
IP-XACT Extensions for Incremental HLS and Automated System Integration

IP-XACT extensions supporting a wide variety of
protocols & optimisations during HLS & SoC-level design

David J Greaves, University of Cambridge
Ryan Cherian, University of Oxford

IP-XACT extensions as common object file for HLS and System Integrator 

Includes a wide-coverage, parameterisable net-level protocol model:
 - A port has one direction of data, but a port in the other direction
 may piggy-back on its handshaking arrangements with implicit

timing.
 - Encompasses pipelined, fully-pipelined, put-aout, AXI, locallink. 

Enables black boxes to be wrapped up and deployed (CAM example).

Two main uses:
 - Incremental HLS - use a prior compilation inside a current one,
 - Multi-FPGA deployment auto partition and inter-wiring generation.

What is documented:
 - Net-level port-structure and formal model of per-port protocol,
 - TLM method set for each port (for HLS), 

- Whether freely portable between FPGA or locally bonded out,
 - Whether stateless (so can be freely mirrored for load balancing),
 - Combinational delays for pipeline design in parent,
 - Sequential dependencies documented (for deadlock avoidance), 

- Claim space needed in off-chip DRAM memory,
 - Mutually-exclusive/non-rentrant entry points in TLM model,
 - EIS (an end in itself) tainting to avoid logic trimming, 

- Expected area, power and other non-functional attributes,
 - GUI icon and URLs for further data, 

- (License cost/conditions!)
 

Specification drafts can be downloaded from QR code top right.

Two independent ports with transaction order preservation.
 - A direct model of Bluespec RAMs, AXI write channels or BVCI bus.

Variations include:
 - always ready (no valid signal)
 - first and/or last word of transaction qualifiers.

arg0

arg1

VALID

READY

(FIRST)

(LAST)

result

VALID

READY

(FIRST)

(LAST)

Port 0 - PUT Port 1 - AOUT

An electronic datasheet for design portability: each FU (leaf IP block) is described in extended IP-XACT.

arg0

arg1

VALID

Port 0
(with power save)

result

Vestigal port 1

1 2 4 5

Pipelined fixed latency (e.g L=5). Restricted initiation interval (eg II=5)

Output ’port’ timing and qualifiers implied by parent port 0.

For countram example opposite, arg0 might be read/write cmd
and arg1 might be the address input.

Multi-Blade FPGA Allocation: Tool Flow

All IP-blocks and pre-compiled FUs are described with extened IP-XACT.

Rule-directed System Integrator Planner tool takes:
- Top-level application IP block (or blocks)

 - An indexed library of pre-compiled sub-systems
 - A ’blade manifest’ giving: 

- The number and sized of FPGAs available,
 - Interconnection topology,
 - Number of DRAM banks and sizes for each FPGA,
 - Hardwired resources available - (eg video output or DRAM). 

Planner functions:
 - Infers/optimises the required multiplexors and other
 bus infrastructure components,
 - Implements debug network as needed,
 - Provides each component with shared and private 

heap space in common memory or off-chip DRAM banks as needed,
 - Automatic deployment of protocol adaptors for heterogeneous 

port interconnection and to use inter-FPGA links. 

Wiring generator emits:
 - a top-level RTL file for each FPGA (or ASIC)
 - a further IP-XACT file reporting the aggregate (for incremental implementation of this step too!).

Generated from RTL or by HLS tool
(KiwiC, Bluespec, BlueParrot)

Generated by HLS
or pre-existing resources

class traffic_monitor // Source code for B/P HLS
{
 CAM256 *cam = new CAM256();// Content-addressable
 uint6_t countram[256]; // Random access
 VD *victim_determiner = new VD(); // LRU/random?

public void update(uint24_t key)
 { int idx = cam.findindex(key);
 if (idx < 0)
 { idx = victim_determiner.provide(key);
 cam.settag(idx, key);
 countram[idx] = 1;
 }
 else countram[idx] = MIN(63, countram[idx]);

victim_determiner.note_use(key);
 }

 public int read(uint24_t key)
 { int idx = cam.findindex(key);
 return (idx<0) ? -1: countram[idx];
}

}

Incremental HLS Toy Example:
Network Traffic Monitor

This OO/transactional definition of a simple traffic monitor
uses three pre-existing/pre-compiled FUs and exports
two methods (actually the nets for invoking them).
Generated RTL can preserve the block instance 
sub-structure and later flattened for inter-block optimisations.

The instantiated FUs might use a variety of interface
standards and latencies. Compilers (eg B/P) adapt,
supporting a variety of standards for the imported FUs
and exported methods. 

countram 256 x 6

uint6_t read(uint8_t addr)

CAM 256 x 24

uint9_t findindex(uint24_t key)

void settag(uint8_t addr, uint24_t key)

void write(uint8_t addr, uint6_t data)

victim_determiner

void note_use(uint24_t key)

uint8_t provide(uint24_t key)

void update(uint24_t key)

int read(uint24_t key)

Traffic_monitor // RTL output visualisation

Standard part

Specialist 

leaf cell

Previous

compilation

// Three structural instances

// Net-level ports supporting these signatures

// Implementation logic
always @(posedge clk) begin

...
 ...
end

Download all files from
above QR code.

System Blade Partition and Assembly Example (FPL-17 Kiwi)

Five or six C# programs were manually fed to KiwiC (via Make)
Three project-specific RTL files resulted - each with IP-XACT metadata.
System Integrator combined these with existing IP blocks and
wrote two toplevel files, one for each FPGA.

Everything touched is recompiled, and TCL/batch Vivado invoked, giving
new bitfiles (all still under Make).

FPL-17 demo flow:


