
IEEE Network • March/April 202258 0890-8044/22/$25.00 © 2022 IEEE

AbstrAct
Data-center-based cloud computing has rev-

olutionized the way businesses use computing
infrastructure. Instead of building their own data
centers, companies rent computing resources
and deploy their applications on cloud hardware.
Providing customers with well-defined applica-
tion performance guarantees is of paramount
importance. A user’s application performance is
subject to the constraints of the resources it has
been allocated and to the impact of the network
conditions in the data center. Given the network
latency variability observed in data centers, appli-
cations’ performance is also determined by their
placement within the data center. We present
NoMora, a cluster scheduling architecture whose
core is represented by a latency-driven, applica-
tion-performance-aware cluster scheduling policy.
The policy places the tasks of an application tak-
ing into account the expected performance based
on the measured network latency between pairs
of hosts in the data center. If a tenant’s applica-
tion experiences increased network latency, and
thus lower application performance, their appli-
cation may be migrated to a better placement.
Experiments on a testbed and in simulations show
that our architecture improves the overall average
application performance by up to 32.5 and 42
percent, respectively, demonstrating that appli-
cation performance can be improved by exploit-
ing the relationship between network latency and
application performance.

IntroductIon
Cloud computing has revolutionized the way busi-
nesses use computing infrastructure. Instead of
building their own data centers, companies rent
computing resources from cloud providers (e.g.,
Amazon AWS, Google Cloud Platform, and Micro-
soft Azure), and deploy their applications on cloud
provider hardware. Network latency variability is
still common in multi-tenant data centers [1, 2], and
even small amounts of delay, on the order of tens
of microseconds, may lead to significant drops in
application performance [3]. An important factor
in achieving predictable application performance is
understanding the networking requirements of the
application in terms of bandwidth and latency. Once
these requirements have been determined, they
have to be incorporated into the data center man-
agement stack. This can be done in-network, through
scheduling [4], or prioritizing the application’s flows
[5], and/or at the end host, through bandwidth allo-
cation [6]. In these situations, the placement of the

application’s tasks is assumed to be known before
incorporating its network resource demands. If the
tasks’ placements are not known a priori or if they
can be changed, the network resource demands can
be incorporated at a higher level in the data center
management stack, namely in the cluster scheduler.
Previous works [5–9] have looked at providing net-
work bandwidth and tail latency guarantees, and, as
a result, the application would meet its performance
guarantees. However, none of the existing cluster
schedulers have considered placing an application’s
tasks taking into account their expected application
performance determined by the current network
conditions. Instead of considering network-level met-
rics such as flow completion time to improve appli-
cation performance, our work demonstrates how
high-level application performance metrics such as
job completion time can be linked to network-level
measurements, leading to improvements in applica-
tion-level performance.

If we know how the application reacts to latency
and the current network conditions, we can place
the tenant’s application in the data center ensuring
the best performance achievable under the current
network conditions. By measuring dynamically the
network latency in the data center and having a
model of the application performance dependent
upon network latency, the relationship between
network latency and application performance can
help cloud customers to determine the perfor-
mance their application can achieve under certain
network conditions and can guide cloud operators
in selecting the network latency ranges that best
suit the needs of their customers.

In this article, we present a cluster scheduling
architecture, NoMora,1 whose core is a cluster
scheduling policy that places the tasks of a job
(application) taking into account the expected
application performance based on the measured
network latency between pairs of hosts in the
data center. If a tenant’s application experienc-
es increased network latency, and thus lower
application performance, the application may be
migrated to different hosts.

NoMora paves the way for application-per-
formance-aware cluster schedulers. Instead of
meeting the job’s resource requirements, in our
work we consider meeting the job’s performance
requirements.

Given the current network conditions, the opti-
mal performance may not be achievable. In this
case, if the tenant whose job has to be scheduled is
content with their job running with less than optimal
performance, the job is admitted into the system

Network Latency and Application Performance Aware Cluster Scheduling in Data Centers
Diana Andreea Popescu and Andrew W. Moore

NEW NETWORK ARCHITECTURES, PROTOCOLS AND
ALGORITHMS FOR TIME-SENSITIVE APPLICATIONS

Digital Object Identifier:
10.1109/MNET.001.2100414 The authors are with the University of Cambridge.

1 Mora means delay in
Latin, so the name refers to
applications being scheduled
to not have network delay
affecting their performance.

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on December 08,2022 at 00:38:23 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2022 59

with the best achievable performance given the lim-
its of the current network conditions. Otherwise,
admission control is performed, the job being sched-
uled only if it can run with optimal performance.

nomorA
The NoMora cluster scheduling architecture com-
bines three key elements:
1. Functions of application performance depen-

dent upon network latency
2. Network latency measurement system
3. The latency-driven application perfor-

mance-aware cluster scheduling policy
For 2, systems such as PTPmesh [10], Pingmesh
[11], and NetNORAD [12], can provide the most
recently measured network latency between hosts
in a data center. The data collected by these systems
is fed in real time to our cluster scheduler to aid in
making task placement or migration decisions.

AppLIcAtIon performAnce functIons
We study three client-server applications and
distributed machine learning frameworks, Mem-
cached (https://memcached.org/), STRADS
(https://github.com/sailing-pmls/stradsI) and Ten-
sorfl ow (https://www.tensorfl ow.org/), with diff er-
ent corresponding workloads.

Memcached: a widely used, in-memory,
key-value store for arbitrary data. We use the
Mutilate (https://github.com/leverich/mutilate)
load generator, with the Facebook “ETC” work-
load, representative of general-purpose key-value
stores, and as application performance metric the
number of queries/requests per second (QPS).

STRADS: a distributed framework for machine
learning algorithms targeted to moderate cluster
sizes. We use the Lasso Regression application.
Workers communicate only with the master serv-
er. We do not allow the use of stale parameters
during iterations (no pipelining), and the injected
network latency does not change the scheduling
of the parameters. While pipelining can reduce
the impact of network latency by overlapping
network communication with computation, due
to the usage of stale parameters and the poten-
tial for dependencies between iterations, it may
lead to a slower convergence rate. The applica-
tion performance is the training time, which is the
same as the job completion time in our case.

Tensorflow: a widely used machine learning
framework. We use the MNIST dataset (http://yann.
lecun.com/exdb/mnist/) for the handwriting rec-

ognition task as input data and Softmax Regression
for the training of the model. Tensorfl ow follows a
master-worker model. The parameter updates from
workers are aggregated before being applied in
order to avoid stale gradients, this being similar to
not using the pipeling in STRADS. The application
performance metric used is the training time, which
in our case is the same as the job runtime.

To determine experimentally the relationship
between network latency and application per-
formance, we used a methodology previously
described in [3], where we injected increasing
amounts of constant latency in a networked sys-
tem, delaying the packets by a fixed amount of
time, and we measured how the application per-
formance changes depending on the amount of
inserted network latency. We construct functions
that predict application performance dependent
upon network latency for different applications.
To model the relationship between network laten-
cy and application performance, we use SciPy’s
(https://www.scipy.org/) curve_fit function.
We first normalize the values of the application
performance with respect to the baseline perfor-
mance, which was obtained without any addi-
tional latency. We then model the relationship
between network latency and normalized applica-
tion performance by fi tting a polynomial function
to the results, where the independent variable is
the static latency, and the dependent variable is
the normalized performance: normalised_perfor-
mance = p(constant_latency). The experimental
data along with the resulting models are present-
ed in Fig. 1. The models have two functions: a
constant function, whose value is the baseline
performance, and this function gives the perfor-
mance up to a threshold beyond which additional
latency leads to a drop in application performance
(40 s for Memcached, 20 s for STRADS, 40
s for Tensorfl ow), and a polynomial function of
order three fi t on the experimental data beyond
this threshold. The coefficient of determination,
R2, to assess goodness of fi t is 0.976 for the Mem-
cached model, 0.994 for the STRADS model, and
0.996 for the Tensorfl ow model.

Latency-sensitive distributed applications are
usually synchronous, meaning that the application
blocks on waiting to receive data from a diff erent
host over the network before proceeding with
the next step. This is the case for the machine
learning frameworks we studied, STRADS and
Tensorflow, which follow the parameter server

FIGURE 1. Applications’ experimental results (actual) and model on the results (model): a) Memcached; b) STRADS Lasso Regression;
c) Tensorfl ow MNIST.

(a) (b) (c)

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on December 08,2022 at 00:38:23 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 202260

design for the applications we used, with work-
ers that exchange messages with the parameter
server over the network. These frameworks use,
in the current iteration, the parameters computed
during the previous iteration. This pattern makes
them highly dependent on the network, and espe-
cially on network latency. Similarly, for key-value
stores, like Memcached, that act as an intermedi-
ate caching layer between the client and the stor-
age system, the request-response latency is very
important, since the store needs to provide fast
access to the data. The overall throughput of the
Memcached server will decrease when additional
latency is injected in the network.

bAcKGround on cLuster scHeduLInG
NoMora extends the Firmament cluster scheduler
[13] that models the problem of assigning tasks to
machines as a minimum-cost fl ow problem, which
is a centralized scheduler that considers the entire
workload across the whole cluster. A scheduling pol-
icy defi nes a fl ow network representing the cluster,
where the nodes defi ne tasks and resources. A job
(application) can have several tasks, and a cluster
has machines (servers). Events such as task arriv-
al, task completion, machine addition to the clus-
ter, and machine removal from the cluster change
the fl ow network. When cluster events change the
fl ow network, Firmament’s min-cost max-fl ow solver
computes the optimal flow on the updated flow
network. After the solver finishes running, Firma-
ment extracts the task placements from the optimal
flow and applies these changes in the cluster. We
next give an overview of how the cluster schedul-
ing problem is mapped to the minimum-cost maxi-
mum-fl ow optimization problem [13, 14].

Flow Network: First, we provide a high-lev-
el overview of the structure of the flow network,
which can be seen in Fig. 2. By flow network we
refer to a directed graph where each arc has a
capacity and a cost to send flow across that arc.
Each submitted task Ti,j, representing task j of job
Ji, is represented by a vertex in the graph, and it

generates one unit of flow. The sink S drains the
flow generated by the submitted tasks. A task
vertex needs to send a unit of flow along a path
composed of directed arcs in the graph to the sink
S. The path can pass through a vertex that corre-
sponds to a machine (host) Mm, meaning the task
is scheduled to run on that machine, or it can pass
through a special vertex for the unscheduled tasks
of that job, Ui, meaning the task is not scheduled.
In this way, even if the task is not scheduled to run,
the flow generated by this task is routed through
the unscheduled aggregator to the sink.

The graph can have an arc between every task
and every machine, but this would make the com-
putation of an optimal scheduling solution in a
short time prohibitive, as the graph would scale
linearly with the number of machines in the clus-
ter. To reduce the number of arcs in the graph, a
cluster aggregator X and rack aggregators Rr have
been introduced, inspired by the topology of a
typical data center.

Capacity Assignment: Each arc in the flow
network has a capacity c for flow, bounded by
cmin and cmax, with cmin usually 0, while cmax
depends on the type of vertices connected by
the arc and on the cost model. The capacity of
an arc between a task and any other vertex is 1.
If a machine has C CPU cores and a rack has m
machines, the capacity of an arc between a rack
aggregator and a machine is C, and the capaci-
ty of an arc between the cluster aggregator and
a rack is C m = Cm. The capacity of an arc
between a machine and the sink is C. The capaci-
ty between an unscheduled aggregator Ui and the
sink S can be used to ensure a fair allocation of
runnable tasks between jobs [14]. For the NoMo-
ra policy, we set this capacity to 1.

Cost Assignment: The cost on an arc represents
how much it costs to schedule any task that can
send fl ow on this arc on any machine that is reach-
able via this arc. Table 1 provides on overview of
the capacities and costs of diff erent arcs.

Task to Machine Arc: The cost on the arc
between a task vertex Ti,j and a machine vertex
Mm is denoted by di,j,m, and is computed accord-
ing to information regarding the task and machine.
In most cases, this cost is being decreased by how
much the task has already run, bi,j.

Task to Resource Aggregator Arc: The cost
on the arc between a task vertex Ti,j and a rack
aggregator vertex Rr, denoted ci,j,r, represents the
cost to schedule the task on any machine within
the rack, and is set to the worst case cost among
all costs across that rack. The cost on the arc
between a task vertex Ti,j and the cluster aggre-
gator X, denoted by bi,j, represents the cost to
schedule the task on any machine within the clus-
ter, and is set to the worst case cost among all
costs across the cluster:

𝑏𝑏!,# = max
$
𝑐𝑐!,#,$.

Task to Unscheduled Aggregator Arc: The
cost on the arc between a task vertex Ti,j and the
unscheduled aggregator Ui, denoted by ai,j, is usu-
ally larger than any other costs in the flow net-
work. The cost on this arc increases as a function
of the task’s wait time ai,j, in order to force the
task to be scheduled, and it is scaled by a con-
stant wait time factor w, which increases the cost
of tasks being unscheduled. Thus, the cost to the

FIGURE 2. A general fl ow network with annotated capacities and costs on
arcs. Job J1 has tasks T1,1 and T1,2. Job J2 has tasks T2,1, T2,2 and T2,3. The
unscheduled aggregators are U1 and U2. The machines in the cluster are
M1, M2, M3, and M4. Rack aggregators are R1 and R2. The cluster aggrega-
tor is X. The sink vertex is S.

T1,1

U2

 X

R1

R2

U1

M1

M2

M3

M4

T1,1

T1,2

T2,1

T2,2

T2,3

S

M1

M4

C, 0

C, 0

C, 0

C, 0

1, a1,1

1, a1,2

1, b1,1

1, b1,2

1,b2,1

1,b2,2

1,b2,3

1,a2,1

1,a2,3

1,a2,2

1, c1,1,1

1, d1,1,1

1,d2,3,4

1, 0

1, 0

C, 0

mC, 0

mC, 0

C, 0

C, 0

C, 0

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on December 08,2022 at 00:38:23 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2022 61

unscheduled aggregator Ui is ai,j = w ai,j + g, to
which a constant cost factor g , which is larger
than any other possible arc costs, is added.

Preemption: If preemption is enabled, the
scheduler can preempt a task that it is running
on a machine, which means the flow pertaining
to that task is routed via the unscheduled aggre-
gator, or migrate the task to a different machine,
meaning that the flow is routed via that new
machine’s vertex. If preemption is not enabled, a
scheduled task will have in the flow network only
the arc to the machine on which it is currently
running, with all the other arcs being removed
once the task is scheduled. Preempting a task
presents a trade-off between migrating the task
to a better placement and the amount of time
the task has already run (on the current machine
or on a different one). If preemption is enabled,
the amount of time the task has already run, bi,j,
can be subtracted from the cost(Ti,j, Mm); then
di,j,r = cost(Ti,j, Mm) – bi,j. This leads to fewer task
migrations happening, because it becomes less
advantageous to preempt a task and restart it on
another machine after migration the more time
the task is running, essentially wasting the work
that has already been done.

LAtency-drIven, AppLIcAtIon-performAnce-AwAre poLIcy
We propose a new latency-driven, applica-
tion-performance-aware policy whose goal is to
place distributed applications in a data center in
a manner that gives them improved application
performance. This generally leads to grouping
tasks as close as possible, in a rack or on the same
machine, for the applications for which latency
matters, such as Memcached and machine learn-
ing frameworks (STRADS, Tensorflow). For tasks
that do not fit within the same rack or on the
same machine, the policy finds the machine that
offers the best application performance among
the available placements. On the other hand,
applications such as Spark, for which additional
latency of up to 1 ms does not matter [3], will
have more freedom when being placed within the
data center. If the network conditions change, a
task whose performance degrades can be migrat-
ed to a better placement.

Since the applications we studied earlier are
client-server applications or worker-master appli-
cations, we consider that the server/master has a
special role, because it has to be running before
the clients/workers. We call the server (for cli-
ent-server applications)/master (for master-work-
ers applications) the root task. Thus, the policy
needs to schedule the root task first. The root task
is scheduled immediately in any place available
in the cluster. The other tasks of the job (clients/
workers) are not scheduled until the root task is
scheduled. While this adds delay in scheduling for
these tasks, the delay is minimal, since they will
be scheduled in the next scheduling round based
on the placement of the root task. Next, a task’s
placement is determined based on the application
performance function and current network laten-
cies to the job’s root task placement.

Flow Network: The flow network is similar to
the one in Fig. 2. When a job is submitted, the
root task Ti,0 is assigned a single arc to the cluster
aggregator, with a cost of 0, which means that
the root task will be scheduled immediately on

any available machine. After it is scheduled, the
root task will have an arc from the root task to the
machine on which it is running. The other tasks
of the job will wait for the root to be scheduled
first, and they do not have any arcs initially. After
the root task is scheduled, each task Ti,j will have
preference arcs to the cluster aggregator X, to
rack aggregators Rr and machines Mm based on
the cost to schedule the task on those resources
and on the parameters of the policy.

Cost Assignment: The cost assignment is also
called cost model [13]. In NoMora we consid-
er the cost to the root task computed based on
application performance function dependent on
network latency for a job (as built earlier), com-
bined with measured network latency between
the root task machine and the machine under
consideration. We also factor the task wait time
(the time a task waits before being scheduled)
when computing the cost of the arc to the
unscheduled aggregator, and, if preemption is
enabled, how much time a task has run before
being preempted (preemption cost). Finding a
good placement can mean waiting more time
until a suitable machine is free (the task wait time
increases), or preempting a task that is already
running (if this task is restarted from the beginning
on another machine, the time the task has already
run is lost).

Assuming the root task is running on machine
Mroot and a task j, Ti,j, of job Ji can be scheduled
on machine Mm, the cost of the arc from Ti,j to
Mm is
𝑑𝑑!,#,$ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐'𝑇𝑇!,# , 𝑀𝑀$+ =

1

𝑝𝑝 .𝑚𝑚𝑚𝑚𝑚𝑚'𝑙𝑙𝑚𝑚𝑐𝑐𝑙𝑙𝑙𝑙𝑐𝑐𝑙𝑙(𝑀𝑀%&&', 𝑀𝑀$)+8

 (1)
where p(max(latency(Mroot, Mm))) is the expect-
ed application performance for the measured
network latency between machine Mroot and
machine Mm, as determined earlier. We invert
the performance because when the performance
is smaller, the cost assigned to the arc is high-
er, making the machine to which the arc points
less desirable for running the task on. Since in
data centers typically there are multiple paths
between two machines, in order to be conser-
vative, we use the maximum latency value mea-
sured between the two machines because due to
equal-cost multi-path routing (ECMP), we cannot
know which of the available paths the applica-
tion’s flows will take.

TABLE 1. Arcs in the flow network.

Arc Capacity (max) Value

Ti,j Ui 1 ai,j

Ti,j X 1 bi,j

Ti,j Rr 1 ci,j,r

Ti,j Mm 1 di,j,m

X Rr mC 0

Rr Mm C 0

Mm S C 0

Ui S 1 0

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on December 08,2022 at 00:38:23 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 202262

Similarly, the cost of the arc from Ti,j to rack
Rr is the cost to the worst cost machine in rack r:

𝑐𝑐!,#,$ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐&𝑇𝑇!,# , 𝑅𝑅$*

																																																							= max
%∈$

1

𝑝𝑝 1𝑚𝑚𝑚𝑚𝑚𝑚&𝑙𝑙𝑚𝑚𝑐𝑐𝑙𝑙𝑙𝑙𝑐𝑐𝑙𝑙(𝑀𝑀$''(, 𝑀𝑀%)*<

 (2)

where p(max(latency(Mroot, Mm))) is the expect-
ed application performance for the measured
network latency between machine Mroot and a
machine Mm in rack r. Similarly, to be conserva-
tive due to ECMP, we take the maximum value of
the latencies between Mroot and Mm.

The costs on the arcs are rounded to two sig-
nificant digits and then multiplied by a factor of
100, since the costs must be integer numbers for
the solver to understand. For a performance of
0.1, the cost is (1/0.1) 100 = 1000.

Since the network latency is not constant in a
data center, the costs associated with the arcs are
updated based on the latest measured network laten-
cy values, and, as a result, the preference arcs for the
tasks are updated. If preemption is enabled, the cost
of the arcs for a running task will also be updated.

Cost Model Parameters: The cost model has
two main parameters: pm, threshold for the cost
on an arc to a machine in order for that machine
to be on the preferred list of machines on which
the task can run, and pr, threshold for the cost
on an arc to a rack in order for that rack to be
on the preferred list of racks in which the task
can run. The first preference list comprises the
machines on which the application may run to
achieve the desired performance. This list should
be kept small for the scheduling latency to take
a reasonable amount of time. But having a small
preference list means the application’s placement
options are limited. To mitigate this, the second
preference list, which comprises the racks on
which the application may run, was introduced.
The second list is smaller than the first one, since
the number of racks is smaller than the number
of machines. This allows a bigger threshold to be
set for the second parameter of the model, offer-
ing more placement options for the application’s
tasks, while keeping the first preference list small.

nomorA evALuAtIon

sImuLAtIon experIments

Simulation Setup:
Cluster Workloads: As no public cluster work-

loads include information regarding sensitivity
to network latency for applications, we assigned
randomly the functions from Fig. 1 to the jobs in
the Google workload [15]. For the experiments
presented in this section, 50 percent of the jobs
use the Memcached function, 25 percent use the
STRADS function and 25 percent the Tensorflow
function. We did not include the single task jobs,
as they do not communicate with any other task.
We used 24 hours of the trace. We set g = 1001
for the simulation, since the performance does
not drop below 0.1 for the functions used.

Topology: The cluster workload has 12,500
machines, which we grouped into racks of 48
machines and pods of 16 racks. These two num-
bers were chosen to reproduce a small cluster.

Network Latency Measurements: The simula-
tor leverages the network latency measurements
dataset from [2]. We assign them to machine
pairs considering the physical distance between
servers as a criterion, assuming a typical fat-tree
topology for a data center. Latency values are
provided every second in the simulation. For the
latency values between cores on the same server
we use a small constant.

Cost Model Parameters: We determine empir-
ically through experimentation the values for the
cost model parameters, pm and pr. We use pm =
105 and pr = 110 in most experiments, and also
present results for pm = 110 and pr = 115. Choosing
these parameters involves a trade-off between the
improvement in application performance, task wait
time, and algorithm runtime. The algorithm runtime
depends on the number of arcs from each task to
the resources, but also on the cluster size. As the
number of arcs or the cluster size increases, so does
the algorithm runtime. The two parameters of the
cost model influence the number of arcs the graph
has between task nodes and machine nodes or rack
nodes, and hence the algorithm runtime, which
depends on the flow network size and on the num-

FIGURE 3. Evaluation metrics results for different policies on the Google workload: a) average application performance; b) algorithm run-
time; c) task placement latency.

0 20 40 60 80 100
Average Application Performance [%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

random
load-spreading
NoMora-105-110
NoMora-105-110-preempt
NoMora-110-115
NoMora-105-110-preempt-no-executed-time

1 10 100 1000 10000 1000001000000
Duration [ms]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F
of

al
go

rit
hm

ru
nt
im

es

random
load-spreading
NoMora-105-110
NoMora-105-110-preempt
NoMora-110-115
NoMora-105-110-preempt-no-executed-time

1 10 100 1000 10000
Task placement latency [sec]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F
of

ta
sk

pl
ac
em

en
tl
at
en

cy

random
load-spreading
NoMora-105-110
NoMora-105-110-preempt
NoMora-110-115
NoMora-105-110-preempt-no-executed-time

(a) (b) (c)

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on December 08,2022 at 00:38:23 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2022 63

ber of tasks considered per scheduling round. If the
parameters’ values are lower, the preference lists
will be smaller. In this case, the applications’ perfor-
mance will be higher (only high-quality placements
are considered), but they will have less placement
options available for them to be scheduled, and
thus the wait time may increase. The tasks will have
to wait for the machines that offer the performance
desired to have empty slots. However, setting a
high parameter value means the preference lists will
be larger, which could lead to an increase in the
algorithm runtime. On the other hand, more place-
ment options will be available for the tasks to be
scheduled, reducing their wait time. In practice, with
more placement options available, the tasks may be
scheduled sooner, thus leading to fewer tasks being
scheduled per round, resulting in a decrease in the
algorithm runtime per scheduling round.

Evaluation Metrics: We compute the average
application performance, which measures NoMo-
ra’s task placement quality. It is computed as the
application performance determined by the net-
work latency in every measurement interval divid-
ed by the maximum application performance that
could be achieved in every measurement interval,
and it is computed for the job’s total runtime.

The algorithm runtime is the time it takes for
the min-cost max-flow algorithm to run to com-
pute task placements. This also gives an indica-
tion of the time interval that is needed between
latency measurements. If the algorithm runtime
were on the order of minutes, running latency
measurements every few seconds would be too
often, since the measurements accumulated over
the scheduler’s runtime would not be used by the
scheduler. If the algorithm runtime is on the order
of milliseconds, it is better to run latency measure-
ments every second or few seconds.

The task placement latency is the time
between task submission and task placement,
which includes the task wait time. The metric also
captures how long the tasks are delayed when
they are waiting for their root task to be placed
first before them.

sImuLAtIon resuLts
Placement Quality: We compare the NoMora
policy, using different parameter values for the
cost model, with a random policy that uses fixed
costs (tasks always schedule if resources are idle),
and a load-spreading policy that balances the
tasks across machines. We enable preemption
only for the NoMora policy, since the two other
policies would not benefit from preemption due
to their different scheduling goals.

The results for the average application perfor-
mance for different policies can be seen in Fig.
3a. We compute the area marked by the y-axis,
the cumulative distribution function (CDF), and
the straight horizontal line with y = 1 for each
policy. According to this computation, the maxi-
mum area corresponding to the maximum aver-
age application performance across applications
is 100 percent, and it would be obtained for a
vertical line at x = 100 percent. Next, we subtract
from the NoMora policies areas the random and
load-spreading areas to assess the placement
improvement given by the NoMora policy.

The maximum overall improvement with-
out preemption enabled is 13 percent over

the random policy and 13.4 percent over the
load-spreading policy, and is obtained for NoMo-
ra with parameters pm = 105 and pr = 110. If pre-
emption is enabled and bi,j = 0 (the time already
executed by a task is not considered in the arc
cost computation), the improvement is consider-
able, 42.4 percent over the random policy and
42.8 percent over the load-spreading one.

The improvement in average application per-
formance is not substantial when preemption is
not enabled because of the root task’s random
placement. The tasks of the jobs are placed in the
best available slots in relation to the root task’s
placement. In this way, we constrain the available
placements, and the policy searches for place-
ments in relation to a known location rather than
trying to find a placement for all the tasks of a job
simultaneously.

It can be seen that the CDF of NoMora with
preemption enabled has a different shape than
the other policies. This is due to task preemption,
which can correct the initial placement if it is not
good (because of the random placement of the
root task), and it can also migrate tasks when
their current placement is not good anymore. The
improvement provided by the NoMora policies
without preemption is evident from Fig. 3a, but
it can also be seen that the CDFs start at approx-
imately the same value (27–28 percent average
application performance), and have an initially
similar shape to the random and load-spread-
ing CDFs. On the other hand, for NoMora with
preemption enabled, the minimum average
application performance is 44 and 84 percent,
respectively, which means that the improvement
in application performance happens across all
jobs due to migration to better placements.

Algorithm Runtime: Figure 3b and Table
2 present results for the algorithm runtime for
the load-spreading policy, random policy, and
NoMora policy with and without preemption.
For NoMora with parameters pm = 105 and pr =
110, we observe an improvement of 1.61 for
the median runtime, and 2.66 and 3.92 at the
99th percentile, compared to the random policy
and load-spreading policy, respectively.

NoMora with parameters pm = 105 and pr =
110 with preemption enabled takes a consider-
ably longer amount of time, because of the higher
number of arcs in the flow network compared
to the case when preemption is not enabled
(the arc preferences of the tasks that are run-
ning are not removed, unlike when preemption
is not enabled), and the updates made to the
flow graph (adding or changing running arcs to
resources), further resulting in a larger number of
tasks considered per scheduling round. This also
translates into a larger task placement latency.
This significant algorithm runtime means that pre-
emption should be used with care. For example,
only certain applications that explicitly demand to
be migrated should be migrated, or migration can
be triggered only if the application performance
drops below a certain threshold.

NoMora paves the way for application-per formance-aware cluster schedulers. Instead of meeting the
job’s resource requirements, in our work we consider meeting the job’s performance requirements.

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on December 08,2022 at 00:38:23 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 202264

The percentage of migrated tasks in the case
when NoMora with preemption enabled and
already executed time for a task considered in
the arc computation is on average 0.022 percent
per scheduling round, with a 99th percentile of
0.5 percent. If bi,j = 0 (already executed time is
not considered in the arc computation), a consid-
erable number of task migrations take place: an
average of 7.1 percent per scheduling round, with
a 99th percentile of 10.07 percent, leading to a
substantial algorithm runtime and task placement
latency. This happens because the time a task
has already run is ignored in the arc cost compu-
tation, meaning that the cost is based solely on
the expected application performance under the
given network conditions.

Task Placement Latency: Figure 3c presents
the task placement latency. The NoMora policy
with parameters pm = 105 and pr = 110 improves
the median task placement latency by 1.56 com-
pared to the random policy and by 1.79 com-
pared to the load-spreading policy. The NoMora
policy with parameters pm = 110 and pr = 115
improves the median task placement latency by
2.35 compared to the random policy and by
2.69 compared to the load-spreading policy.
Policies with migration enabled lead to increased
task placement latency.

Discussion: There are a number of factors
that can influence the improvement in applica-
tion performance that our cluster scheduling
policy can achieve. If the applications are not
latency-sensitive, but instead are throughput-in-
tensive, our policy’s benefits are limited. The
simulation results will also be infl uenced by the
number of hosts per rack and by the number
of racks per pod. This is due to the fact that we
assumed lower latencies between hosts within a

rack compared to the latencies between pods
under normal conditions, and we assigned the
cloud latency traces accordingly. If there are
more hosts per rack, and more racks per pod
than the scenario we considered in our simu-
lation, there will be a greater chance of fitting
all the tasks of a job in the same rack or in the
same pod. This means that the job will have bet-
ter overall application performance due to the
lower latencies between hosts in the same rack.
Thus, the size of a job in terms of number of
tasks should be taken into consideration when
designing novel data center topologies. Another
factor that can influence the results is the net-
work utilization in the data centers. The perfor-
mance of latency-sensitive applications will suff er
if the network is congested.

testbed experIments
We evaluate NoMora on a testbed comprising
18 hosts. We use a tree topology, with one core
switch and two leaf switches. Each leaf switch is
connected to nine hosts. Each host has an Intel
Xeon E5-2430L v2 Ivy Bridge CPU with six cores,
running at 2.4 GHz with 64 GB RAM, and is
equipped with an Intel X520 NIC with two SFP+
ports, being connected at 10 Gb/s through an Aris-
ta 7050Q switch. The two leaf switches are con-
nected through the core switch, an Arista 7050Q
using 40 Gb/s connections. The hosts run Ubun-
tu Server 18.04, kernel version 4.15.0-51-generic.
A job is represented by a Memcached workload
generated by five memaslap (from the libmem-
cached library) clients, and one Memcached server
responding to the client requests. We use differ-
ent loads for the cluster: 50 percent (10 jobs), 90
percent (18 jobs) and 100 percent (20 jobs). We
use as background traffi c iperf using a TCP stream
between two servers in one of the leaves in order
to have increased network latency between servers
in that respective leaf. We run PTPmesh [10] to
measure the network latency periodically between
every two servers in our cluster. The latency mea-
surements serve as input to NoMora when decid-
ing where to place the jobs using the application
performance function determined earlier for the
Memcached workload. The results in Fig. 4 show
that NoMora improves the overall application
performance (measured in requests per second)
compared to a random placement policy by 32.5
percent, and compared to a load-spreading poli-
cy by 20.46 percent when the load in the cluster
is 50 percent. As the load in the cluster increas-
es, the network becomes more utilized, and thus
the improvement in the overall application perfor-
mance decreases. When the load in the cluster is
90 percent, the NoMora policy performs better
by 10.81 percent compared to a random policy,
and by 8.47 percent compared to a load-spreading
policy. When the cluster is fully utilized, all policies
perform the same, because the network is congest-
ed under high utilization. As data center operators
are not running their networks at high utilization,
we show that our NoMora policy improves overall
application performance.

concLusIon And future worK
We introduce latency-driven, application-perfor-
mance-aware cluster scheduling, and NoMora, a
cluster scheduling framework that implements this

TABLE 2. Overall average application performance and algorithm runtimes for
baseline and NoMora policies.

Policy Overall avg app. performance Median 99th perc. Maximum

Random 47.2% 108 ms 661 ms 18.89 s

Load-spreading 46.8% 109 ms 974 ms 25.88 s

NoMora pm = 105, pr = 110 60.2% 93 ms 248 ms 6.13 s

NoMora pm = 105, pr = 110 preempt 59% 373 ms 511 s 1719 s

NoMora pm = 110, pr = 115 51.85% 72 ms 486 ms 39.55 s

NoMora pm = 105, pr = 110, bi,j = 0 preempt 89.6% 1532s 6610s 7118 s

FIGURE 4. Overall average application performance
(requests per second) for the Memcached
workload using three policies: random,
load-spreading, and NoMora.

load 50% load 90% load 100%
0

10

20

30

40

50

60

70

80

Re
qu

es
ts
/s
ec

random
load-spreading
NoMora

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on December 08,2022 at 00:38:23 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2022 65

type of policy. It exploits functions that predict appli-
cation performance based on network latency and
dynamic network latency measurements between
hosts to place tasks in a data center, providing them
with improved application performance. We show
that overall application performance is improved by
up to 32.5 percent in testbed experiments and up to
42 percent in simulation experiments.

Our work paves the way for application-per-
formance-aware cluster schedulers, which use
network measurements to improve overall appli-
cation performance.

references
[1] D. A. Popescu, “Latency-Driven Performance in Data

Centres,” Univ. of Cambridge, Computer Lab, Tech. Rep.
UCAM-CL-TR-937, June 2019; https://www.cl.cam.ac.uk/
techreports/ UCAM-CL-TR-937.pdf.

[2] D. A. Popescu and A. W. Moore, “A First Look at Data Cen-
ter Network Conditions Through the Eyes of PTPmesh,”
Proc. 2018 IFIP/IEEE 2nd Network Traffic Measurement and
Analysis Conf., ser. TMA ’18, 2018.

[3] D. A. Popescu, N. Zilberman, and A. W. Moore, “Charac-
terizing the Impact of Network Latency on Cloud-Based
Applications’ Performance,” Univ. of Cambridge, Computer
Lab, Tech. Rep. UCAMCL- TR-914, Nov. 2017; http://www.
cl.cam.ac.uk/ techreports/UCAM-CL-TR-914.pdf.

[4] J. Perry et al., “Fastpass: A Centralized ‘Zero-Queue’ Data-
center Network,” Proc. 2014 ACM Conf. SIGCOMM,
ser. SIGCOMM ’14, 2014, pp. 307–18; http://doi.acm.
org/10.1145/2619239.2626309.

[5] M. P. Grosvenor et al., “Queues Don’t Matter When You
Can Jump Them!” Proc. 12th USENIX Conf. Networked Sys-
tems Design and Implementation, ser. NSDI’15, 2015, pp.
1–14; http://dl.acm.org/citation.cfm?id=2789770.2789771.

[6] L. Popa et al., “Elasticswitch: Practical Work-Conserving
Bandwidth Guarantees for Cloud Computing,” Proc. ACM
SIGCOMM 2013, ser. SIGCOMM ’13, 2013, pp. 351–62;
http://doi.acm.org/10.1145/2486001.2486027

[7] H. Ballani et al., “Towards Predictable Datacenter Networks,”
Proc. ACM SIGCOMM 2011, ser. SIGCOMM ’11, 2011, pp.
242–53; http: //doi.acm.org/10.1145/2018436.2018465.

[8] K. LaCurts et al., “Choreo: Network-Aware Task Placement
for Cloud Applications,” Proc. 2013 ACM Conf. Internet
Measurement, ser. IMC ’13, 2013, pp. 191–204; http://doi.
acm.org/10.1145/2504730.2504744.

[9] K. Jang et al., “Silo: Predictable Message Latency in the
Cloud,” Proc. 2015 ACM Conf. Special Interest Group on

Data Communication, ser. SIGCOMM ’15, 2015, pp. 435–
48; http://doi.acm.org/10.1145/2785956.2787479.

[10] D. A. Popescu and A. W. Moore, “PTPmesh: Data Center
Network Latency Measurements Using PTP,” Proc. 2017
IEEE 25th Int’l. Symp. Modeling, Analysis, and Simulation of
Computer and Telecommun. Systems, Sept. 2017, pp. 73–79.

[11] C. Guo et al., “Pingmesh: A large-Scale System for Data
Center Network Latency Measurement and Analysis,” Proc.
2015 ACM Conf. Special Interest Group on Data Commun.,
ser. SIGCOMM ’15, 2015, pp. 139–52; http://doi.acm.
org/10.1145/2785956.2787496.

[12] A. Adams, P. Lapukhov, and J. H. Zeng, “NetNORAD:
Troubleshooting Networks via End-to-End Probing”; https://
code.facebook.com/posts/1534350660228025/net-
norad-troubleshooting-networks-via-end-toend-probing/,
2016, accessed July 2021.

[13] I. Gog et al., “Firmament: Fast, Centralized Cluster Sched-
uling at Scale,” Proc. 12th USENIX Conf. Operating Systems
Design and Implementation, ser. OSDI’16, 2016, pp. 99–115;
http://dl.acm.org/citation.cfm?id=3026877.3026886.

[14] M. Isard et al., “Quincy: Fair Scheduling for Distributed
Computing Clusters,” Proc. ACM SIGOPS 22nd Symp. Oper-
ating Systems Principles, ser. SOSP ’09, 2009, pp. 261–76;
http: //doi.acm.org/10.1145/1629575.1629601.

[15] C. Reiss et al., “Heterogeneity and Dynamicity of Clouds at
Scale: Google Trace Analysis,” Proc. Third ACM Symp. Cloud
Computing, ser. SoCC ’12, 2012, pp. 7:1–13; http://doi.
acm.org/10.1145/2391229.2391236.

Biographies
Diana anDreea PoPescu received her Ph.D. degree in comput-
er science from the Computer Laboratory, Systems Research
Group, University of Cambridge, United Kingdom, focusing
on data center networking, network measurement, and clus-
ter scheduling. During her Ph.D. work, she was a Marie Curie
Early-Stage Researcher. As a research associate in the Systems
Research Group, she worked on network management for IoT
devices, applied machine learning to IoT network traffic, and
federated learning. She is currently a visiting researcher in the
Department of Computer Science and Technology, University
of Cambridge.

anDrew w. Moore is a professor of networked systems with
the Department of Computer Science and Technology, Univer-
sity of Cambridge, where he jointly leads the Systems Research
Group working on issues of network and computer architecture
with a particular interest in latency-reduction. His research con-
tributions include enabling open network research and edu-
cation using the NetFPGA platform; other research pursuits
include low-power energy-aware networking, and novel network
and systems data center architectures.

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on December 08,2022 at 00:38:23 UTC from IEEE Xplore. Restrictions apply.

