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AbstrAct
Data-center-based cloud computing has rev-

olutionized the way businesses use computing 
infrastructure. Instead of building their own data 
centers, companies rent computing resources 
and deploy their applications on cloud hardware. 
Providing customers with well-defined applica-
tion performance guarantees is of paramount 
importance. A user’s application performance is 
subject to the constraints of the resources it has 
been allocated and to the impact of the network 
conditions in the data center. Given the network 
latency variability observed in data centers, appli-
cations’ performance is also determined by their 
placement within the data center. We present 
NoMora, a cluster scheduling architecture whose 
core is represented by a latency-driven, applica-
tion-performance-aware cluster scheduling policy. 
The policy places the tasks of an application tak-
ing into account the expected performance based 
on the measured network latency between pairs 
of hosts in the data center. If a tenant’s applica-
tion experiences increased network latency, and 
thus lower application performance, their appli-
cation may be migrated to a better placement. 
Experiments on a testbed and in simulations show 
that our architecture improves the overall average 
application performance by up to 32.5 and 42 
percent, respectively, demonstrating that appli-
cation performance can be improved by exploit-
ing the relationship between network latency and 
application performance.

IntroductIon
Cloud computing has revolutionized the way busi-
nesses use computing infrastructure. Instead of 
building their own data centers, companies rent 
computing resources from cloud providers (e.g., 
Amazon AWS, Google Cloud Platform, and Micro-
soft Azure), and deploy their applications on cloud 
provider hardware. Network latency variability is 
still common in multi-tenant data centers [1, 2], and 
even small amounts of delay, on the order of tens 
of microseconds, may lead to significant drops in 
application performance [3]. An important factor 
in achieving predictable application performance is 
understanding the networking requirements of the 
application in terms of bandwidth and latency. Once 
these requirements have been determined, they 
have to be incorporated into the data center man-
agement stack. This can be done in-network, through 
scheduling [4], or prioritizing the application’s flows 
[5], and/or at the end host, through bandwidth allo-
cation [6]. In these situations, the placement of the 

application’s tasks is assumed to be known before 
incorporating its network resource demands. If the 
tasks’ placements are not known a priori or if they 
can be changed, the network resource demands can 
be incorporated at a higher level in the data center 
management stack, namely in the cluster scheduler. 
Previous works [5–9] have looked at providing net-
work bandwidth and tail latency guarantees, and, as 
a result, the application would meet its performance 
guarantees. However, none of the existing cluster 
schedulers have considered placing an application’s 
tasks taking into account their expected application 
performance determined by the current network 
conditions. Instead of considering network-level met-
rics such as flow completion time to improve appli-
cation performance, our work demonstrates how 
high-level application performance metrics such as 
job completion time can be linked to network-level 
measurements, leading to improvements in applica-
tion-level performance.

If we know how the application reacts to latency 
and the current network conditions, we can place 
the tenant’s application in the data center ensuring 
the best performance achievable under the current 
network conditions. By measuring dynamically the 
network latency in the data center and having a 
model of the application performance dependent 
upon network latency, the relationship between 
network latency and application performance can 
help cloud customers to determine the perfor-
mance their application can achieve under certain 
network conditions and can guide cloud operators 
in selecting the network latency ranges that best 
suit the needs of their customers.

In this article, we present a cluster scheduling 
architecture, NoMora,1 whose core is a cluster 
scheduling policy that places the tasks of a job 
(application) taking into account the expected 
application performance based on the measured 
network latency between pairs of hosts in the 
data center. If a tenant’s application experienc-
es increased network latency, and thus lower 
application performance, the application may be 
migrated to different hosts. 

NoMora paves the way for application-per-
formance-aware cluster schedulers. Instead of 
meeting the job’s resource requirements, in our 
work we consider meeting the job’s performance 
requirements.

Given the current network conditions, the opti-
mal performance may not be achievable. In this 
case, if the tenant whose job has to be scheduled is 
content with their job running with less than optimal 
performance, the job is admitted into the system 
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with the best achievable performance given the lim-
its of the current network conditions. Otherwise, 
admission control is performed, the job being sched-
uled only if it can run with optimal performance.

nomorA
The NoMora cluster scheduling architecture com-
bines three key elements:
1. Functions of application performance depen-

dent upon network latency
2. Network latency measurement system
3. The latency-driven application perfor-

mance-aware cluster scheduling policy
For 2, systems such as PTPmesh [10], Pingmesh 
[11], and NetNORAD [12], can provide the most 
recently measured network latency between hosts 
in a data center. The data collected by these systems 
is fed in real time to our cluster scheduler to aid in 
making task placement or migration decisions.

AppLIcAtIon performAnce functIons
We study three client-server applications and 
distributed machine learning frameworks, Mem-
cached (https://memcached.org/), STRADS 
(https://github.com/sailing-pmls/stradsI) and Ten-
sorfl ow (https://www.tensorfl ow.org/), with diff er-
ent corresponding workloads.

Memcached: a widely used, in-memory, 
key-value store for arbitrary data. We use the 
Mutilate (https://github.com/leverich/mutilate) 
load generator, with the Facebook “ETC” work-
load, representative of general-purpose key-value 
stores, and as application performance metric the 
number of queries/requests per second (QPS).

STRADS: a distributed framework for machine 
learning algorithms targeted to moderate cluster 
sizes. We use the Lasso Regression application. 
Workers communicate only with the master serv-
er. We do not allow the use of stale parameters 
during iterations (no pipelining), and the injected 
network latency does not change the scheduling 
of the parameters. While pipelining can reduce 
the impact of network latency by overlapping 
network communication with computation, due 
to the usage of stale parameters and the poten-
tial for dependencies between iterations, it may 
lead to a slower convergence rate. The applica-
tion performance is the training time, which is the 
same as the job completion time in our case.

Tensorflow: a widely used machine learning 
framework. We use the MNIST dataset (http://yann.
lecun.com/exdb/mnist/) for the handwriting rec-

ognition task as input data and Softmax Regression 
for the training of the model. Tensorfl ow follows a 
master-worker model. The parameter updates from 
workers are aggregated before being applied in 
order to avoid stale gradients, this being similar to 
not using the pipeling in STRADS. The application 
performance metric used is the training time, which 
in our case is the same as the job runtime. 

To determine experimentally the relationship 
between network latency and application per-
formance, we used a methodology previously 
described in [3], where we injected increasing 
amounts of constant latency in a networked sys-
tem, delaying the packets by a fixed amount of 
time, and we measured how the application per-
formance changes depending on the amount of 
inserted network latency. We construct functions 
that predict application performance dependent 
upon network latency for different applications. 
To model the relationship between network laten-
cy and application performance, we use SciPy’s 
(https://www.scipy.org/) curve_fit function. 
We first normalize the values of the application 
performance with respect to the baseline perfor-
mance, which was obtained without any addi-
tional latency. We then model the relationship 
between network latency and normalized applica-
tion performance by fi tting a polynomial function 
to the results, where the independent variable is 
the static latency, and the dependent variable is 
the normalized performance: normalised_perfor-
mance = p(constant_latency). The experimental 
data along with the resulting models are present-
ed in Fig. 1. The models have two functions: a 
constant function, whose value is the baseline 
performance, and this function gives the perfor-
mance up to a threshold beyond which additional 
latency leads to a drop in application performance 
(40 s for Memcached, 20 s for STRADS, 40 
s for Tensorfl ow), and a polynomial function of 
order three fi t on the experimental data beyond 
this threshold. The coefficient of determination, 
R2, to assess goodness of fi t is 0.976 for the Mem-
cached model, 0.994 for the STRADS model, and 
0.996 for the Tensorfl ow model.

Latency-sensitive distributed applications are 
usually synchronous, meaning that the application 
blocks on waiting to receive data from a diff erent 
host over the network before proceeding with 
the next step. This is the case for the machine 
learning frameworks we studied, STRADS and 
Tensorflow, which follow the parameter server 

FIGURE 1. Applications’ experimental results (actual) and model on the results (model): a) Memcached; b) STRADS Lasso Regression; 
c) Tensorfl ow MNIST.
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design for the applications we used, with work-
ers that exchange messages with the parameter 
server over the network. These frameworks use, 
in the current iteration, the parameters computed 
during the previous iteration. This pattern makes 
them highly dependent on the network, and espe-
cially on network latency. Similarly, for key-value 
stores, like Memcached, that act as an intermedi-
ate caching layer between the client and the stor-
age system, the request-response latency is very 
important, since the store needs to provide fast 
access to the data. The overall throughput of the 
Memcached server will decrease when additional 
latency is injected in the network.

bAcKGround on cLuster scHeduLInG
NoMora extends the Firmament cluster scheduler 
[13] that models the problem of assigning tasks to 
machines as a minimum-cost fl ow problem, which 
is a centralized scheduler that considers the entire 
workload across the whole cluster. A scheduling pol-
icy defi nes a fl ow network representing the cluster, 
where the nodes defi ne tasks and resources. A job 
(application) can have several tasks, and a cluster 
has machines (servers). Events such as task arriv-
al, task completion, machine addition to the clus-
ter, and machine removal from the cluster change 
the fl ow network. When cluster events change the 
fl ow network, Firmament’s min-cost max-fl ow solver 
computes the optimal flow on the updated flow 
network. After the solver finishes running, Firma-
ment extracts the task placements from the optimal 
flow and applies these changes in the cluster. We 
next give an overview of how the cluster schedul-
ing problem is mapped to the minimum-cost maxi-
mum-fl ow optimization problem [13, 14].

Flow Network: First, we provide a high-lev-
el overview of the structure of the flow network, 
which can be seen in Fig. 2. By flow network we 
refer to a directed graph where each arc has a 
capacity and a cost to send flow across that arc. 
Each submitted task Ti,j, representing task j of job 
Ji, is represented by a vertex in the graph, and it 

generates one unit of flow. The sink S drains the 
flow generated by the submitted tasks. A task 
vertex needs to send a unit of flow along a path 
composed of directed arcs in the graph to the sink 
S. The path can pass through a vertex that corre-
sponds to a machine (host) Mm, meaning the task 
is scheduled to run on that machine, or it can pass 
through a special vertex for the unscheduled tasks 
of that job, Ui, meaning the task is not scheduled. 
In this way, even if the task is not scheduled to run, 
the flow generated by this task is routed through 
the unscheduled aggregator to the sink.

The graph can have an arc between every task 
and every machine, but this would make the com-
putation of an optimal scheduling solution in a 
short time prohibitive, as the graph would scale 
linearly with the number of machines in the clus-
ter. To reduce the number of arcs in the graph, a 
cluster aggregator X and rack aggregators Rr have 
been introduced, inspired by the topology of a 
typical data center.

Capacity Assignment: Each arc in the flow 
network has a capacity c for flow, bounded by 
cmin and cmax, with cmin usually 0, while cmax
depends on the type of vertices connected by 
the arc and on the cost model. The capacity of 
an arc between a task and any other vertex is 1. 
If a machine has C CPU cores and a rack has m
machines, the capacity of an arc between a rack 
aggregator and a machine is C, and the capaci-
ty of an arc between the cluster aggregator and 
a rack is C  m = Cm. The capacity of an arc 
between a machine and the sink is C. The capaci-
ty between an unscheduled aggregator Ui and the 
sink S can be used to ensure a fair allocation of 
runnable tasks between jobs [14]. For the NoMo-
ra policy, we set this capacity to 1.

Cost Assignment: The cost on an arc represents 
how much it costs to schedule any task that can 
send fl ow on this arc on any machine that is reach-
able via this arc. Table 1 provides on overview of 
the capacities and costs of diff erent arcs.

Task to Machine Arc: The cost on the arc 
between a task vertex Ti,j and a machine vertex 
Mm is denoted by di,j,m, and is computed accord-
ing to information regarding the task and machine. 
In most cases, this cost is being decreased by how 
much the task has already run, bi,j.

Task to Resource Aggregator Arc: The cost 
on the arc between a task vertex Ti,j and a rack 
aggregator vertex Rr, denoted ci,j,r, represents the 
cost to schedule the task on any machine within 
the rack, and is set to the worst case cost among 
all costs across that rack. The cost on the arc 
between a task vertex Ti,j and the cluster aggre-
gator X, denoted by bi,j, represents the cost to 
schedule the task on any machine within the clus-
ter, and is set to the worst case cost among all 
costs across the cluster: 

𝑏𝑏!,# = max
$
𝑐𝑐!,#,$ . 

Task to Unscheduled Aggregator Arc: The 
cost on the arc between a task vertex Ti,j and the 
unscheduled aggregator Ui, denoted by ai,j, is usu-
ally larger than any other costs in the flow net-
work. The cost on this arc increases as a function 
of the task’s wait time ai,j, in order to force the 
task to be scheduled, and it is scaled by a con-
stant wait time factor w, which increases the cost 
of tasks being unscheduled. Thus, the cost to the 

FIGURE 2. A general fl ow network with annotated capacities and costs on 
arcs. Job J1 has tasks T1,1 and T1,2. Job J2 has tasks T2,1, T2,2 and T2,3. The 
unscheduled aggregators are U1 and U2. The machines in the cluster are 
M1, M2, M3, and M4. Rack aggregators are R1 and R2. The cluster aggrega-
tor is X. The sink vertex is S.
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unscheduled aggregator Ui is ai,j = w  ai,j + g, to 
which a constant cost factor g , which is larger 
than any other possible arc costs, is added.

Preemption: If preemption is enabled, the 
scheduler can preempt a task that it is running 
on a machine, which means the flow pertaining 
to that task is routed via the unscheduled aggre-
gator, or migrate the task to a different machine, 
meaning that the flow is routed via that new 
machine’s vertex. If preemption is not enabled, a 
scheduled task will have in the flow network only 
the arc to the machine on which it is currently 
running, with all the other arcs being removed 
once the task is scheduled. Preempting a task 
presents a trade-off between migrating the task 
to a better placement and the amount of time 
the task has already run (on the current machine 
or on a different one). If preemption is enabled, 
the amount of time the task has already run, bi,j, 
can be subtracted from the cost(Ti,j, Mm); then 
di,j,r = cost(Ti,j, Mm) – bi,j. This leads to fewer task 
migrations happening, because it becomes less 
advantageous to preempt a task and restart it on 
another machine after migration the more time 
the task is running, essentially wasting the work 
that has already been done.

LAtency-drIven, AppLIcAtIon-performAnce-AwAre poLIcy
We propose a new latency-driven, applica-
tion-performance-aware policy whose goal is to 
place distributed applications in a data center in 
a manner that gives them improved application 
performance. This generally leads to grouping 
tasks as close as possible, in a rack or on the same 
machine, for the applications for which latency 
matters, such as Memcached and machine learn-
ing frameworks (STRADS, Tensorflow). For tasks 
that do not fit within the same rack or on the 
same machine, the policy finds the machine that 
offers the best application performance among 
the available placements. On the other hand, 
applications such as Spark, for which additional 
latency of up to 1 ms does not matter [3], will 
have more freedom when being placed within the 
data center. If the network conditions change, a 
task whose performance degrades can be migrat-
ed to a better placement.

Since the applications we studied earlier are 
client-server applications or worker-master appli-
cations, we consider that the server/master has a 
special role, because it has to be running before 
the clients/workers. We call the server (for cli-
ent-server applications)/master (for master-work-
ers applications) the root task. Thus, the policy 
needs to schedule the root task first. The root task 
is scheduled immediately in any place available 
in the cluster. The other tasks of the job (clients/
workers) are not scheduled until the root task is 
scheduled. While this adds delay in scheduling for 
these tasks, the delay is minimal, since they will 
be scheduled in the next scheduling round based 
on the placement of the root task. Next, a task’s 
placement is determined based on the application 
performance function and current network laten-
cies to the job’s root task placement.

Flow Network: The flow network is similar to 
the one in Fig. 2. When a job is submitted, the 
root task Ti,0 is assigned a single arc to the cluster 
aggregator, with a cost of 0, which means that 
the root task will be scheduled immediately on 

any available machine. After it is scheduled, the 
root task will have an arc from the root task to the 
machine on which it is running. The other tasks 
of the job will wait for the root to be scheduled 
first, and they do not have any arcs initially. After 
the root task is scheduled, each task Ti,j will have 
preference arcs to the cluster aggregator X, to 
rack aggregators Rr and machines Mm based on 
the cost to schedule the task on those resources 
and on the parameters of the policy.

Cost Assignment: The cost assignment is also 
called cost model [13]. In NoMora we consid-
er the cost to the root task computed based on 
application performance function dependent on 
network latency for a job (as built earlier), com-
bined with measured network latency between 
the root task machine and the machine under 
consideration. We also factor the task wait time 
(the time a task waits before being scheduled) 
when computing the cost of the arc to the 
unscheduled aggregator, and, if preemption is 
enabled, how much time a task has run before 
being preempted (preemption cost). Finding a 
good placement can mean waiting more time 
until a suitable machine is free (the task wait time 
increases), or preempting a task that is already 
running (if this task is restarted from the beginning 
on another machine, the time the task has already 
run is lost).

Assuming the root task is running on machine 
Mroot and a task j, Ti,j, of job Ji can be scheduled 
on machine Mm, the cost of the arc from Ti,j to 
Mm is
𝑑𝑑!,#,$ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐'𝑇𝑇!,# , 𝑀𝑀$+ =

1

𝑝𝑝 .𝑚𝑚𝑚𝑚𝑚𝑚'𝑙𝑙𝑚𝑚𝑐𝑐𝑙𝑙𝑙𝑙𝑐𝑐𝑙𝑙(𝑀𝑀%&&', 𝑀𝑀$)+8
 
 

 (1)
where p(max(latency(Mroot, Mm))) is the expect-
ed application performance for the measured 
network latency between machine Mroot and 
machine Mm, as determined earlier. We invert 
the performance because when the performance 
is smaller, the cost assigned to the arc is high-
er, making the machine to which the arc points 
less desirable for running the task on. Since in 
data centers typically there are multiple paths 
between two machines, in order to be conser-
vative, we use the maximum latency value mea-
sured between the two machines because due to 
equal-cost multi-path routing (ECMP), we cannot 
know which of the available paths the applica-
tion’s flows will take.

TABLE 1. Arcs in the flow network.

Arc Capacity (max) Value

Ti,j    Ui 1 ai,j

Ti,j  X 1 bi,j

Ti,j  Rr 1 ci,j,r

Ti,j  Mm 1 di,j,m

X  Rr mC 0

Rr  Mm C 0

Mm  S C 0

Ui  S 1 0 
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Similarly, the cost of the arc from Ti,j to rack 
Rr is the cost to the worst cost machine in rack r:

𝑐𝑐!,#,$ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐&𝑇𝑇!,# , 𝑅𝑅$* 

																																																							= max
%∈$

1

𝑝𝑝 1𝑚𝑚𝑚𝑚𝑚𝑚&𝑙𝑙𝑚𝑚𝑐𝑐𝑙𝑙𝑙𝑙𝑐𝑐𝑙𝑙(𝑀𝑀$''(, 𝑀𝑀%)*<
 
 (2)

where p(max(latency(Mroot, Mm))) is the expect-
ed application performance for the measured 
network latency between machine Mroot and a 
machine Mm in rack r. Similarly, to be conserva-
tive due to ECMP, we take the maximum value of 
the latencies between Mroot and Mm.

The costs on the arcs are rounded to two sig-
nificant digits and then multiplied by a factor of 
100, since the costs must be integer numbers for 
the solver to understand. For a performance of 
0.1, the cost is (1/0.1)  100 = 1000.

Since the network latency is not constant in a 
data center, the costs associated with the arcs are 
updated based on the latest measured network laten-
cy values, and, as a result, the preference arcs for the 
tasks are updated. If preemption is enabled, the cost 
of the arcs for a running task will also be updated.

Cost Model Parameters: The cost model has 
two main parameters: pm, threshold for the cost 
on an arc to a machine in order for that machine 
to be on the preferred list of machines on which 
the task can run, and pr, threshold for the cost 
on an arc to a rack in order for that rack to be 
on the preferred list of racks in which the task 
can run. The first preference list comprises the 
machines on which the application may run to 
achieve the desired performance. This list should 
be kept small for the scheduling latency to take 
a reasonable amount of time. But having a small 
preference list means the application’s placement 
options are limited. To mitigate this, the second 
preference list, which comprises the racks on 
which the application may run, was introduced. 
The second list is smaller than the first one, since 
the number of racks is smaller than the number 
of machines. This allows a bigger threshold to be 
set for the second parameter of the model, offer-
ing more placement options for the application’s 
tasks, while keeping the first preference list small.

nomorA evALuAtIon

sImuLAtIon experIments

Simulation Setup: 
Cluster Workloads: As no public cluster work-

loads include information regarding sensitivity 
to network latency for applications, we assigned 
randomly the functions from Fig. 1 to the jobs in 
the Google workload [15]. For the experiments 
presented in this section, 50 percent of the jobs 
use the Memcached function, 25 percent use the 
STRADS function and 25 percent the Tensorflow 
function. We did not include the single task jobs, 
as they do not communicate with any other task. 
We used 24 hours of the trace. We set g = 1001 
for the simulation, since the performance does 
not drop below 0.1 for the functions used.

Topology: The cluster workload has 12,500 
machines, which we grouped into racks of 48 
machines and pods of 16 racks. These two num-
bers were chosen to reproduce a small cluster.

Network Latency Measurements: The simula-
tor leverages the network latency measurements 
dataset from [2]. We assign them to machine 
pairs considering the physical distance between 
servers as a criterion, assuming a typical fat-tree 
topology for a data center. Latency values are 
provided every second in the simulation. For the 
latency values between cores on the same server 
we use a small constant.

Cost Model Parameters: We determine empir-
ically through experimentation the values for the 
cost model parameters, pm and pr. We use pm = 
105 and pr = 110 in most experiments, and also 
present results for pm = 110 and pr = 115. Choosing 
these parameters involves a trade-off between the 
improvement in application performance, task wait 
time, and algorithm runtime. The algorithm runtime 
depends on the number of arcs from each task to 
the resources, but also on the cluster size. As the 
number of arcs or the cluster size increases, so does 
the algorithm runtime. The two parameters of the 
cost model influence the number of arcs the graph 
has between task nodes and machine nodes or rack 
nodes, and hence the algorithm runtime, which 
depends on the flow network size and on the num-

FIGURE 3. Evaluation metrics results for different policies on the Google workload: a) average application performance; b) algorithm run-
time; c) task placement latency.
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ber of tasks considered per scheduling round. If the 
parameters’ values are lower, the preference lists 
will be smaller. In this case, the applications’ perfor-
mance will be higher (only high-quality placements 
are considered), but they will have less placement 
options available for them to be scheduled, and 
thus the wait time may increase. The tasks will have 
to wait for the machines that offer the performance 
desired to have empty slots. However, setting a 
high parameter value means the preference lists will 
be larger, which could lead to an increase in the 
algorithm runtime. On the other hand, more place-
ment options will be available for the tasks to be 
scheduled, reducing their wait time. In practice, with 
more placement options available, the tasks may be 
scheduled sooner, thus leading to fewer tasks being 
scheduled per round, resulting in a decrease in the 
algorithm runtime per scheduling round.

Evaluation Metrics: We compute the average 
application performance, which measures NoMo-
ra’s task placement quality. It is computed as the 
application performance determined by the net-
work latency in every measurement interval divid-
ed by the maximum application performance that 
could be achieved in every measurement interval, 
and it is computed for the job’s total runtime.

The algorithm runtime is the time it takes for 
the min-cost max-flow algorithm to run to com-
pute task placements. This also gives an indica-
tion of the time interval that is needed between 
latency measurements. If the algorithm runtime 
were on the order of minutes, running latency 
measurements every few seconds would be too 
often, since the measurements accumulated over 
the scheduler’s runtime would not be used by the 
scheduler. If the algorithm runtime is on the order 
of milliseconds, it is better to run latency measure-
ments every second or few seconds.

The task placement latency is the time 
between task submission and task placement, 
which includes the task wait time. The metric also 
captures how long the tasks are delayed when 
they are waiting for their root task to be placed 
first before them.

sImuLAtIon resuLts
Placement Quality: We compare the NoMora 
policy, using different parameter values for the 
cost model, with a random policy that uses fixed 
costs (tasks always schedule if resources are idle), 
and a load-spreading policy that balances the 
tasks across machines. We enable preemption 
only for the NoMora policy, since the two other 
policies would not benefit from preemption due 
to their different scheduling goals.

The results for the average application perfor-
mance for different policies can be seen in Fig. 
3a. We compute the area marked by the y-axis, 
the cumulative distribution function (CDF), and 
the straight horizontal line with y = 1 for each 
policy. According to this computation, the maxi-
mum area corresponding to the maximum aver-
age application performance across applications 
is 100 percent, and it would be obtained for a 
vertical line at x = 100 percent. Next, we subtract 
from the NoMora policies areas the random and 
load-spreading areas to assess the placement 
improvement given by the NoMora policy.

The maximum overall improvement with-
out preemption enabled is 13 percent over 

the random policy and 13.4 percent over the 
load-spreading policy, and is obtained for NoMo-
ra with parameters pm = 105 and pr = 110. If pre-
emption is enabled and bi,j = 0 (the time already 
executed by a task is not considered in the arc 
cost computation), the improvement is consider-
able, 42.4 percent over the random policy and 
42.8 percent over the load-spreading one.

The improvement in average application per-
formance is not substantial when preemption is 
not enabled because of the root task’s random 
placement. The tasks of the jobs are placed in the 
best available slots in relation to the root task’s 
placement. In this way, we constrain the available 
placements, and the policy searches for place-
ments in relation to a known location rather than 
trying to find a placement for all the tasks of a job 
simultaneously.

It can be seen that the CDF of NoMora with 
preemption enabled has a different shape than 
the other policies. This is due to task preemption, 
which can correct the initial placement if it is not 
good (because of the random placement of the 
root task), and it can also migrate tasks when 
their current placement is not good anymore. The 
improvement provided by the NoMora policies 
without preemption is evident from Fig. 3a, but 
it can also be seen that the CDFs start at approx-
imately the same value (27–28 percent average 
application performance), and have an initially 
similar shape to the random and load-spread-
ing CDFs. On the other hand, for NoMora with 
preemption enabled, the minimum average 
application performance is 44 and 84 percent, 
respectively, which means that the improvement 
in application performance happens across all 
jobs due to migration to better placements.

Algorithm Runtime: Figure 3b and Table 
2 present results for the algorithm runtime for 
the load-spreading policy, random policy, and 
NoMora policy with and without preemption. 
For NoMora with parameters pm = 105 and pr = 
110, we observe an improvement of 1.61 for 
the median runtime, and 2.66 and 3.92 at the 
99th percentile, compared to the random policy 
and load-spreading policy, respectively.

NoMora with parameters pm = 105 and pr = 
110 with preemption enabled takes a consider-
ably longer amount of time, because of the higher 
number of arcs in the flow network compared 
to the case when preemption is not enabled 
(the arc preferences of the tasks that are run-
ning are not removed, unlike when preemption 
is not enabled), and the updates made to the 
flow graph (adding or changing running arcs to 
resources), further resulting in a larger number of 
tasks considered per scheduling round. This also 
translates into a larger task placement latency. 
This significant algorithm runtime means that pre-
emption should be used with care. For example, 
only certain applications that explicitly demand to 
be migrated should be migrated, or migration can 
be triggered only if the application performance 
drops below a certain threshold.

NoMora paves the way for application-per formance-aware cluster schedulers. Instead of meeting the 
job’s resource requirements, in our work we consider meeting the job’s performance requirements. 
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The percentage of migrated tasks in the case 
when NoMora with preemption enabled and 
already executed time for a task considered in 
the arc computation is on average 0.022 percent 
per scheduling round, with a 99th percentile of 
0.5 percent. If bi,j = 0 (already executed time is 
not considered in the arc computation), a consid-
erable number of task migrations take place: an 
average of 7.1 percent per scheduling round, with 
a 99th percentile of 10.07 percent, leading to a 
substantial algorithm runtime and task placement 
latency. This happens because the time a task 
has already run is ignored in the arc cost compu-
tation, meaning that the cost is based solely on 
the expected application performance under the 
given network conditions.

Task Placement Latency: Figure 3c presents 
the task placement latency. The NoMora policy 
with parameters pm = 105 and pr = 110 improves 
the median task placement latency by 1.56 com-
pared to the random policy and by 1.79 com-
pared to the load-spreading policy. The NoMora 
policy with parameters pm = 110 and pr = 115 
improves the median task placement latency by 
2.35 compared to the random policy and by 
2.69  compared to the load-spreading policy. 
Policies with migration enabled lead to increased 
task placement latency.

Discussion: There are a number of factors 
that can influence the improvement in applica-
tion performance that our cluster scheduling 
policy can achieve. If the applications are not 
latency-sensitive, but instead are throughput-in-
tensive, our policy’s benefits are limited. The 
simulation results will also be infl uenced by the 
number of hosts per rack and by the number 
of racks per pod. This is due to the fact that we 
assumed lower latencies between hosts within a 

rack compared to the latencies between pods 
under normal conditions, and we assigned the 
cloud latency traces accordingly. If there are 
more hosts per rack, and more racks per pod 
than the scenario we considered in our simu-
lation, there will be a greater chance of fitting 
all the tasks of a job in the same rack or in the 
same pod. This means that the job will have bet-
ter overall application performance due to the 
lower latencies between hosts in the same rack. 
Thus, the size of a job in terms of number of 
tasks should be taken into consideration when 
designing novel data center topologies. Another 
factor that can influence the results is the net-
work utilization in the data centers. The perfor-
mance of latency-sensitive applications will suff er 
if the network is congested.

testbed experIments
We evaluate NoMora on a testbed comprising 
18 hosts. We use a tree topology, with one core 
switch and two leaf switches. Each leaf switch is 
connected to nine hosts. Each host has an Intel 
Xeon E5-2430L v2 Ivy Bridge CPU with six cores, 
running at 2.4 GHz with 64 GB RAM, and is 
equipped with an Intel X520 NIC with two SFP+ 
ports, being connected at 10 Gb/s through an Aris-
ta 7050Q switch. The two leaf switches are con-
nected through the core switch, an Arista 7050Q 
using 40 Gb/s connections. The hosts run Ubun-
tu Server 18.04, kernel version 4.15.0-51-generic. 
A job is represented by a Memcached workload 
generated by five memaslap (from the libmem-
cached library) clients, and one Memcached server 
responding to the client requests. We use differ-
ent loads for the cluster: 50 percent (10 jobs), 90 
percent (18 jobs) and 100 percent (20 jobs). We 
use as background traffi  c iperf using a TCP stream 
between two servers in one of the leaves in order 
to have increased network latency between servers 
in that respective leaf. We run PTPmesh [10] to 
measure the network latency periodically between 
every two servers in our cluster. The latency mea-
surements serve as input to NoMora when decid-
ing where to place the jobs using the application 
performance function determined earlier for the 
Memcached workload. The results in Fig. 4 show 
that NoMora improves the overall application 
performance (measured in requests per second) 
compared to a random placement policy by 32.5 
percent, and compared to a load-spreading poli-
cy by 20.46 percent when the load in the cluster 
is 50 percent. As the load in the cluster increas-
es, the network becomes more utilized, and thus 
the improvement in the overall application perfor-
mance decreases. When the load in the cluster is 
90 percent, the NoMora policy performs better 
by 10.81 percent compared to a random policy, 
and by 8.47 percent compared to a load-spreading 
policy. When the cluster is fully utilized, all policies 
perform the same, because the network is congest-
ed under high utilization. As data center operators 
are not running their networks at high utilization, 
we show that our NoMora policy improves overall 
application performance.

concLusIon And future worK
We introduce latency-driven, application-perfor-
mance-aware cluster scheduling, and NoMora, a 
cluster scheduling framework that implements this 

TABLE 2. Overall average application performance and algorithm runtimes for 
baseline and NoMora policies.

Policy Overall avg app. performance Median 99th perc. Maximum

Random 47.2% 108 ms 661 ms 18.89   s

Load-spreading 46.8% 109 ms 974 ms 25.88 s

NoMora pm = 105, pr = 110 60.2% 93 ms 248 ms 6.13 s

NoMora pm = 105, pr = 110 preempt 59% 373 ms 511 s 1719 s

NoMora pm = 110, pr = 115 51.85% 72 ms 486 ms 39.55 s

NoMora pm = 105, pr = 110, bi,j = 0 preempt 89.6% 1532s 6610s 7118 s

FIGURE 4. Overall average application performance 
(requests per second) for the Memcached 
workload using three policies: random, 
load-spreading, and NoMora.
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type of policy. It exploits functions that predict appli-
cation performance based on network latency and 
dynamic network latency measurements between 
hosts to place tasks in a data center, providing them 
with improved application performance. We show 
that overall application performance is improved by 
up to 32.5 percent in testbed experiments and up to 
42 percent in simulation experiments.

Our work paves the way for application-per-
formance-aware cluster schedulers, which use 
network measurements to improve overall appli-
cation performance.
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