
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN XXXX-XXXX, Vol. 0, No. 0, pp. 1–23. DOI:XXXXXXXX

Adaptive Template Attacks on the
Kyber Binomial Sampler

Eric Chun-Yu Peng and Markus G. Kuhn

University of Cambridge, Cambridge, UK, {cyp24,mgk25}@cl.cam.ac.uk

Abstract. Template attacks build a Gaussian multivariate model of the side-channel
leakage signal generated by each value of a targeted intermediate variable. Combined
with additional steps, such as dimensionality reduction, such models can help to infer
a value with nearly 100% accuracy from just a single attack trace. We demonstrate
this here by reconstructing the output of the binomial sampler of a Cortex-M4 imple-
mentation of the Kyber768 post-quantum key-encapsulation mechanism. However,
this performance is usually significantly diminished if the device, or even just the ad-
dress space, used for profiling differs from the attacked one. Here we introduce a new
technique for adapting templates generated from profiling devices in order to attack
another device where we are also able to record many traces, but without knowledge
of the random value held by the targeted variable. We interpret the model from
the profiling devices as a Gaussian mixture and use the Expectation–Maximization
(EM) algorithm to adapt its means and covariances to better match the unlabelled
leakage distribution observed from the attacked setting. The Kyber binomial sampler
turned out to be a particularly suitable target, for two reasons. Firstly, it generates
a long sequence of values drawn from a small set, limiting the number of Gaussian
components that need to be adjusted. Secondly, the length of this sequence requires
particularly well-adapted templates to achieve a high key-recovery success rate from
a single trace. We also introduce an extended point-of-interest selection method to
improve linear discriminant analysis (LDA).
Keywords: ML-KEM · CRYSTALS-Kyber · Binomial Sampler · Single-Trace
Attack · Adaptive Template Attack · Point of Interest Extension · EM Algorithm

1 Introduction
CRYSTALS-Kyber is the first Post-Quantum Cryptography (PQC) standard for key
encapsulation, having been adopted in Federal Information Processing Standard (FIPS)
203 as the Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM) [Nat24]. A
recent survey by Ravi et al. [RCDB24] reviews published physical attacks on Kyber,
categorized into whether the KEM protocol is used with static (longer term) or ephemeral
(single use) key pairs. The latter can create a false sense of security, as attackers would have
to succeed in extracting a secret from observing a single execution of the algorithm. This
may encourage developers to deploy ephemeral-key Kyber-KEM without countermeasures.
However, single-trace attacks on real devices have been demonstrated against several
Kyber components, including the NTT [PPM17, PP19], Keccak [KPP20, YK20], and
message encoding [SKL+20, XPR+22] and decoding [RBRC22] modules. This leaves the
binomial sampler, which generates nonces in Kyber, to be explored as a side-channel
target: the only attack on that listed in [RCDB24] is a fault-injection-induced nonce-reuse
attack [RRB+19]. Here, we evaluate the potential of single-trace template attacks on
Kyber’s binomial sampler. In particular, we demonstrate the practicality of such attacks
with a new technique for porting templates across different devices and operations.

Licensed under Creative Commons License CC-BY 4.0.

https://doi.org/XXXXXXXX
mailto:cyp24@cl.cam.ac.uk,mgk25@cl.cam.ac.uk
http://creativecommons.org/licenses/by/4.0/


2 Adaptive Template Attacks on the Kyber Binomial Sampler

Profiling Phase

POI Selection
LDA Dim-Reduction

MVG Templates
in LDA Subspace

Trace Acquisition
Labeling (key)

Adaptive Template Attack

POI / LDA 
Dim-Reduction

Template Adjustment
EM Algorithm

Template 
Matching

Attack Traces

LDA Projection 
Vectors

MVG Templates

Key Guess

Figure 1: The adaptive template attack introduces an EM-based adjustment phase to
improve cross-device template accuracy.

The binomial sampler module is one of the most security-sensitive components in
Kyber, because it is the sole provider of the secret “noise” polynomials. It also appears in
all three operations of the KEM: KeyGen, Encaps, and Decaps. Due to the large storage
size of Kyber’s key pairs, NIST allows storing the random seed used to generate a key pair,
for re-generating the secret key whenever needed [Nat24]. This storage-space optimization
further exposes the binomial sampler as an attack surface. Besides the secret-key sampling
operation, this module also generates other secret random polynomials in Kyber’s Encaps
and Decaps operations. The exposure of those nonces could easily be used to recover the
encapsulated shared secret from the ciphertext.

But if a nonce is generated only once, this requires the attacker to recover it from
a single trace. Kyber’s three parameter sets denote the number c ∈ {512, 768, 1024}
of coefficients in a secret key (or nonce). In this paper, we use the term accuracy (and
blue shading of table cells) for the probability of correctly recovering a single number, e.g.
one coefficient of a secret polynomial, and the term success rate (and red shading) for
the probability of correctly reconstructing the entire secret, consisting of c polynomial
coefficients. Recovering all these c coefficients with an expected success rate of SR requires
that the coefficient accuracy a is very close to 100%, such that ac ≥ SR:

SR = 50% SR = 90% SR = 99%

Kyber512 99.86 % 99.979 % 99.9980 %
Kyber768 99.91 % 99.986 % 99.9986 %
Kyber1024 99.93 % 99.990 % 99.9999 %

With such high accuracy requirements, the practicality of such attacks may at first
seem questionable, especially if the attacked device differs from the profiling devices used
for building the model. This is essentially a template portability problem, which requires
methods to maintain accuracy across devices. Previous work suggests either to apply
data normalization [EG12, MBTL13] or to employ multi-device training [CK18, BCH+20]
to improve the template portability and generalization. Profiling techniques based on
machine learning (ML) and deep learning (DL) have also been proposed to improve model
portability. Cao et al. [CZLG21] introduce a DL-based Cross-Device Profiled Attack
technique, which adds a fine-tuning step, to let their neural-network classifier learn the
leakage model of the attacked device. In this work, we also explore model adjustments, to
enhance the portability of our Gaussian multivariate templates.

We introduce here the adaptive template attack, to improve cross-device accuracy with
an additional template-adjustment phase that modifies the outcome of the profiling phase
to better match the leakage of the attacked device. We propose this as a new way of
improving template portability by combining supervised learning (template profiling) with



Eric Chun-Yu Peng and Markus G. Kuhn 3

an unsupervised learning technique (template adjustment). As illustrated in Figure 1, our
processing pipeline starts conventionally, with point selection and LDA-based dimensionality
reduction, to build the initial templates with profiling devices (Section 2.1). We then
reuse the same dimensionality-reducing LDA projection in the attack phase and follow it
with the Expectation–Maximization (EM) algorithm (Section 2.4) for template adjustment
(Section 5.1). The EM algorithm is initialized with the template parameters from the
profiling device and then fed with unlabelled traces from the attacked device. This should
tailor the resulting model to better fit the leakage of the attacked device, resulting in
higher template accuracy.

Contributions
• First passive power-analysis attack on Kyber’s binomial sampler. We

identify a Kyber implementation vulnerability that affects all three operations of
Kyber-KEM (Section 2.3 and 4.2).

• Adaptive template attack. We show how to improve the attack’s portability
using a variant of the EM algorithm (Section 5.1), resulting in successful single-trace
attacks on different targets (Section 5.3).

• Address-space portability. We adapt profiled templates not only to attack
different devices, but also to attack the same subroutine when the address location
of the processed data differs, e.g. because the call stack or memory allocation in the
profiled and attacked setting are not the same (Section 2.3 and Table 3).

• Point-of-interest extension (POIe) for LDA. We also propose a new paradigm
for selecting points of interest for improving LDA templates (Section 4.3). Since
LDA exploits information about both the signal and noise, we include some nearby
low-SNR samples to help the LDA better identify correlated noise (e.g., low-frequency
waveforms) and project away from it.

2 Background
2.1 LDA-based Template Attack
Template attacks [CRR02] infer sensitive data directly from side-channel traces, which is
essential for single-trace attacks. They typically use multivariate Gaussian (MVG) models
as templates [MOP07], with the traces being treated as vectors in a high-dimensional space.
The traces of different intermediate values are modelled as different MVG distributions.
There are two phases in a template attack: a profiling phase, which builds the templates
from traces labelled with known intermediate values, and an attack phase, which infers
intermediate values from unlabelled traces.

In the profiling phase, the attacker collects traces from a profiling device and builds for
each intermediate value k ∈ K a template consisting of a mean vector µk and a covariance
matrix Σk. In the attack phase, the attacker infers the processed sensitive data through
template matching. Given a side-channel trace t and a multivariate Gaussian template
(µk,Σk) with d dimensions, a basic matching process can estimate the likelihood of value
k with the probability density function

p(t | µk,Σk) = 1√
(2π)d|Σk|

exp
(
−1

2(t− µk)>Σk
−1(t− µk)

)
needed for the posterior probability

P(k | t) = p(t | µk,Σk)P(k)∑
k′ p(t | µk′ ,Σk′)P(k′) .



4 Adaptive Template Attacks on the Kyber Binomial Sampler

To decrease the computational complexity of the aforementioned likelihood estimation,
we can apply two dimensionality reduction techniques. Points-of-interest (POI) selec-
tion simply eliminates from traces t samples where some signal-to-noise measure (e.g.
NICV [BDGN14]) falls below a threshold. Linear discriminant analysis (LDA) [SA08] is
useful not just to compress the trace length but also to boost the template accuracy. LDA
projects data from a higher-dimensional space into a lower-dimensional subspace spanned
by base vectors w while maximizing the inter-class and intra-class variance ratio

J(w) = w>Bw

w>Ww

where B and W denote the inter-class and intra-class scatter matrices, respectively. The
LDA projection vectors can be efficiently computed with the following steps [CK13]. First,
compute

B =
∑
k∈K

Nk(tk − t)(tk − t)>

W =
∑
k∈K

Nk∑
i=1

(tk,i − tk)(tk,i − tk)>

where Nk denotes the number of traces tk,i available for value label k, and tk =
N−1
k

∑Nk

i=1 tk,i is their mean trace. Then, apply eigendecomposition on W−1B to find the
eigenvalues and eigenvectors. The eigenvectors w with the d largest eigenvalues then form
the LDA projection vectors.

2.2 CRYSTALS-Kyber and Binomial Sampler
CRYSTALS-Kyber (or Kyber) uses a variant of the Fujisaki-Okamoto (FO) trans-
form [FO99] to turn the Kyber public key encryption (PKE) scheme into an IND-CCA2-
secure KEM. Simply put, it re-encrypts and performs a ciphertext-integrity check during
decapsulation. Kyber768 is the NIST-recommended default setting with a “sound” se-
curity margin against possible quantum-algorithm breakthroughs [Nat24]. The three
main algorithms of Kyber-KEM (KEM.KeyGen, Encaps, Decaps) are built on top of the
Kyber-PKE scheme (PKE.KeyGen, Encrypt, Decrypt), simplified versions of which are
shown below. For a more detailed description of Kyber, see FIPS 203 [Nat24] or the
original specification [ABD+21].

Algorithm 1 KEM.KeyGen
Output: (pk, sk)
1: d, z $←− B32

2: (pk, sk′) = PKE.KeyGen(d)
3: sk = (sk′, pk, H(pk), z)

Algorithm 2 KEM.Encaps
Input: pk
Output: (K, ct)
1: m $←− B32

2: (K, r) = G
(
m ‖ H(pk)

)
3: ct = PKE.Encrypt(pk,m, r)

Algorithm 3 KEM.Decaps
Input: (sk, ct)
Output: K′
1: (sk′, pk, h, z) = sk
2: m′ = PKE.Decrypt(sk′, ct)
3: (K′, r′) = G(m′ ‖ h)
4: ct′ = PKE.Encrypt(pk,m′, r′)
5: K̄ = J(z ‖ ct)
6: if ct 6= ct′ then
7: K′ = K̄

Algorithm 4 PKE.KeyGen
Input: seed
Output: (pk, sk′)
1: A $←− Rk×kq

2: s, e $←− Bη(seed) ∈ Rkq
3: t = A ◦ s + e
4: pk = (t,A)
5: sk′ = s

Algorithm 5 PKE.Encrypt
Input: (pk,m, r)
Output: ct
1: r, e1

$←− Bη(r) ∈ Rkq
2: e2

$←− Bη ∈ Rq
3: u = A> ◦ r + e1
4: v = t> ◦ r + e2 + Encode(m)
5: ct = (u, v)

Algorithm 6 PKE.Decrypt
Input: (sk′, ct)
Output: m′
1: m′ = Decode(v − s> ◦ u)

The centered binomial sampler module (Bη) generates all the secret small polynomials
in Kyber, such as the secret key s and random nonces (r,e,e1,e2). The sampling procedure



Eric Chun-Yu Peng and Markus G. Kuhn 5

Algorithm 7 Implementation of Kyber’s Centered Binomial Sampler
Input: Bufs . buffer containing 128 uniformly distributed pseudo-random bytes
Output: spoly . a noise polynomial with coefficients s0, . . . , s255 ∈ {−2,−1, 0, 1, 2}

1: for i from 0 to 31 do
2: t = load32bits(Bufs[4× i : 4× i+ 3])
3: d = t & 0x55555555
4: d = d+ ((t >> 1) & 0x55555555) . computing 16 Hamming weights in parallel
5: for j from 0 to 7 do
6: a = (d >> (4× j)) & 0x3 . HW(x)
7: b = (d >> (4× j + 2)) & 0x3 . HW(y)
8: s8×i+j = a− b . sample drawn from centered binomial distribution

first expands a 32-byte random seed, using the SHAKE-256 extendable output function,
to obtain a uniformly distributed pseudo-random byte stream. Then, sampling a secret
coefficient s from a binomial distribution is done by subtracting the Hamming weights
(HW) of two η-bit values x and y taken from this pseudo-random byte stream:

s = HW(x)−HW(y)

In Kyber768, η = 2, i.e. each sample s ∈ {−2,−1, 0, 1, 2} has one of five possible values.
While a constant-time implementation, such as Algorithm 7, is inherently secure against

timing attacks, it is still potentially vulnerable to other side-channel attacks, such as power
analysis. Both the ANSI C reference implementation [BDK+24] and the optimized pqm4
implementation [KPR+] adopt a similar technique, which utilizes 32-bit integers to compute
16 2-bit Hamming weights in parallel, as shown in line 4 of Algorithm 7. This design is not
only efficient, but also reduces the Hamming-weight leakage signal of the random inputs x
and y during the computation. However, such a design may not thwart profiling attacks
from recovering the secret polynomial.

2.3 Attack Scenarios
All three KEM operations are susceptible to attacks on binomial sampling, each facing
different threats:

KeyGen Encaps Decaps

targeted secret secret key sk′ nonce r nonce r
attack trace count single/multiple single multiple
profiling device Decaps/cloned device attacked device attacked device

Attacking the binomial sampler called by KeyGen allows extracting the secret key sk′.
This operation is typically executed only once per key pair, but multiple traces may be
available if a memory-constrained device regenerates sk′ from a stored random seed d for
each decapsulation request.

Both Encaps and Decaps invoke the PKE.Encrypt subroutine, which uses the binomial
sampler to generate a random nonce r from a seed r. If r is exposed, the attacker can
recover the shared secret m as

Decode(v − t> ◦ r) = Decode(t> ◦ r + e2 + Encode(m)− t> ◦ r)
= Decode(e2 + Encode(m)) = m

given the public key pk = (t,A) and ciphertext ct = (u, v). Encaps also provides only a
single trace for each r if, as required, each invocation gets a fresh seed r from a TRNG.



6 Adaptive Template Attacks on the Kyber Binomial Sampler

In contrast, Decaps may provide multiple traces for the same r when repeatedly invoked
to decapsulate the same ciphertext ct.

Both Decaps and Encaps may allow direct profiling on the attacked device, without
the need for porting templates.

In Decaps, the attacker can collect the profiling dataset by using the target’s public
key pk to generate ciphertexts ct = PKE.Encrypt(pk,m, r) with chosen messages m and
seeds r. Profiling traces Tp can then be recorded when the attacked device decapsulates
these ct and generates the nonces r $←− Bη(r) from the attacker-chosen seeds r.

For Encaps, the attacker can first generate a key pair, pk and sk = (sk′, pk, h, z), and
then obtain the profiling traces Tp and ciphertexts ct directly from the attacked device,
by querying for encapsulations with pk. The attacker can then derive the nonce labels r
used during encapsulation from ct via m = PKE.Decrypt(sk′, ct), (K, r) = G(m ‖ h), and
r $←− Bη(r).

For KeyGen, direct profiling on a target device is infeasible, assuming the TRNG-
generated seed d is inaccessible. Instead, attackers could perform profiling of r through
invoking Decaps on the attacked device, and then port these templates to sk′. Alternatively,
they may invoke KeyGen on a compromised cloned device, where d is accessible, and port
those templates onto the attacked device. Both options require template porting while
retaining high template accuracy for successful attacks.

2.4 Gaussian Mixture Model and EM Algorithm
Gaussian mixture models (GMM) can be used to represent the distribution of datasets
with latent variables, which in our case are the side-channel recordings from an attacked
device where we do not know a-priori the values of the targeted intermediate variables.
Central to a GMM is the assumption that each data point in the observed dataset is drawn
from one of several Gaussian distributions. The value of the latent variable determines
which of these Gaussian distributions the data point was drawn from.

A Gaussian mixture model Θ consists of |Kv| Gaussian models θk = (µk,Σk), and
also has for each a mixture weight πk that sums up to

∑
k∈Kv

πk = 1 and models the
probability distribution P(k) of the values k ∈ Kv of the latent variable v. The probability
density function of a Gaussian mixture model is formulated as a weighted sum of these
Gaussian distributions:

f(t | Θ) =
∑
k∈Kv

πkp(t | θk)

During the profiling phase of a template attack, we use a multivariate Gaussian model
to characterize the traces of each of the different values k ∈ Kv of an intermediate variable
v on a profiling device. We can construct a Gaussian mixture model for the leakage of
v by combining all the MVG distributions for values k ∈ Kv. This models each trace
from the recording as a sample drawn from an MVG distribution (template) selected by
the processed intermediate value k. In the attack phase, however, an attacked device’s
intermediate values k are hidden from the attacker. As such, v becomes a latent variable,
and the trace set from an attacked device can be modelled as a mixture of Gaussian
distributions.

The Expectation–Maximization (EM) algorithm [DLR77] is a commonly-used method
for estimating GMM parameters for a dataset, in scenarios where neither the parameters
θk of the Gaussian distributions, nor the value k of the latent variable v selecting the
distribution is known. In our case, the data points are the traces from an attacked device
that have not been labelled with k. While we have Gaussian parameters θk from a profiling
device, useful as a starting point, these may differ from those matching the attacked device.

The EM algorithm estimates the GMM parameters through an iterative process,
consisting of alternating applications of the E-step and M-step, until a convergence



Eric Chun-Yu Peng and Markus G. Kuhn 7

Figure 2: The NI scope and AWG connected to the CW308 UFO and CW308T-STM32F-
SOCKET target board, and eight STM32F303RCT7 targets from different distributors.

criterion is met. Given an observed dataset T with a latent variable v, the EM algorithm
typically involves the following steps:

Initialization: The algorithm requires an initial guess Θ(0) for the GMM parameters,
such as the Gaussian components θk for all k ∈ Kv.

E-step: The algorithm computes in iteration l for each data point t in the dataset T ,
and for each value k ∈ Kv that the latent variable v can hold, the probability that v
held the value k when t was sampled, given the current parameter estimates Θ(l−1).
These probabilities are also called responsibilities r(l)(k, t) = P(v = k | t,Θ(l−1)).

M-step: The algorithm then updates the Gaussian components’ parameters Θ(l) based
on the current responsibilities r(l)(k, t) estimated in the E-step.

Convergence criteria: The EM algorithm iterates between the E-step and M-step
until a convergence criterion is met. Common convergence criteria include reaching
a maximum number of iterations lmax or the overall likelihood change falling below a
predefined threshold.

EM-generated GMMs were used previously in side-channel analysis to model a masked
intermediate value [LP07, BCGR22]. Instead, here we model the whole trace dataset
T as one GMM, and use the EM algorithm only to adjust the Gaussian components’
parameters, i.e. θk = (µk,Σk), to a specific device, while keeping the mixing weights πk
constant according to the (in our use case) known distributions of the targeted intermediate
variables.

In our application of the EM algorithm, we rely on the initial Θ(0) to have a significant
influence on the final Θadj, as we want to preserve the mapping between k and θk. Therefore,
our convergence criteria should consider that this mapping can deteriorate if the algorithm
runs too long. This differs from other common applications of the EM algorithm, where
Θ(0) is chosen randomly and is not expected to significantly influence the outcome.

3 Measurement Setup
The CRYSTALS-Kyber768 implementation that we targeted in our experiments comes
from pqm4 [KPR+], a library for ARM Cortex-M4 microcontrollers (MCUs) that contains



8 Adaptive Template Attacks on the Kyber Binomial Sampler

implementations of PQC schemes proposed in the NIST standardization project. While
pqm4 provides hand-optimized assembler code for many larger modules, such as the NTT
and SHA-3, the binomial sampler module that we targeted implements the simple and
efficient Algorithm 7 in C. We compiled it in our target firmware using ARM GCC 9.2.1,
unless stated otherwise with optimization level -Os, the default in the ChipWhisperer
environment.

Our power-analysis target is the blue CW308T-STM32F-SOCKET board sitting on top
of the red CW308 UFO board shown in Figure 2. The former has a 64-pin TQFP socket
that allows us to test various STM32F303RCT7 devices for template portability with
the same measurement setup. The STM32F303RCT7 microcontroller has a 32-bit ARM
Cortex-M4 core, which is the NIST-recommended embedded-system evaluation platform
for their PQC project. We use eight such microcontrollers to test attack portability, bought
from four different electronics distributors [DigiKey (DK), Farnell (FN), Mouser (MS),
and RS] to obtain different manufacturing dates and batches, in the hope of increasing
observed manufacturing variation. The UFO board inserts a 10Ω shunt resistor into the
VCC power-supply line for current measurements. As a result, this signal comes with an
undesirable 3.3V DC offset. We added an analog 4.5MHz RC high-pass filter to remove
this bias, while keeping the filter’s impulse response to within a couple of clock cycles.

Our acquisition instrument is an NI PXIe-5160 10-bit oscilloscope with 2.5GHz sampling
rate and 500MHz bandwidth. The target devices use an external clock source, a 5MHz
square wave provided by a function generator (AWG) phase locked to the oscilloscope’s
sampling clock. Clock-synchronous sampling reduces horizontal noise in the traces and
thereby helps to increase the success rate of side-channel attacks [OC15]. Each trace is
horizontally aligned before being digitally down-sampled with a Lanczos low-pass filter
from 2.5 GHz to 100MHz to reduce the data volume. For each device, we obtained 4,000
recordings of invocations of the binomial-sampling operation for profiling and 1,000 such
recordings for testing.

4 Single-Device Single-Trace Attack
We target the secret-key generation of Kyber768, NIST’s recommended default setting
for Kyber-KEM. In this single-device setting, we perform profiling and attacks on the
same device, targeting the same operation, here KeyGen. We initially attempted to
build templates for the variables s, x, and y and process these in a factor graph with
associated constraints using belief propagation (SASCA) [VGS14], inspired by the single-
trace framework by Primas et al. [PPM17]. However, the parallel design in Algorithm 7
reduces leakage and template accuracy, and this attempt did not achieve single-trace
attacks. Furthermore, due to Kyber’s relatively large parameter set and high computation
cost for verifying each candidate key (compared to symmetric cryptosystems), we decided
not to rely on key enumeration. Therefore, we needed to incorporate more information
and build better templates to achieve single-trace attacks.

4.1 Leakage Assessment for Binomial Sampler
Figure 3 shows the NICV [BDGN14] leakage assessment result for the binomial sampler.
The result in the red frame confirms substantial leakage for the sampled secret s, and
relatively little signal for the variables x and y, with NICV values below 0.4. We later
discovered an interesting leakage signal from x and y located long before the sampling
operation, shown in the yellow frame. This signal appears to originate from the use of
byte-wise load/store operations1 where SHAKE-256 returns outputs in pqm4. We refer to

1https://github.com/mupq/pqm4/blob/1eeb74e4106a80e26a9452e4793acd6f191fe413/common/
keccakf1600.S#L672-L676

https://github.com/mupq/pqm4/blob/1eeb74e4106a80e26a9452e4793acd6f191fe413/common/keccakf1600.S#L672-L676
https://github.com/mupq/pqm4/blob/1eeb74e4106a80e26a9452e4793acd6f191fe413/common/keccakf1600.S#L672-L676


Eric Chun-Yu Peng and Markus G. Kuhn 9

Centered Binomial SamplerSHAKE-256

Figure 3: NICV of Kyber768’s binomial sampler.

this early leakage as Buf , following the corresponding variable name later in the C code.

4.2 Template Attack and Marginalization
Based on the leakage assessment, we added Buf to the list of variables (s, x, and y) that
we profile. Upon further testing, we found that high single-trace attack success rates can
be achieved by merely marginalizing the Buf template results, without incorporating the
more error-prone, low-SNR templates for x, y and s, which in fact reduced the overall
success rate. Each Buf byte produces two binomial secrets

s1 = HW(Buf & 0x03)−HW(Buf & 0x0C) = HW(x1)−HW(y1)
s2 = HW(Buf & 0x30)−HW(Buf & 0xC0) = HW(x2)−HW(y2)

and marginalizing from P(Buf | t) we obtained their likelihoods

P(s1 | t) =
∑

Buf∈Z256,
HW(Buf & 0x03)−HW(Buf & 0x0C)=s1

P(Buf | t)

P(s2 | t) =
∑

Buf∈Z256,
HW(Buf & 0x30)−HW(Buf & 0xC0)=s2

P(Buf | t)

The variables x and y are 2-bit fragments of the 8-bit variable Buf , which itself is part of
the 32-bit t in Algorithm 7. While LDA improves x and y templates by utilizing information
from all relevant trace samples, including s and Buf and other micro-architectural leakages,
the resulting template accuracy was insufficient for single-trace attacks. In contrast,
profiling the larger Buf variable enhances the accuracy of marginalized P(s | t) for two
reasons: (1) Buf directly leaks through the SHAKE-256 operation, and (2) Buf spans
two sampling operations, which inherently captures leakage information from x1, y1, s1
and x2, y2, s2. However, a larger variable requires more templates, which might affect the
performance of the EM algorithm.

We therefore also evaluated the 4-bit fragment templates [YK21] of Buf , which provide
an intermediate size between the smaller 2-bit x and y variables and the larger 8-bit Buf .
This 4-bit Buf -nibble offers a moderate number of Gaussian components, making it easy
(for our later experiments) to visualize and understand the EM algorithm’s behavior across



10 Adaptive Template Attacks on the Kyber Binomial Sampler

Figure 4: Guessing entropy (GE) drops with regard to POIe by clock cycles.

various initialization states in higher dimensions. Despite their lower SNR, these templates
achieve high marginalized accuracy in the -Os setting. We refer to this 4-bit nibble as β,
marginalized as:

P(s | t) =
∑
β∈Z16,

HW(β & 0x3)−HW(β & 0xC)=s

P(β | t)

4.3 LDA-based Template Attack and Points of Interest Extension
For profiling, we exploit the repetitive nature of the sampling operation and split each
recording of a noise-polynomial generation into multiple segments to increase our profiling
dataset. In Kyber768, the secret key s ∈ R3

q consists of three degree-255 polynomials
generated by Algorithm 7. We observed waveform repetition for every eight Buf -storing
operations of SHAKE-256, in the yellow frame of Figure 3, which are used by 16 sampling
operations, in the red frame. Therefore, we split each recording of 768 coefficients s being
sampled into 48 segments, each containing 16 sampling operations. This way, we turned
our 4,000 recordings into 4,000× 48 = 192,000 traces as our profiling dataset.

Since the LDA calculation requires more traces than there are time samples (points)
per trace [SA08], and since its time complexity grows with the third power of the number
of points per trace [CHH08], we first select which time samples of the recorded traces we
include in the LDA as “points of interest” (POIs). We used NICV as the metric to select
POIs when shortening our traces. In our experiments, we chose an NICV threshold of
0.004 for Buf , due to its larger size, and 0.001 for the smaller variables β and s.

Selecting only POIs that have at least some minimum signal content, e.g. as measured
by NICV, makes sense for the calculation of an inter-class scatter matrix B, which
characterizes in which dimensions the best signal can be found. However, since the LDA
also characterizes the noise of the recordings, via the intra-class scatter matrix W , we
wanted to try out if there are benefits from also deliberately including some time samples
as POIs that have a low signal content, but due to their proximity might carry information
about noise that is highly correlated with noise contained in high-signal POIs. The idea
was that including such noise-correlated samples might allow the LDA to better project
away from such noise. We call this method point-of-interest extension (POIe).

Even though POIe samples contain little signal from the targeted intermediate variable,
they may still carry other relevant information, such as low-frequency noise or residual
impulse response of previously processed data that interfere with nearby POIs that carry
signal. We therefore tried adding a small number of clock cycles worth of additional POIe
samples to the left or right of any high-signal POIs.

Figure 4 illustrates the guessing entropy drop that we achieved by extending our POI



Eric Chun-Yu Peng and Markus G. Kuhn 11

Table 1: Kyber768.KeyGen template accuracies and attack results.

-Os -O3

Buf β s Buf β s

byte 1 accuracy 79.08 % 89.19 % 86.88 % 98.49 % 97.63 % 89.03 % 95.18 % 91.03 % 81.49 % 97.50 %
byte 2 accuracy 94.28 % 93.72 % 99.94 % 98.85 % 99.43 % 91.66 % 95.41 % 94.16 % 85.64 % 88.49 %
byte 3 accuracy 81.69 % 91.18 % 93.75 % 99.45 % 99.23 % 77.51 % 87.85 % 89.20 % 83.47 % 85.66 %
byte 4 accuracy 88.61 % 92.18 % 99.95 % 99.33 % 99.85 % 88.14 % 88.84 % 95.61 % 84.57 % 90.77 %
byte 5 accuracy 99.95 % 99.97 % 99.95 % 98.75 % 98.72 % 89.84 % 89.54 % 95.80 % 82.22 % 97.61 %
byte 6 accuracy 99.27 % 99.07 % 99.99 % 99.04 % 99.46 % 91.03 % 91.03 % 96.10 % 85.04 % 89.84 %
byte 7 accuracy 92.50 % 93.75 % 99.60 % 99.48 % 99.32 % 83.53 % 83.38 % 89.08 % 84.12 % 85.64 %
byte 8 accuracy 90.48 % 95.21 % 99.95 % 99.41 % 99.77 % 93.48 % 87.62 % 98.39 % 82.73 % 91.37 %
average 90.73 % 95.89 % 99.14 % 88.03 % 91.76 % 87.26 %
s accuracy 100.00 % 100.00 % 99.14 % 99.76 % 97.70 % 87.26 %
single-trace SR 100.00 % 99.30 % 0.20 % 28.90 % 0.00 % 0.00 %

selection to prior (POIe left) and subsequent (POIe right) samples next to POIs selected
by the NICV threshold. The wider the POIe region, the lower the guessing entropy. Our
experiment sometimes showed an extra 10% boost in template accuracy with a POIe of 2
clock cycles prior and 4 clock cycles after the selected POIs. We use in subsequent sections
these POIe parameters as they provided a good balance between profiling efficiency and
template accuracy.

4.4 Single-Device Single-Trace Attack Result
Recording and preprocessing 4,000 key-generation profiling traces took us around three
hours. After segmenting the traces, we created 40 template sets (8×Buf , 16×β, 16×s),
with accuracies listed in Table 1. Building these templates using our selected NICV and
POIe parameters required about an hour, with the LDA computation being the most time-
consuming step. During the attack phase, using a 4-core CPU running the computationally
efficient marginalization method, attacking the 1,000-recording test set took us only a few
minutes for the 8-bit Buf variable and under a minute for the smaller β and s templates.

Table 1 shows the template and marginalized s accuracies (blue) and single-trace attack
success rates (red) for a single device, DK1. The targeted Kyber768 implementation was
compiled with two optimization levels, -Os and -O3, to evaluate the impact of different
leakage levels. The -Os version exhibited more extensive leakage (Figure 3), while -O3
exhibited reduced and shortened leakage due to the compiler-optimized sampling procedure.
Each trace segment covers eight bytes of Buf , an equivalent of 16 sampling operations.
When we use the POIe-improved LDA-based templates to directly profile on the variable
s, we achieved an average template accuracy of 99.14%. Still, the single-trace attack
success rate remained near zero (0.2%) due to the large number of s in a secret key. By
marginalizing the Buf results (Section 4.2), the s accuracy reached 100%, achieving a
100% single-trace success rate. Marginalizing the fragmented β template resulted in a
slightly lower s accuracy (99.9991%) and single-trace success rate (99.9991768 = 99.3%)
but offered improved efficiency. Under the -O3 optimization, lower leakage levels reduced
template accuracy: the β and s templates failed to achieve sufficient accuracy for single-
trace attacks, but marginalising the Buf template still yielded an s accuracy of 99.76%,
resulting in 28.9% of our 1000 single-trace attacks to succeed, even though the average
template accuracy of the 8-bit value Buf was only 88.03%.

These results indicate the pqm4 Kyber binomial sampler exhibits sufficient leakage to
enable single-trace key (or nonce) extraction attacks when compiled with -Os. However,
success rates sometimes plummet when applying the templates across different devices
(Table 2, top left). We address this by proposing the adaptive template attack, where we
adjust templates to fit the side-channel characteristics of each target device.



12 Adaptive Template Attacks on the Kyber Binomial Sampler

5 Cross-Device Attacks with Adaptive Templates
To enhance cross-device template accuracy, we first analyzed the impact of inter-device
variances on side-channel signals. By porting the LDA vectors from profiling to attacked
devices, we found that they are still effective in separating traces of different intermediate
values in the LDA subspace, even for low-SNR targets like the 2-bit variable x. In most
cases, the projected data groups remained very much Gaussian-like. However, the location
of the projected data often deviates from the profiled templates, indicating that some form
of model adjustment is required to restore the template accuracy.

5.1 EM Algorithm for Adaptive Templates
We address the cross-device portability problem as a Gaussian-mixture-model parameter
estimation task. Suppose an attacker has exhausted available profiling resources to optimize
LDA projection vectors and build MVG templates. Despite efforts, a model mismatch
persists between the attack trace set and the MVG templates in the LDA subspace. To
address this, we apply the EM algorithm to fine-tune the MVG templates and align them
better with the attack trace set.

During profiling, we obtain a complete (labelled) dataset Dp = [(t′1, k′1), . . . , (t′M , k′M )]
from profiling devices, in which each observable trace recording t′i is paired with the
corresponding known intermediate value k′i ∈ K. Whereas the hypothetical dataset
Da = [(t1, k1), . . . , (tN , kN )] describing the device under attack remains “incomplete” for
an attacker who can only observe the side-channel traces Ta = [t1, . . . , tN ], while the
intermediate values (labels) ki have now become the values of the hidden (latent) variable.
Such a problem is a typical use case for the EM algorithm.

Our GMM Θ for the underlying distribution of Da contains known mixture weights
πk and unknown Gaussian parameters θk = (µk,Σk) for all k ∈ K. For instance, our
binomially sampled secret variable s is modelled as

Θs = [(0.0625, θ−2), (0.25, θ−1), (0.375, θ0), (0.25, θ1), (0.0625, θ2)].

The EM algorithm then estimates a set of optimized Gaussian mixture parameters to fit
the observed trace set Ta. Afterwards, we should have obtained a set of refined template
models customized for the attacked device.

Algorithm 8 outlines the procedure of our adaptive template attack in three key steps
(see Appendix A for the detailed subroutines):

GMM Initialization. We combine the MVG templates θk from the profiling device into
an initial GMM Θ(0). The distribution of mixture weights πk is determined by the
targeted algorithm. Intermediate variables in cryptographic algorithms often are uniformly
distributed. (However, if the intermediate variable held, for example, a random value’s
Hamming weight, the corresponding weights πHW(v) would have a binomial distribution.)

To initialize the Gaussian components, we shift for each LDA dimension and each
component θk the mean µk to a new mean

µ′k = (µk − µ)σa/σ + ta

such that the overall mean and standard deviation (µ, σ) across all GMM components θk
match the corresponding values (ta, σa) estimated from the attack traces (Algorithm 9).
This minimizes systematic bias and places the Gaussian templates closer to their data
group, similar to trace normalization, but in the LDA subspace.

We then identify pairs of Gaussian components θk that are indistinguishable, by
pairwise application of Hotelling’s T 2-test, the multivariate analogue of the univariate
t-test. Afterwards, we merge such indistinguishable components into one, adding their πk



Eric Chun-Yu Peng and Markus G. Kuhn 13

Algorithm 8 EM-based Template Adjustment
Input: Θ =

[
(πk,µk,Σk) | k ∈ K

]
. Profiled templates as GMM

Input: Ta,LDA = [t1, t2, . . . , tN ] ∈ Rd×N . Same-LDA-projected attack-device trace set
Input: lmax, δ, scaleΣ
Output: Θadj =

[
(πk,µk,Σk) | k ∈ K

]
# GMM Initialization

1:
[
(πk,µ′k,Σk) | k ∈ K

]
= GMMNormalize(Θ,Ta,LDA) . unbias Θ

2: for all k ∈ K do
3: Σ′k = Σk × scaleΣ . cover more distant data groups
4: Θ(0), labelsidx = MergeComponents

([
(πk,µ′k,Σ′k) | k ∈ K

])
# EM Process

5: for l from 1 to lmax do
6: Θ(l) = EMprocess(Θ(l−1),Ta,LDA)

# Termination Criteria
7: L(l) = L(Θ(l) | Ta,LDA) . GMM likelihood
8: if (L(l) − L(l−1))/(L(2) − L(1)) < δ then
9: break

10: Θadj = UnmergeComponents(Θ(l), labelsidx)

(Algorithm 10). This can reduce computation and lead to more variety among the mixture
weights πk, which can help to improve the EM process.

EM Process. At each iteration l, the EM algorithm alternates between the E-step and
M-step to maximize the likelihood function (Algorithm 11). In the E-step, we calculate
the posterior distribution of the intermediate variable v, with the given Ta and Θ(l−1). We
estimate the responsibility

r
(l)
k,i = πkp(ti | θ(l−1)

k )∑
k′∈Kv

πk′p(ti | θ(l−1)
k′ )

for each trace ti and each Gaussian component θ(l−1)
k .

In the M-step, we estimate Θ(l) by maximizing the likelihood expectation with the
given responsibilities r(l)

k,i from the E-step. Simply put, we update the GMM parameters
θ

(l)
k = (µ(l)

k ,Σ
(l)
k ) given the trace set Ta and the estimated responsibilities r(l)

k,i:

µ
(l)
k =

∑N
i=1 r

(l)
k,iti∑N

i=1 r
(l)
k,i

Σ(l)
k =

∑N
i=1 r

(l)
k,i(ti − µ

(l)
k )(ti − µ(l)

k )>∑N
i=1 r

(l)
k,i

Again, we know the mixture weights πk of an intermediate variable v from the design of
the cryptosystem, and therefore do not update them.

Errors may occur if one of the components dominates multiple data groups, leaving
other components without any assigned data after the responsibility estimation. In such
cases, we scale up the initial covariance with a scaleΣ factor to expand the initial coverage
of each template, allowing the Gaussian components to explore more distant data groups,
and restart the EM adjustment in Algorithm 8. Note that this covariance expansion may
further reduce the number of Gaussian components and the resulting template accuracy.



14 Adaptive Template Attacks on the Kyber Binomial Sampler

(a) Traces and β templates in LDA subspace. (b) EM adjusted β templates.

(c) Traces and x templates in LDA subspace. (d) EM adjusted x templates.

Figure 5: EM-based adjustments with DK2 profiling templates and the MS2 target device.

Termination Criteria. We terminate the EM algorithm after a maximum number of
iterations or when the relative likelihood increment ratio falls below a chosen threshold
δ < 10−9. Typically, the algorithm converges within a few iterations. Note that templates
merged during the initialization end up having the same parameters (µk,Σk) after EM
adjustment (Algorithm 12), trading off some separability for adaptability.

5.2 Adaptive Template Attack Evaluation
Figure 5 illustrates the effect of EM-based template adjustment on the first two LDA
dimensions for the 4-bit nibble β and 2-bit variable x. We apply the LDA projection
vectors from the DK2 profiling device to the MS2 attack trace set Ta,MS2. In Figure 5a, the
scattered dots represent the attack traces in the LDA subspace, color-coded by their latent
intermediate value βi ∈ Kβ . The original multivariate Gaussian templates θβ for DK2 are
the ellipses with matching colors. Although there are 16 ellipses, only nine distinct clusters
are formed in this two-dimensional subspace, corresponding to the nine Hamming weight
combinations of the two 2-bit variables x and y. The remaining LDA dimensions further
separate these overlapping clusters. However, if using only these two dimensions, the GMM
initialization in Algorithm 8 would merge the ellipses into nine Gaussian components. In
addition, this example also demonstrates the importance of GMM initialization based on a
set of known template models θk. It would be challenging to correctly assign components
to their respective latent values with a randomly initialized 16-component GMM, even
though they may lead to identical parameter sets with the EM algorithm.

Before EM adjustment (Figure 5a), the data clusters show misalignment with the
profiling templates, including systematic shifts and relative positional drift. Notably, the



Eric Chun-Yu Peng and Markus G. Kuhn 15

Table 2: Single-trace attack success rate of Kyber768.KeyGen from KeyGen-Buf templates.

Profiling

Target
DK1 DK2 FN1 FN2 MS1 MS2 RS1 RS2 DK1 DK2 FN1 FN2 MS1 MS2 RS1 RS2

Template Attack Template Attack + EM-Adjusted Templates
DK1 100.0 % 99.8 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 80.2 % 100.0 % 100.0 %
DK2 94.1 % 100.0 % 0.0 % 0.0 % 0.4 % 0.0 % 25.1 % 70.7 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 2.0 % 44.7 % 100.0 %
FN1 0.0 % 0.0 % 100.0 % 84.6 % 12.6 % 0.0 % 0.0 % 0.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 28.3 % 100.0 % 100.0 %
FN2 0.0 % 0.0 % 87.6 % 100.0 % 74.1 % 53.4 % 0.0 % 0.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
MS1 0.0 % 0.2 % 0.4 % 86.1 % 100.0 % 92.2 % 0.5 % 14.2 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 99.9 % 100.0 % 100.0 %
MS2 0.0 % 0.0 % 0.0 % 41.2 % 26.7 % 100.0 % 0.0 % 0.4 % 100.0 % 97.2 % 100.0 % 100.0 % 100.0 % 100.0 % 99.9 % 100.0 %
RS1 1.1 % 29.0 % 0.0 % 0.0 % 0.0 % 18.7 % 100.0 % 99.9 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
RS2 0.0 % 22.3 % 0.0 % 0.0 % 0.0 % 1.5 % 99.9 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %

Traces Normalized Traces Normalized + EM-Adjusted Templates
DK1 100.0 % 100.0 % 100.0 % 99.9 % 100.0 % 52.6 % 97.5 % 99.9 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 78.2 % 100.0 % 100.0 %
DK2 100.0 % 100.0 % 100.0 % 94.6 % 95.7 % 12.0 % 54.6 % 95.6 % 100.0 % 100.0 % 100.0 % 100.0 % 99.9 % 77.7 % 78.4 % 100.0 %
FN1 100.0 % 100.0 % 100.0 % 99.5 % 99.8 % 32.7 % 90.7 % 99.9 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 86.7 % 98.8 % 100.0 %
FN2 99.7 % 91.7 % 99.7 % 100.0 % 100.0 % 92.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 99.9 % 100.0 % 100.0 %
MS1 99.5 % 93.5 % 99.0 % 100.0 % 100.0 % 76.3 % 99.9 % 100.0 % 100.0 % 99.9 % 100.0 % 100.0 % 100.0 % 97.5 % 100.0 % 100.0 %
MS2 45.4 % 2.3 % 8.8 % 93.6 % 67.3 % 100.0 % 99.4 % 91.6 % 100.0 % 75.0 % 79.3 % 99.9 % 99.9 % 100.0 % 100.0 % 100.0 %
RS1 94.1 % 36.9 % 87.9 % 100.0 % 99.6 % 95.7 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 99.9 % 100.0 % 100.0 %
RS2 100.0 % 94.2 % 99.2 % 100.0 % 100.0 % 84.2 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 97.9 % 100.0 % 100.0 %

Multi-Device Training Multi-Device Training + EM-Adjusted Templates
w/o RS2 100.0 % 99.9 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 98.3 % 100.0 % 99.9 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
w/o RS1 100.0 % 99.9 % 100.0 % 100.0 % 100.0 % 100.0 % 99.8 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
w/o MS2 100.0 % 99.9 % 100.0 % 100.0 % 100.0 % 99.5 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
w/o MS1 100.0 % 99.9 % 100.0 % 100.0 % 94.8 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
w/o FN2 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
w/o FN1 100.0 % 100.0 % 99.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
w/o DK2 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
w/o DK1 98.8 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %

data groups β = 4 and β = 8 deviate upwards, and the three right-hand-side clusters
exhibit skewness, possibly caused by cross-device LDA vector mismatch or unexpected
noise contaminating the recordings. After applying EM-based adjustment, templates
realign with attack traces (Figure 5b), improving accuracy from 54.88% to 84.15%. While
this is lower than the single-device accuracy of 95.89% (Table 1), it represents the best
model achievable under the given LDA vectors from DK2. Note that these figures illustrate
only the first two dimensions of the LDA space: the EM adjustment is performed in the
full 15-dimensional LDA space, where the 16 clusters are better separated than Figure 5a
suggests, but such higher-dimensional spaces are impractical to visualize.

Figure 5c shows as a lower-SNR case (NICV < 0.4) the 2-bit variable x. The LDA
vectors remain effective in separating these noisier data groups, and the EM adjustment
improves template accuracy from 51.93% to 89.26%. However, as shown in Figure 5d, the
overlapping template region increases, leading to a drop in their accuracy. The blue data
group exhibits two Gaussian-like clusters instead of one, corresponding to the groups of
β = 4 and β = 8 in the previous Figure 5a, whereas the orange and green groups mostly
overlap. Such a split or merger of Gaussian-like clusters could mislead an EM algorithm
into allocating GMM components incorrectly, e.g. by allocating two different Gaussian
components to the blue group. However, as Figure 5d shows, this didn’t happen here. The
combination of having the right relative position of components in the initial estimate,
along with fixing the number of GMM components and, importantly, fixing the weights
πk, improves the robustness of this EM application. Without such constraints, a more
free-roaming EM algorithm would have incorrectly allocated the orange component to half
of the blue data.

5.3 Cross-Device Single-Trace Attack Result
The computational complexity of the EM algorithm depends on the size and dimensionality
of the GMM model, which is determined by the number |Kv| of intermediate-variable
values and the number of dimensions dv used in the LDA space. For the 8-bit variable
Buf , with |KBuf | = 256 and our chosen dimensionality dBuf = 16, each EM iteration takes
a few seconds to compute. Initially, we often encountered numerical errors during the EM
process and the model often started degrading after a few iterations. To mitigate this
problem, we increased the initial coverage of each template model θk by setting scaleΣ = 4



16 Adaptive Template Attacks on the Kyber Binomial Sampler

Table 3: Single-trace attack success rate of Kyber768.Encaps from KeyGen-Buf templates.

Profiling

Target
DK1 DK2 FN1 FN2 MS1 MS2 RS1 RS2 DK1 DK2 FN1 FN2 MS1 MS2 RS1 RS2

Template Attack Template Attack + EM-Adjusted Templates
DK1 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 97.0 % 86.3 % 65.1 % 56.9 % 61.8 % 0.6 % 63.0 % 62.6 %
DK2 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 92.9 % 93.4 % 71.6 % 25.3 % 45.6 % 0.0 % 5.7 % 40.2 %
FN1 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 94.6 % 95.9 % 80.5 % 42.1 % 61.9 % 0.1 % 52.7 % 47.6 %
FN2 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 92.4 % 83.8 % 84.8 % 89.6 % 79.1 % 41.8 % 94.5 % 98.7 %
MS1 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 87.4 % 86.7 % 74.9 % 66.8 % 68.4 % 51.2 % 83.7 % 55.8 %
MS2 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 82.6 % 62.1 % 65.6 % 76.0 % 83.0 % 78.7 % 91.6 % 79.8 %
RS1 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 85.9 % 66.7 % 77.5 % 88.7 % 73.1 % 73.5 % 97.9 % 87.9 %
RS2 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 90.3 % 82.9 % 85.5 % 76.1 % 85.5 % 50.2 % 94.6 % 96.8 %

Traces Normalized Traces Normalized + EM-Adjusted Templates
DK1 23.2 % 15.6 % 10.3 % 6.5 % 4.8 % 0.4 % 2.9 % 8.1 % 97.9 % 84.3 % 82.2 % 71.9 % 59.7 % 9.7 % 60.5 % 66.6 %
DK2 10.4 % 14.2 % 5.0 % 1.4 % 1.2 % 0.0 % 0.4 % 2.0 % 94.3 % 93.0 % 71.0 % 48.9 % 49.5 % 3.1 % 19.0 % 44.4 %
FN1 19.1 % 14.1 % 9.8 % 4.9 % 3.7 % 0.0 % 1.3 % 3.9 % 99.5 % 95.8 % 93.1 % 55.6 % 70.7 % 6.2 % 62.7 % 57.1 %
FN2 15.2 % 3.0 % 7.5 % 15.0 % 5.6 % 1.4 % 11.7 % 15.1 % 96.9 % 83.8 % 93.4 % 95.5 % 85.9 % 50.4 % 93.4 % 96.3 %
MS1 9.3 % 3.2 % 4.9 % 4.7 % 9.9 % 1.0 % 7.5 % 11.3 % 95.0 % 88.9 % 80.4 % 85.9 % 84.1 % 64.9 % 84.1 % 79.5 %
MS2 0.0 % 0.0 % 0.0 % 3.1 % 0.3 % 6.4 % 8.8 % 3.5 % 69.1 % 31.3 % 49.1 % 83.3 % 83.6 % 90.1 % 89.3 % 80.7 %
RS1 3.8 % 0.1 % 1.3 % 11.1 % 6.2 % 4.4 % 26.2 % 19.9 % 89.9 % 75.1 % 84.1 % 94.0 % 79.5 % 87.9 % 99.7 % 91.3 %
RS2 10.8 % 2.1 % 3.5 % 8.0 % 7.2 % 2.2 % 11.7 % 14.2 % 95.1 % 86.5 % 95.6 % 90.1 % 94.7 % 63.4 % 87.7 % 92.0 %

Multi-Device Training Multi-Device Training + EM-Adjusted Templates
w/o RS2 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 89.0 % 93.5 % 87.4 % 68.5 % 62.4 % 68.4 % 92.7 % 64.7 %
w/o RS1 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 86.8 % 83.2 % 69.8 % 62.8 % 53.1 % 57.1 % 79.9 % 69.1 %
w/o MS2 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 91.8 % 90.7 % 68.5 % 56.5 % 60.0 % 43.0 % 78.6 % 63.9 %
w/o MS1 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 85.3 % 72.1 % 68.4 % 55.4 % 52.1 % 49.3 % 79.3 % 62.6 %
w/o FN2 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 93.8 % 81.6 % 75.9 % 57.5 % 68.1 % 50.4 % 85.3 % 68.9 %
w/o FN1 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 89.2 % 84.5 % 86.9 % 81.2 % 67.3 % 78.6 % 91.6 % 82.6 %
w/o DK2 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 94.5 % 90.6 % 84.4 % 71.1 % 66.8 % 61.1 % 87.9 % 74.2 %
w/o DK1 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 87.9 % 75.7 % 74.7 % 68.3 % 66.4 % 54.4 % 84.4 % 65.8 %

during GMM initialization in Algorithm 8. We also capped the iteration limit at lmax = 20
to prevent prolonged optimization. As a result, completing an EM-based adaptive template
attack (including evaluation) for a 1,000-trace set Ta takes approximately 15 minutes.

We tested the adaptive templates across multiple devices to evaluate their effectiveness
in cross-device attack scenarios and compare them to other popular portability techniques.
The single-trace attack success rates for these tests appear in Table 2. We used all eight
devices for both profiling and attacks. For the multi-device training configuration (bottom
blocks), we pooled traces from seven profiling datasets to form a combined training dataset
of 192,000 traces, matching the size of the single-device dataset. Each attack trace set
Ta consists of 1,000 KeyGen recordings, separate from the profiling set. Note that we
employed the entire trace set Ta for the EM-based template adjustment; however, each
attack utilized only a single trace to recover all 768 secret values s, achieving single-trace
attacks. This setup reflects a realistic attack scenario for a nonce target, where an attacker
collects multiple traces from a device, but each secret appears only once.

The top-left block in Table 2 presents attack success rates in the multi-device setting
without modifications. Many templates fail to achieve portable single-trace attacks
across devices in this configuration. Successful attacks primarily involve devices from
the same distributor with matching engraved manufacturing dates. Applying the trace
normalization method [EG12] (middle-left block) significantly improves success rates in
most cases. However, our EM adjustment method (top-right block) further enhances
template portability, except for the MS2 target device. For MS2, a substantial discrepancy
between the DK2 templates and the attacked dataset causes Gaussian components to miss
their respective data groups even after the EM adjustment, lowering the success rates.
Combining both techniques (middle-right block) results in further improvements. With
the multi-device-trained templates (bottom-left block), only the anti-diagonal cells are
relevant, as they represent the unseen target device for each template. These templates
demonstrate excellent cross-device attack capabilities, achieving near-100% success rates
across the anti-diagonal cells. Incorporating our EM adjustment provides a final boost,
completing the attacks with 100% success rates.

We also investigate cross-operation portability, which enables attacks to extend from
Decaps to the “unprofilable” KeyGen operation. This analysis essentially focuses on the
address-space portability of templates, as discussed in Section 2.3. We collected 1,000



Eric Chun-Yu Peng and Markus G. Kuhn 17

traces of the Encaps operations from all eight devices as the attack trace set Ta. Table 3
reports single-trace attack success rates on the random nonce r in Encaps using Buf
templates from KeyGen. Success rates drop across all devices and all portability techniques
compared to the attacks on KeyGen. This decline shows the effect of additional side-channel
variation introduced by the address-space differences.

The commonly used portability techniques listed on the left side of Table 3 demonstrate
poor adaptability to the address-space changes. Single-trace attacks using unmodified
templates (top-left block) failed entirely, even on the same device, and multi-device-trained
templates (bottom-left block) also showed no success. The normalization method (middle-
left block) achieved limited success, with an average success rate of 6.94%. In contrast, the
EM adjustment technique (right side) performed significantly better. EM adjustment alone
(top-right block) achieved an average success rate of 70.6%, with some targets exceeding
90%. Combining EM adjustment with normalization (middle-right block) further increased
the average success rate to 75.6%. Pairing multi-device templates with EM adjustment
(bottom-right block) improved success rates from complete failure to an average of 73.7%.
These findings indicate that traditional portability techniques are less effective against
address-space variance while incorporating the EM adjustment technique will restore
template accuracy and improve attack results.

5.4 Caveats, Limitations and Mitigations
While our results demonstrate the advantages of the EM-based adaptive template attack,
the method also has limitations.
Labeling errors. The EM algorithm cannot guarantee a correct mapping between the
adjusted templates θk,adj and the latent value k. Clusters may have drifted too far from
their original locations. Our GMMNormalize function (Algorithm 9) aims to reduce such
errors by initializing templates near their expected locations. The MergeComponents
function (Algorithm 10) helps to reduce the risk of GMM components latching onto the
wrong data clusters by bundling closely co-located templates, under the assumption that
their data also cluster closely on the target. But merging GMM components can also
decrease template accuracy, especially when this assumption fails.
GMM assumption. The assumption that the data fits a Gaussian mixture model may
not always hold when porting the LDA vectors from a profiling setting to different
target environments. Significant discrepancies in the leakage model can distort the data
distribution in the LDA space, as can be seen in Figure 5c (blue). Similarly, a noise source
affecting only a subset of recordings may split a cluster into multiple groups. In such cases,
the EM algorithm may struggle to produce well-adjusted templates. Mitigation strategies
include using multi-device and multi-environment profiling data to obtain more robust
LDA projection vectors or removing outlier traces to preserve the GMM assumption.
Large attack dataset requirements. For profiling, we need enough traces to satisfy the
accuracy requirements of (a) POI selection, (b) LDA, and (c) the accurate estimation of
the MVG parameters in LDA space. For the attacked device, we do not have to perform
(a) and (b), but we still need enough traces for (c), because the M-step also does that.
The larger the number of Gaussian components |Kv|, the more accurate this estimate will
have to be. One mitigation could be to replace the individual covariance matrices Σk with
a common one [CK13], Σpooled =

∑
k∈Kv

πkΣk.

The effectiveness of the EM algorithm depends on trace availability and the validity of the
GMM assumption. The accuracy of EM-adjusted templates is constrained by the quality of
LDA projections, with better signal-preserving and noise-rejecting vectors yielding better
results.



18 Adaptive Template Attacks on the Kyber Binomial Sampler

Our attack aims to identify all secret polynomial coefficients correctly. However, in case
some coefficients are missing or erroneous, lattice-reduction-based cryptanalysis methods
using the BKZ algorithm, such as the leaky-LWE-Estimator [DDGR20] or refined two-step
estimation [XWW+24], may be applicable to recover those.

5.5 Countermeasures
Our single-trace attack relies on a relatively large leakage signal from the target devices
to achieve a high template accuracy. Therefore, hardware implementations of Kyber
designed to minimize power signals, or software implementations running on secure
microcontrollers designed to have a reduced signal-to-noise ratio, should be less exposed.
Our findings regarding the SHAKE-256 implementation in pqm4 (Section 4.1) also highlight
the benefits of avoiding byte-wise handling of secret data. Countermeasures such as masking
and shuffling could also be added. Shuffling has a relatively small overhead and could
increase the attack complexity considerably, given Kyber’s large parameter set. Masked
binomial samplers have been proposed [SPOG19] and implemented in masked Kyber
implementations [OSPG18, BGR+21, HKL+22]. Whether these countermeasures are
effective against our single-trace attacks requires further investigation.

6 Conclusion
We demonstrated how targeting the binomial sampler with profiled power-analysis attacks
can enable single-trace key, nonce, and message extraction on all Kyber operations. In
our target, this leakage was significant enough for our templates to achieve nearly 100%
accuracy in identifying the sampled secrets. We also provide new techniques to improve
template accuracy (POIe) and template portability (adaptive template attack), both
across different devices and different address spaces. The latter can help port templates
between different Kyber operations that call the same implementation of the sampler as
a subroutine.

We thank the reviewers for their helpful suggestions.

For the data and Julia code that produced some of the tables and figures in this paper see

https://www.cl.cam.ac.uk/research/security/datasets/kyber/

References
[ABD+21] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim

Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS-Kyber algorithm specifications and supporting documen-
tation (version 3.02). NIST PQC Round 3, pages 1–43, 2021.

[BCGR22] Julien Béguinot, Wei Cheng, Sylvain Guilley, and Olivier Rioul. Side-channel
expectation-maximization attacks. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2022(4):774–799, 2022.

[BCH+20] Shivam Bhasin, Anupam Chattopadhyay, Annelie Heuser, Dirmanto Jap,
Stjepan Picek, and Ritu Ranjan Shrivastwa. Mind the portability: A warriors
guide through realistic profiled side-channel analysis. In 27th Annual Net-
work and Distributed System Security Symposium, NDSS 2020, San Diego,
California, USA, February 23–26, 2020. The Internet Society, 2020.

https://www.cl.cam.ac.uk/research/security/datasets/kyber/


Eric Chun-Yu Peng and Markus G. Kuhn 19

[BDGN14] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm. NICV:
Normalized inter-class variance for detection of side-channel leakage. In 2014
International Symposium on Electromagnetic Compatibility, Tokyo, pages
310–313. IEEE, 2014.

[BDK+24] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. The official reference implementation of the Kyber key-encapsulation
mechanism, Aug. 2024. https://github.com/pq-crystals/kyber/tree/
10b478fc3cc4ff6215eb0b6a11bd758bf0929cbd/ref.

[BGR+21] Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine
van Vredendaal. Masking Kyber: First- and higher-order implementations.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):173–214, 2021.

[CHH08] Deng Cai, Xiaofei He, and Jiawei Han. Training linear discriminant analysis
in linear time. In Proceedings of the 24th International Conference on Data
Engineering, ICDE 2008, April 7–12, 2008, Cancún, Mexico, pages 209–217.
IEEE Computer Society, 2008.

[CK13] Omar Choudary and Markus G. Kuhn. Efficient template attacks. In Smart
Card Research and Advanced Applications – 12th International Conference,
CARDIS 2013, Berlin, Germany, November 27–29, 2013. Revised Selected
Papers, volume 8419 of Lecture Notes in Computer Science, pages 253–270.
Springer, 2013.

[CK18] Marios O. Choudary and Markus G. Kuhn. Efficient, portable template
attacks. IEEE Trans. Inf. Forensics Secur., 13(2):490–501, 2018.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
Cryptographic Hardware and Embedded Systems – CHES 2002, 4th Interna-
tional Workshop, Redwood Shores, CA, USA, August 13–15, 2002, Revised
Papers, volume 2523 of Lecture Notes in Computer Science, pages 13–28.
Springer, 2002.

[CZLG21] Pei Cao, Chi Zhang, Xiangjun Lu, and Dawu Gu. Cross-device profiled side-
channel attack with unsupervised domain adaptation. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2021(4):27–56, 2021.

[DDGR20] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE
with side information: Attacks and concrete security estimation. In Advances
in Cryptology – CRYPTO 2020 – 40th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 17–21, 2020, Proceedings, Part II,
volume 12171 of Lecture Notes in Computer Science, pages 329–358. Springer,
2020.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society:
Series B (Methodological), 39(1):1–22, 09 1977.

[EG12] M. Abdelaziz Elaabid and Sylvain Guilley. Portability of templates. J.
Cryptogr. Eng., 2(1):63–74, 2012.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In Advances in Cryptology – CRYPTO ’99,
19th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 15–19, 1999, Proceedings, volume 1666 of Lecture Notes in
Computer Science, pages 537–554. Springer, 1999.

https://github.com/pq-crystals/kyber/tree/10b478fc3cc4ff6215eb0b6a11bd758bf0929cbd/ref
https://github.com/pq-crystals/kyber/tree/10b478fc3cc4ff6215eb0b6a11bd758bf0929cbd/ref


20 Adaptive Template Attacks on the Kyber Binomial Sampler

[HKL+22] Daniel Heinz, Matthias J. Kannwischer, Georg Land, Thomas Pöppelmann,
Peter Schwabe, and Amber Sprenkels. First-order masked Kyber on ARM
Cortex-M4, 2022.

[KPP20] Matthias J. Kannwischer, Peter Pessl, and Robert Primas. Single-trace attacks
on Keccak. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):243–268,
2020.

[KPR+] Matthias J. Kannwischer, Richard Petri, Joost Rijneveld, Peter
Schwabe, and Ko Stoffelen. PQM4: Post-quantum crypto library
for the ARM Cortex-M4. https://github.com/mupq/pqm4/tree/
1eeb74e4106a80e26a9452e4793acd6f191fe413/crypto_kem/kyber768/
m4fspeed.

[LP07] Kerstin Lemke-Rust and Christof Paar. Gaussian mixture models for higher-
order side channel analysis. In Cryptographic Hardware and Embedded Systems
– CHES 2007, 9th International Workshop, Vienna, Austria, September 10–13,
2007, Proceedings, volume 4727 of Lecture Notes in Computer Science, pages
14–27. Springer, 2007.

[MBTL13] David P. Montminy, Rusty O. Baldwin, Michael A. Temple, and Eric D. Laspe.
Improving cross-device attacks using zero-mean unit-variance normalization.
J. Cryptogr. Eng., 3(2):99–110, 2013.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks
– revealing the secrets of smart cards. Springer, 2007.

[Nat24] National Institute of Standards and Technology. Module-lattice-based key-
encapsulation mechanism standard. Federal Information Processing Standards
Publication FIPS 203, Department of Commerce, Washington, D.C., 2024.

[OC15] Colin O’Flynn and Zhizhang Chen. Synchronous sampling and clock recovery
of internal oscillators for side channel analysis and fault injection. J. Cryptogr.
Eng., 5(1):53–69, 2015.

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical CCA2-secure and masked Ring-LWE implementation. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2018(1):142–174, 2018.

[PP19] Peter Pessl and Robert Primas. More practical single-trace attacks on the
number theoretic transform. In Progress in Cryptology – LATINCRYPT
2019 – 6th International Conference on Cryptology and Information Security
in Latin America, Santiago de Chile, Chile, October 2–4, 2019, Proceedings,
volume 11774 of Lecture Notes in Computer Science, pages 130–149. Springer,
2019.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. In Cryptographic Hardware and
Embedded Systems – CHES 2017 – 19th International Conference, Taipei,
Taiwan, September 25–28, 2017, Proceedings, volume 10529 of Lecture Notes
in Computer Science, pages 513–533. Springer, 2017.

[RBRC22] Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadhyay.
On exploiting message leakage in (few) NIST PQC candidates for practical
message recovery attacks. IEEE Trans. Inf. Forensics Secur., 17:684–699,
2022.

https://github.com/mupq/pqm4/tree/1eeb74e4106a80e26a9452e4793acd6f191fe413/crypto_kem/kyber768/m4fspeed
https://github.com/mupq/pqm4/tree/1eeb74e4106a80e26a9452e4793acd6f191fe413/crypto_kem/kyber768/m4fspeed
https://github.com/mupq/pqm4/tree/1eeb74e4106a80e26a9452e4793acd6f191fe413/crypto_kem/kyber768/m4fspeed


Eric Chun-Yu Peng and Markus G. Kuhn 21

[RCDB24] Prasanna Ravi, Anupam Chattopadhyay, Jan-Pieter D’Anvers, and Anub-
hab Baksi. Side-channel and fault-injection attacks over lattice-based post-
quantum schemes (Kyber, Dilithium): Survey and new results. ACM Trans.
Embed. Comput. Syst., 23(2):35:1–35:54, 2024.

[RRB+19] Prasanna Ravi, Debapriya Basu Roy, Shivam Bhasin, Anupam Chattopadhyay,
and Debdeep Mukhopadhyay. Number “not used” once – practical fault attack
on pqm4 implementations of NIST candidates. In Constructive Side-Channel
Analysis and Secure Design – 10th International Workshop, COSADE 2019,
Darmstadt, Germany, April 3–5, 2019, Proceedings, volume 11421 of Lecture
Notes in Computer Science, pages 232–250. Springer, 2019.

[SA08] François-Xavier Standaert and Cédric Archambeau. Using subspace-based
template attacks to compare and combine power and electromagnetic infor-
mation leakages. In Cryptographic Hardware and Embedded Systems – CHES
2008, 10th International Workshop, Washington, D.C., USA, August 10–13,
2008. Proceedings, volume 5154 of Lecture Notes in Computer Science, pages
411–425. Springer, 2008.

[SKL+20] Bo-Yeon Sim, Jihoon Kwon, Joohee Lee, Il-Ju Kim, Taeho Lee, Jaeseung
Han, Hyo Jin Yoon, Jihoon Cho, and Dong-Guk Han. Single-trace attacks
on message encoding in lattice-based KEMs. IEEE Access, 8:183175–183191,
2020.

[SPOG19] Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Güneysu. Effi-
ciently masking binomial sampling at arbitrary orders for lattice-based crypto.
In Public-Key Cryptography – PKC 2019, pages 534–564, Cham, 2019. Springer
International Publishing.

[VGS14] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert. Soft
analytical side-channel attacks. In Advances in Cryptology – ASIACRYPT
2014 – 20th International Conference on the Theory and Application of
Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December
7–11, 2014. Proceedings, Part I, volume 8873 of Lecture Notes in Computer
Science, pages 282–296. Springer, 2014.

[XPR+22] Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, David F. Oswald, Wang
Yao, and Zhiming Zheng. Magnifying side-channel leakage of lattice-based
cryptosystems with chosen ciphertexts: The case study of Kyber. IEEE Trans.
Computers, 71(9):2163–2176, 2022.

[XWW+24] Wenwen Xia, Leizhang Wang, Geng Wang, Dawu Gu, and Baocang Wang.
A refined hardness estimation of LWE in two-step mode. In Public-Key
Cryptography – PKC 2024 – 27th IACR International Conference on Practice
and Theory of Public-Key Cryptography, Sydney, NSW, Australia, April 15–
17, 2024, Proceedings, Part III, volume 14603 of Lecture Notes in Computer
Science, pages 3–35. Springer, 2024.

[YK20] Shih-Chun You and Markus G. Kuhn. A template attack to reconstruct the
input of SHA-3 on an 8-bit device. In Constructive Side-Channel Analysis
and Secure Design – 11th International Workshop, COSADE 2020, Lugano,
Switzerland, April 1–3, 2020, Revised Selected Papers, volume 12244 of Lecture
Notes in Computer Science, pages 25–42. Springer, 2020. https://doi.org/
10.1007/978-3-030-68773-1_2.

https://doi.org/10.1007/978-3-030-68773-1_2
https://doi.org/10.1007/978-3-030-68773-1_2


22 Adaptive Template Attacks on the Kyber Binomial Sampler

[YK21] Shih-Chun You and Markus G. Kuhn. Single-trace fragment template
attack on a 32-bit implementation of Keccak. In Smart Card Research
and Advanced Applications – 20th International Conference, CARDIS 2021,
Lübeck, Germany, November 11–12, 2021, Revised Selected Papers, volume
13173 of Lecture Notes in Computer Science, pages 3–23. Springer, 2021.
https://doi.org/10.1007/978-3-030-97348-3_1.

A EM Adjustment Algorithms

Algorithm 9 GMM Normalization (for each LDA dimension)
Input: Θ =

[
(πk,µk ∈ Rd,Σk ∈ Rd×d) | k ∈ K

]
Input: Ta,LDA = [t1, t2, . . . , tN ] ∈ Rd×N
Output: Θ′ =

[
(πk,µ′k,Σk) | k ∈ K

]
1: for i from 1 to d do
2: µi =

∑
k∈K πkµk,i

3: σi =
[∑

k∈K πk
(
(µk,i − µi)2 + Σk[i, i]

)]1/2

4: ta,i = N−1∑N
j=1 ti,j

5: σa,i =
[
(N − 1)−1∑N

j=1(ti,j − ta,i)2
]1/2

6: for all k ∈ K do
7: µ′k,i = (µk,i − µi)σa,i/σi + ta,i

Algorithm 10 GMM Merge Components
Input: Θ =

[
(πk,µk ∈ Rd,Σk ∈ Rd×d) | k ∈ K

]
Input: NGMM, pvalue
Output: Θ(0), labelsidx

1: Θ(0) = [ ]; labelsidx = [ ]
2: for k ∈ K do
3: merged = False
4: θk = (µk,Σk)
5: for (πi,µi,Σi) ∈ Θ(0) do
6: θi = (µi,Σi)
7: if pvalue(HotellingT2Test(θk, θi, NGMM)) > pvalue then
8: πi = πi + πk
9: labelsidx[k] = (i, πk)

10: merged = True
11: break
12: if not merged then
13: push(Θ(0), (πk,µk,Σk))
14: labelsidx[k] = (length(Θ(0)), πk) . last index of Θ(0)

https://doi.org/10.1007/978-3-030-97348-3_1


Eric Chun-Yu Peng and Markus G. Kuhn 23

Algorithm 11 EM process (fixed weight)
Input: Θ(l−1) =

[
(πk,µ(l−1)

k ∈ Rd,Σ(l−1)
k ∈ Rd×d) | k ∈ K

]
Input: Ta,LDA = [t1, t2, . . . , tN ] ∈ Rd×N

Output: Θ(l) =
[
(πk,µ(l)

k ,Σ
(l)
k ) | k ∈ K

]
# E-step

1: for i from 1 to N do
2: for k ∈ K do

3: r
(l)
k,i = πkp(ti | µ(l−1)

k ,Σ(l−1)
k )∑

k′∈K πk′p(ti | µ(l−1)
k′ ,Σ(l−1)

k′ )

# M-step
4: for k ∈ K do
5: rk,sum =

∑N
i=1 r

(l)
k,i

6: µ
(l)
k =

(∑N
i=1 r

(l)
k,iti

)
/rk,sum

7: Σ(l)
k =

(∑N
i=1 r

(l)
k,i(ti − µ

(l)
k )(ti − µ(l)

k )>
)
/rk,sum

Algorithm 12 GMM Unmerge Components
Input: Θ, labelsidx
Output: Θadj =

[
(πk,µk ∈ Rd,Σk ∈ Rd×d) | k ∈ K

]
1: for k ∈ K do
2: (i, πk) = labelsidx[k] . restore πk
3: (πi,µk,Σk) = Θ[i] . ignore πi
4: push

(
Θadj, (πk,µk,Σk)

)


	Introduction
	Background
	LDA-based Template Attack
	CRYSTALS-Kyber and Binomial Sampler
	Attack Scenarios
	Gaussian Mixture Model and EM Algorithm

	Measurement Setup
	Single-Device Single-Trace Attack
	Leakage Assessment for Binomial Sampler
	Template Attack and Marginalization
	LDA-based Template Attack and Points of Interest Extension
	Single-Device Single-Trace Attack Result

	Cross-Device Attacks with Adaptive Templates
	EM Algorithm for Adaptive Templates
	Adaptive Template Attack Evaluation
	Cross-Device Single-Trace Attack Result
	Caveats, Limitations and Mitigations
	Countermeasures

	Conclusion
	EM Adjustment Algorithms

