
EARLY
D

RAFT

1

Terminology and Definitions for Multiported

Functional Units.
David J. Greaves — Rough Draft November 2021/Sept 2023

Abstract—This note defines a generic framework and refer-
ence terms for formal specification of synchronous functional
hardware units (FUs) to serve as a basis for compositional
proof, automated system assembly (and partition over multiple
FPGAs), incremental HLS and design reuse. It recommends a
canonical description framework for net-level interfaces that is
an extension of a TLM (transactional-level modelling) signature.

This note defines formal terminology and notation for
discussion of generic sub-components in digital logic. The
following terms appear in bold font where they are defined:
FU, port, net-level, directorate, clock-enable, data net, hand-
shake net, transaction, idle state, sequential consistency, ex-
clusivity requirements, standard synchronous interface, fully-
pipelined, re-initiation interval.

We use the term FU (functional unit) for such a com-
ponent and concentrate on synchronous (single clock)
components only in this note. The aim is to describe a
generic framework that encompasses the interfacing needs
for the vast majority of FUs used in contemporary hardware
designs.

I. FU (FUNCTIONAL UNIT) AND PORTS

A functional unit FU is a component that could be as
simple an AND gate but is more typically an ALU or RAM.
Describing a full electronic data sheet for an FU is a basis
for

• automatic wiring between them (either rule-directed
or with glue logic synthesis[1]),

• incremental HLS where one compilation run deploys
existing FUs.

• documentation,
• formal verification of conformance to protocols,
• design reuse (including verification infrastructure),
• adding-up non-functional metrics, such as power use

and gate count.

Clk
Director

port

Port 0

Port 1Reset

Fault

Port 2
n

m

q

p

P1_in_valid
P1_in

P2_ready
P2_valid

P2_out

P2_status1
P2_status2

P0_ready

P0_valid

P0_n_in

P0_m_in

P1_out_valid
P1_outp

Fig. 1. A generic, synchronous FU, with three data ports and the obligatory
director port.

Fig. 1 illustrates the general structure of a synchronous
FU. A synchronous FU has only one clock input where

all inputs are only looked at on the active edge of the that
clock. The example is partition to show four sets of net-level
connections. Each set corresponds to a port. We will later
speak about the relationship between ports and methods.
By net-level connection we mean a terminal that must be
connected with a wire (called a net) to terminals on other
components. Each terminal is either an input or an output
terminal, and net-level interconnections obey a rule that
exactly one output terminal is connected to each net.1 This
is a physical-layer design (consistency) rule.

One of the four ports is called the director port or the
directorate. This connects nets that are part of the system
management and which are intrinsically referenced by all
the other ports. The director for a synchronous system
contains the edge-triggered clock input (where the property
that only its positive edge is significant is denoted with the
triangle). Another net generally included in the directorate is
a reset net (which can be synchronous or asynchronous and
active high or active low). In this note, it is implied that the
reset and clock are all fed from a common reset and clock
generator unless specified otherwise (which we will not do
in this note). A CEN, clock enable input may also be part of
the directorate. When present, active clock edges where the
CEN input is deasserted are ignored at all ports. Updates
to internal state when CEN is deasserted do not typically
occur, but some pipelined child FUs used inside the FU may
not have CEN inputs and the FU must accommodate this
by design (eg. a pipelined DSP multiplier in some families
of FPGA). Other nets that make up the directorate in real
systems include power supplies, fault indicator outputs and
power sequencing controls for power saving — they are not
discussed in this note.

The net-level connections within each port are normally
grouped, as illustrated, into various control nets and data
busses (although we shall not use these two terms hence-
forth.) In this document, apart from reverse-direction hand-
shake nets, all nets in each such groups are all either inputs
or outputs. In other words, our basic port is simplex.2.
Where there are multiple logical busses (all travelling in the
same direction) within a port, these are called, somewhat
tatuologously, the subfields of the port.

In automata theory, the range of allowable values on a
group defines a symbol alphabet. Its size is bounded by
two-to-the number of nets in the group for binary logic. On
the active edge of a clock, a group may or may not convey

1Tri-state nets are not considered in this note.
2Commonly, data needs to go in and out of an FU, so ports are typically

grouped in either put/get or put/aout pairs, as explained later

2

a symbol according to the semantics of the port’s protocol.
A protocol specification defines exactly what sequence of
symbols within a port conveys useful data over the port.
Most protocols support idle intervals where nothing is
being conveyed through the port.

Ports have a port type. Many components have multiple
instances of a given port type. For instance, a multiplexor
must have at least two ‘input’ ports and these may share
a common type. To distinguish the ports, each has a port
instance name (such as Port 1 and Port 2 in Fig. 1)

II. STANDARD SYNCHRONOUS INTERFACE (SSI)

Clk

Ready

Valid

Data[n-1:0]
n

(Last)

Clk

Ready

Valid

DData[n-1:0]

Ready
&&

Valid

~Ready
||

~Valid

Word admit
Data_0

Fig. 2. Standard synchronous (simplex put) interface (SSI) port with one
subfield: net-level view, timing diagram and interface automaton. Also
shown is a minimal director port, consisting of just a clock input. (The
last net indicates the last word of a multi-word transaction.)

The standard synchronous interface (SSI) is a very popu-
lar handshake protocol in everyday SoC design. However it
cannot be trivally re-pipelined and hence credit-based flow
control (CBFC) is also widely used. We shall augment this
proposal to better cover CBFC in the future.

The SSI is generally simplex (moves data in one direction
only), but we will also consider duplex variants. An input
port is illustrated in Fig. 2. A handshake net runs in each
direction. The timing diagram, in the centre, shows words
are transferred over the data subfield on the positive edge
of any clock cycle where both handshake nets hold. For an
output port, the directions of all nets in the port (ie. not
the clock, which remains an input) are reversed. This is a
common design paradigm in contemporary hardware: five
instances of this basic interface are used in the AXI protocol,
one for each of its five ‘channels’. (The interface automaton
can be used for synthesis of glue logic in companion work.)

III. TRANSACTIONAL PORT

We are primarily interested in transactional ports. The
SSI is one such. A transactional port begins life (after reset)
in an idle interval. For all practical ports, idle intervals
can be detected by a predicate in the form of a temporal
regular expression (eg. a SERES in PSL). For the standard
synchronous interfaces (SSIs) described later, there is an idle
interval on any clock edge where either valid or ready
is deasserted. For the the rest of the port’s life, the port
conveys a sequence of transactions, separated by actual or
nominal idle intervals. The idle interval can be nominal
for two reasons. The first is back-to-back transactions,
where one one transaction follows immediately after the
one before. The second arises when there is a gap, but it

is not simultaneous over all groups in the port since the
protocol spans in terms of clock cycles is greater than or
equal to the initiation interval (II) defined later.

A transactional port conveys a logically grouped number
of values as one unit of operation. For instance, for a RAM,
the values that need to be conveyed as part of a write
transaction are the target address, the data to be stored and
perhaps some byte lane qualifiers. To read a RAM, either
a single or two transactions are required. Using separate
transactions, one to convey the address and receive the
result, is often appropriate, especially where the RAM is
accessed over a network-on-chip. (This is known, in the
Bluespec community, as the put-get paradigm; BlueParrot
uses put/aout instead.)

Transactional ports can be readily simulated at a level
of abstraction above the net level using transactional-level
modelling (TLM). In TLM modelling, the values conveyed
over a port are modelled with a method call on an OO
instance that represents the FU. The nets that carry data
are modelled in the arguments and return value to the
method. The nets that provide handshaking in the hardware
implementation do not appear at the TLM level, being
replaced with the mechanics of subroutine call.

Three ports, no sharing. Two ports, with sharing.

Two ports have been combined: method to port mapping no longer 1-to-1.
(AOUT side not shown, but follows same sharing pattern.)

ReadWrite(cmd,
arg1, arg2)

Erase(arg3)

arg1

arg2

VALID

READY

arg3

VALID

READY

arg1

VALID

READY

Read(arg1)

Write(arg1, arg2)

Erase(arg3)

arg1

arg2

VALID

READY

arg3

VALID

READY

CMD

Fig. 3. Port sharing: two variations of the same FU port. The method name
to CMD subfieldencoding is descriped in the accompanying IP-XACT.

In our formalism, several methods may be invokable on
one port (or port pair) using port sharing. The subfields
of the port then become the union of the subfields of the
sharing methods. A further command subfield is added to
the put side of the port which carries a method enumeration
type whose binary coding is defined in the accompany-
ing IP-XACT. A constraint arises which is that all of the
arguments to the various methods sharing a port, where
they have formal parameters with the same name, such as
address_bus, need that formal to have the same type
(eg. bit width).

Certain bus protocols support ‘multiple outstanding
transactions’, especially those that connect a DRAM subsys-
tem to a processor. For instance, a CPU may have multiple
load-store stations that each issue a tagged memory request
and remain blocked until a result with that tag is returned.
The results can be out-of-order. But that meaning of ‘trans-

3

action’ is above the meaning in this document, with each
individual request and response that is conveyed over the
port and interconnect being considered a transaction.

Hardware ports are considered independent: the opera-
tions on one port of an FU can, in principle, be performed
without reference to the state of other ports. Sequential
consistency concepts will typically still apply at a higher
level, but are beyond the scope of the definitions here.
For instance, a multi-ported register file will maintain all
standard RaW-like dependencies between its read and write
ports, but precisely when written data becomes visible at a
write port is outside the low-level specification of the ports
themselves.

Where some combinations of simultaneous transactions
at different ports cannot be supported by an FU, the
approach here is to insist the exclusivity matrix has a
clique structure and use one physical port per clique.
This removes physical-layer exclusivity requirements but
requires a trivial shim in the TLM to physical-layer mapping,
where two or more methods are combined into transactions
on a physical port by adding an extra cmd symbol, which
enumerates which operation is invoked. Given that only one
transaction is current (see out-of-order note above) at any
one port at any one time, this guarantees exclusivity.3

IV. PUT/GET, PUT/AOUT AND DEADLOCK

Simplex ports may be grouped into pairs or larger groups
to define a complete ‘bus’. For instance, AXI has 5 simplex
ports (write data, write address, write response, read address
and read response).

Bluespec commonly uses the Put/Get paradigm (which is
a variant of the mailbox paradigm). There are two simplex
ports. The put side sends commands or requests into an
instantiated server. The get side actively collects the results.
Both ports use the standard synchronous interface (SSI)
with the valid signal (called EN) as an input signal to the
child/server component on both ports. Therefore the flows
in the reverse direction to the valid signal on a get-style
port.

BlueParrot uses the Put/Aout paradigm (which is a variant
of a FIFO or BUFFER paradigm). The Put side is the same
as Bluespec, with the data subfields being input to the
child/server component, but the Aout side has the valid

signal coming out of the child/server component and so
remains consistently flowing in the same direction as the
data subfields it is qualifying.

You might argue that, for the standard synchronous inter-
face, since only the conjunction of the ready and valid

signals is significant, and since all these simplex variants
have one signal in each direction, the difference between
Put/Get and Put/Aout is simply a matter of handshake net
naming. This is true to a certain extent, but for deadlock
checkers to comprehend sequential dependencies between
handshake nets, where renaming is needed to make a port
correspond to our recommended taxonomy, the changes

3A TLM model may need to ensure calls are not re-entrant using locks
or correct for timing using a quantum keeper.

need also need to be reflected in the dependency matrices.
Moreover, the default rule where no matrix is given is that
valid (out) should not depend on ready (in).

NB: AXI is here classified as two independent port groups
with form (put/put/get) and (put/get).

V. PIPELINED, TOKENISED AND CREDIT-BASED FLOW

CONTROL

Figure 4 presents the three main forms of handshaking
used across the industry today. In the centre, the dual-
simplex, tokenised FU is shown. This has a Put/Aout pair of
standard synchronous interfaces. Both are simplex (subfield
data only moving in one direction) with the data direction
being the same as the valid signal.

The generic duplex version of one of these ports (not
shown) would have data moving in both directions, but
qualified under the same handshake.

Our formalism of the standard synchronous interface
allows either or both of the handshake nets to be specified
as missing, in which case it implicitly always holds.

Another aspect of the formalism is subfield time offsets.
When missing for a subfield, the data is qualified by the
handshake during the clock cycle they denote (ie. one
where they both hold). Where present, it defines that the
subfield data is valid that number of (clock-enabled) clock
cycles before or after. Negative values denote valid before
handshake cycle. This facility, together with the support for
missing handshakes, enables us to fold pipelined FUs into
our formalism, as explained in the next paragraph.

On the left, a fully-pipelined FU is shown. This has no
handshake nets and accepts a new argument on every clock
cycle. The result is delivered on its output port some fixed-
number of clock cycles later, known as its latency, here
illustrated as 5 cycles. Where the initiation interval is not
unity, or for energy saving by skipping the processing of
idle arguments, at least one handshake net needs to be
added to this baseline component. Therefore, our recom-
mended model for this component is a degenerate form
of our generic duplex component. Any vestigial standard
synchronous handshake nets (just VALID for energy saving
is illustrated) provide a reference time frame. The illustrated
result output is not considered part of a handshake-free
second port to the FU. Instead, it is considered a subfield
of the left-hand port 0, with backwards data direction and
with subfield time offset of +5 cycles.

On the right of Figure 4, for completeness, we illustrate
the credit-based flow control (CBFC) paradigm. This FU
has both ports credit controlled, although a commonly
encountered FU is the bridge from or to CBFC to SSI. Under
CBFC, the ready reverse direction signal is replaced with a
credit return net. This is not synchronised with the forward
simplex data and its valid net. It operates independently.
See [2].

VI. CONCLUSIONS: UPDATED AUGUST 2023

Electronic data sheets for FUs need to be augmented with
a description of the handshake protocol semantics. As a

4

arg0

arg1

VALID

READY

(FIRST)

(LAST)

result

VALID

READY

(FIRST)

(LAST)

Port 0 - PUT Port 1 - AOUT

arg0

arg1

VALID

Port 0
(with power save)

result

Vestigal port 1

1 2 4 5

Pipelined FU Dual-simplex, tokenised FU

arg0

arg1

VALID

CR

result

VALID

CR

Port 0 - PUT Port 1 - AOUT

Credit-Based
Flow Control (CBFC)

Fig. 4. Three general forms of handshake: pipelined (no handshake), standard-synchronous with put/aout paradigm and credit-based.

proof of concept, the authors have developed BlueParrot,
a prototype HLS synthesiser that compiles a TLM-callable
method body into gates, where the method body invokes
TLM calls on pre-compiled FUs and leaf cells [citation to
be provided].

Many other aspects of an FU are also documented,
including whether it has side effects, whether it is freely
replicated for load balancing, whether it needs access to
main DRAM memory space and whether it has sequential
dependencies between its handshake nets for deadlock
avoidance.

The current implementation and definition of the IP-
XACT extensions is being described on the following web
page and in the src files for the HPR L/S logic synthesiser
library.

https://www.cl.cam.ac.uk/~djg11/cards.html

https://bitbucket.org/djg11/bitbucket-hprls2/src/master/

We hope to see the community adopt a set of IP-XACT
extensions for documenting these aspects.

REFERENCES

[1] M. N. David J Greaves, “Synthesis of glue logic,
transactors, multiplexors and serialisors from proto-
col specifications,” IET Conference Proceedings, pp. 171–
177(6), January 2010. [Online]. Available: https://digital-
library.theiet.org/content/conferences/10.1049/ic.2010.0148

[2] D. J. Greaves, Modern SoC Design on Arm.
www.arm.com/resources/education: Arm Educational Media, 2021.

