphasizing efficiency over performance. As with other
tools, code CDFG is compiled to statically scheduled custom
hardware and interfaced as a coprocessor with an in-order
MIPS 24KE host processor. Average c-core performance is
equivalent to the in-order host, while providing 10× better
energy efficiency for each such code region. Performance has
been improved in successive iterations of their work through
the exploitation of ‘selective depipelining’ to reduce register
delays and ‘cachelets’ to improve memory access times [5].
Until we can develop an EDGE architecture of our own like
Tartan or Wavescalar, this is the architecture model we envision
custom cores generated by our tool will be used in.

Previous notable work in improving the performance of
control-intensive code in custom hardware was undertaken
by Gupta et al under the SPARK compiler project [35]. The
SPARK compiler utilized a CDFG-like IR called the Hierar-
chical Task Graph (HTG), and implemented speculative code-
motion techniques permitting earlier execution of instructions
my moving them into earlier basic-blocks, within an acyclic
CFG region. Both the LegUp and VSFG compilers rely on
the LLVM infrastructure, that possesses many built-in opti-
mization and transformation passes that perform some similar
(though not the speculative) code motion optimizations before
ultimiately compiling to custom hardware. Furthermore, our
VSFG-based hardware relies on dynamic execution schedul-
ing, combined with predicate promotion to perform aggressive

129

speculative execution of instructions, obviating the need for
such transformations. It would be interesting in the future
to incorporate such speculative code-motion transforms into
LegUp and see how they might improve its performance on
control-intensive code.

Aside from work by Budiu et al, PACT’s XPP (eXtreme
Processing Platform) project developed a CGRA that also
utilized a static-dataflow execution model [36]. However this
architecture and associated XPP-VC compiler only supported
a subset of the C-language, and focused on compiling nu-
meric/multimedia kernels [37]. Each of these static-dataflow
approaches, including ours, could stand to benefit from im-
proved performance through the incorporation of work on
cancel-tokens by Gädke and Koch [38]. Cancel-tokens allow
for termination of execution along misspeculated paths of a
forward branch once the branch predicate is determined, and
can accelerate execution when such branches lie within a loop.

Several other projects have also attempted to break the ILP
Wall by exploiting multiple flows of control. Notable examples
include the Multiscalar architecture [39], as well as a large
body of work on Speculative Multithreading [40].

VII. CONCLUSION AND FUTURE WORK

Conclusion: In order to address the constraints on se-
quential code performance in custom hardware, we combine
a static-dataflow execution model with a new compiler IR
based on the Value State Dependence Graph (VSDG) [17].
The hierarchical and control-flow agnostic nature of the VSDG
not only enables the exploitation of ILP from across multiple
levels of a loop nest, but also enables control-dependence
analysis and execution of multiple flows of control, giving
the potential for exploiting more ILP than even complex
superscalar processors.

Our results show a performance improvement for our IR of
as much as 35% over LegUp, at a 3× higher average energy
cost. Our cycle-counts approach a simulated Intel Nehalem
Core i7, while incurring only 0.25× the energy cost of an
in-order Altera Nios IIf processor. These improvements are
achieved without any significant optimizations to the IR and
hardware that could further improve both efficiency and per-
formance. Although much additional work is needed in order
to implement a more robust compiler, capable of executing a
larger set of benchmarks, as well as to optimize the generated
hardware for area, power and frequency, we believe that
the new IR, (coupled with the spatial computation execution
model) is a promising step towards improving sequential code
performance for custom hardware. It is hoped that our work
will eventually contribute to more pervasive utilization of
custom hardware and (coarse-grained) reconfigurable architec-
tures, and thereby aid in mitigating the effects of dark silicon.

Future Work: The lack of memory level parallelism is
the most significant performance bottleneck in our current
implementation. Processors like the Core i7 aggressively re-
order and parallelize memory accesses, having many tens of
such instructions in flight. Consequently, the Core i7 still has
a performance advantage for memory intensive benchmarks.
To address this limitation, our next step will be to use alias
analysis to parallelize memory operations [6], as well as exploit
novel memory architectures in hardware [5], [25] to improve

locality, concurrency and energy efficiency in our memory
infrastructure.

REFERENCES

[1] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam,
and D. Burger, “Dark silicon and the end of multicore
scaling,” in Proceedings of the 38th annual international
symposium on Computer architecture, ser. ISCA ’11. New
York, NY, USA: ACM, 2011, pp. 365–376. [Online]. Available:
http://doi.acm.org/10.1145/2000064.2000108

[2] N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia, J. Auricchio,
P. Huang, M. Arora, S. Nath, V. Bhatt, J. Babb, S. Swanson, and M. Tay-
lor, “The greendroid mobile application processor: An architecture for
silicon’s dark future,” Micro, IEEE, pp. 86–95, March 2011.

[3] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C.
Lee, S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding
sources of inefficiency in general-purpose chips,” in Proceedings of the
37th annual international symposium on Computer architecture, ser.
ISCA ’10. New York, NY, USA: ACM, 2010, pp. 37–47. [Online].
Available: http://doi.acm.org/10.1145/1815961.1815968

[4] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. Taylor, “Conservation cores: reducing the
energy of mature computations,” ACM SIGARCH Computer Architec-
ture News, vol. 38, no. 1, pp. 205–218, 2010.

[5] J. Sampson, G. Venkatesh, N. Goulding-Hotta, S. Garcia, S. Swanson,
and M. B. Taylor, “Efficient Complex Operators for Irregular Codes,”
in HPCA 2011: High Performance Computing Architecture, 2011.

[6] M. Budiu, G. Venkataramani, T. Chelcea, and S. C. Goldstein, “Spatial
computation,” in Proceedings of the 11th international conference
on Architectural support for programming languages and operating
systems, ser. ASPLOS-XI. New York, NY, USA: ACM, 2004, pp. 14–
26. [Online]. Available: http://doi.acm.org/10.1145/1024393.1024396

[7] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically spe-
cialized datapaths for energy efficient computing,” in Proceedings of
17th International Conference on High Performance Computer Archi-
tecture (HPCA), 2011.

[8] M. Budiu, P. Artigas, and S. Goldstein, “Dataflow: A complement to
superscalar,” in Performance Analysis of Systems and Software, 2005.
ISPASS 2005. IEEE International Symposium on, march 2005, pp. 177
–186.

[9] G. Blake, R. G. Dreslinski, T. Mudge, and K. Flautner, “Evolution of
thread-level parallelism in desktop applications,” in Proceedings of the
37th annual international symposium on Computer architecture, ser.
ISCA ’10. New York, NY, USA: ACM, 2010, pp. 302–313. [Online].
Available: http://doi.acm.org/10.1145/1815961.1816000

[10] E. A. Lee, “The problem with threads,” Computer,
vol. 39, no. 5, pp. 33–42, May 2006. [Online]. Available:
http://dx.doi.org/10.1109/MC.2006.180

[11] W.-m. Hwu, S. Ryoo, S.-Z. Ueng, J. H. Kelm, I. Gelado, S. S.
Stone, R. E. Kidd, S. S. Baghsorkhi, A. A. Mahesri, S. C. Tsao,
N. Navarro, S. S. Lumetta, M. I. Frank, and S. J. Patel, “Implicitly
parallel programming models for thousand-core microprocessors,” in
Proceedings of the 44th annual Design Automation Conference, ser.
DAC ’07. New York, NY, USA: ACM, 2007, pp. 754–759. [Online].
Available: http://doi.acm.org/10.1145/1278480.1278669

[12] X. Liang, M. Nguyen, and H. Che, “Wimpy or brawny
cores: A throughput perspective,” Journal of Parallel and
Distributed Computing, no. 0, pp. –, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731513001160

[13] D. S. McFarlin, C. Tucker, and C. Zilles, “Discerning the dominant
out-of-order performance advantage: is it speculation or dynamism?” in
Proceedings of the eighteenth international conference on Architectural
support for programming languages and operating systems, ser.
ASPLOS ’13. New York, NY, USA: ACM, 2013, pp. 241–252.
[Online]. Available: http://doi.acm.org/10.1145/2451116.2451143

[14] P. Coussy and A. Morawiec, High-Level Synthesis: from Algorithm to
Digital Circuit, 1st ed. Springer Publishing Company, Incorporated,
2008.

130

[15] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Loop shifting and
compaction for the high-level synthesis of designs with complex
control flow,” in Proceedings of the conference on Design, automation
and test in Europe - Volume 1, ser. DATE ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 10 114–. [Online]. Available:
http://portal.acm.org/citation.cfm?id=968878.969079

[16] S. Kurra, N. K. Singh, and P. R. Panda, “The impact of loop unrolling
on controller delay in high level synthesis,” in Proceedings of the
conference on Design, automation and test in Europe, ser. DATE ’07.
San Jose, CA, USA: EDA Consortium, 2007, pp. 391–396. [Online].
Available: http://dl.acm.org/citation.cfm?id=1266366.1266449

[17] N. Johnson and A. Mycroft, “Combined code motion and register
allocation using the value state dependence graph,” in Proceedings
of the 12th international conference on Compiler construction, ser.
CC’03. Berlin, Heidelberg: Springer-Verlag, 2003, pp. 1–16. [Online].
Available: http://portal.acm.org/citation.cfm?id=1765931.1765933

[18] M. S. Lam and R. P. Wilson, “Limits of control flow on parallelism,” in
Proceedings of the 19th annual international symposium on Computer
architecture, ser. ISCA ’92. New York, NY, USA: ACM, 1992, pp.
46–57. [Online]. Available: http://doi.acm.org/10.1145/139669.139702

[19] J. Mak and A. Mycroft, “Limits of parallelism using dynamic depen-
dence graphs,” in International Workshop on Dynamic Analysis, 2009,
pp. 42–48.

[20] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii, “Chstone:
A benchmark program suite for practical c-based high-level synthesis,”
in ISCAS’08, 2008, pp. 1192–1195.

[21] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H.
Anderson, S. Brown, and T. Czajkowski, “Legup: high-level synthesis
for fpga-based processor/accelerator systems,” in Proceedings of the
19th ACM/SIGDA international symposium on Field programmable gate
arrays, ser. FPGA ’11. New York, NY, USA: ACM, 2011, pp. 33–36.
[Online]. Available: http://doi.acm.org/10.1145/1950413.1950423

[22] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the
level of abstraction for scalable and accurate parallel multi-core simu-
lations,” in International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), Nov. 2011.

[23] E. Grochowski and M. Annavaram, “Energy per instruction trends in
intel R© microprocessors,” 2006.

[24] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann, “Effective compiler support for predicated execution using
the hyperblock,” in Proceedings of the 25th annual international
symposium on Microarchitecture, ser. MICRO 25. Los Alamitos,
CA, USA: IEEE Computer Society Press, 1992, pp. 45–54. [Online].
Available: http://dl.acm.org/citation.cfm?id=144953.144998

[25] C. Huang, S. Ravi, A. Raghunathan, and N. K. Jha, “Generation
of heterogeneous distributed architectures for memory-intensive
applications through high-level synthesis,” IEEE Trans. Very Large
Scale Integr. Syst., vol. 15, no. 11, pp. 1191–1204, Nov. 2007.
[Online]. Available: http://dx.doi.org/10.1109/TVLSI.2007.904096

[26] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John,
C. Lin, C. R. Moore, J. Burrill, R. G. McDonald, W. Yoder, and
t. T. Team, “Scaling to the end of silicon with edge architectures,”
Computer, vol. 37, no. 7, pp. 44–55, Jul. 2004. [Online]. Available:
http://dx.doi.org/10.1109/MC.2004.65

[27] S. Swanson, A. Schwerin, M. Mercaldi, A. Petersen, A. Putnam,
K. Michelson, M. Oskin, and S. J. Eggers, “The wavescalar
architecture,” ACM Trans. Comput. Syst., vol. 25, pp. 4:1–4:54, May
2007. [Online]. Available: http://doi.acm.org/10.1145/1233307.1233308

[28] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh,
N. Ranganathan, D. Burger, S. W. Keckler, R. G. McDonald, and C. R.
Moore, “Trips: A polymorphous architecture for exploiting ilp, tlp, and
dlp,” ACM Trans. Archit. Code Optim., vol. 1, no. 1, pp. 62–93, Mar.
2004. [Online]. Available: http://doi.acm.org/10.1145/980152.980156

[29] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ranganathan,
D. Gulati, D. Burger, and S. W. Keckler, “Composable lightweight
processors,” in Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO 40. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 381–394. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2007.10

[30] M. Budiu, “Spatial computation,” Ph.D. dissertation, Carnegie
Mellon University, Computer Science Department, December

2003, technical report CMU-CS-03-217. [Online]. Available:
http://www.cs.cmu.edu/ mihaib/research/thesis.pdf

[31] G. Venkataramani, T. Bjerregaard, T. Chelcea, and S. C.
Goldstein, “Hardware compilation of application-specific memory-
access interconnect,” Trans. Comp.-Aided Des. Integ. Cir. Sys.,
vol. 25, no. 5, pp. 756–771, Nov. 2006. [Online]. Available:
http://dx.doi.org/10.1109/TCAD.2006.870411

[32] A. R. Putnam, D. Bennett, E. Dellinger, J. Mason, and P. Sundararajan,
“Chimps: a high-level compilation flow for hybrid cpu-fpga
architectures,” in Proceedings of the 16th international ACM/SIGDA
symposium on Field programmable gate arrays, ser. FPGA ’08. New
York, NY, USA: ACM, 2008, pp. 261–261. [Online]. Available:
http://doi.acm.org/10.1145/1344671.1344720

[33] M. Mishra, T. Callahan, T. Chelcea, G. Venkataramani, S. Goldstein,
and M. Budiu, “Tartan: evaluating spatial computation for whole
program execution,” in Proceedings of the 12th international conference
on Architectural support for programming languages and operating
systems. ACM, 2006, pp. 163–174.

[34] G. Venkatesh, J. Sampson, N. Goulding, S. K. Venkata, M. B. Taylor,
and S. Swanson, “Qscores: Configurable co-processors to trade dark
silicon for energy efficiency in a scalable manner,” in Proceedings of
The 44th International Symposium on Microarchitecture, 2011.

[35] S. Gupta, R. K. Gupta, N. D. Dutt, and A. Nicolau, “Coordinated
parallelizing compiler optimizations and high-level synthesis,” ACM
Trans. Des. Autom. Electron. Syst., vol. 9, no. 4, pp. 441–470, Oct.
2004. [Online]. Available: http://doi.acm.org/10.1145/1027084.1027087

[36] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and
M. Weinhardt, “Pact xpp—a self-reconfigurable data processing
architecture,” J. Supercomput., vol. 26, no. 2, pp. 167–184, Sep. 2003.
[Online]. Available: http://dx.doi.org/10.1023/A:1024499601571

[37] J. a. M. P. Cardoso and M. Weinhardt, “Xpp-vc: A c compiler with
temporal partitioning for the pact-xpp architecture,” in Proceedings of
the Reconfigurable Computing Is Going Mainstream, 12th International
Conference on Field-Programmable Logic and Applications, ser. FPL
’02. London, UK, UK: Springer-Verlag, 2002, pp. 864–874. [Online].
Available: http://dl.acm.org/citation.cfm?id=647929.740066

[38] H. Gädke and A. Koch, “Accelerating speculative execution in high-
level synthesis with cancel tokens,” in Proceedings of the 4th Inter-
national Workshop on Reconfigurable Computing: Architectures, Tools
and Applications, ser. ARC ’08. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 185–195.

[39] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar, “Multiscalar proces-
sors,” SIGARCH Comput. Archit. News, vol. 23, pp. 414–425, May
1995. [Online]. Available: http://doi.acm.org/10.1145/225830.224451

[40] P. Yiapanis, D. Rosas-Ham, G. Brown, and M. Luján, “Optimizing
software runtime systems for speculative parallelization,” ACM Trans.
Archit. Code Optim., vol. 9, no. 4, pp. 39:1–39:27, Jan. 2013. [Online].
Available: http://doi.acm.org/10.1145/2400682.2400698

131

