HPR System Integrator: A SoC/Multiblade Link
Editor

David J Greaves
Computer Laboratory, University of Cambridge, UK.
Working draft, Dec 2017.

Abstract—The IP-XACT XML schema allows digital electronic
subsystems to be described in terms of their bus interfaces
and configurable parameters. It provides basic support both for
physical wiring (net-level) interconnection between components
and for transactional method calling between component models.
But in order to dynamically select pre-compiled subsystems
for instantiation by an augmented high-level synthesis (HLS)
flow, additional information about these components needs to be
recorded. Missing details include the presence of combinational
paths, deadlocking or conflicting sequences of operations, power-
up sequences, whether the component contains internal state
and basic timing parameters, such as the expected processing
latency and required re-initiation interval. Some child IP blocks
may also require access to centralised memory resources and
management/debug infrastructure. The layout of their data in
shared memories needs orchestrating to avoid clashes, as in
software link editing. Child IP blocks may also require other
blocks to support them in an overall dependency tree.

In this article we give an overview of an open-source tool
chain, based on augmented IP-XACT, that supports instantia-
tion of pre-compiled blocks and black-box components. These
components can be used either as FUs in an augmented HLS
compiler (eg. for custom arithmetic) or for system-on-chip or
system-on-multichip automated assembly. The tool automatically
selects, configures and wires up the required supporting blocks.
The result is synthesisable RTL that can be loaded into an FPGA
(or multi-FPGA platform) for scientific acceleration as well as
a SystemC high-level model and other report and visualisation
files.

Our contribution is extensions to IP-XACT for community
adoption.

I. INTRODUCTION

The advantages of modular design are well established. As
well as non-functional advantages, such as revison control,
design reuse, specification, testibility and so on, there is a
potential performance advantage if more of the design space
can be explored in the available time when deploying existing
modules compared with a monolithic compilation.

High-level synthesis (HLS) provides a means to rapidly
generate an RTL design. As is well known, such tools mostly
operate by choosing a set of functional units (FUs), such as
ALUs and RAMs, binding the operators, variables and arrays
present in the high-level program to these resources and con-
structing a static schedule that represents the original behaviour.
The schedule may be manifested by a controlling finite-state
machine (FSM) that embeds the control flow of the high-
level program, or sometimes a pipelined implementation is
created that accepts streaming data every n-th clock cycle
under external stream orchestration. Much of the synthesis

tool’s time is consumed by exploring alternative designs, in
terms of fine-grained schedules.

The approach of a monolithic synthesis run does not scale
to very large designs. It is unsuited to multi-FPGA designs. It
does not support rapid recompilation of just part of a large
project.

In this article we describe a method for incremental compi-
lation for the domain of accellerators for scientific computation
on FPGA. An incremental approach enables the results from
a number of individual compilations to be combined, as
with software libraries and link editing. In hardware, existing
components are often parametrisable in terms of bus width
or FIFO depth. Moreover, there are various combinations
of components that can achieve the same functional result,
whereas with software there is far less flexibility. We present
a tool flow that enables manual and automatic selection of
components from libraries and where incremental compilation
results can be added into the library for future use. Each
component consists mainly of a synthesisable RTL design file
(or files) that is described by an electronic data sheet in
extended IP-XACT format. There may also be SystemC or other
high-level models of the component. For an FPGA platform,
the baseline component library contains models and wrappers
for the specific hardened resources available in that FPGA
family. This is then augmented by importing IP blocks from
third parties, manual RTL coding, augmented by sufficient
meta information. or RTL generated from HLS runs.

Four specific advantages are:

1) Compilation Speed: Although logic synthesis and
place-and-routet in the FPGA back-end tools is often
the dominant contributor to design compile time, it
is also important to have good compile time in a
high-level synthesis tool. This is especially useful
where the HLS tool can give performance and area
predictions without needing to invoke the FPGA tools,
or when the resulting RTL is to be tested on a small
dataset using a fast RTL platform, such as Verilator
(www.veripool.com). Incremental compilation, using
an automated tool, such as Make, is always used
wherever possible in complex system build. Only
the parts directly affected by an edit need to be
recompiled.

2)  Controller State Reuse: A simple HLS tool will
flatten inter-procedural control flow by expanding
method bodies in-line. This can make the generated
controller very big. Even though back-end logic syn-
thesiser tools typically re-encode the resulting state



machine so that the output function is simple to de-
code, having more than a few thousand states breaks
current-day tools. One possible solution is to give the
controller a run-time stack, but the controller may
remain centralised and its outputs may still not be
generated close to where needed. On the other hand,
where subsystems are synthesised separately, the con-
trolling FSMs, where present, are intrinsically separate
and their states are re-used for each invokation. Prime
examples are trig and log functions, random number
generation and I/O marshalling such as ASCII to/from

floating point. When these components are statelessy axi_GpPo

the tool can simply deploy as many instances as it

likes, guided by metrics, with no growth in the parent <

controller’s complexity.

3) Parallelism: Where a component is instantiated more
than once, these can be used in parallel, providing a
better performance.

4)  Spatial Awareness or Floorplanning: A simple HLS
tool may not be spatially aware. It is more sensible
to take wiring length into account when making
binding decisions. Wiring length is the critical factor
in today’s technology, whether for FPGA, ASIC or
PCB. FPGA s have always had an abundance of flip-
flops. Adder and multiplier density is also no longer
generally an issue either (except for multiply-rich
designs, such as CNNs, that are better addressed with
dedicated synthesis tools rather than HLS [1]). In
the future, thermal limits may increasingly affect
FPGA design approaches. So for general HLS, having
multiple instances of components, spatially localised,
and perhaps less utilised, is a reasonable design point.
This is especially so for multi-FPGA designs.

Component boundaries for incremental compilation need
to be well chosen. Certain boundaries are enforced by FPGA
size in multi-FPGA systems. Other boundaries arise from en-
gineering concepts such as APIs, e.g. for the file system and
maths libraries. Boundaries within user designs are potentially
more flexible. When compiling an object-oriented high-level
language, the object boundary is an intuitive cut point. Where
constant values are passed as an argument to an FU, its
implementation can often be simplified. For instance, multi-
plication by a constant can always be performed more quickly
in hardware than multiplication by a variable (the number of
adders needed is proportional to the number of bits different
from their neighbour and is zero for a power of two). These
differences change the schedule generated by an HLS compiler
and the same level of optimisation cannot be achieved by
mere inter-component constant propagation during back-end
logic synthesis. Hence there are both penalties and benefits
arising from an incremental compilation approach and the
compilation unit must not be overly small. HLS tools typically
have hardwired strength reduction rules that are applied when
instantiating an FU, but for general incremental compilation,
these rules need to be generalised for an imported FU library.
For instance, a+a can be strength reduced to a<<1, replacing
an adder with wiring, and a*5 would be changed to a+(a<<2).

Given that the RTL assembly for each FPGA will be pre-
sented to a monolithic run of the FPGA vendor’s logic synthe-
siser, our tool flow can expect certain inter-block optimisations
to be performed, such as propagating constant inputs into an

KFPGA Programmable Logic (PL)

Programmed

el HLS-Generated
Parameter Hardware Accelerator

File S_AXI_ACP
[l
Q S ] aon :><: Out-of-order
B a AXI-4
AXI [ e—]
Switch

Instantiated FUs | o4

B station 1 |
.. & > B o

DMA
AXI Ports

1 . B station
4]
Store

Start/Stop [ | Abend Design TieOff
Control

syndrome | Serial PR T
(32 bits)| | Directing Namber (unused) T
> Sué)ﬁ_trate ——p
m P S
& )

Fig. 1: Instantiation of a monolithic HLS result on Zyng-like
platform. Programmed I/O serves the director port with an
AXI slave and two in-order load ports and one store port are
multiplexed onto an AXI-4 port for out-of-order service.

off-the-shelf block and removing internal logic that computes
unused outputs. We exploit this later in our automatic stitching
of blocks using relatively heavyweight and standardised inter-
block protocols on the basis that unused handshake nets and
control logic will be deleted.

Figure 1 shows a traditional setup when a single HLS
product (light blue) is instantiated in an FPGA such as Xilinx
Zynqg. Although the HLS compiler will have instantiated
FUs, there are none whose connections range outside the
HLS product. The product has a standardised control and
management interface on the left-hand side. This supports
low-performance host interaction for parameter setting and
start/stop control using progammed I/O. High-bandwidth data
movement uses the numerous load and store stations on the
right that need connecting to main memory. The more stations
it generates, the greater the number of outstanding transactions
on main memory can be and the opportunities for out-of-
order service are increased. With only a few ports, the system
may be latency-limited and not able to exploit the raw bus or
memory bandwidth, but this depends on the predictability of
the appication’s data access patterns as the tool unrolls loops.
In the Figure, two stations are load-only and one is store-only.
The data loaded and stored might be single words, but equally
it could be bursts of consecutive locations. The multiplex of a
number of these ports, implemented with the illustrated AXI
switch, will have multiple outstanding transactions that can
be served out-of-order provided replies are routed back to
originators correctly. ! For cache-consistent operation on Zynq,
all of the traffic must be routed over the so-called ACP hard
connection. Higher throughput is available by direct access to
DRAM using other hardened AXI ports, but the lack of cache
consistency may be a performance penalty where data is being
shared on a fine-grain basis wit the Arm cores (not shown).

IThe Kiwi HLS tool actually generates ports that are a little simpler than
AXI-lite, but these are adapted to AXI-lite using automatically-deployed,
lightweight bus adaptors that are not shown in the figure for clarity and the
concentrating switch accepts AXI-lite on the left-hand side and delivers full
AXT with transaction tags on the right.

Cache-coherent

Store S_AXI_HPJ[0:3]
High-performance



RDY
VLD
VLD RDY
AXI Stream AXI Stream
Target Initiator
Input Port Output Port
DATA > DATA

(S /

Fig. 2: A non-pipelined component wrapped as an AXI-
streaming instantiatable component.

( 2
RDY
VLD
VLD RDY
AXI Stream AXI| Stream
Target Initiator
Input Port Output Port
e DATA
DATA
- Output
holding

register )

.

Fig. 3: A pipelined component wrapped for AXI-streaming with
re-initiation interval of unity.

The available hardened resources vary accorss FPGA families.
Some FPGAs have multiple hardened DMA controllers, such
as AWS F2, which has four.

When an FU is used by a parent, a data transfer protocol is
required. Handshaking nets are needed on any FU that is not
fully-pipelined. A fully-pipelined component is apply to accept
a new argument every clock cycle (initiation interval of unity)
and delivers its result some pre-determined number of clock
cycles later, known as its latency. For instance, block RAMs
found in most FPGA families are available in fully-pipelined
form with a read latency of unity. Power control protocols may
also need to be exercised. Our HLS tool implements a number
of handshake protocols. It will select an appropriate one and
document it in an IP-XACT file written out at the end of block
compilation. Figures 2 and 3 show how such child 1P blocks are
wrapped up to be used as AXI-streaming IP components. The
associated handshake nets are placed around the main synthesis
results that would be present for standalone operation. These
are namely the datapath and the FSM sequencer, or just the
datapath when it is pipelined. This is the difference between
the two Figures. Two other paradigms commonly occur. One
is where the input and output ports are combined and use a
common pair of handshake nets, with the arguments being

conveyed on the active edge of request and the result being
returned on the active edge of the acknowledge. The other
is for simplex sources or sinks that are ‘always-ready’. For
instance, reading a constant from a component simply needs
that component to drive a dedicated output bus with an RTL
literal tie-off. This needs no handshake at all. Similarly, a
postable write that is always accepted needs only the write
strobe direction of the handshake.

II. IP-XACT

IP-XACT is an XML schema allows digital electronic sub-
systems to be described in terms of their bus interfaces
and configurable parameters. It is an IEEE standard with two
editions, the most recent in 2009 [2]. It was originally targeted
for automated configuration and integration of assemblies of
IP blocks and one might imagine it captures most of the
information needed for this to be done as part of an HLS flow.
However, it fails to document many of the fine details required
for the optimised schedulling of operations. This is because it
was intended mainly as the underlying representation for a GUI
tool where port connections are made by hand. The standard
has seen relatively wide adoption (e.g. in Socrates from ARM
and 7P Integrator from Xilinx) and it has been successful in
its aims. It allows for, so-called, vendor-extensions, which are
heavily used in practice. It is the purpose of this paper to kick
off discussion leading to community adoption to address these
issues.

The three forms of IP-XACT document we need to consider
each represent one of:

1)  a bus specification, giving its signals etc;

2) a leaf 1P block data sheet with links to the design
files;

3) an hierarchic component wiring diagram that de-
scribes a sub-system by connecting up or abstracting
leaf components.

The bus specification (or abstraction as they call it) pro-
vides both for transactional modelling and net-level inter-
connection. It supports point-to-point port connections and
broadcast connections. It describes whether a bus needs to be
connected and the default tie-off logic values to apply when it
is left disconnected.

Formal specifications of bus protocols are not described
within IP-XACT. We do not address that in this paper either.
In this work we assume that a number of standard, named,
protocols are embedded in pre-existing blocks and synthesis
tools and so the formal specifications do not need to be con-
veyed between compilation units. However, small variations
over instances of protocols, such as the address and data bus
widths and number of data lanes are reported in standard Tp-
XACT.

III. INCREMENTAL COMPILATION

Our approach to Incremental Compilation is to provide the
infrastructure for a standard build system, such as Make, to be
able to trigger re-compilations once a change has been made.
We do not describe here any automation of the partitioning
of the system into suitable-sized units or automatic creation
of the Makefile. We currently rely on users inserting pragmas



into the application’s high-level source code and creating their
own Makefile. But these aspects can be automated in further
work.

Our system maps method calls in the high-level source code
to busses for arguments and results on the silicon. The busses
typically have handshake nets of various forms, but certain
interfaces do not require any (these being an always ready, read
only port and the arguments and results for a fully-pipelined
component). When a component is edited in its source form,
the HLS tool is re-run on it. If its signature has changed, its
parents may also need to be recompiled. If its silicon area has
significantly increased, our System Integrator tool may need to
be re-run, which, in the worst case, may move blocks between
FPGAS, resulting in several FPGAs needing to be put through
logic synthesis again.

Our approach directly supports passing scalar values be-
tween components over the busses. It also supports shared-
memory between components. This enables object handles to
be passed between components. Shared scalar global variables
are not supported but can be mapped into a degenerate form
of shared memory if desired. Our approach does not explicitly
support a message-passing packet and queue system, but this is
easily built on top in the high-level language using the shared
memory underneath.

Figure 5 illustrates a typical structural set-up arising from
multiple compilation units assembled on a single FPGA. In
detail, the Figure shows a top-level application (primary IP
block) that instantiates a separately-compiled child component
that, in turn, instantiates three grandchildren of two different
types. The children and grandchildren are subsidiary 1P blocks.
They do not do anything unless commanded by a primary
IP block. Each compilation unit connects to its child by an
arg/result port that is customised to the signature of the method
being invoked. It is application-specific (A/S).

In addition, each child component requires access to RAM
resources. In this particular example, the top-level module did
not require RAM access (although it could well have its own
BRAM privately instantiated).

Finally, every component has a directorate port for error
reporting. The primary IP block also receives its run/stop
control via this port.

In order to dynamically select pre-compiled subsystems
for instantiation by an augmented high-level synthesis (HLS)
tool, additional information needs to be recorded. This includes
the presence of combinational paths, whether a component is
mirrorable and certain timing parameters, such as its expected
processing latency and re-initiation delay. The top two sections
of Table I give the extensions included in the IP-XACT files
generated by our HLS tool when it produces a component to
be read in at a later stage of incremental compilation. The
same tags can be added by hand to pre-existing library blocks
from third parties or descriptions of hardened 1P blocks from
FPGA suppliers. We support more than one method call via a
port. For instance, the port might support read, write and reset
methods, with the address bus being shared for both the read
and write methods.

The most important features of a port are already described
in standardised IP-XACT. Whether a protocol is fixed or variable

in latency, always ready, etc., is detected by the presence of
standard attributes and logical net names in the bus abstraction
document. For efficient synthesis we also need to know its
expected latency. This will be precisely its actual latency if
it is a pipelined, constant-latency implementation; otherwise
it will be a nominal value to be used for static schedulling.
When pipelined, the reinitialisation period may be greater
than one: e.g new arguments presented every 3 clock cycles.
When postable it is not necessary to wait for the response
before re-issuing a request. A group of three broadly similar
boolean attributes are cacheable, side-effecting and referen-
tially transparent. A side-effecting method is treated as volatile
and must be invoked even if any result is to be ignored. It
must not be invoked specualtively. A cacheable method needs
only be called once with a given argument. A referentially-
transparent method will always return the same answer for a
given argument and, if not side effecting, need not be invoked
on a component where it has already been invoked on a mirror.
A posted operation requires no response and so requests can
be sent down a long channel without consequence in theory.
However, posted operations are typically writes and sequential
consistency must be observed [3]. An abortable method can
be started without consequence, other than the abort dynamic
energy being consumed. It is useful to know whether inputs
must be held during a multi-cycle operation. Similarly, whether
the outputs are held until they next need to change is useful.
Both of these can save on temporary holding registers in the
caller.

A given IP block that sports several method calls can po-
tentially be invoked re-entrantly. However, hardware resources
inside the implementation may not be sufficiently replicated.
For instance, some of the same floating-point ALUs might be
used. The HLS tool can be instructed over this sort of policy or
may decide itself (we support both). Whichever is used must
be reported so that the parent conforms.

When balancing combinational delays, the parent needs to
know what paths exist through child components. We report
this. When a port is bridged between FPGAs, it is possible for
the combinational delay to go up and/or down. Such bridges
tend to be synchronous with significant sequential delay but
minimal combinational delay, so the final design can end up
being conservative on critical path. The static timing analyser
in the FPGA vendor tools is therefore unlikely to report a
problem. Where many bus connections share a bridge, owing
to instantiated concentrators, again the sequential delay may
be increased.

IV. SYSTEM INTEGRATOR TOOL

As said already, child 1P blocks may also typically require
access to centralised memory resources and control and debug
infrastructure. The layout of their data in shared memories
needs orchestrating to avoid clashes, as in software link editing.
Child 1P blocks may also require other blocks to support them
in an overall dependency tree structure.

To automate all of this assembly, we implemented a tool
called the System Integrator. This tool connects up components
and partitions logic between physical FPGAs. It instantiates
protocol adaptors, concentrators and aggregators. It generates
an hierarchic netlist to wire up the ports on all blocks using pre-



Property

[ Element Name

[

Abbreviated Description

Units

Per-Port attributes used for incremental compilation:

Expected latency

Reinit period

Postable

Cacheable

Side-effecting

Abortable

Abort dynamic energy
Complete dynamic energy
Input hold

Output hold

expected-latency
reinit-latency
postable

reftans
end-in-self
abortable
dynamic-one
dynamic-full
inhold

outhold

How long between args and result.

Minimum interval between new args being presented.

Whether a response needs collecting.

For a method, whether will always return same answer for same args.
A constraint on skipping and order permutation.

Whether the target is happy to only receive the first word of a transaction.

Energy used if aborted.

Energy used if completed.

Whether inputs need to be held while the unit is busy.
‘Whether outputs hold their value until next need to change.

clock cycles
clock cycles
boolean
boolean
EIS group
bool
fJ
J
boolean
boolean

Per-block (component) attributes used for incremental compilation:

No-re-enter matrix
Combinational matrix

excluded-method
comb-path

For a method, which others may not be councurrently invoked.
List of from/to pairs of logic delays.

method names
FO4 delays

Per-block (component) attributes used by SoC Render System Integrator:

Area

Static Power
Frequency
Portable/Nailed
Mirrorable

Off-chip memory cap
Logical Memory Bank
Bandwidth

Priority

Domain name
Allocation granularity

area
static-power
maxclock
nailed
mirrorable
heapspace
memgroup

.. TBD ...
priority
domain
granularity

IP Block Silicon Area.
Power consumed when idle.
Maximum Clock Frequency Estimate.

Whether the block must be on a named die. Otherwise it can be dynamically deployed.

Whether the number of instances is flexible.

For each logical address space, the amount of store needed.

For each load and store port, name of logical address space.
For a port, the expected average data transfer rate.

For a port, how important it is that this port has low latency.

Name of an equivalence class within which data conservation must be maintained.
Round up to be applied when summing disjoint shared uses of a resource (memoryspace normally).

NAND?2 equivalents
nW
Hz
Physical FPGA name
arity or ‘true’
bytes
logical bank id
bits per second
dimensionless
string
bytes

TABLE I: The 1p-XACT Extensions Used in the current version of the tool.

defined rules based on concepts of data conservation within a
domain of interconnection.

The automatic generation axioms are:

The number of primary IP blocks (one normally),
the number of FPGA chips and the number of static
external ports are all statically set in the blade manifest
(initial configuration). They are all given instance
names. Their plurality may not not be adjusted by

The plurality of all other components may be freely
adjusted by System Integrator, but it may not replicate
state-bearing components (unless they have mirror

The 1P-XACT max-masters and max-slaves attributes

are obeyed: ports are either multicast or one-to-one.

A target port on a service component may be needed
or may be left disconnected. But all initiating ports
must be connected to a matching target port.

[ ]
System Integrator.
[ ]
rules defined in the future).
[ ]
[ ]

The resulting design should give a low value for
an overall goal function. This will tend to minimise
the number of additionally instantiated components
and typically causes them to be wired in tree-like
structures to minimise latency.

The general flow for the tool is illustrated in Fig. 4. Its
inputs are the name of a primary IP block for the top-level, a
search path for lookup of the so-called subsidiary and auxiliary
TP blocks, and a description of the target platform described in a
file blade-manifest.xml. It makes a placement, instantiating
auxiliary blocks as needed and then writes out a master RTL file
for each FPGA. The whole design is also reported with three
further files. These are an IP-XACT report, a graphical plot and
a human-readable report that tabulates utilisation metrics and
the memory base addresses for each module.

Subsidiary
IP Blocks

System Integrator
Planner

Primary
IP Block

Resource
Summary

System Integrator
Wiring Generator

Fig. 4: System Integrator Tool: Inputs and Outputs.

The blade manifest lists the number of FPGAs available on
the platform, describing their size, interconnection pattern and
hardened 1P ports and capabilities. It is an XML file crafted by
hand or using an XML editor.

The tool can potentially use any standard optimisation
procedure to minimise its global cost metric. The current
implementation uses a constructive placer that is run about
50 times using different pseudo-random seeds with the best
solution and spread being reported. A critical consideration
is whether any 1P blocks themselves are good candidates for
consequential re-synthesis. There are three reasons for re-
synthesising a component:

1) General time/space fold: Standard HLS tools have
considerable freedom to produce large and fast de-
signs or smaller designs that require a greater number
of clock cycles.

2)  Degree of Port Mirroring: Where a subsidiary block



can be mirrored, the parent needs to be synthesised
with a determined number of master ports when these
are connected one-to-one with the children. Moreover,
the number of load, store and load/store stations on
the component can also be manually controlled with
our tool.

3) Move to variable-latency handshakes: Where a
block instantiates a fixed-latency child connection,
but then that connection has to be converted to
variable-latency owing to inter-FPGA bridges (or per-
haps being in a server farm in the future).

The System Integrator’s main job is to generate a design
that includes the primary IP block and all the support it needs.
Starting from the primary IP block, it adds the subsidiary 1P
blocks referred to in its port list. These may have further
application-specific ports (as shown in Figure 5) that in turn
need to be supported. Hence it iterates at this stage. Using
its constructive placer, it puts each block on a named FPGA
where there is sufficient area remaining. Connections that span
multiple dies have their necessary protocol adaptors instan-
tiated straightaway. Where a bridge link is shared between
bus connections, concentrators are added (addressing tags
are later created in a global colouring step). Any placement
attempt where any hard limit is breached is aborted without
further study. Hard limits include any FPGA being full, as just
mentioned, or a guaranteed throughput or latency (sequential or
combinational) cannot be met. The placer calls on its pseudo-
random number generator each time a non-obvious decision is
made, such as which inter-FPGAbridge or memory bank to use
for the next wiring step. Possibly a genetic algorithm would
neatly deliver good overall designs, but we have not explored
that.

As illustrated in Figure 5, there are three forms of bus
connection understood by System Integrator:

1) A Primary Application-Specific Interface enables
a component to invoke functions using a custom
bus structure on a child component that has a re-
verse interface of the same type. In our HLS system,
such bus specifications are emitted automatically as
augmented IP-XACT bus abstraction documents. The
same file is emitted when either side is compiled,
with the second simply overwriting the first. When
the boundary reflects a class definition in the high-
level language, the file name and interface name
are the same as the class name. Such a class can
have any number of methods and each method will
use some set of the busses (or ‘ports’ as they are
called in IP-XACT) making up the interface. This sort
of connection is also used for connections to the
standard libraries of maths functions.

2) A Service Interface provides access to main memory
resources for the component. The component is free
to instantiate its own RAMs where it wishes, such as
FPGA block RAM, but larger regions need wiring to
DRAM resources. These are either statically instanti-
ated on the server blade or else accessed over AXI or
PCIe on some platforms.

3) A Directing Interface provides start/stop control
of the primary application and collects status and
abnormal end codes from subsidiary blocks. It may

also provide debug inspection.

Broadcast connections are only currently supported for and
used for static constant values, such as a zone-ID tie off that
gives the current layout zone (aka FPGA) number when needed
for tagging data. Everything else is a one-to-one connection
that is only fanned-in or out by instantiating concentrators and
aggregators.

The System Integrator understands the forms of 1P block
given in Table II.

Every port on any 1P block has both an IP-XACT abstraction
type (i.e. the name of the protocol) and also a so-called domain
name. The abstraction names may be standard bus protocols
or auto-generated names for application-specific interfaces
that are based on a digest of the interface signature, in the
same way that C++ performs linking. The domain names for
the application-specific interface between a subsidiary block
and its parent is unique and simply ensures a one-to-one
connection. But much more freedom exists over the service
interfaces. These are generally left blank by the HLS tool
(unless the user has inserted as specific pragma), but owing
to the structural differences between directorate, memory and
other ports, there is no danger of confusion. For each domain,
the System Integrator wires everything together, instantiating
protocol convertors for inter-FPGA bridging as it goes, thereby
achieving conservation of data.

A connection between two components is valid when all
of the following conditions hold:

e Kind Name: the protocol kinds have the same name.
Differences in the other three IP-XACT naming at-
tributes, vendor, version and library name, are warned
about but otherwise ignored.

e  Connection Rule: A one-to-one connection must have
two peers: one an initiator and the other a target. A
multicast connection must have exactly one initiator.

e  Parameters Match: IP-XACT parameters are key/value
pairs, and these must match apart from any that the
user specifically annotates (on the command line) as
allowed to mismatch. This ensures, for instance, that a
32-bit data bus is not connected to 64-bit data bus. To
overcome simple mismatches of any complexity, one
side needs to be manually renamed by the user and
an additional protocol adapator added on the search
path that encompasses the adaption, such as ignoring
unused address bits. Automation of this is expected in
the future.

e  Unified Domains: The connection domains must ei-
ther already match under the current unification or else
a fresh, non-contradictorary, unification is added for
the remainder of the design construction.

Many subsidiary 1P blocks are mirrorable. The number
of instances in use is baked into the HLS compilation of
the parent block but the System Integrator can explore the
performance benefits of altering the number of instances and
report derivatives. It can also try alternative versions of the
same component that have been compiled with a different
time/space tradeoff. There may be second-order consequences



° Primary IP Block — a top-level component of the design, typically the HLS result from the main application, that embodies an algorithm or processes

and generates work for the all the other components.

° Subsidiary IP Block — an IP-block with slave ports that performs an operation. Examples are RAMs, ALUs and HLS outputs from earlier parts of
an incremental compilation process. Subsidiary IP blocks may be nailed (statically-instantiated) to a given physical FPGA with fixed instance count,
such as a DRAM controller, or may be portable and dynamically deployable on any die.

. Inter-FPGA bridge — statically-instantiated connection between two named FPGAs. This is the one component that is allowed to have its ports in

different layout zones.

. Aggregator — for combining ports (typically memories) into a logical entity. These demultiplex based on a chop of an address field.
. Concentrator Pairs — consisting of a tagging muxer and an associated demuxer. The tags are created by our tool and hardwired onto input ports
during instantiation and demultiplexing is based on the tag values. Where the available word width is sufficient to carry the data and the tag, these

are purely combinational for most bus standards.
. Protocol Adaptor — for converting between bus standards.

. Zone id generator — provides a single, static, broadcast, always-ready, output port number containing the current chip or layout zone number.

TABLE II: Types of Component (IP block) Understood by System Integrator.

of altering the number of mirrors in the parent, but there is no
obvious reason why there should be.

Once a design has placed all of the subsidiary 1P blocks,
it moves on to the second class of our three classes of port
connection which is the service interfaces. The main (currently
only) service interface used serves random-access storage. Our
tool assumes all storage is interchangeable and hence spatial
locality is the principle aim of placement. (In practice, some
DRAM banks might have a different or non-existent cache
structure that we need to countenance in future.)

The algorithm for the service ports: For each domain name,
while there is an unconnected initiator, create a connection for
it to a suitable serving resource. If the serving resource is an
external port that is currently disconnected, a direct connection
can be made. But if the external port is already bound, an
additional concentrator or aggregator will be instantiated or
the arity of an existing one will be increased.

Domain names for physical memory banks may be pro-
vided in the blade manifest or else they are dynamically
labelled by the System Integrator with unique names. The
pre-named approach allows the user to force associations
by inserting the same names in pragmas in his high-level
code. The System Integrator tool allocates aggregators and
concentrators to ensure all service ports are served somehow. It
generates a memory map for each resource as it goes (§IV-B).

Once all the service ports are connected, the tool moves
on to the directing and debug ports. Their logic is typically
minimal but the number of nets needed may vary between 5
and 100 depending on the services provided, varying from a
simple abend syndrome for run-time errors, through to some
output logging facilities, using virtual LEDs, or full debug
access to programmer view registers. The file system access
is also via the director at the moment, but this may be
changed to be a network-on-chip or other service port. The
principle reason for making the director the lowest priority in
our constructive placement is that it tends to be the lowest
bandwidth and also amenable to being neglected if area issues
are pressing. We have not implemented an automatic neglect
facility so far.

There are a number of units of measure used by System
Integrator to guide its operation and for final reporting. Each
has an addition rule for combining. Summation is performed
over the tree-structure created. The overall system cost metric,
that is the optimisation goal, is a weighted sum of the units of

Key

Primary Application
W) Primary A/S Interface;

Start/Stop
Arg/Result-A and Debug

N/ service Interface

K Directing Interface

4 " -
Child A instance
Arg/Result-A ArgiResult-C
Child A logic child C
(External instatiation)
Internal Debug RAM
instantiations
Arg/Result-B Arg/Result-B
ChildB 1 Child B 2
Debug RAM
Y, Directorate Mux

AXI-4 Switch

X

Server Blade DRAM

Directorate Mux

K

Server Blade
Director PIO Stub
Fig. 5: Characteristic interconnection pattern showing instan-

tiation of subsidiary blocks to serve a primary interface and
service inter-wriring for debug and memory access.

Read/Write
access local host.

measure at the primary IP block. Some weights are normally
zero (e.g. the amount of DRAM space used) and others can be
fine-tuned by the user on the command line. The units of mea-
sure are as abstract as possible in the internal implementation
which means that others can easily be added. They fall into
classes according to their summation rule. Static power is one
of the few that is a simple real number with straightforward
addition. The measure units in use are:

e  Static Power — power in nanowatts when idle.

e Area — area in NAND2 equivalents for the system.
This is a vector with separate totals maintained for
each floorplanning zone, where a floorplanning zone
is currently just a physical FPGA.

e Memory Size — size in bytes of a memory compo-
nent or assembly of memory banks when aggregated
by auxiliary 1P block. Or needed memory size on the
backside of a concentrator. The concentrator addition



function has two forms: shared and disjoint. Where
ports are providing access to a shared memory there
is no increase in size, but where disjoint memories are
being stored in one resource there is the normal linear
sum, after rounding up to allocation granularity.

e Average Throughput
load through a channel.

— expected or supportable

e  Guaranteed Throughput — throughput guaranteed
to be available: this is required for hard real-time
interfaces that must not over-run or under-run.

e Sequential Delay — number of clock cycles typical
between request and response. Since the latency of
inter-FPGA links is several clock cycles, this metric is
the most sensitive indicator of whether a mapping of
subsidiary IP blocks to physical FPGAs is a good one.

e Combinational Delay — our markup on auxiliary
block ports enables designs that happen to combine a
lot of combinational logic to be poorly scored. The
combinational delay addition function is non-linear.
It follows the pattern of a static timing analyser that
sums the delays of items placed in tandem but applies
the maximum operator at a point of confluence.

e Dynamic Energy — not used at the moment.

As reported in the lower section of Table I, every block is
accompanied with non-functional meta-info that gives an area,
latency, throughput and energy cost using IP-XACT extensions.

The system synthesis is guided by a goal function, which
is a scalar metric that factors area, delay and energy according
to a weights that the user can adjust as desired.

All interfaces are amenable to being bridged and so can
be routed over inter-FPGA links, but latency figures are
clearly extended and those that were reported as fixed-latency
generally convert to variable-latency. A change in latency may
affect the choice of best schedule for the invoking parent,
meaning it should be recompiled. A change from fixed to
variable latency certainly means the parent must be recompiled,
since additional holding registers may need to be instantiated
for it and other resources.

The service and directing interfaces are amenable to con-
centrating (aka multiplexing) as well. In general, they could
be connected to a network-on-chip, as in the LEAP operating
system [4].

Also shown in Figure 5, is that a component instance can be
internal or external. External instantiation is where the instance
is inside the current (instantiating) module, in the style of a
traditional hierarchic design. An external instance is instead
formed outside the current module, resulting in additional
bindings in the signature of the current module. Although an
external instantiation is more verbose, its principle advantage
is where the instance has a one or more of service ports that
would instead need to be conveyed through the current instance
signature.

Other minor tasks that the System Integrator supports are:

1)  Allocation of AXI tag numbers which are fed into
concentrator component ports as RTL tie-offs to literal
constants.

2) Tie-off of unused slave ports on concentrators that
have a greater arity than is needed.

3) Memory base address allocation (§1V-B).

4)  Writing an IP-XACT design document for the com-
pleted system.

5)  Writing a SystemC version of the completed system.

A. Blackbox Components

The ability to import separately-compiled components also
forms the basis of a black box import mechanism for third-
party IP blocks. Instantiating a black box containing third-party
P is no different from instantiating a separately-synthesised
module. The clock cycles used to operate this component will
be fully parallelised alongside other operations concurrently
scheduled as part of high-level synthesis.

Third-party 1P blocks and existing hardware interfaces are
typically described in terms of net-level timing waveforms
or formal specifications thereof. To exploit these components
from a high-level language via HLS, wrappers need to be
manually written and added to the local library. Example third-
party black-box components are inter-FPGA links and network
ports, the AXI connections to the rest of the SoC on the Zynq
platform (www.xilinx.com), the CAMs on the NetFPGA boards
[5] and the new LUTs as FIFO mode in some FPGA families.

The following example shows the typical structure of such
a wrapper. An alternative implementation containing a high-
level behavioural model of the resource is also typically needed
so the high-level program can run on its own outside the
synthesis framework. They both would have the same external
signature. The example here shows one direction of the Xilinx
LocalLink protocol which is the same in essence as AXI-
streaming. Data is transferred on each clock edge where strobe
and ready are both asserted (low). The wrapper is compiled
once and its resulting IP-XACT file is placed on a folder on the
IP block search path. The IP-XACT file contains the filename for
the RTL. The RTL is generally very small and can be largely
combinational, in which case it is elided with the initiating
logic during logic synthesis.

class blackbox_wrapper_tx_demo

{
[OutputWordPort("wdata")] static byte wdata;
[OutputWordPort("n_wstrobe")] static bool n_wstrobe;
[InputWordPort("n_rdy")] static bool n_rdy;
[OutputWordPort("n_sop")] static bool n_sop;
[OutputWordPort("n_eop")] static bool n_eop;

[Remote("protocol=HFAST")]
public static void SendPacket(byte [] darray, int len)
{

PauseControlSet (PauseControl.hardPauseEnable);

for (int 1=0; i<len; i++)

{
n_wstrobe = !true;
n_sop = !(i==0);
n_eop = !(i==len-1);

wdata = darray[i];
while (!n_rdy) Pause();
Pause();
}
n_wstrobe = !false;

}




i Key Tagging Mux/Demux Pair

P € ‘

Protocol Convertor Pair

Serdes Serdes

Fig. 6: Inter-FPGA bridge structure: typical setup. The SERDES
instances, as described manually in the blade manifest, are
utilised by the System Integrator’s instantiation of protocol
adaptors and concentrators as required.

In this example, markup around the static variables contains
instructions to make net-level connections. Actual device pin
numbers can be included in the attributes. With this HLS tool,
the initial set of pause mode to ‘hard’ means that logic will
be scheduled to consume a clock edge precisely where control
flow encounters on of the Pause calls. Such adaptors can also
be manually written in RTL if preferred.

As illustrated by the SERDES pair in Figure 6, inter-FPGA
bridges are bi-directional and have four ports for binding by
the System Integrator as it creates an inter-FPGA network. The
two ends of each simplex channel have the same domain
name, but the bandwidth and latency for the two channels can

be described differently in the associated IP-XACT description.

Each of the four bus interfaces is AXI streaming with a
specified word width, giving the lossless FIFO paradigm. Each
direction of the pair is kept matched by the System Integrator,
as it adapts the hardware resource to its needs. The adaption
steps are just the same as may be freely used elsewhere in the
assembly: they are inserting a protocol adaptor pair on each
side or inserting a concentrator pair consisting of a tagging
mux and an inverse de-multiplexing component that processes
and removes the tags. There is a set of standard protocol
adaptors corresponding to all basic method signatures of up
to 3 arguments with and without a result in our standard
distribution. Others can be created by hand as needed and
added to the library, or they can be macro-generated on demand
in the future. Glue logic for these purposes can also be
synthesised from a non-deadlocking, data-conserving product
of protocol state machines by known techniques, such as [6].

B. Memory Map Management (Link Editing)

A shared memory resource that is serving a plurality of
disjoint requirements needs memory management to statically

or dynamically allocate disjoint memory to each component.

This is essentially a link editing problem.

The HLS tool will instantiate small local memories using

FPGA BRAM. Larger memories must be allocated to off-chip
banks. On the Amazon F1-16 platform, 8 FPGAs have a total of
32 separate DRAM banks, each of size 16 GB. Any number of
these can be aggregated using programmable logic into a single
addressable space with the remainder being kept separate.
Hence the number of logical banks and physical banks may
differ. In our approach, as stated earlier, each memory allocated
by the high-level application code can optionally be marked up
with a memory domain (aka bank) name. Where these match
named banks in the blade manifest, the System Integrator will
allocate memory space of appropriate size in the named bank.
The amount of memory needed in each bank is reported in
the IP-XACT file for the block using our heapspace extension.
Where the user has not given names, the System Integrator uses
an intelligent algorithm to aggregate sufficient un-mentioned
banks to form a logical memory as needed and then serve the
memory needs of blocks from their nearest such logical bank.

The base address selected by System Integrator is inserted
into the programmable logic via the RTL parameter override
mechanism (denoted with hash signs in Verilog) ready for
when the die is compiled by the FPGA logic synthesiser.

On the Zynq platform, there is a single memory controller
that serves both the ARM cores and the programmable logic.
In the simplest approach to using this system, the operating
system must be configured to not use memory above a certain
address and that address becomes the base address for regions
allocated by System Integrator.

An alternative to compile-time allocation is for the operat-
ing system to invoke a kernel malloc() of physical DRAM and
for the application to pass that base address, by programmed
I/O over the directing interface, into a register inside the (or
each) hardware memory server. The hardware memory server
is a pre-defined IP block used in our HLS system for dynamic
heap allocation.

V. PRIOR AND FURTHER WORK .

The basic tradeoff between partitioning before and after
HLS were explored in [7]. They conclude that partitioning
before high-level synthesis is the better approach, which is our
approach. There is a vast literature covering the partitioning
of software over heterogeneous and homogeneous multi-core
computing platforms (see for example [8]). Static analysis
generally needs to be strongly augmented with profile-directed
feedback to select a good partitioning and memory system
design. Currently we are using manual annotations of expected
memory traffic at each port, but we will automate this in the
near future based on extrapolation from small test runs.

A number of extensions to IP-XACT have been proposed in
the past. For instance, energy and area extensions are proposed
by [9]. In turn, those authors cite other extensions for automatic
device driver generation and so on. We do not know of any
work where IP-XACT has been extended for automatic HLS link
editing as we here do. But kind peers and reviewers, please
let us know.

Our contribution is two proposed sets of extensions to the
IP-XACT standard for community adoption. One set is needed
for IP-XACT-based incremental HLS compilation and the other
for completely automatic system assembly and partition over



multiple cards. Both sets are implemented in our prototype
tool chain that is available for open source download.

So far, we have not automated as many aspects of the
design flow as is potentially possible. In particular, where an
IP block needs to be recompiled as a result of the System
Integrator’s actions or decisions, or because the system has
come out too big to fit on the available substrate. It is up to
the user to add the flag settings or additional pragma attributes
to the compilation stage of that 1P block and to manually
recompile it. This must be iterated until the whole system
builds.

Also, we have not, so far, explored more sophisticated
algorithms and metrics for guiding the IP block placement and
structure of the interconnect. For instance, when bandwidth use
figures and operation activation counts have been measured or
estimated, these can be fed into the planning stage. But no
substantial change to the design flow or current implementation
should be needed.

Creating some forms of network-on-chip is an emergent
behaviour from System Integrator, but it will not currently
create a ring network. Rings are commonly used in practice,
providing full connectivity with minimum of logic. To create
a formal ring network an additional component type for
the ring ‘station’ should be added to those understood and
suitable implementations added to the IP library. The System
Integrator would then route the ring(s) over the inter-chip
bridges with a sensible toplogy. The services needed from the
network would be extracted as before, using custom adpators,
also automatically selected from the the IP library, based on
matching bus abstraction type.

Current status: a demo of the integrator tool was presented
at FPL-2017. IP-XACT input and output phases that implement
our extensions are implemented in the HPR L/S library and
accessed by various tools implemented in that library, such as
Kiwi, Toy Bluespec, HPR Sytem Integrator and Joiner. 2023
note: incremental HLS experiments are now being conducted
in the BlueParrot compiler. See parent web page for links to
these projects.

REFERENCES

[1] M. Motamedi, P. Gysel, V. Akella, and S. Ghiasi, “Design space
exploration of fpga-based deep convolutional neural networks,” in 2016
21st Asia and South Pacific Design Automation Conference (ASP-DAC),
Jan 2016, pp. 575-580.

[2] “IEEE/IEC international standard - IP-XACT, standard structure for
packaging, integrating, and reusing ip within tool flows,” IEC 62014-4
IEEE Std 1685-2009, pp. 1-373, March 2015.

[3] N. Ramanathan, S. T. Fleming, J. Wickerson, and G. A. Constantinides,
“Hardware synthesis of weakly consistent c concurrency,” in
Proceedings of the 2017 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, ser. FPGA °17. New
York, NY, USA: ACM, 2017, pp. 169-178. [Online]. Available:
http://doi.acm.org/10.1145/3020078.3021733

[4] A.M,F K, Y. Hj, and E. J, “The LEAP FPGA operating system,” in
24th International Conference on Field Programmable Gate Arrays and
Applications, Sept 2014.

[S] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,
“Netfpga sume: Toward 100 gbps as research commodity,” IEEE Micro,
vol. 34, no. 5, pp. 32—41, Sept 2014.

[6] D. J. Greaves and M. J. Nam, “Synthesis of glue logic, transactors,
multiplexors and serialisors from protocol specifications,” in 2010 Forum
on Specification Design Languages (FDL 2010), Sept 2010, pp. 1-7.

(7]

[8]

[9]

V. Srinivasan, S. Govindarajan, and R. Vemuri, “Fine-grained and coarse-
grained behavioral partitioning with effective utilization of memory and
design space exploration for multi-FPGA architectures,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 9, no. 1, pp.
140-158, Feb 2001.

S. A. Ostadzadeh, R. J. Meeuws, K. Sigdel, and K. Bertels, “A multipur-
pose clustering algorithm for task partitioning in multicore reconfigurable
systems,” in 2009 International Conference on Complex, Intelligent and
Software Intensive Systems, March 2009, pp. 663-668.

S. Vinco, M. Lora, E. Macii, and M. Poncino, “IP-XACT for smart
systems design: extensions for the integration of functional and extra-

functional models,” in 2016 Forum on Specification and Design Lan-
guages (FDL), Sept 2016, pp. 1-8.



