
CBG CTOV Compiler - Two Page Overview.

DJ Greaves∗

1 Summary

The CBG CTOV compiler converts almost arbitrary
C/C++ code to a hardware netlist. It operates by building
the datapath for a VLIW-like processor and a sequencer
to control the datapath that may or may not be micropro-
grammed. The datapath may consist of any number of
RAMs and ALUs and also holding registers for data that
cannot be transferred to/from RAM at the current time ow-
ing to RAM port bandwidth constraints. There are many
possible datapaths that will serve to execute a given pro-
gram, trading time for space. The compiler will generate
a datapath using an internal heuristic that places each array
present in the source code in a different RAM and converts
all other state-bearing variables to flip-flops. However, the
user can override the default action to control the datapath
shape: he may specify the location of every variable stat-
ing whether it should be placed in a RAM or not, and if so,
which RAM. The number of RAMs used and the style and
number of ports on each RAM can also be fully specified
by the user. This allows complete flexibility within a de-
sign space that encompasses a pair of opposite points: one
point where all state is held in flip-flops and another point
that places all programming-model state in a single, single-
ported RAM.

The compiler partitions the behaviour of the input pro-
gram into macrocycles. A macrocycle corresponds to a
number of successive steps in the input program by one
thread. The number of steps implemented by a macro-
cycle is controlled by a combination of three things: a
size heuristic, decidability of name aliases and user ’bar-
rier’ statements inserted in the source code. Each macro-
cycle may take a number of clock cycles to execute on
the hardware, depending on the availability of ALU’s and
RAM ports to compute, source and sink the data. Either
run-time or compile-time arbitration can be used to resolve
such structural hazards. Again, a default heuristic is pro-
vided: the compiler performs compile-time arbitration for
competition between events caused by a common thread
and run-time arbitration for inter-thread competition. Un-
decidability causes termination of the macrocycle genera-

∗David.Greaves@cl.cam.ac.uk

tion when array subscript comparison and/or loop exit con-
ditions cannot be calculated at compile time.

2 Operation

The default entry point to the user’s program is the func-
tion ‘main’ but various entry points can be specified on the
command line for concurrent designs. The compiler oper-
ates by breaking the control flow graph of the program into
loop-free sequences of instructions (known as ’twiglets’)
and then performing a symbolic evaluation of each twiglet
to determine the state changes it would make when exe-
cuted. A separate strand of processing maps each variable in
the user’s program to a virtual storage resource: either one
or more locations in a RAM or one or more flip-flops. The
union of the datapaths between these resources required by
each twiglet is then formed. Each twiglet is then allocated
a static schedule of operations that can executed by the dat-
apath as a macrocycle. Many temporary variables (such as
a loop counter for an unwound loop) are no longer required
and so discarded, thereby giving the final concrete storage
allocations for components of the programming model. Ad-
ditional holding registers are needed to overcome structural
hazarsm such as when both operands to an addition are
sourced from the same, single-ported RAM.

The sequencer is generated from the control flow graph
of the user program. Each twiglet is like a VLIW instruc-
tion. The data driven part of the control flow is implemented
by generating and compiling predicate functions that tap the
appropriate part of the datapath. It accepts a clock and re-
set as external inputs. A one-hot sequencer is generated
by default, but a custom microcontroller and accompanying
microcode PROM are just as easily created. The one-hot
sequencer allows dynamic thread fork and join.

Generation of RTL output as a structured Verilog netlist
is straightforward. Each RAM and ALU appears as an in-
stance in the netlist, except for RAMs that have been de-
clared ’offchip’ which are instead accessed via formal con-
nections.

Input and output to the hardware is implemented by in-
terpreting the formal parameters given to the entry func-
tion(s). Any call by value parameter or undriven call-by-

1

reference parameter is compiled as an input, whereas up-
dated call-by-reference parameters are compiled as outputs.

As is commonly required in hardware designs, registers
of various widths are supported using macros in an imported
C header file. These can follow the SystemC style of coding
or our own. The macros are compiled to hidden C code that
is interpreted by the tool, or else can be compiled to the
nearest natural C variable when the source code is being
used in a software environment.

Multi-threading of the input code is often useful and is
supported by the tool. Each thread has its own sequencer
and datapath but shares the same RAMs and programming-
model flip-flops. This allows true concurrency. Runtime
arbitration occurs when two sequencers require to put dif-
ferent addresses on the same address bus to a RAM. Mutex
variables are provided to support atomic test and set opera-
tions on a variable for thread synchronisation. For all other
variables, if two threads write at once, the results are ran-
dom.

Initial values of variables are loaded when the hardware’s
reset input is asserted, except for variables placed in RAMs.

3 Source Code Restrictions

The source code must have a non-recursive flow graph.
The other requirement is that all pointer arithmetic must be
resolvable at compile time to narrow down the range of ac-
cess to an individually declared array. Dynamic calls (index
branches) are not implemented but can be added using the
normal source-to-source preprocessing.

For debugging use, a version of printf can be added to the
source code and compiled to hardware, where the ‘write’
output routine is trapped to the Verilog ‘$display’ PLI
function.

4 Current Status

The tool is implemented and has been tested on some
small designs. It consists of a C/C++ parser written in C
and a main body written in SML. As a future work item, the
parser could be replaced with llvm.

2

