
Expose parallelism

Overlay generation and
load-balancing

Layout ("place and route")

Communication scheduling

Motivation

Explore the design space between
FPGAs and many-core processors
Our goal is a simple, robust, any-
purpose fabric
Power efficiency is achieved by
specialising:
 - execution datapaths
 - communication
 - memory subsystem
Purely software-programmable

Power limits require a smaller
percentage of transistors to be
active
Need to accept device failures
Poor interconnect scaling
Amdahl's law
Design and verification cost
Complexity
Greater levels of control flow in
new embedded applications

Overview

Characteristics:
Loki aims to combine the flexibility of an FPGA approach with the high
performance and low power of an ASIC, while remaining a good target for
high-level languages. The network-centric design blurs the boundaries
between cores.

Loki is an all-purpose, robust, homogeneous computing fabric. It consists
of hundreds or thousands of individual cores and memories
interconnected by a chip-wide network. It is targeted at embedded
computing applications.

Communication-exposed architecture allows fine-grained control
Group cores together at run-time to form more powerful processors or
accelerators

Chip

Tile

Core

Memory

Specialising execution:
•
•

Current status:
Harnessing run-time data:

Architecture

Instruction
Packet
Cache

Fetch
Logic

Decode

Receive
Channel-end

Table

Register
Read

Register
Write

Send
Channel-end

Table

ALU

Instruction
Packet FIFO

Immediate
Sign-extend

Instructions
from network

Requests to
network

Data from
network

Instructions/data
to network

Each core features:
 • Simple, 4-stage pipeline
 • Register-mapped channel-ends
 • Instructions grouped into packets
 - No program counter
 • Indirect register access support

Homogeneity simplifies:
 • Design validation
 • Fault-tolerance
 • Place and route
 • Application mapping

SystemC simulator implemented
Developing benchmarks
Working on an LLVM/clang-based
compiler

Other details:
 • Tiled, homogenous architecture
 • Composable memory blocks

Execution Patterns
Local Data-driven Remote

Behaviour is like that of
an ordinary RISC core.

e.g. Streaming
datapaths, or program a
core to act as a router or

memory arbiter.

e.g. One core takes
control of another to
set up SIMD or VLIW

virtual processors.

instructions

data data

data
data

instructions

data

instructions

data

Design Space Exploration

Parametrise the design as much as possible
 - Eventually, explore using architectural transformations
Perform a wide sweep over the design space
Using the results of exploration, determine the best targets for
optimisation and/or innovation

Configuration

P
er

fo
rm

an
ce

Estimation
Simulation

It must be carefully constrained, sampled and pruned
Interesting approaches to exploration include machine learning, genetic
algorithms, tabu search, and simulated annealing

Determine the best possible design for any combination of constraints:
•

•
•

The design space is too large to explore thoroughly:
•
•

•
•

Compilation
Language: Loki-C (inspired by ARM's SoC-C). Supports streaming level
parallelism through additions such as code and data placement
annotations. Further extensions will add data-level parallelism and other
features.
Implementation: LLVM compiler infrastructure with a clang-based
frontend.

Discover parallelism in all its forms
Exploit static analyses and
programmer annotations

Assign tasks to cores, possibly
acting as virtual VLIW, SIMD or
data-driven execution engines
Choose when to dedicate cores as
helper engines such as DMA,
schedulers, smart cache
controllers, and predictors
Generate memories appropriate
for the application, e.g.
scratchpads or caches

Minimise the distance between
frequently communicating code
Construct communication
infrastructure, e.g. software
routers or FIFOs
Generate and optimise pipeline
control code

Generate code to hide
communication latency wherever
possible
Perform final optimisations. These
may involve localised layout
changes

As in logic synthesis, the compilation process may be influenced by
user-specified constraints (e.g. performance, area, power).

Using the results of run-time execution allows the compiler to make
better decisions
Cores may be used to collect statistics to dynamically improve overlay
performance and adapt to changes in input data

•
•
•

Challenges:
•

•
•
•
•
•
•

Aims:
•

•

•

•

•

•

•

•

•

•

•

•

•

•

Daniel Bates, Alex Bradbury, and Robert Mullins

Loki: A Polymorphic Array of Simple Processors
Computer Laboratory
Computer Architecture Group

Supported by EPSRC grant EP/G033110/1

0: Read input0
1: -
2: -
3: Read input1
4: -
5: -
6: Work
7: Work
8: Work
9: Work

0: Read input0
1: -
2: -
3: Work
4: Work
5: Read input1
6: Work
7: Work

pipeline {
 for (int i=0; i < 100; ++i) {
 int x = foo();
 if (i % 2 != 0) {
 fifo_put(&f, x);
 fifo_get(&f, &x);
 bar(x);
 }
 ...

In addition to the usual phases of compilation, the compiler will:

2010-05-04

