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Motivation: ever-changing tradeoffs

Source: Feature dimension reduction slowdown, by Handel Jones

Heterogeneity won't be optimal forever

• Rising complexity

• Rising transistor costs
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The tradeoffs in computer architecture are forever changing.

The current trend (particularly in mobile) is heterogeneity. Many 

different pieces of logic are included on-chip, which are all good for 

different purposes. This is a good direction to head at the moment 

– there is a need for performance and energy efficiency which can't 

be satisfied by continually building more-complex cores.

However, tradeoffs are continuing to change, and we can't keep 

going in this direction forever. As our designs increase in 

complexity, they become more expensive to design and validate. 

Optimising programs to use a varying array of accelerators is 

challenging. As transistors get increasingly unreliable, each 

different component will need to be made fault tolerant individually.

We can also no longer rely on an ever-increasing number of 

transistors, since transistors are now getting more expensive as 

they get smaller. Instead, we must make better use of the 

transistors we have.

We're exploring what comes next: homogeneity. We propose 

having small, identical cores for energy efficiency, and lots of them 

(hundreds). This brings with it its own problems: what should these 

cores look like and how can we use so many?



  

 

Making homogeneity efficient

• Specialise in software, not hardware

• We want resources to be

• Accessible

• Bypassable

• Composable

• Today's focus is on the memory system

We don't want to lose the benefits of heterogeneity when we move 

to a homogeneous system – we still need to be able to specialise 

to improve performance and reduce energy consumption. We must 

now do this in software, however.

We use an ABC philosophy when choosing appropriate designs.

Accessible: if resources elsewhere on the chip can be accessed 

easily, the local component can be made smaller, simpler, and 

lower-energy.

Bypassable: reduce overheads by not using logic if it isn't needed.

Composable: if there are many more components on chip, they are 

going to be smaller. Allow them to be grouped together at run time 

to make up for this. Also, since our components are accessible, we 

want to be able to simplify software by having a uniform interface, 

regardless of what is being accessed.

Resources include cores, memory banks, register files, even 

memory/network bandwidth. For this work, we focus on the 

memory system.



  

 

Related work

Many projects in this field:

• Elm

• Raw/Tilera

• Rigel

• TRIPS

• …

None have the same focus on 

flexibility and cooperation between 

cores.
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The ideas I'm going to talk about apply to most architectures, but 

I'm going to use one particular architecture as a concrete example. 

The reasons for this will become clear at the end of the talk.

There are several dimensions missing from this plot... 

performance, energy consumption, cost, etc.

It's meant to give a flavour of where this work (Loki) is in the 

design-space: a fine-grained but general-purpose architecture. Not

an accelerator.

You can see us as being somewhere between an FPGA and a 

multi-core processor because we have lots of identical units 

repeated across the chip, but ours are considerably smaller than 

those of typical multi-cores'. We also have similarities with a GPU. 

We've seen that GPUs are getting more general-purpose and that 

multi-cores are increasing the number of cores they have – Loki 

could be a potential convergence point.

Key feature: almost everything on chip communicates over an 

efficient on-chip network. This gives us access to other 

components, allows us to bypass them and go straight to others 

(e.g. skip cache and access off-chip memory controller), and 

software is responsible for composing resources in an application-

specific way.



  

 

Loki architecture: chip and tile

Core 0 Core 7...

Bank 0 Bank 7...
requests data instructions

5x

router

1mm

Memory Memory

I/O I/O

I/O I/O

Memory Memory

Here's how we've arranged our many cores.

We have a hierarchical structure, with identical tiles stamped out 

across the chip, each connected to their nearest neighbours. Each 

tile is about 1mm² (in a 40nm process) and contains 8 cores and 8 

shared L1 cache banks.

There is also a lot of interconnect. Fast, low-energy, flexible 

interconnect is key to allowing cores to co-operate effectively. The 

on-chip network extends to the chip interface, including 

components like memory controllers and I/O.

We make use of end-to-end flow control to avoid any possibility of 

deadlock. If a message is put onto the network, it is guaranteed 

that it will eventually be removed.



  

 

Channel map table

addu r11, r14, r15 → 3

Channel map table

Core 5

Tile (2,4)

Channel 3

Credits: 4

Cores 1,3,4,5

This tile

Channel 3

Memory banks 0-3

This tile

Return data to core 2, channel 1

Bypass L1/L2?

Use as scratchpad?

Here is the component which manages the network connections. It 

is called the channel map table, and each core has one. It 

describes which component or components to access, and how to 

access them. This is one of the key components for 

reconfiguration.

Almost all Loki instructions include the option to send their result 

over the network as well as storing it in the local register file. The 

channel map table converts this logical address into a physical 

address.

Data can be sent to an arbitrary set of cores on the local tile, a 

single core on a remote tile, or a memory bank on the local tile. 

Memory access has the most configuration options: banks can be 

composed into larger virtual groups, with cache lines distributed 

evenly across them; they can be bypassed entirely to allow access 

to lower levels of the memory hierarchy; and they can be treated 

as either cache banks or scratchpads. Scratchpads bypass the tag 

check mechanism when it is not required – previous work has 

shown that this can save about 10% of total chip energy.

The channel map table can be updated with a single instruction in 

a single clock cycle – it is basically a mini register file.



  

 

L1 configuration – 8 banks
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Unified cache penalty: 3%

Split cache penalty: 2%

Here we compare performance when all 8 cache banks are shared 

between instructions and data, and when they are split evenly with 

4 banks for instructions and 4 banks for data. We're using the 

EEMBC benchmark suite.

For many benchmarks, the configuration doesn't really matter – 

either there is plenty of cache available in either case, or neither 

cache is sufficient.

For the remaining benchmarks, there is no single best 

configuration – some prefer the unified cache and some prefer the 

split cache. iirflt (infinite impulse response filter) shows the most 

variation, with a 20% performance drop when using a unified 

cache.

A configurable system is able to choose the best configuration in 

each case. On average, we lose a couple of percent performance 

by fixing the cache configuration for all benchmarks.

These results are for when a single program has access to all 

memory banks on a tile. However, there are 7 other cores on that 

tile which might be competing for resources. We'll next perform the 

same experiment, but with half as much cache available.



  

 

L1 configuration – 4 banks
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Unified cache penalty: 3%     1%

Split cache penalty: 2%   10%

Of course, on average, performance is lower when less cache is 

available. Perhaps less expected is that the variability of each 

benchmark increases – choosing the best configuration is more 

important when there are fewer resources available. We can now 

lose up to 10% performance on average if we are not able to adjust 

the configuration for each benchmark.

Again, iirflt is the most variable benchmark, but interestingly, this 

time it performs better with a unified cache. With 8 banks, the 

unified cache was 20% worse, but with 4, it's almost 70% better.

So we can't just choose a single configuration and scale it up and 

down – the optimal configuration depends on both the benchmark 

and the resources available to it.

We expect the difference between configurable and fixed caches to 

increase as resources become more constrained. This could be 

due to more programs competing for the same memory banks, or 

larger applications with larger working sets. 



  

 

L1 configuration – competing applications
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Unified cache penalty: 19%

Split cache penalty: 27%

70% fewer cache misses

Less data movement

Less off-chip memory access

(Figures are relative to the benchmarks running in isolation, with all 

8 banks, and assume both benchmarks have equal priority. In 

practice, there are a range of optimal configurations, depending on 

the applications' relative priorities.)

The performance implications of choosing the best cache 

configuration are higher than ever. If our architecture didn't support 

configuration, performance would drop 20-30% on average. This 

situation will only get worse as more benchmarks run at once, or as 

applications get larger and put more pressure on the cache 

system.

As well as the performance benefits of configuration, there are also 

energy benefits. When we configure the cache to suit the programs 

running, we can reduce the miss rate by over 70% on average (a 

few of the benchmarks are over 95%). This means there is less 

data movement, less replacement of cache data, and in particular, 

less access to the more-expensive lower levels of the memory 

hierarchy.



  

 

L1 configuration – competing applications

a2time01

aifftr01

aifftr01

aifftr01

aifirf01

aifirf01

a2time01aifftr01

aifirf01aifirf01

a2time01

tcpmixed

Memory bank

Instructions only

Instructions and data

Data only

Not used

We've only been looking at single programs running in isolation so 

far; the configuration space when there are multiple benchmarks 

running simultaneously is much more complex.

Here are a few different optimal cache configurations for different 

pairs of programs. We can see that almost every possible decision 

is best some of the time. The top three pairs prefer to completely 

isolate themselves from each other, and some prefer unified 

caches, some prefer split, some share the cache fairly, and some 

allocate more memory to one of the benchmarks.

The bottom three pairs of programs all work best when sharing 

some portion of their cache. This gives them access to potentially 

more cache space, but they may experience a higher latency if the 

other program is already using a particular bank. Again, we see 

different configurations performing best – some share their 

instruction caches, some share their data caches, some share 

banks fairly, and some allocate more banks to one program than 

the other.



  

 

L2 directory

address

bitmask (configurable)

Responsible tile Replacement bits

(1,1) 0000

(1,2) 1000

(2,1) 0010

(2,2) 0011

address

→ forward request to tile (X,Y)

We've looked at the L1 cache, so let's now look at the L2. Each 

Loki tile has a directory which is consulted whenever there is an L1 

cache miss. The directory tells which tile on the chip is responsible 

for caching a particular memory address, or points directly to an 

off-chip memory controller. The directory can also optionally 

replace some bits of the address to implement a simple virtual 

memory system.

At the target tile, all memory banks are accessed in parallel to form 

an 8-way set-associative cache.

The directory takes two instructions to update – one with the entry 

to update, and one with the data to store.

We now have many of the same options as we had with the L1 

cache. We can change the amount of cache available, we can 

choose whether items are cached together or separately, etc.



  

 

L2 configuration

0 1 2 3 4

0.9

1

1.1

1.2

1.3

1.4

1.5 a2time01

aifftr01

aifirf01

aiifft01

autcor00data_2

basefp01

bitmnp01

cacheb01

canrdr01

conven00data_1

fbital00data_2

huffde

idctrn01

iirflt01

ospfv2

pntrch01

puwmod01

rgbcmy01

rgbhpg01

rgbyiq01

routelookup

rspeed01

tblook01

tcpmixed

viterb00data_1
L2 tiles

R
e

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

Here's how performance of the benchmarks scales as the number 

of L2 cache tiles increases.

As might be expected, different benchmarks have different 

sensitivities to the amount of cache available, but most show a 

modest improvement. It might be useful to use a tile to provide 

extra L2 cache if the tile is otherwise unused, but it probably isn't 

worth taking the cache away from a running program unless this 

one is high priority.

There are a couple of interesting cases here. Some of the 

benchmarks show a slight drop in performance when given an L2 

cache. This is because they don't use any amount of cache very 

well, so adding an extra level to the memory hierarchy just 

increases latency. With a configurable memory system, we are not 

forced into using superfluous caches.

The TCP benchmark only shows a benefit once two tiles are 

available, and then goes on to have the largest improvement of all. 

Some benchmarks need their whole working set to be cached 

before a cache is of any use to them. If we are able to allocate 

cache in a fine-grained way, we can provide exactly the required 

amount, and maximise the resources available for other purposes.



  

 

Case study – AES counter mode
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Implementation Cycles/byte Speed

1 core 64 7MB/s

8 cores 10 46MB/s

We're now going to look at a case study of AES encryption, and 

explore more of Loki's configuration options in an application-

specific way.

AES takes a block of data, and applies the same function to it 

again and again, but with a different encryption key each time. The 

final version of the function is also very slightly different.

Optimised code with an 8-bank unified cache can process one byte 

every 64 clock cycles. We can parallelise the application by 

working on different blocks of data simultaneously, and we get a 

6.4x speedup on 8 cores.



  

 

Case study – AES counter mode

Implementation Cycles/byte Speed

1 core 64 7MB/s

8 cores 10 46MB/s

1 core + custom L1 35 13MB/s

8 cores + custom L1 6.5 69MB/s

Input/

output

General-purpose 

instruction/data 

cache

Lookup

table

1

Lookup

table

2

Lookup

table

3

Lookup

table

4

Lookup

table

5

1.85x

1.51x

Here's an optimised cache configuration. We have two banks 

which serve instructions and hold general-purpose data like the 

stack and global variables. The final bank is dedicated to the 

input/output data.

The middle 5 bolded banks hold various lookup tables. These 

banks are accessed in scratchpad mode – the data is initialised at 

the start of the program and is then read-only. By using 

scratchpads, we bypass any unnecessary tag checks. We know 

that all tag checks are unnecessary here because the data fits 

entirely in the banks. Memory addresses are also simpler – they 

start at 0 instead of some offset provided by the memory allocator, 

so the code can be simplified.

The effects of simpler code and better caching behaviour combine 

to almost double performance for a single core, and give a 50% 

improvement for 8 cores.



  

 

Case study – AES counter mode

f

k
0

f

k
1

f

k
2

f

k
3

f

k
4

f

k
5

f

k
6

f

k
7

f

k
8

f

k
9

correctin out

f

k
0

f

k
1

f

k
2

f

k
3

f

k
4

f

k
5

f

k
6

f

k
7

f

k
8

f'

k
9

in out

If we're aware of how our memory system is performing, we might 

consider making minor changes to our programs to allow further 

memory system improvements. This isn't an unusual concept – 

cache blocking is often used to improve cache performance.

 Here, we replace the slightly different final function with a function 

which is identical to all the previous ones, plus a simple correction.



  

 

Case study – AES counter mode
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Input Output

Lookup

table

1

Lookup
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Then, rather than giving each core identical code, we can distribute 

the software pipeline across all the cores neatly. Giving each core 

a smaller piece of the program improves caching behaviour and 

means we can reduce the general-purpose instruction/data cache 

down to one memory bank.

One core is dedicated to providing input data, and since we have a 

spare memory bank, we can now dedicate it to storing that input 

data.

The next five cores all perform two rounds of the function each. 

Each core only needs to access two of the encryption keys, so they 

can be saved in local registers, and we need to access the cache 

less often.

We then have our simple correction function and the output core 

(now with a memory bank dedicated to output data).

When in a steady state, there are no cache misses at all, so

performance is completely predictable.

(We have 2xf on core 6 and correction on core 7 instead of 1xf on 

core 6 and 1xf' on core 7 because it reduces code size. 4 different 

types of core vs 5.)



  

 

Case study – AES counter mode

Implementation Area Power Cycles/byte Speed

1 core 0.5mm2 0.01W 64 7MB/s

8 cores 1mm2 0.06W 10 46MB/s

1 core + custom L1 0.5mm2 0.01W 35 13MB/s

8 cores + custom L1 1mm2 0.06W 6.5 69MB/s

Custom tile 1mm2 0.06W 5.1 88MB/s

16 custom tiles 16mm2 1W 0.32 1400MB/s

Intel Core i7-980X 60mm2 34W 1.3 2500MB/s

ARM9TDMI 6.6mm2 0.12W 45 3.3MB/s

ATI Radeon HD5650 104mm2 19W 1.9 340MB/s

NVIDIA GeForce 8800 GTS 484mm2 135W 17.1 95MB/s

We get a further 30% improvement by customising the whole tile in 

this way. The customised tile can then be repeated across the chip.

Here are a few other published figures. We have a couple of CPUs 

and a couple of GPUs. None get close to Loki's performance per 

Watt or performance per unit area. The Intel processor has very 

good performance because it has specialised instructions 

specifically for computing AES. Loki has performed all of its 

specialisation in software.



  

 

Summary

• Different configurations are best in different situations

• Variance increases as resources are constrained further

• Configuration requires fine-grained allocation of resources

• Accessible, Bypassable, Composable

• Intelligent resource allocation reduces data movement

There is no one-size-fits-all configuration. If we are to make the 

best use of our resources, we will need a different configuration in 

each situation.

Configuration requires fine-grained allocation of resources. For 

this, hardware structures must be small. This has the side effect of 

making them cheap to access.

We should be able to bypass any features which we don't need. 

For example, Loki doesn't need to have any cache beyond the L1, 

and even that can be bypassed. Scratchpad mode bypasses the 

tag check mechanism in cases where it isn't needed.

Fine-grained allocation also allows us to provide applications with 

“just enough” resources to function well, leaving as many 

resources as possible unused (for energy savings) or available for 

other purposes.

If we choose a good memory configuration, we greatly reduce the 

amount of data movement required. This improves performance 

and reduces energy consumption.



  

 

Advertisement

We are taping out a 128 core Loki 

test chip and plan to share 

development boards, tools, etc. 

with the community.

Please contact me if you are 

interested!

This is why I've been specifically mentioning Loki. As well as the 

memory system, Loki allows cores to co-operate in many 

interesting ways – see our previous work.
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