

 1

Configurable memory systems for embedded

many-core processors

Daniel Bates, Alex Chadwick and Robert Mullins

HIP3ES 18/01/2016

Motivation: ever-changing tradeoffs

Source: Feature dimension reduction slowdown, by Handel Jones

Heterogeneity won't be optimal forever

• Rising complexity

• Rising transistor costs

90nm 65nm 40nm 28nm 20nm 14nm
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

C
o

s
t
p

e
r

m
il
li
o

n
 g

a
te

s
/$

CPU

G

AcceleratorsCPU

CPU

CPU

CPU

CPU

G G G

G G G G

G G G G

G G G G

The tradeoffs in computer architecture are forever changing.

The current trend (particularly in mobile) is heterogeneity. Many

different pieces of logic are included on-chip, which are all good for

different purposes. This is a good direction to head at the moment

– there is a need for performance and energy efficiency which can't

be satisfied by continually building more-complex cores.

However, tradeoffs are continuing to change, and we can't keep

going in this direction forever. As our designs increase in

complexity, they become more expensive to design and validate.

Optimising programs to use a varying array of accelerators is

challenging. As transistors get increasingly unreliable, each

different component will need to be made fault tolerant individually.

We can also no longer rely on an ever-increasing number of

transistors, since transistors are now getting more expensive as

they get smaller. Instead, we must make better use of the

transistors we have.

We're exploring what comes next: homogeneity. We propose

having small, identical cores for energy efficiency, and lots of them

(hundreds). This brings with it its own problems: what should these

cores look like and how can we use so many?

Making homogeneity efficient

• Specialise in software, not hardware

• We want resources to be

• Accessible

• Bypassable

• Composable

• Today's focus is on the memory system

We don't want to lose the benefits of heterogeneity when we move

to a homogeneous system – we still need to be able to specialise

to improve performance and reduce energy consumption. We must

now do this in software, however.

We use an ABC philosophy when choosing appropriate designs.

Accessible: if resources elsewhere on the chip can be accessed

easily, the local component can be made smaller, simpler, and

lower-energy.

Bypassable: reduce overheads by not using logic if it isn't needed.

Composable: if there are many more components on chip, they are

going to be smaller. Allow them to be grouped together at run time

to make up for this. Also, since our components are accessible, we

want to be able to simplify software by having a uniform interface,

regardless of what is being accessed.

Resources include cores, memory banks, register files, even

memory/network bandwidth. For this work, we focus on the

memory system.

Related work

Many projects in this field:

• Elm

• Raw/Tilera

• Rigel

• TRIPS

• …

None have the same focus on

flexibility and cooperation between

cores.
granularity →

fl
e

x
ib

ili
ty

 →

FPGA TileraLoki

GPU

multi-core

Rigel

ASICs

DSPs

The ideas I'm going to talk about apply to most architectures, but

I'm going to use one particular architecture as a concrete example.

The reasons for this will become clear at the end of the talk.

There are several dimensions missing from this plot...

performance, energy consumption, cost, etc.

It's meant to give a flavour of where this work (Loki) is in the

design-space: a fine-grained but general-purpose architecture. Not

an accelerator.

You can see us as being somewhere between an FPGA and a

multi-core processor because we have lots of identical units

repeated across the chip, but ours are considerably smaller than

those of typical multi-cores'. We also have similarities with a GPU.

We've seen that GPUs are getting more general-purpose and that

multi-cores are increasing the number of cores they have – Loki

could be a potential convergence point.

Key feature: almost everything on chip communicates over an

efficient on-chip network. This gives us access to other

components, allows us to bypass them and go straight to others

(e.g. skip cache and access off-chip memory controller), and

software is responsible for composing resources in an application-

specific way.

Loki architecture: chip and tile

Core 0 Core 7...

Bank 0 Bank 7...
requests data instructions

5x

router

1mm

Memory Memory

I/O I/O

I/O I/O

Memory Memory

Here's how we've arranged our many cores.

We have a hierarchical structure, with identical tiles stamped out

across the chip, each connected to their nearest neighbours. Each

tile is about 1mm² (in a 40nm process) and contains 8 cores and 8

shared L1 cache banks.

There is also a lot of interconnect. Fast, low-energy, flexible

interconnect is key to allowing cores to co-operate effectively. The

on-chip network extends to the chip interface, including

components like memory controllers and I/O.

We make use of end-to-end flow control to avoid any possibility of

deadlock. If a message is put onto the network, it is guaranteed

that it will eventually be removed.

Channel map table

addu r11, r14, r15 → 3

Channel map table

Core 5

Tile (2,4)

Channel 3

Credits: 4

Cores 1,3,4,5

This tile

Channel 3

Memory banks 0-3

This tile

Return data to core 2, channel 1

Bypass L1/L2?

Use as scratchpad?

Here is the component which manages the network connections. It

is called the channel map table, and each core has one. It

describes which component or components to access, and how to

access them. This is one of the key components for

reconfiguration.

Almost all Loki instructions include the option to send their result

over the network as well as storing it in the local register file. The

channel map table converts this logical address into a physical

address.

Data can be sent to an arbitrary set of cores on the local tile, a

single core on a remote tile, or a memory bank on the local tile.

Memory access has the most configuration options: banks can be

composed into larger virtual groups, with cache lines distributed

evenly across them; they can be bypassed entirely to allow access

to lower levels of the memory hierarchy; and they can be treated

as either cache banks or scratchpads. Scratchpads bypass the tag

check mechanism when it is not required – previous work has

shown that this can save about 10% of total chip energy.

The channel map table can be updated with a single instruction in

a single clock cycle – it is basically a mini register file.

L1 configuration – 8 banks

a
2
ti
m

e
0
1

a
iff

tr
0
1

a
if
ir
f0

1

a
iif

ft
0
1

a
u
tc

o
r0

0

b
a
s
e
fp

0
1

b
it
m

n
p
0
1

c
a
c
h
e
b
0
1

c
a
n
rd

r0
1

c
o
n
v
e
n
0
0

fb
it
a
l0

0

h
u
ff
d
e

id
c
tr

n
0
1

iir
fl
t0

1

o
s
p
fv

2

p
n
tr

c
h
0
1

p
u
w

m
o
d
0
1

rg
b
c
m

y
0
1

rg
b
h
p
g
0
1

rg
b
y
iq

0
1

ro
u
te

lo
o
k
u
p

rs
p
e
e
d
0
1

tb
lo

o
k
0
1

tc
p
m

ix
e
d

v
it
e
rb

0
0

G
e
o
m

e
a
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8 banks unified

8 banks split

R
e

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

Unified cache penalty: 3%

Split cache penalty: 2%

Here we compare performance when all 8 cache banks are shared

between instructions and data, and when they are split evenly with

4 banks for instructions and 4 banks for data. We're using the

EEMBC benchmark suite.

For many benchmarks, the configuration doesn't really matter –

either there is plenty of cache available in either case, or neither

cache is sufficient.

For the remaining benchmarks, there is no single best

configuration – some prefer the unified cache and some prefer the

split cache. iirflt (infinite impulse response filter) shows the most

variation, with a 20% performance drop when using a unified

cache.

A configurable system is able to choose the best configuration in

each case. On average, we lose a couple of percent performance

by fixing the cache configuration for all benchmarks.

These results are for when a single program has access to all

memory banks on a tile. However, there are 7 other cores on that

tile which might be competing for resources. We'll next perform the

same experiment, but with half as much cache available.

L1 configuration – 4 banks

a
2
ti
m

e
0
1

a
iff

tr
0
1

a
if
ir
f0

1

a
iif

ft
0
1

a
u
tc

o
r0

0

b
a
s
e
fp

0
1

b
it
m

n
p
0
1

c
a
c
h
e
b
0
1

c
a
n
rd

r0
1

c
o
n
v
e
n
0
0

fb
it
a
l0

0

h
u
ff
d
e

id
c
tr

n
0
1

iir
fl
t0

1

o
s
p
fv

2

p
n
tr

c
h
0
1

p
u
w

m
o
d
0
1

rg
b
c
m

y
0
1

rg
b
h
p
g
0
1

rg
b
y
iq

0
1

ro
u
te

lo
o
k
u
p

rs
p
e
e
d
0
1

tb
lo

o
k
0
1

tc
p
m

ix
e
d

v
it
e
rb

0
0

G
e
o
m

e
a
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 banks unified

4 banks split

R
e

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

Unified cache penalty: 3% 1%

Split cache penalty: 2% 10%

Of course, on average, performance is lower when less cache is

available. Perhaps less expected is that the variability of each

benchmark increases – choosing the best configuration is more

important when there are fewer resources available. We can now

lose up to 10% performance on average if we are not able to adjust

the configuration for each benchmark.

Again, iirflt is the most variable benchmark, but interestingly, this

time it performs better with a unified cache. With 8 banks, the

unified cache was 20% worse, but with 4, it's almost 70% better.

So we can't just choose a single configuration and scale it up and

down – the optimal configuration depends on both the benchmark

and the resources available to it.

We expect the difference between configurable and fixed caches to

increase as resources become more constrained. This could be

due to more programs competing for the same memory banks, or

larger applications with larger working sets.

L1 configuration – competing applications

a
2
ti
m

e
-a

2
ti
m

e

a
2
ti
m

e
-a

iff
tr

a
2
ti
m

e
-a

if
ir
f

a
2
ti
m

e
-a

iif
ft

a
2
ti
m

e
-b

it
m

n
p

a
iff

tr
-a

iff
tr

a
iff

tr
-a

if
ir
f

a
iff

tr
-a

iif
ft

a
iff

tr
-b

it
m

n
p

a
if
ir
f-

a
if
ir
f

a
if
ir
f-

a
iif

ft

a
if
ir
f-

b
it
m

n
p

a
iif

ft
-a

iif
ft

a
iif

ft
-b

it
m

n
p

b
it
m

n
p
-b

it
m

n
p

G
e
o
m

e
a
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Shared unified

Shared split

Optimal

R
e

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

Unified cache penalty: 19%

Split cache penalty: 27%

70% fewer cache misses

Less data movement

Less off-chip memory access

(Figures are relative to the benchmarks running in isolation, with all

8 banks, and assume both benchmarks have equal priority. In

practice, there are a range of optimal configurations, depending on

the applications' relative priorities.)

The performance implications of choosing the best cache

configuration are higher than ever. If our architecture didn't support

configuration, performance would drop 20-30% on average. This

situation will only get worse as more benchmarks run at once, or as

applications get larger and put more pressure on the cache

system.

As well as the performance benefits of configuration, there are also

energy benefits. When we configure the cache to suit the programs

running, we can reduce the miss rate by over 70% on average (a

few of the benchmarks are over 95%). This means there is less

data movement, less replacement of cache data, and in particular,

less access to the more-expensive lower levels of the memory

hierarchy.

L1 configuration – competing applications

a2time01

aifftr01

aifftr01

aifftr01

aifirf01

aifirf01

a2time01aifftr01

aifirf01aifirf01

a2time01

tcpmixed

Memory bank

Instructions only

Instructions and data

Data only

Not used

We've only been looking at single programs running in isolation so

far; the configuration space when there are multiple benchmarks

running simultaneously is much more complex.

Here are a few different optimal cache configurations for different

pairs of programs. We can see that almost every possible decision

is best some of the time. The top three pairs prefer to completely

isolate themselves from each other, and some prefer unified

caches, some prefer split, some share the cache fairly, and some

allocate more memory to one of the benchmarks.

The bottom three pairs of programs all work best when sharing

some portion of their cache. This gives them access to potentially

more cache space, but they may experience a higher latency if the

other program is already using a particular bank. Again, we see

different configurations performing best – some share their

instruction caches, some share their data caches, some share

banks fairly, and some allocate more banks to one program than

the other.

L2 directory

address

bitmask (configurable)

Responsible tile Replacement bits

(1,1) 0000

(1,2) 1000

(2,1) 0010

(2,2) 0011

address

→ forward request to tile (X,Y)

We've looked at the L1 cache, so let's now look at the L2. Each

Loki tile has a directory which is consulted whenever there is an L1

cache miss. The directory tells which tile on the chip is responsible

for caching a particular memory address, or points directly to an

off-chip memory controller. The directory can also optionally

replace some bits of the address to implement a simple virtual

memory system.

At the target tile, all memory banks are accessed in parallel to form

an 8-way set-associative cache.

The directory takes two instructions to update – one with the entry

to update, and one with the data to store.

We now have many of the same options as we had with the L1

cache. We can change the amount of cache available, we can

choose whether items are cached together or separately, etc.

L2 configuration

0 1 2 3 4

0.9

1

1.1

1.2

1.3

1.4

1.5 a2time01

aifftr01

aifirf01

aiifft01

autcor00data_2

basefp01

bitmnp01

cacheb01

canrdr01

conven00data_1

fbital00data_2

huffde

idctrn01

iirflt01

ospfv2

pntrch01

puwmod01

rgbcmy01

rgbhpg01

rgbyiq01

routelookup

rspeed01

tblook01

tcpmixed

viterb00data_1
L2 tiles

R
e

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

Here's how performance of the benchmarks scales as the number

of L2 cache tiles increases.

As might be expected, different benchmarks have different

sensitivities to the amount of cache available, but most show a

modest improvement. It might be useful to use a tile to provide

extra L2 cache if the tile is otherwise unused, but it probably isn't

worth taking the cache away from a running program unless this

one is high priority.

There are a couple of interesting cases here. Some of the

benchmarks show a slight drop in performance when given an L2

cache. This is because they don't use any amount of cache very

well, so adding an extra level to the memory hierarchy just

increases latency. With a configurable memory system, we are not

forced into using superfluous caches.

The TCP benchmark only shows a benefit once two tiles are

available, and then goes on to have the largest improvement of all.

Some benchmarks need their whole working set to be cached

before a cache is of any use to them. If we are able to allocate

cache in a fine-grained way, we can provide exactly the required

amount, and maximise the resources available for other purposes.

Case study – AES counter mode

f

k
0

f

k
1

f

k
2

f

k
3

f

k
4

f

k
5

f

k
6

f

k
7

f

k
8

f'

k
9

in out

Implementation Cycles/byte Speed

1 core 64 7MB/s

8 cores 10 46MB/s

We're now going to look at a case study of AES encryption, and

explore more of Loki's configuration options in an application-

specific way.

AES takes a block of data, and applies the same function to it

again and again, but with a different encryption key each time. The

final version of the function is also very slightly different.

Optimised code with an 8-bank unified cache can process one byte

every 64 clock cycles. We can parallelise the application by

working on different blocks of data simultaneously, and we get a

6.4x speedup on 8 cores.

Case study – AES counter mode

Implementation Cycles/byte Speed

1 core 64 7MB/s

8 cores 10 46MB/s

1 core + custom L1 35 13MB/s

8 cores + custom L1 6.5 69MB/s

Input/

output

General-purpose

instruction/data

cache

Lookup

table

1

Lookup

table

2

Lookup

table

3

Lookup

table

4

Lookup

table

5

1.85x

1.51x

Here's an optimised cache configuration. We have two banks

which serve instructions and hold general-purpose data like the

stack and global variables. The final bank is dedicated to the

input/output data.

The middle 5 bolded banks hold various lookup tables. These

banks are accessed in scratchpad mode – the data is initialised at

the start of the program and is then read-only. By using

scratchpads, we bypass any unnecessary tag checks. We know

that all tag checks are unnecessary here because the data fits

entirely in the banks. Memory addresses are also simpler – they

start at 0 instead of some offset provided by the memory allocator,

so the code can be simplified.

The effects of simpler code and better caching behaviour combine

to almost double performance for a single core, and give a 50%

improvement for 8 cores.

Case study – AES counter mode

f

k
0

f

k
1

f

k
2

f

k
3

f

k
4

f

k
5

f

k
6

f

k
7

f

k
8

f

k
9

correctin out

f

k
0

f

k
1

f

k
2

f

k
3

f

k
4

f

k
5

f

k
6

f

k
7

f

k
8

f'

k
9

in out

If we're aware of how our memory system is performing, we might

consider making minor changes to our programs to allow further

memory system improvements. This isn't an unusual concept –

cache blocking is often used to improve cache performance.

 Here, we replace the slightly different final function with a function

which is identical to all the previous ones, plus a simple correction.

Case study – AES counter mode

f

k
0

f

k
1

f

k
2

f

k
3

f

k
4

f

k
5

f

k
6

f

k
7

f

k
8

f

k
9

correctin out

General-

purpose

instruction/

data

cache

Input Output

Lookup

table

1

Lookup

table

2

Lookup

table

3

Lookup

table

4

Lookup

table

5

Then, rather than giving each core identical code, we can distribute

the software pipeline across all the cores neatly. Giving each core

a smaller piece of the program improves caching behaviour and

means we can reduce the general-purpose instruction/data cache

down to one memory bank.

One core is dedicated to providing input data, and since we have a

spare memory bank, we can now dedicate it to storing that input

data.

The next five cores all perform two rounds of the function each.

Each core only needs to access two of the encryption keys, so they

can be saved in local registers, and we need to access the cache

less often.

We then have our simple correction function and the output core

(now with a memory bank dedicated to output data).

When in a steady state, there are no cache misses at all, so

performance is completely predictable.

(We have 2xf on core 6 and correction on core 7 instead of 1xf on

core 6 and 1xf' on core 7 because it reduces code size. 4 different

types of core vs 5.)

Case study – AES counter mode

Implementation Area Power Cycles/byte Speed

1 core 0.5mm2 0.01W 64 7MB/s

8 cores 1mm2 0.06W 10 46MB/s

1 core + custom L1 0.5mm2 0.01W 35 13MB/s

8 cores + custom L1 1mm2 0.06W 6.5 69MB/s

Custom tile 1mm2 0.06W 5.1 88MB/s

16 custom tiles 16mm2 1W 0.32 1400MB/s

Intel Core i7-980X 60mm2 34W 1.3 2500MB/s

ARM9TDMI 6.6mm2 0.12W 45 3.3MB/s

ATI Radeon HD5650 104mm2 19W 1.9 340MB/s

NVIDIA GeForce 8800 GTS 484mm2 135W 17.1 95MB/s

We get a further 30% improvement by customising the whole tile in

this way. The customised tile can then be repeated across the chip.

Here are a few other published figures. We have a couple of CPUs

and a couple of GPUs. None get close to Loki's performance per

Watt or performance per unit area. The Intel processor has very

good performance because it has specialised instructions

specifically for computing AES. Loki has performed all of its

specialisation in software.

Summary

• Different configurations are best in different situations

• Variance increases as resources are constrained further

• Configuration requires fine-grained allocation of resources

• Accessible, Bypassable, Composable

• Intelligent resource allocation reduces data movement

There is no one-size-fits-all configuration. If we are to make the

best use of our resources, we will need a different configuration in

each situation.

Configuration requires fine-grained allocation of resources. For

this, hardware structures must be small. This has the side effect of

making them cheap to access.

We should be able to bypass any features which we don't need.

For example, Loki doesn't need to have any cache beyond the L1,

and even that can be bypassed. Scratchpad mode bypasses the

tag check mechanism in cases where it isn't needed.

Fine-grained allocation also allows us to provide applications with

“just enough” resources to function well, leaving as many

resources as possible unused (for energy savings) or available for

other purposes.

If we choose a good memory configuration, we greatly reduce the

amount of data movement required. This improves performance

and reduces energy consumption.

Advertisement

We are taping out a 128 core Loki

test chip and plan to share

development boards, tools, etc.

with the community.

Please contact me if you are

interested!

This is why I've been specifically mentioning Loki. As well as the

memory system, Loki allows cores to co-operate in many

interesting ways – see our previous work.

 23

Configurable memory systems for embedded

many-core processors

Daniel Bates, Alex Chadwick and Robert Mullins

HIP3ES 18/01/2016

Daniel.Bates@cl.cam.ac.uk

www.cl.cam.ac.uk/~rdm34/loki/

