Design Space Exploration for Programmable Fabrics

Daniel Bates, Alex Bradbury and Robert Mullins

Motivation

Challenges:

- Power limits require a smaller percentage of transistors to be active
- Need to accept device failures
- Poor interconnect scaling
- Amdahl's law
- Design and verification cost
- Complexity
- Greater levels of control flow in new embedded applications

Aims:

- Explore the design space between FPGAs and many-core processors
- Design a simple, robust, anypurpose fabric
- Achieve power-efficiency by specialising:
 - execution datapaths
 - communication
 - memory subsystem
- Purely software-programmable

Overview

Our architecture, Loki, is an all-purpose, robust, homogeneous computing fabric. It consists of hundreds or thousands of individual cores and memories interconnected by a hierarchical, chip-wide network. It is targeted at embedded computing applications.

Characteristics:

Loki aims to combine the flexibility of an FPGA approach with the high performance and low power of an ASIC, while remaining a good target for high-level languages. The network-centric design blurs the boundaries between cores, allowing them to share resources.

Architecture

Each core features:

- Simple, 4-stage pipeline
- Register-mapped channel-ends
- Instructions grouped into packets
- No program counter
- Indirect register access support

Other details:

- Tiled, homogenous architecture
- Composable memory blocks

Homogeneity simplifies:

- Design validation
- Fault-tolerance
- Place and route
- Application mapping
- Scaling

Current status:

- SystemC simulator implemented
- Developing benchmarks

Target Application Areas

A range of embedded applications will be targeted, with a particular emphasis on those which may become common in the future, or which are traditionally difficult to parallelise.

Traditional:

- Video/image/audio processing
- Wireless network protocols
- Encryption/decryption
- Common operations
- Searching, sorting, FFT

Emerging:

- Face detection and recognition
- Emotion recognition
- Voice recognition
- Data mining
- Neural networks

Execution Patterns

Software Specialisation

Benefits of heterogeneity can be achieved by specialising the fabric in software:

- Give each core a very small section of code
- Identify unneeded functionality in each core
- Tailor the memory system to the application
- Group many specialised cores and memories together to form a virtual processor

The fabric can be reconfigured at runtime by simply executing different code.

Design Space Exploration

Determine the best possible design for any combination of constraints:

- Parametrise the design as much as possible
- Eventually, explore using architectural transformations
- Perform a wide sweep over the design space
 Using the results of exploration, determine the best targets for optimisation and/or innovation

The design space is too large to explore thoroughly:

- It must be carefully constrained, sampled and pruned
- Interesting approaches to exploration include machine learning, genetic algorithms, tabu search, and simulated annealing

Daniel.Bates@cl.cam.ac.uk Alexander.Bradbury@cl.cam.ac.uk Robert.Mullins@cl.cam.ac.uk