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Measuring Network Conditions in Data Centers
Using the Precision Time Protocol

Diana Andreea Popescu, University of Cambridge, Andrew W. Moore, University of Cambridge

Abstract—Increased network latency and packets losses can
affect substantially application performance. Due to the scale
of data centers, custom network monitoring tools have been
developed to measure network latency and packet loss. In this
paper, we use the Precision Time Protocol (PTP) to estimate
one-way delay and to quantify packet loss ratios. We propose
PTPmesh as a cloud network monitoring tool which uses PTPd as
a building block. We present an analysis of PTPmesh latency and
packet loss measurements collected in ten data centers from three
cloud providers. Our findings reveal different latency, latency
variance, packet loss and path symmetry characteristics across
data centers. To foster further research in this area, we make
our dataset available at [3].

Index Terms—Data Centres, Network Latency, Packet Loss,
Precision Time Protocol.

I. INTRODUCTION

Network latency matters for certain distributed applications
even in small amounts, affecting their application performance.
While some data center applications simply process and trans-
fer data, many applications are latency-sensitive, such as Web
search [4], [5], social networking [4], [5], ML frameworks [6]
or key-value stores [7]. These applications have stringent
latency requirements, due to being interactive (search engine,
social network) or due to their synchronous communication.
Changes in network latency can lead to significant drops in
application performance for latency-sensitive applications [8]–
[10]. Even though in recent years network performance has
improved substantially in the cloud, network latency variability
is still common in data centers [11]. In order to ensure
the best application performance, one needs to be able to
continuously measure the network latency across paths in
data centers. Having up-to-date network latency values helps
in tracking network SLAs for applications and in quickly
finding failures [12], [13]. These monitoring challenges can be
addressed using a network monitoring system for data centers
(§II-B). The system should be able to measure network latency
across network paths and to detect packet losses, as these have
a huge negative impact on application performance [12], [13].

In this paper, we investigate the use of the Precision Time
Protocol (PTP) through an open source software implementa-
tion PTPd [14], to measure network conditions in order to use
it as a building block for a data center network monitoring
system. We validate the use of the Precision Time Protocol
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Fig. 1: PTP protocol.

(PTP) through small-scale experiments for estimating network
latency and packet loss. We propose PTPmesh as a network
monitoring tool for data centers, whose building block is
PTPd [14]. To validate the use of PTPmesh under real data
center network traffic, we carry out a measurement study
in different cloud providers (Amazon AWS, Google Cloud
Platform, and Microsoft Azure) in ten data centers in different
regions across the world, highlighting their characteristics
regarding latency magnitude, latency variance and packet loss.
PTPmesh is easy to deploy on cloud tenants’ VMs, making it a
feasible tool for cloud tenants to obtain network performance
statistics without significant overhead and without needing
access to any custom hardware at the end-host or in the
network from the cloud providers. The statistics offered by
PTPmesh can be used to determine normal network conditions,
and to detect anomalies after determining the baseline.

II. BACKGROUND AND RELATED WORK

A. The Precision Time Protocol (PTP)

The IEEE 1588 Precision Time Protocol (PTP) [15] is a
standard protocol used to synchronise clocks over a network
and it can achieve sub-microsecond precision. The master
clock provides the reference time for the slave clocks. A
grandmaster is chosen from the available clocks in the net-
work. The grandmaster will be the root of a tree formed out
of devices that are PTP-enabled. Each element of the tree is
both a slave to its parent and a master for its children.

There are several types of PTP clocks. The simplest type
is the ordinary clock, which is an end device that has only
one network connection, and can act as a master or a slave. A
boundary clock has a slave port, receiving the time from the
master clock, and master ports, disseminating the time to other
slaves. Another type of clock is the transparent clock, which
timestamps incoming and outgoing messages and updates the
correction field in the messages to account for the delay across
the device. The mechanisms used by the last two types of
clocks ensure the scalability of PTP networks.

The PTP protocol message sequence is depicted in Figure 1.
A PTP master sends a Sync message. The time when the Sync
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message was sent (T1) is recorded at the master and sent to
the slaves. If the master does not have the ability to embed T1
in the Sync message, it sends an additional message after the
Sync message, Follow Up, that contains T1. A PTP slave, or
client, records the time when it received a Sync message (T2).
The difference between the send and receipt times represents
the master-to-slave delay, dm2s:

dm2s = T1 − T2 (1)

A PTP slave sends a Delay Request message. The slave
records the time when the Delay Request message was sent
(T3), while the master records the receipt time (T4). The
difference between the send and receipt times of the Delay
Request messages represents the slave-to-master delay, ds2m.
The master will reply with a Delay Response message which
contains the receipt time T4, thus:

ds2m = T3 − T4 (2)

By assuming that the propagation delays master-to-slave
and slave-to-master are symmetric, which usually translates
to paths being symmetric, the one-way delay is computed as
half of the sum of the two delays.

OWD =
dm2s + ds2m

2
(3)

The time difference between the master and slave clocks
represents the clock offset from master and is computed as a
difference between the master-to-slave delay and the one-way
delay.

offset = dm2s − OWD =
dm2s − ds2m

2
(4)

In the case that the master-to-slave and slave-to-master de-
lays are asymmetric (due to network congestion for example),
the clock offset will suffer perturbations and the precision of
the clock synchronisation will be affected.

The messages sent by PTP fall in two categories: event
and general. Messages like Sync and Delay Request message
are event messages, whose send and receipt timestamps are
used to compute the adjustment of the slave clocks, and thus
the timestamps need to be accurate. Messages like Announce,
Follow-up and Delay Response are general messages, and do
not require accurate timestamps. Event messages are sent on
port 319, while general messages are sent on port 320. PTP
messages are sent using multicast messaging, but devices can
negotiate unicast transmission if desired. PTP messages are
usually sent over UDP. PTP supports two delay measurement
mechanisms: peer-to-peer and end-to-end. In the peer-to-peer
mechanism, each network device is PTP-aware, and the time
synchronisation operates between the end-host and the net-
work device. In the end-to-end mechanism, which we use in
this work, only the end nodes need to be PTP-aware.

The send and receipt timestamps for the PTP packets can
be generated either by the host operating system’s kernel
(software timestamping), or by a dedicated hardware unit
(hardware timestamping). The first type of timestamping has
the advantage of being widely available, but the timestamps

generated are less precise due to variable interrupt servicing
latencies [16]. The second type of timestamping is precise,
but requires special hardware. For example, Solarflare network
interface card (NIC) [17] generates hardware timestamps for
PTP packets using a dedicated time stamping unit which is
driven by an oscillator. On the arrival or departure of a PTP
packet, the unit generates a hardware timestamp which is
passed by the NIC to the network device driver. Additionally, a
PTP stack enabled by the NIC is running on the server to dis-
cipline the NIC’s precision oscillator. A user space application
can access the hardware timestamps for the received packets
using the SO TIMESTAMPING socket option available in the
Linux kernel.

PTP uses various mechanisms to ensure that there is no
interference in the clock synchronisation. Firstly, PTP can use
hardware timestamping to eliminate the end-host delay caused
by the network stack and variance due to interrupt service
latencies [18]. Secondly, PTP-enabled switches that run as
transparent clocks can modify a field in the PTP messages
to account for the delay incurred across the switches. In this
work, we do not use transparent clocks, as we want to leverage
PTP’s measurements to infer the actual network latency, which
is affected by network conditions like congestion.

Software implementations of the PTP protocol are
PTPd [14] (open source) or TimeKeeper [19] (commercial).
PTPd is a software-based system that uses software times-
tamps. It runs as a background user-space process. PTPd’s
precision is determined by the precision of sent and received
messages timestamps. PTPd uses the Linux kernel’s software
clock. It adjusts the clock using the adjtimex() interface
for clock tick-rate adjustment.

B. Data centre network monitoring systems
In this section, we review the most important tools to

measure network latency and packet loss in data centers. Mea-
suring network conditions within a data center is notoriously
difficult, since the tools used need to satisfy several properties:
be lightweight, always-on, not load the network, so as to not
degrade users’ application performance, offer information that
can be quickly acted upon, and be easy to use and configure by
network operators or users. Such a custom data center network
monitoring tool can take advantage of the data center’s known
topology, and hardware and software configuration. Further-
more, the measurement techniques must be complemented
by a highly scalable storage and analysis system that can
alert operators about issues within the network, such as high
latency, packet loss, but also to provide historical data to
understand trends. The systems designed for data centers are
based on active measurement, and can be complemented by
passive techniques, such as exploiting the timestamps carried
in the TCP headers when these are enabled [20]. Passive
measurement of TCP RTT [20] is comparable in accuracy
with ICMP measurement. If losses occur, the application will
experience higher latencies due to TCP’s in-order delivery
semantics. Another way to monitor network latency in a data
center, though costly, is to have each host equipped with a
common clock, such as a GPS receiver, and run one-way delay
measurements between hosts.
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Table I compares the properties of systems used to measure
network latency and packet loss in data centers, including
PTPmesh. The comparison looks at aspects related to type of
measurements taken, their frequency and coverage, availabil-
ity, implementation, deployment, and data storage and analysis
of collected measurements. A pair is defined by two hosts:
one that sends a probe, and another that receives the probe
and sends an answer. Ping and traceroute are the traditional
tools to perform such measurements, however, these lack the
precision, the flexibility and the scale of custom purpose built
tools for data center monitoring. Cisco IP SLA [21] monitors
network performance by sending probe packets. It runs on
Cisco switches and it can collect data about one-way latency,
jitter, packet loss and other metrics. The measurements can
be accessed through SNMP or command-line interface, being
stored in the switches.

Large-scale monitoring systems, such as NetNORAD [13],
Everflow [22], Pingmesh [12], or VNET Pingmesh [23],
have originated from companies and cloud providers. Net-
NORAD [13] is a system used in Facebook’s data centers
to measure RTT and packet loss ratio by making servers ping
each other, for different Quality-of-Service (QoS) classes of
traffic. The system runs measurements at data center, region
and global level. Everflow [22] is a system that monitors all
control packets and special TCP packets for all flows (TCP
SYN, FIN, RST), and supports guided probing by injecting
crafted packets. Their behaviour is monitored through the
network, and can be used to measure link RTTs. Pingmesh [12]
is an always-on tool that runs RTT measurements between
every two servers in data centers. The system measures inter-
server latencies at three levels, Top-of-Rack switch, intra data
center and inter data center. Pingmesh also reports the packet
drop rate, which is inferred based on the TCP connection
setup time. An extension to Pingmesh is VNET Pingmesh [23],
which monitors latency for tenant virtual networks (VNETs),
whereas Pingmesh performed bare-metal host monitoring. The
TCP probes are sent from the virtual switch at the end-host.
Unlike Pingmesh which measured latency from userspace,
VNET Pingmesh measures the latency from the kernel, but the
measured values can be negatively affected by increased CPU
utilisation, disk I/O operations and caching effects. SLAM [24]
is a latency monitoring framework for SDN-enabled data
centers, which sends probe packets in order to trigger control
messages from the first and last switches of a network path.
SLAM uses the arrival times at the controller of the control
messages to compute a latency distribution for that network
path and is able to detect increases in latency of tens of
milliseconds on a path.

In a large-scale measurement system, probing is normally
done between chosen pairs of servers at defined time intervals.
Since a data center has tens of thousands of hosts, a server
does not ping every other host, but instead a subset of servers
is selected to ensure the best coverage, while minimising
the number of redundant probes and reducing the network
traffic incurred. Another challenge associated with probing
is the multi-path nature of the data centers coupled with
the use of ECMP, making it hard to know which network
path the probes are taking, unless tracing the trajectories of

packets through embedded identifiers is used [25], [26]. In
Pingmesh [12], all of the servers under a ToR switch form
a complete graph for pinging each other, and similarly all of
the ToR switches form a complete graph through designated
servers from all racks, and all of the data centers form a
complete graph using the same procedure. Unlike Pingmesh,
VNET Pingmesh [23] covers only the network paths between
tenant VMs. NetNORAD [13] deploys a small number of
pingers in each cluster and responders on all of the machines.
All of the pingers use the same global target list, which
contains at least two machines from every rack. deTector [27]
uses an algorithm to minimise the number of probes sent for
detecting and localising packet losses and latency spikes.

Programmable switches [28] enable more sophisticated op-
erations for network monitoring, allowing the measurement
of latency and packet loss directly in-network. Examples
are Inband Network Telemetry (INT) [29], LossRadar [30],
Marple [31]. The disadvantage of these frameworks is that
programmable switches must be deployed in the network,
with legacy networks not being able to run these frameworks.
INT [29] measures the end-to-end latency between virtual
switches. Each network element on the path appends their per-
hop latency to a packet that flows between the two virtual
switches located at the ends of the path. The end-to-end
latency is computed by adding the per-hop latencies, and it
assumes that switching and queueing delays dominate, while
the propagation delays are negligible. LossRadar [30] is a
system that can detect packet losses in data centers within
10s of milliseconds, reporting their switch locations and the
5-tuple flow identifiers. It keeps specific data structures at
switches, which are periodically exported to a remote collector
and analyser. It does not perform latency measurements.
Marple [31] uses programmable key-value stores on switches
to compute different metrics, such as a moving exponentially
weighted moving average (EWMA) over packet latencies per
flow, packet loss rate per connection, or to capture packets
experiencing high end-to-end queueing latency.

III. MEASURING NETWORK CONDITIONS WITH THE
PRECISION TIME PROTOCOL (PTP)

A. Experimental setup and methodology

We use two testbeds for the experiments in this paper.
The first testbed in Figure 2 consists of six servers Intel
Xeon E5-2430L v2 running at 2.40GHz, with Ubuntu 16.04,
kernel version 4.4.0.64-generic, equipped with 10Gb/s Intel
X520 NICs with two SFP+ ports. The servers are connected
using two Arista 7050Q switches, and all network links are
10Gbps. This testbed does not have PTP-enabled NICs with
hardware timestamping (§II-A). The experiments in this paper
use the default NIC settings. The two hosts running PTPd do
not send or receive any other network traffic, thus the PTPd
measurements can be affected only by the traffic originating
from the four other hosts in the testbed (Memcached and iperf
traffic).

For most of the experiments we do not use PTP-enabled
NICs, because this type of NIC is not available to the tenants
to access in cloud data centers. However, we additionally run
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Measurement Probe Type Probe Frequency Availability Coverage Deployment Data Storage and
Analysis

Ping RTT; packet loss
ratio

ICMP - single measurement targeted pair Hypervisor or VM locally; analyse in-
dependently

Traceroute RTT ICMP ECHO/
TCP SYN

- single measurement targeted pair Hypervisor or VM locally; analyse in-
dependently

Cisco IP
SLA [21]

RTT; one-way de-
lay (requires syn-
chronised clocks);
packet loss

ICMP/ UDP/
TCP/ HTTP/
DNS

between 1 and
604800 seconds

always-on targeted path CISCO switches locally; analyse in-
dependently

Pingmesh [12] RTT; packet loss
ratio

TCP/HTTP minimum 10s
seconds

always-on inter-servers in a
rack, inter-ToRs,
inter-data center

Hypervisor Cosmos and
SCOPE [32]

NetNORAD [13] RTT; packet loss
ratio

UDP configurable always-on all pairs Hypervisor or VM Scribe and
Scuba [13]

Everflow [22] link RTT packet marked
with debug bit

- single measurement targeted path switches and con-
troller

custom analyser and
SCOPE [32]

SLAM [24] network path la-
tency distribution

crafted probe - single measurement targeted path OpenFlow switches controller

INT [29] end-to-end
latency

crafted probe - single measurement targeted path programmable
switches

last switch on
path; analyse
independently

LossRadar [30] packet losses at
switches

no probes 10 ms always-on cover all paths programmable
switches

custom collector
and analyzer

deTector [27] packet drop UDP 10 packets/sec always-on selected paths end-host, central
controller

custom analyser

007 [33] packet drop TCP and tracer-
oute

per flow always-on all paths end-host custom analysis
agent at end-host

PathDump [34] packet drop no probes per packet always-on all paths end-host and
switches

custom server stack
and controller

Marple [31] packet drop no probes per flow always-on all paths end-host,
programmable
switches

programmable key-
value store

VNET
Pingmesh [23]

RTT; packet loss
ratio

TCP minimum 10s
seconds

always-on VNET full mesh virtual switch at
end-host

Cosmos and
SCOPE [32]

PTPmesh [1] one-way delay
(estimate); packet
loss ratio

UDP up to 128 probes
per second

always-on multiple pairs Hypervisor or VM locally; analyse in-
dependently

TABLE I: Comparison between systems used to measure network latency and packet loss in data centers.

Host 1 
(Iperf client)

Host 2
(Memcached 
benchmark) 

Host 5 
(Memcached 

server)

Host 4
(Iperf server)

Host 6 
(PTPd master)

Host 3 
(PTPd slave)

Fig. 2: Testbed to analyse PTPd’s behaviour under different network
conditions.

experiments using PTP-enabled NICs to compare the results
obtained in this second approach to the ones obtained using
the testbed without PTP-enabled NICs. The second testbed is
formed out of two hosts directly connected, running Ubuntu
server 14.04 LTS, kernel version 4.4.0-62-generic. The host
hardware is a single 3.5 GHz Intel Xeon E5-2637 v4 on
a SuperMicro X10-DRG-Q motherboard, equipped with a
Solarflare SFN8552 Network Interface Card (NIC) supporting
PTP [17] with hardware timestamping (§II-A).

PTPd logs measurements such as the clock offset, the
master-to-slave delay, the slave-to-master delay, and the one-
way delay. The interval for sending Sync and Delay Request
messages can be configured in PTPd, up to 128 messages per
second for each, expressed as log2 values between −7 and 7.
The default setting is 0, which means sending 1 message per
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Fig. 3: The slave’s clock offset is within 20µs of the master’s clock
after less than five minutes after PTPd’s start-up.

second of both Sync and Delay Request message types, and
2−7 means 7.8125ms between messages, with 128 messages
per second. We call the number of messages sent per second
message frequency in order to distinguish the name from
message rate, since in the case of PTP, there is a set time
interval between the messages exchanged, the messages being
sent with a given frequency.

In all of the experiments, we wait for an initial period to
reach a stable state before making changes to the system,
e.g., starting other applications that send traffic. After PTPd
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Fig. 4: The slave’s clock offset is within 40ns of the master’s clock
after less than five minutes after Solarflare’s PTP daemon start-up.

starts up, it performs an initial clock reset if the clock is off
by one second. Then the slave clock gradually synchronises
with the master clock. Thus, before this convergence period
ends, the system is not in a stable state, and this may distort
the results of the experiments. Next, we measure on my
first testbed the convergence period when using a message
frequency of 1 message per second. We verify that five
minutes are sufficient for the PTPd master and PTPd client to
synchronise to within 20µs of each other (Figure 3). Allowing
more than five minutes for convergence did not decrease
the margin between the two clocks’ values, with the clocks
remaining within 20µs of each other. For the second testbed
which uses PTP-enabled NICs, the clocks are synchronised
within 40ns in less than five minutes (Figure 4). Hence, we
wait for five minutes before running any intended experiment.
The results in the following subsections represent sample runs
of the experiments.

B. Measuring network latency

We measure the RTT in the first testbed between the
PTPd master and PTPd slave hosts, using ping and the UDP-
based tool [8] that uses the Time Stamp Counter (TSC),
and we compare the values obtained divided by two with
the one-way delay reported by PTPd. For PTPd, we set the
message frequency for Sync and Delay Request messages to
1 per second, and we run the clock synchronisation for 15
minutes. For the two other experiments, we run 1 million
RTT measurements with the UDP-based tool, and 30, 000 ping
probes. There is no other network traffic in the testbed, and
each test is conducted separately.

The network latency CDF is presented in Figure 5. Intu-
itively, one would have expected the one-way delay to be half
of the values reported by the UDP-based tool, however this
was not the case in the default configuration (Figure 5b). We
investigated why this happened, and we found that changing
the interrupt rate of the NIC at both the master and the
slave by setting to zero the number of microseconds to wait
before raising an RX interrupt after a packet has been received
gives the expected results for the one-way delay reported by
PTPd (Figure 5a). This experiment shows the drawbacks of

software timestamping, and reinforces the importance of using
hardware timestamping for obtaining precise measurements.
However, most cloud operators do not allow changing the
default network stack settings.

Once the two clocks are synchronised, the one-way delay
reported by PTPd is stable; there is no long tail for the reported
one-way delay, due to filtering of abnormal values. On the
other hand, the RTT CDFs produced by the two other tools
exhibit a long tail due to OS scheduling artefacts [8]. The
one-way delay reported by PTPd and the RTT/2 reported by
the UDP-basel tool is approximately half of the median ping
RTT/2 values. This difference may be due to how the ICMP
traffic is treated in the network and at the end-host network
stack [35]. Furthermore, ping may not be appropriate as a
measurement tool for network latency in the cloud, because
of the possibility that ICMP packets are treated differently,
e.g., being redirected for security checks [36].

C. The effect of network congestion on PTPd measurements

The experiments in this section aim to answer the second
question posed in the introduction, namely how network
congestion affects the PTPd measurements.

1) Concurrent network traffic: We study the effect of
network congestion on the measurements reported by the
PTPd slave using the testbed in Figure 2. In each test,
we allow a clock synchronisation phase of 5 minutes for
PTPd, before starting concurrently the two other applica-
tions, Memcached [37] (with its corresponding benchmark
memaslap [38]) and iperf in TCP mode. Memcached is a
latency-sensitive application, for which increases in network
latency lead to significant performance loss [8], [9]. In this
specific experiment, we set the interval for the Sync and Delay
Request messages to 0.25 seconds (message frequency of 4
messages per second), but the results are similar for different
message intervals. We run two experiments: i) a 5s iperf stream
running (Figure 6a) and ii) three 5s iperf streams with 5s
breaks between them (Figure 6b).

The first experiment (Figure 6a) shows that the congestion
episode determined by iperf leads to an increase in the slave-
to-master delay (on the iperf stream’s direction). PTPd packets
are queued in switches behind iperf’s packets, thus it takes
longer for the packets from the slave to reach the master,
hence the increase in the slave-to-master delay. Consequently,
the one-way delay increases. The PTPd slave interprets these
changes as clock offset from the master clock, then corrects its
clock accordingly, and as a result changes also appear in the
master-to-slave delay. After TCP exits the startup phase and
reaches the steady state, and assuming that the iperf stream
continues to run after this state is reached, the slave’s clock
will gradually reconverge, with the clock offset nearing zero.
However, the one-way delay will still reflect an increased delay
determined by the iperf traffic.

The second experiment (Figure 6b) shows that if there are
several congestion episodes before the slave clock manages
to resynchronise with the master clock, the one-way delay
reported by the slave is not indicative of the actual delay, but
it still indicates that there is an event (network congestion,
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Fig. 5: RTT/2 reported by ping and the UDP-based tool that uses the TSC [8], and one-way delay reported by PTPd
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(a) A 5s iperf stream starts running at second 300.
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(b) Three 5s iperf streams start running at second 300s, 310s
and 320s, respectively, with 5 seconds breaks between streams.

Fig. 6: Network congestion effect on PTPd measurements.

link failure) on that network path. In this experiment, the
first congestion episode caused by iperf has the same effect
as in the first experiment. The next two intervals of iperf
traffic produce further deviations to the slave-to-master delay,
because the two clocks did not have time to resynchronise
before the start of the next iperf stream. The figure illustrates
how the delays are gradually going back to the baseline values,
but before this can fully happen, a new iperf stream starts.
While this experiment shows that the one-way delay does not
provide the true value of the latency between hosts at all times,
the approach can be used to understand long-term trends,
and with appropriate data post-processing the accuracy of the
OWD measurement could be increased. There are two ways
to deal with the periods of increased latency during the recon-
vergence period. One is to increase the message frequency,
which would reduce the period needed for convergence. The
second one is knowing how quickly the clocks reconverge
under normal circumstances after a period of congestion,
which gives the time interval during which the results are
distorted. Then, for this time period the additional latency
observed compared to the baseline latency can be subtracted
from the OWD returned by PTPd. A shown in the experiment,
if the congestion caused by network traffic resumes, the OWD
becomes even higher than the previous peak value (since the

OWD did not get back to the baseline value), so this process
has to be continued accounting the value to which the OWD
had time to reconverge to. If the network utilization increased
for a longer period of time (minutes or hours), the OWD will
reflect this increased utilization over the respective period of
time, but when the utilization drops, the OWD will not go
back instantaneously to the value before the congestion.

In both experiments, Memcached shows increased request-
response latencies due to the iperf traffic, in the second
experiment this increase being less than in the first experi-
ment, as iperf runs for a total shorter period of time. These
results show that the changes observed in the PTPd OWD
measurements can serve as an indicator that the performance
of other applications running on the same network may suffer.

2) Changing the message frequency of the Sync and De-
lay Request messages: This experiment explores the time
resolution at which network congestion affects the PTPd
measurements by changing the interval at which messages
are exchanged between the PTPd master and PTPd client. We
perform the same experiment with iperf and memaslap con-
currently running with PTPd, but iperf runs for a duration of
1s. We vary the interval at which the Sync and Delay Request
messages are sent, from 1s down to 7.8125ms, meaning from 1
messager per second to 128 messages per second. This allows
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(a) 1s interval for Sync and Delay re-
quest messages. A 1s iperf stream starts
running at second 300, PTPd measure-
ments do not detect it.
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(b) 125ms interval for Sync and Delay
request messages. A 1s iperf stream
starts running at second 300, PTPd
measurements detect it.
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(c) 7.8125ms interval for Sync and
Delay request messages. A 1s iperf
stream starts running at second 300,
PTPd measurements detect it.

Fig. 7: Changing the interval for the Sync and Delay Request messages.

detection of congestion periods at milliseconds resolution.
Increasing the message frequency beyond 128 messages per
second would allow detection at an even higher resolution.
In Figure 7a, it can be seen that iperf does not produce any
change in the PTPd measurements, since the interval between
messages is the same as iperf’s runtime, hence it is not running
long enough to delay the PTP packets. However, when the
interval is decreased (Figures 7b and 7c), the iperf traffic leads
to deviations in the PTPd measurements, and an increase in
the one-way delay, similar to Figure 6a. The clock offset,
master-to-slave and slave-to-master delays oscillate between
larger values when the Sync and Delay Request interval is
smaller (comparing the width of the lines in Figure 7b and
Figure 7c). This may happen because of software timestamp-
ing, or because of PTPd clock servo algorithm’s settings. The
one-way delay does not exhibit such significant oscillations,
as it is computed as the average of the master-to-slave and
slave-to-master delays.

3) Convergence period for the PTPd measurements after
network congestion: We perform an experiment to explore
how long it takes for the PTPd measurements to return to
the same values they had before network traffic that caused
congestion was injected in the network using a stream of
iperf of 1s, and is performed for each message frequency
between 1 and 128 messages. We count the number of samples
greater than the baseline OWD value for the first testbed in
Section III-B to determine how many messages are needed
before the OWD returns to this baseline value after iperf
finished running. The results show that the higher the message
frequency is, the shorter the reconvergence time will be. An
exact relationship between the message frequency and the
convergence time cannot be derived from the results, but
the converge time in most cases approximately halves as the
message frequency doubles.

D. Measuring network latency in virtualised environments

All of the previous experiments were performed without
virtualisation, on bare-metal hosts. In order to be able to
interpret the measurement data collected in the cloud, where
virtualisation is the norm, we run an experiment on the first
local testbed to quantify the overhead of virtualisation on PTPd
measurements, more specifically on the OWD, with the PTPd
master and PTPd client running in VMs. The hypervisor used

is Oracle VM VirtualBox version 5.0.40 Ubuntu r115130. The
results of the two experiments are shown in Table II, and show
that virtualisation adds almost 200µs of overhead and causes
increased jitter to the OWD compared to a non-virtualised
setting. Even so, the standard deviation of the OWD is not
significant. These issues can be solved by using PTP-enabled
NICs which provide hardware timestamping. Additionally, OS
bypass through a custom software packet processing path [39]
or through custom hardware [40] alleviates these issues. Also,
some cloud providers (Amazon AWS) offer bare metal in-
stances, thus the virtual switch overhead does not exist in
this case. These results show that the OWD increases due to
virtualisation, but the results are demonstrative of the OWD’s
stability, the OWD having low standard deviation even in the
presence of virtualisation, making PTPd a convenient way to
estimate network latency.

E. Estimating packet loss ratio
Packet loss increases the latency perceived by the user,

since dropped packets need to be retransmitted [12]. It is thus
important to keep track of the packet loss ratios, as these
can be correlated with the observed application performance.
Additionally, tracking packet loss helps to uncover software
or hardware faults in the network.

PTPd records the number of messages sent and received
(Announce, Sync, Followup, Delay Request, Delay Response),
and it is possible to export these numbers periodically. The
counters can be reset after they are exported. On the slave side,
a difference between the number of Delay Request and Delay
Response messages would indicate packet loss. The packet
loss ratio over a defined interval of time can be approximated
as:

pkt loss ratio = 1− #Delay Response messages

#Delay Request messages
(5)

Normal operation should see the same number of Delay
Request and Response messages or a difference of at most
one message. One disadvantage of computing the packet loss
ratio in this way is that it does not account for the Announce,
Sync and Followup messages that were potentially lost.

We verify if the proposed metric can be used as a coarse
estimation for the packet loss ratio by artificially introducing
packet loss in the network. We use NetEm [41], an enhance-
ment of the Linux traffic control facilities, to emulate packet
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Min Average Median 99th 99.9th Max Std. dev.
Bare metal 1msg/s 80.85µs 82.59µs 82.68µs 84.06µs 84.15µs 84.15µs 0.8µs

Virt. 1msg/s 273.96µs 286.7µs 285.98µs 295.72µs 295.9µs 295.92µs 5.27µs
Bare metal 128msg/s 51.28µs 64.54µs 64.7µs 69.97µs 71.12µs 72.1µs 2.65µs

Virt. 128msg/s 201.69µs 253.33µs 253.59µs 271.21µs 284.86µs 327.25µs 7.62µs

TABLE II: One-way delay reported by a PTPd client on a bare metal host and with virtualisation for different message frequencies.

NetEm
packet loss

Max. sample
size

Packet loss
median

Packet loss

ratio (Delay Request
messages)

std. deviation

1% 2961 1.08% 0.23%
5% 571 5.43% 0.74%
10% 285 9.47% 0.34%

TABLE III: Packet loss ratio computed based on the number of
Delay Request and Delay Response messages reported at the PTPd
slave.

loss on the outgoing network interface of the host which
runs the PTPd master. In this scenario, none of the Delay
Request messages are lost, although in practice this may
happen. Since outgoing PTPd packets are looped back via the
IP MULTICAST GROUP [18], loss conditions are applied on
both the physical interface and the loopback interface. We use
the loss random option of NetEm, which adds an independent
loss probability to the packets outgoing on the chosen network
interface. We use packet loss ratios of 1%, 5% and 10%,
and we compute the packet loss ratio as described above to
see if it matches the induced loss ratios. We run the clock
synchronisation for 50 minutes with a packet loss of 1%, 10
minutes with a packet loss of 5%, and 5 minutes with a packet
loss of 10%, and for each loss ratio we perform 5 runs. The
results are presented in Table III. It can be seen that the metric
we defined can serve as a coarse estimate of the packet loss
ratio over a defined interval of time.

F. PTP-enabled NICs

NICs supporting PTP are becoming increasingly available.
The measurements performed by a PTP implementation that
leverages this support do not suffer from end-host interference
caused by other network traffic that originates from the same
host. Furthermore, this type of NIC also removes the delay
associated with the end-host network stack or virtualisation
layer from measurements, the measurements thus reporting
only the actual network latency.

We run experiments to see if PTPd measurements are
adversely affected by other network traffic that originates
from the same host to answer the fifth question posed in the
introduction. This might happen because of end-host packet
processing delays under increased load. On the second testbed
described in Section III-A, We compare the clock offset and
one-way delay obtained from sfptpd, Solarflare NIC [17] PTP
daemon which uses hardware timestamping (see Figure 8,
note: ns y-scale), and from PTPd (see Figure 9, note: µs y-
scale), which uses software timestamping, with and without
running an iperf TCP stream between the hosts. One host is
the PTP master, while the other acts as a PTP slave. It can
be seen from the two figures that the clock offset reported by
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Fig. 8: The clock offset reported by sfptpd is not affected by the
iperf traffic, since it uses NIC hardware timestamping.

Fig. 9: The clock offset reported by PTPd is adversely affected by
the iperf traffic because of end-host interference.

sfptpd is not affected by the iperf traffic. However, in the case
of PTPd, the clock offset deviates when the iperf stream starts
and ends. Furthermore, it should be noted that for hardware
timestamping the clock offset’s magnitude is nanoseconds,
while for software timestamping it is microseconds.

IV. MEASURING THE CLOUD NETWORK WITH PTPMESH

A. Deployment scenarios

We consider two possible deployment scenarios for a system
based on PTP in data centers [42]. In the first scenario, the
cloud provider deploys PTPd [14] (or a different software
implementation for PTP) in the hypervisor, possibly alongside
a separate clock synchronisation mechanism. Several PTPd
clients can run on the same machine in different PTP domains,
and thus they do not interfere with each other. In the second
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scenario, the tenants themselves run PTPd inside their VMs
and use the reported measurements to check the network
conditions. PTPmesh’s design follows the second scenario. In
both scenarios, the PTP traffic should not be prioritised, and
switches in the network should not be PTP-aware, otherwise
the measurements would not be indicative of the actual net-
work latency.

Since ECMP is used in data centers to load balance the
traffic across the available network paths between two servers,
the PTP traffic between the servers may not follow the same
network path as other network traffic that exists between these
two servers. To mitigate this issue, a similar approach to the
one used in Pingmesh [12] and NetNORAD [13] can be used,
specifically changing the port numbers on which PTPd is
running. Since the port number is part of the ECMP hash
computation, for every port number a different ECMP hash
value is obtained. As a result, ECMP may select different
network paths to route the PTP packets for different port
numbers. Looping over a range of port numbers would ensure
that the PTP traffic is sent over each distinct network path
between two servers [12], [13]. Moreover, if the cloud operator
knows how ECMP is implemented on their switches and they
do not use randomness in the ECMP hash function [43], then
the cloud operator can define a list of port numbers for PTPd
to ensure that each distinct network path between the two hosts
is covered. Alternatively, if the trajectory of the packets can
be traced using techniques such as the ones described in [26],
[44], then it would be straightforward to verify whether all
network paths between two servers are covered when using a
range of port numbers for PTPd.

B. Measurement methodology
We use PTPd v2 2.3.1 [14], in unicast mode for the cloud

deployment, with unicast negotiation and end-to-end delay
measurement (§II-A). We measure the one-way delay between
multiple VMs from different cloud providers. In cloud com-
puting terminology, a region is a geographical location where
compute resources can be deployed, and it comprises one or
more zones. Usually, a region has three or more zones. For
each of the three cloud platforms, Amazon AWS EC2, Google
Cloud Platform - Compute Engine, and Microsoft Azure, we
choose several zones. We deploy two, four or ten VMs in each
zone. The VMs run Ubuntu 16.04. We run the PTPd master
on one VM, while the other VMs act as PTPd slaves, running
simultaneously. We used the following VM types: AWS -
t2.micro, GCE - n1-standard-1, Azure - Standard D1 v2,
Standard D2s v3, Standard E16s v3 and Standard E32s v3.
It should be noted that the latency measurements collected may
be influenced by the underlying server hardware, as shown by
previous research [45].

We list the zones along with an assigned name to identify
the traces collected. For Amazon AWS EC2, we run mea-
surements in regions Ireland zone eu-west-1a (EC2-EUW),
Northern California zone us-west-1b (EC2-USW) and Ohio
zone us-east-2a (EC2-USE). For Google Compute Engine,
the measurements are run in us-west1-b (GCE-USW) and
europe-west1-b (GCE-EUW), and between us-west1-b (GCE-
USW) and us-west1-d (GCE-USW2). For Microsoft Azure,
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Fig. 10: OWD measured using PTPd for periods of 15 minutes
between two VMs in Azure-KS.

We use UK West (Azure-UKW), UK South (Azure-UKS),
US West (Azure-USW) and Korea South (Azure-KS). In
the UK South, the VM type we use is the Standard D2s
v3 and Standard E16s v3 or Standard E32s v3 (with Azure
Accelerated Networking [40] enabled), while in the other
zones we use the Standard D1 v2. We will refer to a zone
as a data center in the rest of the paper, but the underlying
network topology and configuration of a zone is not disclosed
by the cloud providers.

C. Measurement calibration

1) Message frequency impact: We perform several experi-
ments where we vary the number of messages between 1 to 27

per second to determine whether a different message interval
yields different one-way delay values. We vary the message
frequencies of both the Sync and Delay Request messages
exchanged between the master and the slave, and we use the
same message frequency for both.

We perform an experiment with a PTPd master and a
single PTPd client running in the Azure-KS data center with
different message frequencies. Figure 10 shows the OWD CDF
for different message frequencies. As the message frequency
increases, the OWD decreases, going from median 262.92µs
and 99thpercentile 286.6µs for 1 message per second, to
191.49µs and 99thpercentile 237.85µs for 128 messages per
second. It is speculated that the cause of this behaviour is
that, when the message frequency increases, the code that
performs the timestamping remains in the cache, leading to
smaller OWD values.Another cause might be due to the way
the interrupts are coalesced at the NIC, since messages are not
timestamped by the NIC, but by the kernel.

While increasing the message frequency leads to better
accuracy for the one-way delay measurements, the CPU utili-
sation and network bandwidth consumption increase. Since the
initial goal was to have a low-overhead measurement system
that runs as a service in a VM or in the hypervisor, choosing
the message frequency implies a tradeoff between host and
network resources consumption and measurement accuracy.
We run measurements using the same setup in the Azure-KS
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# msg/s CPU Avg. net. Avg net. Avg Std.dev.
utilisation bw. rx bw. tx [µs ] [µs ]

[%] [Kb/s] [Kb/s]
1 0 0.65 2.13 262.11 21.54
2 0 1.12 3.88 255.88 19.15
4 0 2.21 7.38 240.63 14.1
8 0 4.35 14.38 232.42 13.19
16 0.1 8.68 28.44 221.02 13.21
32 0.2 17.35 56.53 214.7 13.56
64 0.4 34.43 112.12 203.67 18.4

128 0.7 68.77 223.7 193.37 17.56

TABLE IV: The setup has one PTPd master and one PTPd client.
CPU utilisation and network bandwidth double as the message fre-
quency doubles. OWD average goes down, while standard deviation
is roughly the same.

data center for each message frequency from 1 message per
second to 27 messages per second for 15 minutes to monitor
the average CPU utilisation (using top), memory, and send and
receive network bandwidth (using iftop).

Table IV presents the CPU utilisation and network band-
width for different message frequencies. The results show that
the accuracy of the OWD measurements improves as the mes-
sage frequency increases with the average OWD decreasing,
while the precision of the measurements stays roughly the
same, the standard deviation for different message frequencies
being almost the same. It should be noted that the OWD
measurements may have been affected by concurrent network
traffic within the data center. On the other hand, the CPU and
network resources double as the message frequency doubles.
The experiment shows that it takes approximately 100 seconds
to reach a value close to the maximum CPU utilisation of
the PTPd master. For a frequency of 1 message per second,
the average CPU utilisation is almost 0% and the average
network bandwidth consumption is 0.65Kb/s (receive) and
2.13Kb/s (send). For a frequency of 27 messages per second,
the average CPU utilisation is 0.7% and the average network
bandwidth consumption is 68.77Kb/s (receive) and 223.7Kb/s
(send). Since these values are reported for a single slave, when
synchronising with multiple slaves, it is expected the network
bandwidth will increase proportionally. For example, if using
1, 000 slaves, the average network bandwidth at the PTPd
master would be 6.87 Mb/s (receive) and 22.37 Mb/s (send).
The memory usage for the PTPd master is the same regardless
of the message frequency, being 0.1% when using a VM with
1.6 GB RAM. However, the number of PTPd clients has an
impact on the amount of memory used by the master [14],
with the maximum number of clients (unicast destinations)
supported being 2048.

To sum up, depending on the available resource budget,
more accurate OWD measurements can be obtained, but at
the expense of more CPU and network resources. Memory
requirements for running the PTPd master are consistently
low. There is a tradeoff between measurement accuracy and
resource consumption that should be considered when choos-
ing the message frequency. A lightweight network monitoring
system should not incur significant overhead on the end-host
or the network. For example, Pingmesh [12] uses less than
45MB memory, the average CPU usage is less than 0.26%,

and it sends only tens of Kb/s. Thus, based on the Pingmesh
resource usage and depending on the number of PTPd clients
that synchronise with one PTPd master, the message frequency
for PTPd, and thus for PTPmesh, should be chosen between
1 and 32.

In Section V, we conduct most of the latency measurements
using a message frequency of 1 message per second on a
setup with one PTPd master and three PTPd clients as part of
PTPmesh in order to have similar CPU utilisation and network
bandwidth consumption as Pingmesh. We additionally perform
measurements with a message frequency of 128 messages per
second for higher OWD measurements accuracy.

2) Number of concurrent PTPd clients: Another aspect that
needs to be taken into account is the number of slaves a master
can synchronise with before the end-host becomes overloaded
because of processing too many messages, which may affect
the measurement accuracy. To see if the number of clients
affects significantly the OWD values, we perform a suite of
experiments with PTPmesh on a local testbed with ten bare-
metal hosts, using one PTPd master and a maximum of nine
PTPd clients, and a similar experiment in EC2-USE (one
VM PTPd master and up to nine VM PTPd clients), using
128 messages per second. Using a local testbed with nine
clients and one master, we found that the reported OWD is not
affected by the number of clients, with median values between
18.5µs and 19µs, with standard deviations less than 1µs and
a maximum value of 20µs across runs with different numbers
of clients. In contrast, Figure 11 shows the OWD between
one pair of VMs when varying the number of concurrent
PTPd clients synchronising with the same PTPd master. The
variations in the OWD when having up to four clients are
not related to the number of clients. However, adding another
client leads to an increase in the median latency of 7 µs.
Having six or seven clients leads to increases in the OWD
by approximately 10 µs. For eight clients, the median OWD
is larger by approximately further 7µs. For nine clients, the
median OWD is approximately larger by 20µs. In data centers
from the two other cloud providers (GCE and Azure) We
did not see any noticeable impact when using a maximum
of four VM clients. This result is probably due to the instance
type used in this experiment (t2.micro which uses a CPU
credits mechanism to account for CPU utilization), since the
ten hosts testbed is composed of bare metal hosts. The results
can also be influenced by competing network traffic in the
cloud, whereas in the local testbed there was no other traffic.
Given that all measurements were taken using a maximum of
three simultaneous VM clients, our measurements were not
affected by this behaviour. To mitigate this potential issue
for a large number of clients, the current infrastructure of
PTPmesh can be extended to perform measurements between
VMs independently in pairs. Alternatively, all VMs can be
visited in a round robin manner with measurements running
for several minutes per VM client to allow the VM client’s
clock to synchronise with the VM master.

D. Datasets
We collect several datasets whose characteristics are pre-

sented in Table V. A trace represents the measurements taken
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Trace #Msgs Start time Duration Avg.(µs) 50th(µs) 99th(µs) 99.9th(µs) Max(µs) Std.dev.(µs) #L.s.
EC2-EUW-1 1204053 2017-11-06 14:43:20 7d00h03m10s 304.87µs 289.57µs 415.18µs 516.5µs 2.69ms 49.71µs 19
EC2-EUW-2 879099 2017-11-06 14:43:22 5d15h12m50s 352.77µs 345.17µs 481.53µs 2.32ms 14.36ms 192.57µs 90
EC2-EUW-3 906750 2017-11-06 14:43:24 5d17h28m36s 352.17µs 350.97µs 459.5µs 616.3µs 3.16ms 50.68µs 48
EC2-USW-1 934978 2017-11-07 12:56:48 5d10h08m30s 259.63µs 256.93µs 335.08µs 486.3µs 1.73ms 33.18µs 7
EC2-USW-2 953109 2017-11-07 12:56:50 5d12h50m25s 279.22µs 275.86µs 361.42µs 474.35µs 1.25ms 29.08µs 12
EC2-USW-3 870190 2017-11-07 12:56:52 5d01h04m16s 287.82µs 283.44µs 363.88µs 429.06µs 686µs 24.15µs 5
GCE-EUW-1 1208861 2017-10-16 14:11:06 7d00h00m00s 138.32µs 97.1µs 1.2ms 2.74ms 7.72ms 223.32µs 237
GCE-EUW-2 1069898 2017-10-16 14:10:59 6d04h45m41s 138.29µs 87.34µs 1.44ms 3.48ms 6.58ms 268.65µs 216
GCE-EUW-3 1208306 2017-10-16 14:10:51 7d00h03m09s 132.78µs 82.97µs 1.38ms 3.6ms 8.83ms 275.73µs 243
GCE-USW-1 1210156 2017-10-16 16:38:32 7d00h02m57s 81.05µs 76.9µs 120.34µs 981.94µs 4.57ms 60.64µs 16
GCE-USW-2 1210507 2017-10-16 16:39:15 7d00h02m14s 72.07µs 71.35µs 92.24µs 119.22µs 531µs 8.65µs 1
GCE-USW-3 1209171 2017-10-16 16:41:33 6d23h59m56s 79.7µs 78.79µs 104.34µs 128.65µs 396µs 8.03µs 1

GCE-USW2-1 42907 2017-04-07 23:58:42 0d05h59m28s 191.65µs 180.66µs 526.84µs 908.27µs 1.21ms 63.04µs 5
Azure-UKW-1 1206919 2017-09-13 15:51:29 6d23h45m10s 441.37µs 447µs 529.27µs 570.62µs 1.38ms 47.4µs 2380
Azure-UKW-2 1160593 2017-09-13 15:51:33 6d17h11m17s 432.95µs 441.3µs 522.88µs 565.55µs 1.01ms 48.7µs 3979
Azure-UKW-3 1208739 2017-09-13 15:51:40 6d23h59m59s 412.59µs 419.62µs 483.48µs 521.42µs 827µs 39.96µs 134
Azure-USW-1 1203300 2017-09-13 15:26:09 6d23h08m41s 313.42µs 315.14µs 357.72µs 379.86µs 549µs 22.78µs 1
Azure-USW-2 1208955 2017-09-13 15:26:11 7d00h00m00s 282.46µs 281.21µs 330.64µs 362.23µs 717µs 15.31µs 3
Azure-USW-3 1208849 2017-09-13 15:26:16 6d23h59m59s 357.83µs 358.46µs 415.68µs 449.11µs 732µs 22.22µs 4

Azure-UKS-N1 108073 2018-02-22 20:11:00 0d16h37m07s 268.49µs 261.31µs 363.22µs 481.65µs 598µs 25.16µs 2
Azure-UKS-A1 96635 2018-02-22 22:18:24 0d13h54m09s 95.7µs 94.54µs 139.79µs 212.75µs 268µs 11.08µs 0

EC2-USE-1 21864606 2018-02-19 17:27:23 0d23h59m48s 181.96µs 172.05µs 291.55µs 411.82µs 2.04ms 30.71µs 139
EC2-USE-2 21864606 2018-02-19 17:27:23 0d23h59m49s 197.33µs 190.08µs 293.74µs 390.46µs 1.77ms 27.14µs 79
EC2-USE-3 21891242 2018-02-19 17:27:23 0d23h59m49s 188.53µs 196.83µs 301.86µs 406.26µs 1.48ms 30.65µs 86
GCE-USW-1 19378393 2017-12-22 22:31:59 1d10h04m00s 65.48µs 64.33µs 89.08µs 106.15µs 451µs 7.14µs 0
GCE-USW-2 21161197 2017-12-22 22:32:17 1d09h17m34s 70.4µs 69.47µs 92.8µs 106.11µs 295µs 8.35µs 0
GCE-USW-3 20854143 2017-12-22 22:32:29 1d07h52m56s 58.47µs 57.94µs 76.02µs 86.28µs 286µs 6.33µs 0
Azure-UKS-1 20164042 2018-02-17 22:12:21 0d23h59m48s 286.58µs 269.34µs 684.45µs 884.02µs 1.22ms 74µs 2235
Azure-UKS-2 21111652 2018-02-17 22:12:21 0d23h59m48s 271.41µs 249.55µs 724.43µs 907.24µs 1.37ms 84.65µs 4747
Azure-UKS-3 17427943 2018-02-17 22:12:21 0d23h59m48s 340.02µs 322.17µs 760.13µs 949.7µs 1.29ms 81.7µs 2793

Azure-UKS-A2 5043445 2018-02-23 12:47:02 0d05h54m20s 83.23µs 82.28µs 118.92µs 178.79µs 459µs 9.11µs 0

TABLE V: Traces collected in data centers across the world from three cloud providers. The last column
represents the number of latency spikes (l.s.) (> 500µs) observed throughout the trace.
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Fig. 11: Varying the number of PTPd clients that synchronise with
the PTPd master in EC2-USE.

between two VMs (master and client). The trace is the log
of a PTPd client running in a VM. We list the start time
and duration of the trace. Each trace is identified by the
assigned name of the data center and a number. For the
first part of the table, the low message frequency was used
(see Section V-A), while in the second part of the table, the
high message frequency was used (see Section V-B). These
traces are indicative for the temporal perspective of network
conditions in data centers, as they have been captured for

periods of up to a week. The spatial perspective is limited,
since we use a maximum of three VM PTPd clients at the
same time, hence we do not capture the full scale of conditions
in the studied data center. All datasets, except one, contain
measurements taken between VMs that are located within the
same data center (zone). One dataset (GCE-USW-2) contains
measurements taken between VMs that are located in different
data centers (zones) within the same region (§IV-B).

V. ONE-WAY DELAY (OWD) MEASUREMENTS

In the first instance, we set the number of Sync and Delay
Request messages to 1 per second, since this is the default
value configured in PTPd, which will be named in the rest of
the paper as the low message frequency. We run a full week
of measurements in six data centers using the low message
frequency. Additionally, we perform measurements in three
data centers for one day using a higher message frequency of
27 messages per second, which will be named in the rest of the
paper the high message frequency. The challenge with using a
higher message frequency is, on one hand, the increased CPU
utilisation and network bandwidth at the end-host, while on the
other, the amount of data collected for which additional storage
is needed if measurements are performed for an extended
period of time. The advantages of using a higher frequency
are better OWD accuracy (§IV-C1) and detection of possible
network congestion events with a higher resolution. Regardless
of the message frequency used, the OWD values offered by
PTPmesh can serve as reference for normal network conditions
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and can be used to detect anomalies. Additionally, as shown
in Section III-A, an initial period of five minutes should be
used to wait for the clocks to get synchronized before relying
on the OWD results.

A. Low message frequency measurements
Latency magnitude. Table V lists the average, median,

99thand 99.9thpercentiles, maximum, standard deviation for
the OWD values, and the number of latency spikes (a sudden
increase in latency to values over 500µs) for the trace. OWD
values are higher in the EU data centers than the US data
centers for EC2 and Azure. The GCE-EUW data center OWD
values are similar to the ones in the GCE-USW data center,
the difference coming from the extended period of increased
latency that can be seen in Figure 12b. Most of the traces have
maximum observed OWD values in the order of milliseconds.

In Figure 12a, in the EC2-EUW-2 trace multiple latency
spikes can be observed, with a maximum of 14.364ms. In
the GCE-EUW traces, the OWD values are less or slightly
higher than 100µs up to the 90thpercentile, with a maximum
99thpercentile of 1.44ms and maximum 99.9thpercentile of
3.6ms amongst the three VM pairs. In contrast, for GCE-USW
data center, the maximum 99this 120.34µs, and only in the
case of the trace between VM1 and VM2 the 99.9thpercentile
is higher, 981.945µs, compared to the traces for the two other
VM pairs. The traces captured in the GCE-EUW data center
stand out in comparison to the other traces collected, since they
contain major disruptions for latency values over a prolonged
period, accompanied by a high packet loss ratio. Between
2017-10-17 09:25 and 2017-10-18 05:16 the OWD reported
varied greatly, reaching a maximum value of 8.83ms, with
a significant part of the latency spikes of over 500µs taking
place during this interval. These millisecond-scale latencies
indicate switch queueing and packet loss [23]. These events
can be noticed for all three VM pairs, which can lead to the
hypothesis that these events were data center-wide, or that the
VMs were placed within the same rack or on the same host.
While the median latencies within the same data center are
between 71 and 97 µs, the median latency between two data
centers in the same region is 180 µs (GCE-USW2-1), almost
double compared to the one ones within a data center.

The Azure-UKW data center traces show a decrease of the
OWD values of approximately 100µs towards the end of the
trace (Figure 12c), which corresponds to the network traffic for
Sunday. The last part of the trace was captured on Monday,
showing an increase in the OWD values back to the values
before Sunday, except for the VM1-VM3 pair. In the case of
the Azure-USW data center (Figure 12i) in the second day
of measurements (after 172800 messages), a sudden decrease
by approximately 50µs in OWD can be noticed for all three
pairs for a period of time, followed by an increase for the
OWD to values higher by approximately 50µs than the ones
before the dip. It is interesting to see that the traces share
similar characteristics for certain changes in the OWD values,
meaning that the events were data center-wide or that the VMs
were placed within the same rack or the same host. We also
perform experiments using more powerful machines in Azure-
UKS (Azure-UKS-N1), the median latency is in similar ranges

to the ones obtained using slower machines. We additionally
perform experiments with VMs with the Azure Accelerated
Networking feature [40] enabled, which removes most of the
software-based networking stack into FPGA-based smartNICs,
and found that the one-way delay reported is significantly
lower than the other reported values, with median values of
94.54µs with low message frequency (Azure-UKS-A1) and
82.28µs with high message frequency (Azure-UKS-A2). EC2
offers a similar option using SR-IOV [46], but we have not
performed measurements using it for this study.

Latency variance. An important aspect of network latency
is latency variance [47], as it can cause a decrease in appli-
cation performance. If the variance is low, then the applica-
tion performance will be determined by the median latency
observed, essentially reducing the problem to improving the
static component of latency in data centers. To this end, we
compute the standard deviations of the OWD measurements
over different intervals of time. We compute histograms for the
standard deviations of the OWD for intervals of 1 minute, 10
minutes and 1 hour, binned in bins of size 1. The distributions
for the standard deviations OWD are skewed towards small
values, with a few values that are larger than the rest. The
histograms for the two AWS EC2 data centers are similar.
When looking at periods of 1 minute, the standard deviations
fall mostly between 0µs and 10µs (medians 5.44µs and
4.59µs). When looking at periods of 10 minutes, the standard
deviations fall between 10µs and 20µs (medians 15.34µs
and 12.42µs), while when looking at periods of 1 hour, the
standard deviations fall between 10µs and 30µs (medians
22.67µs and 18.31µs). The histograms for the two GCE data
centers are similar, but they are different from the two other
cloud providers, in that the standard deviations of the OWD
values are smaller. For the GCE-USW trace, for 1 minute
intervals, most of the values are between 0µs and 1µs (median
0.759µs). When looking at periods of 10 minutes, the standard
deviations are between 0µs and 5µs (median 2.84µs). For
1 hour intervals, most of the values are between 1µs and
10µs (median 4.63µs). The median values for the GCE-EUW
trace are slightly higher, due to the increase in the OWD for
a long period of time (1.5 days). On the other hand, there
are differences between the two Azure data centers. In the
case of the Azure-UKW trace, for 1 minute intervals, most of
the values are between 1µs and 15µs (median 7.42µs). When
looking at periods of 10 minutes, the standard deviations are
between 10µs and 20µs (median 16.6µs). For 1 hour intervals,
most of the values are between 10µs and 30µs (median
20.29µs). In the case of the Azure-USW data center, the values
are slightly lower. For 1 minute intervals, most of the values
are between 0µs and 10µs (median 4.49µs). When looking
at periods of 10 minutes, the standard deviations are between
5µs and 15µs (median 9.63µs). For 1 hour intervals, most of
the values are between 10µs and 20µs (median 12.17µs).

The results show that the OWD in GCE has the lowest
variance. EC2 and Azure are similar, with more variance seen
for EC2. When enabling [40], the Azure latency variance
profile becomes similar to the GCE one. Having less variance
for OWD is better, since tail latencies can lead to a decrease
in application performance [47].
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Fig. 12: OWD and packet loss ratios over 1-hour intervals between VM1-VM3 in EU and US data centers over one week.

B. High message frequency measurements

Latency magnitude. The OWD values measured using high
message frequency are lower than the ones measured using the
low message frequency (§IV-C1). The EC2-USE OWD median
values are between 172µs and 196µs (Figure 13a). The GCE-
USW OWD values have medians between 58µs and 69µs (Fig-
ure 13b). In GCE, the low message frequency measurements
may have been redirected through switch gateways (due to the
low throughput of the measurements run, less than 20kbps),
whereas the high message frequency ones may have been sent
host-to-host [39]. The median OWD values for Azure-UKS
are between 271µs and 340µs (Figure 14). The three traces
are correlated, displaying periods of increased latency at the
same time and having the same shape.

Latency variance. In the case of GCE-USW, the latency
variance profile is similar to the one obtained using the low
message frequency. The EC2-USE latency variance profile is
similar to the EC2-USW one, and the Azure-UKS one is

similar to the Azure-UKW one, even if EC2-USW and Azure-
UKW latency variance profiles have been obtained using the
low message frequency.

C. High value OWD events timescale

After analysing the general characteristics of the traces, we
take a closer look at the timescale of high OWD events, as
these are important in the context of cluster scheduling of
latency-sensitive applications. If the OWD is stable, then the
VM placement decision will have a lasting effect throughout
the execution of the application. On the other hand, admitting
more applications into the data center can lead to increased
network utilisation, and hence increased network latency. If the
OWD is not stable, it might be better for certain applications
to be preempted and migrated to a different placement.

Long timescale events are considerable changes in latency
during several hours or days. These types of events are
evident in the week-long Azure traces, where the latency
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Fig. 13: Measured OWD between VM1 and VM2 using the high message frequency.
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Fig. 14: Measured OWD between VM1 and VM2 in Azure-UKS using the high message frequency.

decreases during the weekend. Similarly, the GCE EU traces
display significant increases in latency for more than one day.
Also, in the Azure-KS data center, after restarting the VMs,
we consistently got substantial latencies (median 1.391ms)
compared to previous values (median 191.486µs), that we kept
on measuring even after several VM restarts, and across almost
one month of measurements. The first time we observed these
large latency values was on the 29th of December 2017, and
the last time we performed measurements in this data center
was 23rd of January 2018. In this case, it might be better to
migrate the application to a different data center.

Short timescale events are transient latency spikes. The
difference between the measured median latency and the max-
imum latency observed during the spike should be substantial
(e.g., more than 500µs). For example, while performing the
EC2-USE measurements, the latency has suddenly increased
substantially from median 200µs to median 1.75ms, as seen
in Figure 15. It can be noticed that the latency values return
for a brief period of time (2s, with high message frequency)
to the previous values, but then the latency increases again.
Similarly, the Azure-UKS traces (Figure 14) display several
short latency spikes. In this case, if the OWD is not stable
and suffers from frequent changes, it may be better for the
application to be migrated to a different placement.
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Fig. 15: Measured OWD between VM1 and VM10 in EC2-USE data
center.

VI. PACKET LOSS RATIO MEASUREMENTS

We investigate packet losses in six data centers over a week
for each of the VM pair. we log the number of Delay Request
and Delay Response messages exchanged between the clients
and the master in PTPmesh for the measurements with the low
message frequency. Using the metric we defined for computing
packet loss ratio in Section III-E, we compute the packet loss
ratio over intervals of 1 hour and 1 day over one week. In
Table VI, we show the minimum, average, median, maximum
and standard deviation for all the 1-hour and 1-day intervals
across all pairs. Interestingly, all EU data centers have higher
packet loss ratios than the US data centers across all cloud
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providers. Figure 12 presents timelines over one week for
packet loss ratios computed over 1 hour intervals for one
VM pair in EU and US data centers, respectively. The ratios
computed depend on the message frequency, but they can serve
as baseline for normal conditions, and to determine anomalies
when deviating from these baseline values.

In general, the packet loss ratios have low values for all data
centers, with most of the 1-hour intervals having no loss or
having 1-4 messages lost per hour (out of 3600), which is at
most approximately 11.1× 10−4. For AWS EC2, the number
of messages lost per hour is at most four (Figure 12d and
Figure 12j), with more losses observed in the EU data center.
High packet loss values of up to 46.96× 10−4 appear in the
first part of the GCE-EUW data center traces (Figure 12e),
and significant increases in network latency can be seen in
Figure 12b, but later in the trace the values are normal, with
at most three messages lost per hour. In the GCE-USW data
center (Figure 12k), the number of messages lost per hour is at
most two, being the data center with the smallest packet loss
ratio. For Azure-EUW (Figure 12f), slightly higher packet loss
ratios can be observed, while for Azure-USW (Figure 12l) the
maximum number of messages lost per hour is four.

These results lead to the hypothesis that the EU data centers
use older hardware, or they run at higher network utilisation.

VII. PATH SYMMETRY

PTPd reports the master-to-slave and slave-to-master mea-
sured delays. These two measurements can be used to deter-
mine if the paths from the master to the slave and from the
slave to the master are symmetric, but with some caveats, as
these two metrics incorporate the offset between the two slave
and master clocks and possible congestion effects. We am
interested in determining whether the simplifying assumption
that the OWD can be computed as half of the measured RTT
holds true in data centers. Note here that the values of the
two delays can be negative, due to the differences between
the master and slave clocks.

Figure 16 shows the master-to-slave and slave-to-master
delays for the VM1-VM3 pair in six data centers. The plots
for the other pairs and data centers are similar. Based on the
collected data, EC2 and GCE forward and reverse paths are
symmetrical, while the paths in Azure are not. Azure data
centers (Figures 16f and 16c) display significant differences
between the master-to-slave and slave-to master delay CDFs
(different curve shapes), leading to the conclusion that the
forward and reverse paths between the VMs are not symmet-
rical. In the case of the GCE-EUW trace (Figure 16b), the
long congestion period is reflected in a vertical translation of
the master-to-slave and slave-to-master delay CDFs, but this
does not mean that the paths are asymmetrical.

VIII. DISCUSSION

PTPmesh offers end-to-end measurements, including the
intermediate virtualisation layer. The one-way delay latency
values offer insights with respect to end-host overhead, in-
network congestion and data center network architecture.

When combining these measurement results in data cen-
ters and the virtualisation overhead measurements from Sec-
tion III-D with the network latency contributions percentages
from [8], we arrive at the same conclusion as prior research:
the end-host, with the hypervisor, is a significant contributor to
the overall measured latency from within the VM. The other
significant contributor is network queueing at switches. When
looking at the network latency contributors in [8], it can be
noticed that switching in the data center fat tree topology
takes up almost 75%, which is approximately 15µs in this
analysis, while the rest is taken up by NICs and fibre length,
with an estimate of 20µs. This analysis represents baseline
contributions. On top of this, the hypervisor’s overhead can be
added, which based on my measurements from Section III-D
is 200µs when using a low message frequency, and 190µs
when using a high message frequency, giving a median OWD
baseline of 220µs and 210µs, respectively. This back-of-the-
envelope calculation shows that the remaining latency may
come from in-network congestion, traffic bursts from other
colocated VMs, transparent VM live migration, when it is ob-
served for short periods, or from sustained increased network
utilisation (whose cause may be bulk network transfers across
the data center, competing traffic from other colocated VMs,
cluster drains), when it is observed over longer periods of
time. Smaller values than this baseline may mean that the OS
is bypassed [39], [40], or that the VMs may be colocated on
the same host, or that there is a shorter network path between
VMs.

IX. LIMITATIONS

End-to-end measurements The network latency measure-
ments presented in this chapter represent end-to-end measure-
ments from within the VMs, which include the virtualisation
layer. Cloud tenants usually do not have access to advanced
features of the underlying hardware, e.g., hardware timestamp-
ing. If access were provided, the precision of the network
latency measurements would be improved due to the removal
of the end-host network stack latency contribution from the
measured network latency [8], [23]. On the other hand, end-
to-end measurements offer a more accurate value of the latency
that the application experiences, encompassing also the end-
host network stack latency contribution. Determining the cause
of latency spikes (end-host issue or network fault) may be
difficult without access to the internal cloud infrastructure, and
even then, finding the root cause may still prove tedious [23].

Spatial analysis The measurement study conducted in this
paper does not cover the spatial analysis of the data centers.
However, our results show that, in some cases, small groups of
VMs are clustered together, observing the same network con-
ditions. This means that, to measure the data center network
across the core and aggregation switches, one would have to
rent a substantial number of VMs to ensure they are not placed
within the same rack or on the same machine. On the other
hand, this might not hold true for all cloud providers. For
example, Microsoft Azure’s tenant VMs are placed randomly
within a cluster, or they can even be spread across data centers
in a region [23].
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Data center 1 hour 1 day
min average median max stddev min average median max stddev

AWS-EUW 0.0 2.028 0.161 11.198 2.511 0.886 1.737 1.679 2.548 0.461
AWS-USW 0.0 1.06 0.0 8.324 1.74 0.116 0.779 0.777 1.617 0.373
GCE-EUW 0.0 2.96 0.0 46.961 7.081 0.109 2.95 0.463 14.082 4.56
GCE-USW 0.0 0.476 0.0 8.373 1.158 0.0 0.154 0.0 0.81 0.256

Azure-UKW 0.0 2.45 2.758 16.533 2.806 1.273 2.405 2.197 3.707 0.633
Azure-USW 0.0 1.244 0.0 11.123 1.9 0.116 0.843 0.753 1.618 0.417

TABLE VI: Packet loss ratio ×10−4 over one week.
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Fig. 16: CDF for the master-to-slave (m-to-s) delay, slave-to-master (s-to-m) delay and OWD in different data centers.

Scalability PTPmesh’s design implies that O(n2) measure-
ments are taken for n VMs. This can quickly become a
bottleneck both at the end-host (in terms of CPU resource con-
sumption) and in the network (in terms of network bandwidth
taken up by the messages exchanged between VMs). Thus, it
is important to choose an appropriate message frequency, as
discussed in Section IV-C1. However, even if a tenant has
a small number of VMs, as it is often the case [48], the
combined resource usage of PTPmesh across different tenant
networks can be a burden to the data center infrastructure.
To mitigate part of this issue, the PTPd master could be
consolidated to run in the hypervisor or in the virtual switch,
similar to VNET-Pingmesh [23]. For example, if the hypervi-
sor used is Xen [49], the PTPd master should run in Dom0.
This design decision has some tradeoffs. While the CPU and
network resources used are smaller than in the current design,
the network latency measured does not express the latency
experienced by the user applications within a VM [8], [23].

X. CONCLUSION

We showed that PTPmesh provides a majority of the fea-
tures needed by a data center network monitoring system.
PTPmesh is a lightweight data center network monitoring tool
is lightweight, easy to configure and deploy, highly available,

and offers sufficient coverage of the network. PTPmesh uses
PTP measurements to estimate one-way delay and packet loss
ratio. The number of probes sent is configurable, it can provide
continuous measurements, and does not have significant over-
head. Furthermore, it is easy to deploy within VMs by tenants
themselves. PTPmesh can infer network conditions for tenant
deployments in the cloud. It can keep track of the latency
within the data center and inter-data center, and can help in
detecting network congestion and packet loss.
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