
“A Verilog to C Compiler.”
RSP 2000, Paris, June 2000.

DJ Greaves
University of Cambridge�

Abstract

This paper describes a compiler which converts from
Verilog to C. The output is then compiled to machine native
code and tends to execute faster than native mode Verilog
simulation because the compiler preserves only the synthe-
sis semantics, not the simulation semantics, of Verilog and
also performs logic minimisation. Busses of up to 32 or 64
bits can be modelled as C integers whereas larger busses
are automatically split. We describe the motivation, method
and quality of the results.

1 Introduction

In this paper we describe the design of a Verilog to C
converter program and describe experience with it. The
program, called VTOC, takes a synthesisable Verilog mod-
ule and generates a semantically equivalent ANSI C code
section. Parts of the Verilog language which are not nor-
mally compilable to hardware are not compiled to C by the
VTOC compiler, although there is limited support for meta-
commands such as$display.

The purpose of the VTOC compiler is to enable sections
of Verilog to be used by non-hardware engineers and people
without Verilog tools or licences in functional emulations
of that hardware. Typically, the output from VTOC will
be included as one of the modules in a system simulator or
emulator.

C and Verilog have a great deal in common, especially
in the syntax and semantics of their operators. Verilog has
additional operators for selecting bits from vectors and con-
catentating expressions to form vectors, but does not sup-
port multi-dimensional arrays, pointers or recursion [1].
The statement commands are similar, but there are many
small differences, especially in the ‘case’ statement. Ma-
jor differences are that Verilog has two assignment opera-
tors (blocking and non-blocking). Verilog also has continu-
ous assignments and multiple threads.�djg@cl.cam.ac.uk

A possible approach would be to macro-expand Verilog
into C and wrap the result in a threads package which was
augmented with special support for the Verilog simulation
cycle. Such an approach can either preserve the full simu-
lation semantics or just the cycle semanatics.

Our approach is to use standard Verilog preprocessing
and compilation algorithms as embodied in Verilog hard-
ware compilers, such as CV2 [2] and CV3 [3], to elaborate
the input language into a set of assignments. (The difference
between CV2 and CV3 is the richness of the source Ver-
ilog that can be compiled: both support all common RTL
constructs, but CV3 handles conditional event control and
selective unwinding of ‘while’ loops.) After further pro-
cessing, these become assignments between integer C vari-
ables in the target C environment. In this way, we generate
a section of C which can be run without a special threads li-
brary and which emulates the operation of synthesised hard-
ware.

An advantage of our approach is that speed is gained
since logic minimisation is performed and simulation-level
detail is thrown out. Potential disadvantages of our ap-
proach are that handling of uncertain values, temporary bus
fights, Verilog meta-language commands, such as ‘$dis-
play’ and other simulation-level operations is degraded.
Since we do not use a threads package, but instead use a
single thread to emulate a large hardware section, combin-
ing separately-compiled sections at the link-editor stagecan
be problematic. This is discussed in section 4.

2 Processing Stages

Figure 2 shows the processing stages used by the com-
piler. The compiler input stage performs Verilog macro pre-
processing and parsing. It also implements basic identities
which simplify the language, such as converting ‘always’
into ‘intial while (1)’, and converting ‘for’ into
its equivalent ‘while’ form. Basic checking of multiply
defined identifiers and missing modules is performed.

Continuous Assigns

Blocking Behavioural Assigns

Non-blocking
Behavioural Assigns

assign a = b + 3; assign b = (din > 3) ? 3: din;

Tri-State Instance

bufif0(y, a, en);

begin
 x <= y;
 y <= x+2;
end

begin
 x = y;
 y = x+1;
end

b

3
adin

>3

1
0

3

ya

en

2

X

Y
y

x

1

X

Y
y

x

Figure 1. Examples of Verilog’s Assignment
Statements

Verilog source
files

Parameter evaluation,
flattening

and task expansion.

Behavioural
elaboration.

Tri-state mapping.

Complete
scalarising.

Direct conversion of
assignments to C.

Simple optimisiations.

Sorting the order of assignments
within clock groups and

according to dependencies

Mapping bit
operations to

shift and mask.

Preprocessing, parsing,
language identity expansion

and scope checking.

ANSI C Code

Runtime library
of routines for $display

and other metacommands.

Figure 2. Processing stages in the Verilog to
C compiler.

2.1 Parameter Expansion and Flattening.

The compiler can handle either a single module or a
heirachy where a top-level module includes instances of
sub-modules. Where a heirarchy of modules is used, the
lowest, leaf modules are implemented only in RTL or be-
havioural Verilog. Specify blocks, used in Verilog to de-
scribe complex primitives such as flip-flops and other func-
tions, are not supported: instead, the user must write equiv-
alent leaf modules in RTL for any such primitives. Built-
in gates are converted to continuous assigns. The com-
piler flattens such heirachies to give a single module whose
signature is the same as the original top-level module, but
where the RTL and behavioural code from all the interme-
diate modules has been combined. This stage of processing
evaluates parameters and parameter overrides and textually
expands tasks. Functions are elaborated in the next stage
since they cannot be textually expanded here since Verilog
has no statement-as-expression or ‘valof-resultis’
construct.

In the flattening stage, bodies of multiple instances of the
same sub-module are copied out and concatenated by the
compiler, but with renaming of their components to avoid
clashes. Global renaming is also possible via command-
line flags so that the user can combine separately compiled
sections of generated C without clashes in the link editor.

2.2 Behavioural Elaboration

The resulting, large, simplified module is compiled by
behavioural elaboration ([1, 2]) to an unordered set of as-
signments. Verilog can be regarded as having four major
types of assignment, as illustrated in figure 1. A fifth type,
known as behavioural continuous assignments, are not han-
dled for logic synthesis.

Logic synthesis converts block assignments, whose tex-
tual order is generally significant, into non-blocking assign-
ments, whose order is not significant. A list of non-blocking
assignments are a register transfer level (RTL) hardware de-
scription. Once blocking assignments have been removed
by the behavioural elaboration, there are three remaining
classes: clocked, tri-state and continuous. There is an irony
in that C essentially only supports blocking assignment
(order is sensitive in C) whereas the reduction to cycle-
semantics generated by the logic synthesis removes these
and generates non-blocking assigns. The solution is the de-
pendency sorting described in section 2.4.

Each of the remaining three types of assignment has left
and right-hand expressions, but the clocked assignments
have also a clock expression and possibly an asynchronous
reset or preset expression and the tri-state assignments have
an associated enable expression.

The tri-state assignments are then converted to continu-
ous assignments by collating on the left-hand side net name
and then building a multiplexor using the conditional ex-
pression operator. This leaves only two types of assignment
for further processing.

As in many Verilog compilers, Verilog arrays can be
converted to sets of registers if desired. Verilog only has
one dimensional arrays: each location is typically a number
of bits wide. The conversion to scalar form is controlled
by command-line options or embedded comments in the
source file, with the default being that arrays smaller than
64 in length are converted to individual C variables and oth-
ers map to C arrays. When scalarising is enabled (see next
section), the array locations may also be split into separate
variables, or the array may be split into separate arrays, one
per bit.

2.3 Bit-level processing.

As shown in figure 2, alternative schemes are possible
for handling the bit-level operators supported by Verilog:
expressions can either be scalarised in the compiler or left
in vector form. The choice is normally determined by a
command-line flag to the compiler. When vectored, broad-
side registers of up to the target C integer size in width (32
or 64 bits) are held in one C variable. When scalarised, each
C variable holds just one bit and the right-hand side of ex-
pressions is made only of simple Boolean operators. In the
vectored form, the right-hand sides of the generated expres-
sions will include further C operators, including addition,
subtraction, multiplication, division, modulus and left and
right shifts by variable amounts. If a register or bus is wider
than the target integer size then it is forced to be scalarised
into a number of single bit locations.

Logic minimisation is performed in these stages. A num-
ber of algorithms are possible. Since multi-level logic is
not being generated, straightforward Espresso is a good
choice for scalarised signals. The minimisation of non-
scalared, general C expressions appears to be a vast subject:
our current compiler only implements peephole minmisi-
ation, based on identities: for example ‘a + 0 � 0’ and
‘(1)?t : f � t’.
2.4 Dependency Sorting

In Verilog, blocking assignments which are triggered
from a common event, such as a clock edge, take place
in parallel. Owing to the serial thread of execution found
in C, assignments which take place in parallel in the Ver-
ilog implementation must either be placed in an order such
that the same overall effect is achieved or else an interme-
diate variable must be introduced to model the parallelism.
An example of an intermediate variable being introduced is

shown in section??. The intermediate variable acts like the
master portion of a D-type flip-flop in a hardware environ-
ment whereas the variable which is externally visable acts
like the slave.

The continuous assignments and the non-blocking as-
signments have exactly contrary requirements on their de-
pendencies and the same sorting algorithm is used for both,
but with the comparison predicate negated in one of the
runs.

For non-blocking assignments, which are clocked in par-
allel off the same clock, they must be sorted such that the
effects of an earlier assignmentdo not influence the right-
hand sides of any subsequent assignments. If this were to
happen, it would give an effect akin to clock skew, where
the effect of changing the output of one flip-flop is experi-
enced at the input to a second flip-flop before that second
flip-flop receives it clock edge. If the sorting algorithm can-
not produce an ordering, owing to cyclic dependencies, then
it breaks the cycle by introducing the above-mentioned in-
termediate variables.

For continuous assignments, it is intended by the de-
signer that all combinatorial paths and loops have been ex-
ecuted to their fullest extent, with all outputs settling down,
before the next clock cycle. This requires an order where if
a variable which is assigned occurs in the right-hand side of
another continuous assignment, then this variable should be
placed before the other in the output sequence. If the sorting
algorithm cannot find such an order, owing to a combinato-
rial loop in the logic, then it prints a warning and generates
an arbitrary ordering. In most sensible designs, this will
have little influence. In a bad design, where the loop in-
verts and is fully enabled under certain circumstances (i.e.
settings of inputs and state variables) then the C code will
produce an oscillating value with a half cycle once per call,
mirroring what the hardware would do.

2.5 Conversion to C and C-level Optimisation

A single ANSI C output file is generated per compila-
tion. A report file is also generated. The output file (or files
from multiple compilations if used) need(s) to be linked
against the file ‘ttvtoc.c’ which provides various run-
time system resources, such as the code for ‘$display
for printed output and$read memh for initialising an ar-
ray from a data file.

The output file generated by the compiler contains a sin-
gle C routine with default name ‘ttv’ but this can be changed
using the-id command-line flag to support multiple com-
pilations. The top-level module has the same signature in C
as the top-level module in Verilog had. Signals which en-
ter or leave the top-level module are modelled as references
(pointers) to external instances of integer variables. These
instances are created by the user in a top-level simulation

wrapper.

void ttv(unsigned int *out, un-
signed int *in, unsigned int *clk, ...)

Signals which are local to a module are instantiated as
static, variables of the next largets width suported in C. Be-
ing static, they retain their value from one call to another.

In the C language object code, clocked assignments are
normally enclosed inside ‘if’ statements so that they are
only executed when a clock edge is being simulated (sec-
tion 3.3).

The order of components in the resulting C section is as
follows:

1. Definitions of variables. All variables are statics or
arrays of statics. There are several sources of these
integers, including integers and ‘reg’ variables in
the user’s program, state variables to reflect execution
pointers, intermediate variables to manage parallel as-
signment and shadow variables to hold the previous
value of nets for which edge detectors are needed. All
are declared as ‘unsigned’ except for those corre-
sponding to integer declarations in the source Verilog.
This is necessary to make the comparison operators
work correctly, since only integers are signed in Ver-
ilog.

2. Assignments to variables representing combinatorial
nets which are used as the D-inputs to flip-flops (i.e.
which occur in the right-hand side of a blocking assig-
ment after elaboration).

3. Assignments to the master intermediate variables or di-
rectly to slave ‘reg’ variables if the dependency sort-
ing prevented the need for a master.

4. Assignments from masters to slaves.

5. Assignments to combinatorial outputs, preceeded by
assignments to intermediate nets which feed into com-
binatorial outputs. Buffered or inverted versions of
clocked nets are here regarded as combinatorial, even
though buffers and inverters do not combine signals.

6. Assignments from nets to their shadow variables for
nets which are used in edge detectors.

Some assignments occur more than once: an example is
where a net is both directly or indirectly the input to a D-
type in the module and indirectly part of an output from the
module that also depends on the state of D-types.

After the assignments to the slaves of the flip-flops (be-
tween points 4 and 5), the code for any meta-commands
is provided so that they are executed in a state where all
flip-flops have a consistent state. Such meta commands are

typically enclosed inside a C ‘if’ statment, since they will
be conditional in the source Verilog and so do not happen
every cycle. Also at this point, an include file is pulled in,
where the user can insert print statements or other debug-
ging information.

2.6 Variables of specific bit widths.

Variable declarations generated by the compiler can ei-
ther use the native sizes availabe in C, which are char, short,
long, and long long, or a richer set of types names ‘uxx’
where ‘xx’ is an integer denoting the number of bits. For
example, ‘u7’ is a seven bit, unsigned quantity The gener-
ation defaults to the ‘u’ form but can be toggled with the
‘-nou’ command line flag. Macro definitions supplied to
the C preprocessor subsequently convert the ‘u’ form to the
next largest C type. One advanatage of the ‘u’ form is that it
is directly understood by our companion C to Verilog com-
piler [4], and so enables a better closure should a design be
converted between C and Verilog a number of times.

The compiler does not take any notice of the Verilog
keywords ‘vectored’ and ‘scalared’ because these
only change the simulation semantics and not the synthe-
sis semantics.1
3 Rules used to convert Verilog to C.

Some of the rules for conversion to C are presented using
the following examples where the Verilog on the left or top
box is converted to the C on the right or bottom box.

3.1 Unary operators

Most Verilog operators map directly into C. However,
Verilog has a number of unary operators which can take
the individual bits of a bus and reduce them under one
of the three operators, AND, OR and XOR. These must
be expanded as the following example for AND shows:

wire [3:0] a; {
wire p = (&(f)); p = 1 & (a & a>>1 &

a>>2 & a>>3); }

Neither C nor Verilog has an explicit boolean datatype
that must be used for the control expression in the state-
ments which use a condition expression, such as ‘if’. In-
stead any expression may be used. There is an implied re-
duction under the operator OR, found in both Verilog and
C, which is inserted automatically in conditional statements
such that if any bit is non-zero the expression acts as true.
The VTOC compiler inserts the operator as an explicit con-
struct in the input parse tree, but removes it again if possible
when generating the output C code.1Their main effect for simulation is to control whether all ofa vector is
uncertain if any part of it is. The compiler does not model uncertain values
at runtime: the only use of ‘x’ is to denote ‘don’t care’ at compile time.

3.2 Example of Input and output signals

This example shows how input and outputs are
mapped to references whereas locals are mapped to
statics. It also uses two simple gates, one of
which is one of the builtin gates found in Verilog2

void ttv(u1 *a, u1 *b,
module A(a, b, p, q); u1 *p, u1 *q)

input a, b; {
output p, q; static u1 abar;
wire abar = a; abar = *a & 1;
and (p, abar, b); *p = abar & *b;
assign q = a & b; *q = *a & *b;

endmodule }

When combinatorial paths through the top-level module
are present, as in the example, the outputs will only be up-
dated to reflect input changes each time the generated rou-
tine is called. Therefore, such paths might appear to have
transparent latches in series with them, which are activated
only as frequently as the routine is called.

3.3 Example of clocking

Many designs have a single master clock. Some designs
have a single clock input, but internally divide this down
to generate internal clocks of a lower rate. A third class of
designs has more than one clock. In the first two cases, only
a single clock signal is present in the top-level module.

The compiler can be operated in a mode, known as
‘mode 1’, where a command-line flag takes an argument
which is the name of an identifier present in the top-level
module which is to be treated as a clock input. When mode
1 is used, the clock input signal is not actually used. In-
stead, each time the generated C routine is called by a C
thread, the system emulates the advance which would occur
at the next active edge on that clock net. Therefore calls to
the routine are clock cycles. All event control statements
in the Verilog which are sensitive to this clock must have
the same polarity (i.e. be all positive or all negative edge
triggered).

The default mode is ‘mode 0’, where no top-level net is
nominated as a clock net. In mode 0, the routine must be
called sufficiently frequently not to alias the main (fastest)
clock, or any other clocks which are fed in at the top-level.2The Verilog shown in this example of a complete module does not in-
clude the housekeeping lines generated by the real compiler, which include
the inclusion of “ttvinc”, other header files and so on. Thesecan instead
be seen in Figure 4.

always @(posedge clk) } Mode 0
begin if (*clk != clk hist)
a = �c; {
end a = �c;

}
clk hist = *clk;

}
always @(posedge clk) { Mode 1

begin a = �c;
a = �c; }
end

always @(posedge clk) { Mode 2
begin while(1)
a = �c; {
end a = �c;

cx barrier(*clk);
}

}

The final clock option generates ‘mode 2’ C code, which
has the semantics expected by our CTOV compiler. In
mode 2, there is only one clock and the body of the C code
is enclosed in an infinite loop with a call to a threads or
co-routine suspend function called “cxbarrier()” at one or
more points in the loop. Again, the C-to-V compiler is able
to convert this C code back to semantically-equivalent Ver-
ilog, but a threads library is needed to run more than one
such section of code in parallel in the C environment.

3.4 Concatenations

Concatenations occuring in expressions are handled by
introducing shifts, as shown here:

wire [3:0] a, b, c;
assign a = { b[3:2], c[3:2] };
{

a = (b & 12) | ((c>>2) & 3);
}

Behavioural and continuous assignments to left-hand
side concatenations of more than one item are handled by
first assigning to an intermediate variable so that any side
effects in right-hand side function calls only occur once
and the effect of parallel assignment can be achieved if
any element of the l.h.s. appears in the r.h.s.. Then the
left-hand components are assigned to, one by one, with
the right-hand argument shifted right by the appropriate
amount. Here is an example using continuous assignments:

wire [3:0] a, b;
assign { b[3:2], a[3:2] } = a;
{

t = a;
a = ((t>>2) & 3) | (a & 12);
b = (t & 12) | (b & 3);

}

3.5 Behavioural Elaboration.

Behavioural elaboration performs symbolic evaluation to
mirror what a thread of execution would actually evaluate
in a simulator. The results is a set of RTL assignments,

one per variable that is updated by the thread. Unlike the
behavioural input code, RTL has the property that order of
listing the transfer statements is not significant.

In this example, the assignment tov has been subject to
a further reordering, according to the dependency sorting
rules of section 2.4, to be placed afterv is used to set upd.

always @(posedge clk)
begin {
a = b & c; a = b & c;
v <= a; d = v | c;
d = v | c; v = a;
end {

An example of compiling an addition in vectored form
is as follows. Note that overflow in the fixed-field register
variable is handled by the binary AND against a constant
mask (3).
reg [1:0] sum; {
always @(posedge clk) sum = (sum + 1) & 3;
sum <= sum + 1; {
end

Here is the same example in scalared form
reg [1:0] sum; {
always @(posedge clk) sum 1 = 1 & (sum 0

sum <= sum + 1; ^ sum 1);
end sum 0 = 1 & sum 0;

{

Here
is an example where an intermediate variable is needed in
the C version to implement a swap. The intermediate vari-
able name is generated by the compiler by appending ‘t’.

always @(posedge clk) {
a <= b; a t = b;
b <= a; b = a;
end a = a t;

}

4 Multiple Compilations.

Linking together the output from multiple separate com-
pilations is done using an automatically generated top-level
C file and the normal system link editor. The top-level file
contains instances of the modules generated by the sepa-
rate compilations and instances of sets of variables which
represent the wires between the modules. To achieve the
behaviour of normal synchronous hardware, each module is
passed references to a private set of the wire variables and
changes in value are propagated between the sets after the
single thread of execution has run the C subroutined gener-
ated from each compilation.

5 Performance and Conclusion.

To compare execution time of the generated C with the
Verilog original, an example that finds all the primes up to217 using the sieve method is presented. Table 1 shows the
runtime in seconds for the example under the two popu-
lar simulators from Cadence and with VTOC. The design

Design Cadence Cadence CTOV
Verilog-XL NC-SIM (gcc)

2.7.10

Prime Gen
Behavioural 105 11 1
Prime Gen
Gate-level 5085 676 323

Viterbi Unit 113 3

Table 1. Run time in seconds for the ‘Primes’
example. UltrasparcII 200 MHz.

was compiled to gate level and simulated again to give the
second line of results. The design used 503 gates and a
32x8 SRAM. The run time for 12000 cycles of a 12000 line
DSP/Viterbi unit is also shown.

The program has met its design goals, in that it allows
portable, licence-free versions of Verilog designs to be gen-
erated. It also provides a very-effective native-mode, cycle-
based simulator, being more than 100 times faster than
Verilog-XL. The compiler has been tested on large sections
of Verilog that include commercial DSPs and custom digi-
tal filter blocks. A commercial product using our approach
is available from TenTech[5] and a similar product is avail-
able from CAE Plus [6]. In future we need to add support
for combinatorial exchanges between separately-compiled
modules, which cannot be accurately modelled with the
method described above. We can also add a simple library
which will cause generation of tracing information for view-
ing with a standard graphical viewer, such as Cadence C-
waves.

[1] “The Verilog Hardware Description Language” Don-
ald E.Thomas and Philip Moorby. Published by Kluwer
Academic Publishers. ISBN 0–7923-9126-8.

[2, 3] ‘The CSYN Verilog Compiler’ DJ Greaves. Pre-
sented at International Workshop on Field Programmable
Logic, Oxford, 1st September 1995. Proceedings published
by Springer Verlag LNCS. ISBN 3540 60294-1. See also
www.cl.cam.ac.uk/users/djg/localtools/.

[4] “Cadence Native Mode NC-Verilog Compiler.”
www.cadence.com.

[5] “VTOC and CTOV Verilog to C Exchange Compil-
ers.” Download fromwww.tenisontech.com.

[6] ArchGen RTL-C compiler from CAE Plus.
www.cae-plus.com

