
Soundness proof of type checking

Dhruv C. Makwana

B1 Commentary . 2
B2 Typing Judgements . 4
B3 Operational Semantics Judgements . 7
B4 Proof Judgements . 8
B5 Groups of Rules . 10

B5.1 Typing rules with an smt (Φ ⇒ qterm) premise 10
B5.2 Typing rules which change the context . 10
B5.3 Value typing rules . 11

B6 Weakening . 12
B7 Substitution . 13

B7.1 Substitutions preserve SMT results . 13
B7.2 Substitutions can be split up . 13
B7.3 Substitution . 13

B8 Resource Term Lemmas . 17
B8.1 Definition: Normalised contexts . 17
B8.2 Resource contexts typing closed terms must be normalised 17
B8.3 Non-conditional resources determine context and values 17
B8.4 Normalised resource context determines structure of heap 18
B8.5 Well-typed resource value determines its footprint 19
B8.6 Progress and type preservation for resource terms 19
B8.7 Resource term reduction is deterministic . 24
B8.8 Resource term reduction is isolated . 24

B9 Progress . 25
B9.1 Φ ⊢ res ∼ res ′ is an equivalence relation . 25
B9.2 Φ ⊢ res ∼ res ′ is preserved by substitution 25
B9.3 Well-typed spines produce substitutions and the same return type 25
B9.4 Well-typed values pattern-match successfully 26
B9.5 Φ ⊢ to fun ret ∼ ret . 32
B9.6 Statement and proof . 32

B10 Type Preservation . 38
B10.1 Owned ⟨τ⟩ resource output values have type βτ 38
B10.2 Type Preservation Statement and Proof . 38

1

B1 Commentary

Since Core is a first-order language, and we require that all functions and labels are annotated
with the correct type, it suffices to only use purely syntactic techniques to prove soundness. This
remains true despite the addition of linear types, systems with which are normally proved using
logical relations . There are three main components to this: a joint progress-and-type-preservation
proof for resource term reduction, a progress theorem and a type-preservation theorem.

Let a resource be called normalised if it is either a pred , qpred or an under-determined conditional
resource. Let a resource context R be called normalised if it contains only normalised resources.
Even though the grammar of resources is richer, we can, in all the proofs relating to well-typed
closed resource terms, are assume the resource context to be normalised. This is fine because of the
following lemma: if a well-typed resource term is closed, then the context in which it is well-typed
must normalised.

Operational semantics for resource term happens to be defined using big-step style; this makes
its definition concise and modular, at the cost of making the proof of soundness of resource term
reduction more complicated since it requires joint progress and type preservation. The configuration
for the operational semantics is a pair of a heap and an annotated and let-normalised Core program.

pred ≡ pred term(oarg)
⟨h + h ′; res pat = def ⟩⇝ ⟨h ′′; σ ⟩

⟨h + {pred & def & h ′}; fold (res pat) = pred term⟩⇝ ⟨h ′′; σ ⟩

pred ≡ pred term(oarg) ⟨h; res term⟩ ⇓ ⟨h1; def ⟩
footprint of def in h1 ⇝ h2 rem h3

⟨h; fold res term:pred⟩ ⇓ ⟨h3 + {pred & def & h2}; pred term⟩

Heaps only contain normalised re-
sources. Predicates in heaps are op-
tionally tagged with their “definition”
def (a resource value of the type of
the predicate body) and a sub-heap
(of the resources used by the defi-
nition). This is to support folding
and unfolding predicates in the oper-
ational semantics, and to capture the
idea that predicate encapsulate their contents until opened.

The types of heaps are normalised contexts; the rules for these are straightforward, except the fact
a heap with a folded predicate requires there exists a context for which the resource value def and
heap is well-typed. This becomes necessary for proving the progress of pattern-matching for the
whole of the annotated and let-normalised Core.

Theorem 1 (Progress and type preservation for resource terms) For all closed resource terms
(res term) which type check or synthesise (·; ·; Φ;R ⊢ res term ⇐ res) and all well-typed heaps
(Φ ⊢ h ⇐ R) there exists a resource value (res val), context (R′) and heap (h ′), such that: the
value is well-typed (·; ·; Φ;R′ ⊢ res val ⇐ res); the heap is well-typed (Φ ⊢ h ′ ⇐ R′); for all
frame-heaps (f), the resource term reduces to the resource value without affecting the frame-heap
(⟨h + f ; res term⟩ ⇓ ⟨h ′ + f ; res val⟩).

The interesting case in the proof of this is folding a predicate; proving this case requires a notion
of footprint of a resource value: the subheap containing the resources referred to by the value.

Theorem 2 (Progress for the annotated and let-normalised Core) If a top-level expression
(texpr) is well-typed (·; ·; Φ;R ⊢ texpr ⇐ ret) and all computational patterns in it are exhaustive,
then either it is a value (tval), or it is unreachable, or for all heaps (h), if the heap is well-typed
(Φ ⊢ h ⇐ R) then there exists another heap (h ′) and expression (texpr ′) which is stepped to
(⟨h; texpr⟩ −→ ⟨h ′; texpr ′⟩) in the operational semantics.

2

The assumption that all computational patterns are exhaustive is justified because they are gener-
ated by Cerberus. As one might expect, proving progress requires well-typed patterns successfully
produce substitutions. However, this complicated by two things, the solution to which requires the
introduction of a relation on SMT terms and resource types, Φ ⊢ res ∼ res ′ (to be read “under
constraints Φ , res is related to res ′”).

The first is that the constraint term generated when typing a computational pattern (this is required
to record, in the constraint context, which branch the type system is assuming it is in) is not exactly
equal to the values it can match in the operational semantics (nor would we want it to be: the
pattern Cons(x1, x2) should match the value Cons(pval1, Cons(pval21, Nilβ()))). Hence, we must
weaken the notion of equality on types to ∼ relatedness, which links the two, so that during the
proof can substitute the constraint term x1 :: x2 at the type-level, and maintain a link to the
corresponding value. The second is that the conditions of related conditional resource must remain
SMT-equivalent (with reference to a constraint context), so that pattern-match typing and resource
term typing are consistent.

Theorem 3 (Type preservation for the annotated and let-normalised Core) For all closed
and well-typed top-level expressions (·; ·; Φ;R ⊢ texpr ⇐ ret), well typed heaps (Φ ⊢ h ⇐ R), frame-
heaps (f), new heaps (heap), and new top-level expressions (texpr ′), which are connected by a step
in the operational semantics (⟨h + f ; texpr⟩ −→ ⟨heap; texpr ′⟩), if all top-level functions are anno-
tated correctly, there exists a constraint context (Φ′), sub-heap (h ′), and resource context (R′), such
that the constraint context is Φ extended, the frame is unaffected (heap = h ′ + f), the sub-heap is
well-typed (Φ′ ⊢ h ′ ⇐ R′), and the top-level expression too (·; ·; Φ′;R′ ⊢ texpr ′ ⇐ ret).

A few things are noteworthy about the proof. First is that a frame-heap has to be explicitly passed
around. Whilst this is inconvenient, it becomes necessary in the Expl Top Seq LetT case. The
next is that proof that well-typed spines produce well-typed substitutions require quantifying over
the substitutions done so far, so that the inductive case matches up and the substitution so far ψ
shows up in the conclusion, ‘closing’ otherwise ‘open’ substitution and terms. One more is in the
proof that well-typed patterns produce well-typed substitutions: unfortunately quantifying over
the substitutions done so far is not helpful because even the substitution itself can be ‘open’ (refer
to free variables). Hence the peculiar typing of pattern-matching, so that all terms are well-scoped.
This allows us to induct usefully, and get the required substitution in the output substitution and
its type, making way to apply the substitution lemma afterwards. Lastly, we gather constraints
throughout the proof, since these are accumulated by the typing rules, during pattern- matching,
case and if. Given the constraint context is always well-formed (w.r.t. to the empty contexts), this
means that all the constraints must be trivial (though extra effort would be required to show that
they are trivially true, for example, showing that default bool cannot occur.

3

B2 Typing Judgements

In this document, C;L; Φ;R ⊢ J stands for all defined judgements, listed in the remainder of this sec-
tion after this paragraph. In particular, it does not stand for C ⊢ mem val ⇒ β or C;L ⊢ term ⇒ β .
Furthermore, I assume that lemma B6 (Weakening) and lemma B7.3 (Substitution) (proven for
the defined judgements in the referenced sections) hold for these (C ⊢ mem val ⇒ β , and
C;L ⊢ term ⇒ β) judgements.

res judge ::=
| Φ ⊢ cmp min (iguard , iguard ′)⇝ opt cmp term

given constraints Φ , iguard is potentially in-
cluded in iguard ′ (or vice-versa) with ordering and
minimum opt cmp term

| Φ ⊢ qpred term ⊑? qpred term ′ ⇝ opt cmp
given constraints Φ , qpred term is potentially in-
cluded in qpred term ′ (or vice-versa) with order-
ing opt cmp

| Φ ⊢ res req ≡ res req ′ ⇝ bool
resource equality: given constraints Φ, res req
and res req ′ are equal according to bool

| Φ ⊢ res ≡ res ′

resource equality: given constraints Φ, res is equal
to res ′

| Φ ⊢ simp rec (res)⇝ res ′, bool
partial-simplification of resources: given con-
straints Φ, res partially simplifies (strips ifs) to
res ′

| Φ ⊢ simp (res)⇝ opt res
partial-simplification of resources: given con-
straints Φ, res attempts a partial simplification
(strips ifs) to opt res

ret judge ::=
| Φ ⊢ ret ≡ ret ′

return type equality: given constraints Φ, ret is
equal to ret ′

pat judge ::=
| pat :β ⇝ C with term

computational pattern to context: pat and type
β produces context C and constraint term

| ident or pat:β ⇝ C with term
identifier-or-pattern to context: ident or pat and
type β produces context C and constraint term

4

| L; Φ ⊢ res pat :res ⇝ L′; Φ′;R′

resources pattern to context: given constraints Φ,
res pat of type res produces contexts L′; Φ′;R′

| C;L; Φ ⊢ ret pat :ret ⇝ C′;L′; Φ′;R′

return pattern to context: given context C;L; Φ,
ret pat and return type ret produces contexts
C′;L′; Φ′;R′

| Φ ⊢ ret pat :ret ⇝ C′;L′; Φ′;R′

return pattern to context: given constraints Φ,
ret pat and return type ret produces contexts
C′;L′; Φ′;R′

expl pure ::=
| C ⊢ object value ⇒ β

object value synthesises: given C, object value
synthesises type β

| C ⊢ pval ⇒ β
pure value synthesises: given C, pval synthesises
type β

| C;L; Φ ⊢ pexpr ⇒ pure ret
pure expression synthesises: given C;L; Φ, pexpr
synthesises a pure (non-resourceful) return type
pure ret

| C;L; Φ ⊢ tpval ⇐ pure ret
pure top-level value checks: given C;L; Φ, tpval
checks against pure ret

| C;L; Φ ⊢ tpexpr ⇐ pure ret
pure top-level expression checks: given C;L; Φ,
tpexpr checks against pure ret

expl res ::=
| C;L; Φ;R ⊢ pred ops ⇒ res

resource (q)predicate operation term synthesis:
given C;L; Φ;R, pred ops synthesises resource
res

| C;L; Φ;R ⊢ res term ⇒ res
resource term synthesises: given C;L; Φ;R,
res term synthesises resource res

| C;L; Φ;R ⊢ res term ⇐ res
resource term checks: given C;L; Φ;R, res term
checks against resource res

expl spine ::=
| C;L; Φ;R ⊢ spine :: fun ≫ ret

function call spine checks: given C;L; Φ;R, com-
patible spine, fun produces an ret

5

expl is expr ::=
| C;L; Φ;R ⊢ action ⇒ ret

memory action synthesises: given C;L; Φ;R,
action synthesises return type ret

| C;L; Φ;R ⊢ memop ⇒ ret
memory operation synthesises: given C;L; Φ;R,
memop synthesises return type ret

| C;L; Φ;R ⊢ is expr ⇒ ret
indet. seq. expression synthesises: given
C;L; Φ;R, is expr synthesises return type ret

expl seq expr ::=
| C;L; Φ;R ⊢ seq expr ⇒ ret

seq. expression synthesises: given C;L; Φ;R,
seq expr synthesises return type ret

expl top ::=
| C;L; Φ;R ⊢ tval ⇐ ret

top-level value checks: given C;L; Φ;R, tval
checks against return type ret

| C;L; Φ;R ⊢ seq texpr ⇐ ret
top-level seq. expression checks: given C;L; Φ;R,
seq texpr checks against return type ret

| C;L; Φ;R ⊢ is texpr ⇐ ret
top-level indet. seq. expression checks: given
C;L; Φ;R, is texpr checks against return type ret

| C;L; Φ;R ⊢ texpr ⇐ ret
top-level expression checks: given C;L; Φ;R,
texpr checks against return type ret

6

B3 Operational Semantics Judgements

subs judge ::=
| pat = pval ⇝ σ

computational value deconstruction: pat decon-
structs pval to produce substitution σ

| ident or pat = pval ⇝ σ
computational value deconstruction: ident or pat
deconstructs pval to produce substitution σ

| ⟨h; res pat = res val⟩⇝ ⟨h ′; σ ⟩
resource term deconstruction: res pat decon-
structs res val to produce substitution σ

| ⟨h; ret pati = ret termi
i ⟩⇝ ⟨h ′; σ ⟩

return value deconstruction: ret pati decon-
structs ret vali to produce substitution σ

| ⟨h; xi = spine elemi
i ⟩ :: fun ≫ ⟨h ′; σ ; ret ⟩

function call spine: heap h and formal param-
eters xi assigned to spine elemi for function of
type fun, produce new heap h ′ substitution σ and
result type ret

pure opsem defns ::=
| ⟨pexpr⟩ −→ ⟨tpexpr :pure ret⟩
| ⟨tpexpr⟩ −→ ⟨tpexpr ′⟩

opsem defns ::=
| ⟨h; pred ops⟩ ⇓ ⟨h ′; res val⟩

big-step resource (q)points-to operation reduc-
tion: ⟨h; pred ops⟩ reduces to ⟨h ′; res val⟩

| footprint of res val in h ⇝ h1 rem h2
footprint of res val in heap h is h1 with h2 re-
mainder/frame

| ⟨h; res term⟩ ⇓ ⟨h ′; res val⟩
big-step resource term reduction: ⟨h; res term⟩
reduces to ⟨h ′; res val⟩

| ⟨h; action⟩ −→ ⟨h ′; is expr⟩
| ⟨h;memop⟩ −→ ⟨h ′; is expr⟩
| ⟨h; is expr⟩ −→ ⟨h ′; is expr ′⟩
| ⟨h; seq expr⟩ −→ ⟨h ′; texpr :ret⟩
| ⟨h; seq texpr⟩ −→ ⟨h ′; texpr⟩
| ⟨h; is texpr⟩ −→ ⟨h ′; texpr⟩
| ⟨h; texpr⟩ −→ ⟨h ′; texpr ′⟩

7

B4 Proof Judgements

Note that the definition of term ∼ term ′ is omitted/assumed. It simply means that term and
term ′ can be unified. Informally, term ∼ term ′ are defined recursively over the structure of SMT
terms, using the standard definition of unification: variables unify with anything (modulo an occurs
check), atoms unify if they are identical, compound terms unify if their constructors (except for
Specified) and arity are identical, and their arguments unify recursively.

To clarify the Specified exception: term ∼ Specified(pval) (and Specified(pval) ∼ term) iff
term ∼ pval .

∼ is additionally assumed to be an equivalence relation and preserved by substitution: if term ∼
term ′ and x ∼ y in term1 ∼ term ′

1 then term/x (term1) ∼ term ′/y(term ′
1).

Note: ∼ is only used in the proof of soundness, and not in the explicit CN type system.
There is no unification required in the type system, but the notion of related terms is required to
argue for the soundness of pattern-matching (Section B9.4 Well-typed values pattern-match suc-
cessfully).

8

misc extra ::= extra judgements for proof-related definitions
| ∀ x . iguard ⇒ C;L; Φ ⊢ h ⇐ R

meta-logical quantification over heap-typing
| ∀ term ∼ term ′. Φ ⊢ fun ∼ ret

meta-logical quantification over related fun and
ret

| ∀ term ∼ term ′. Φ ⊢ res ∼ res ′

meta-logical quantification over related res and
res ′

| term ∼ term ′

omitted/assumed defintion: SMT terms term and
term ′ are related

proof defns ::=
| xi

i :: fun ⇝ C;L; Φ;R | ret
matching xi

i and fun produces contexts
C;L; Φ;R and return type ret

| C;L; Φ;R ⊑ C′;L′; Φ′;R′

context weakening: C;L; Φ;R is stronger than
C′;L′; Φ′;R′

| C;L; Φ;R ⊢ σ ⇐ (C;L;R)
well-typed substitution: given C;L; Φ;R, σ checks
against type (C;L;R). It is complicated by the
fact that substitutions are assumed to be sequen-
tial/telescoping.

| C;L; Φ ⊢ h ⇐ R
heap typing: under context C;L; Φ, heap h checks
against context/type R

| Φ ⊢ h ⇐ R
heap typing: under context Φ, heap h checks
against context/type R

| Φ ⊢ res ∼ res ′

res is related to res ′

| Φ ⊢ fun ∼ ret
fun is related to ret

9

B5 Groups of Rules

B5.1 Typing rules with an smt (Φ ⇒ qterm) premise

IG Cmp Eq, IG Cmp Lt, IG Cmp Gt, Q Cmp PtrStep Neq, Q Cmp IG Neq, Q Cmp
IArg Neq, Q Cmp Comparable, Req Eq PP IArg Neq, Req Eq PP Eq, Res Eq Phi,
Res Eq OrdDisj, Res SimpRec If True, Res SimpRec If False, Ret Eq Phi, Pat Res
Match If True, Pat Res Match If False, Pure Expr Assert Undef, Pure Top Val
Done, Pure Top Val Undef, Pure Top Val Error, Res Syn PredOps Congeal, Res
Syn PredOps Implode, Res Syn PredOps Break, Res Syn PredOps Glue, Res Syn
PredOps Inj, Res Syn PredOps Split, Res Chk Phi, Res Chk If True, Res Chk If
False, Expl Is Action Load, Expl Is Action Store, Expl Is Action Kill Static,
Expl Is Memop PtrValidForDeref, Expl Top Val Undef, Expl Top Val Error.

B5.2 Typing rules which change the context

B5.2.1 Rules which add constraints

Expl Top Seq If.

B5.2.2 Rules which add constraints and computational or logical variables

Expl Top Seq LetP, Expl Top Seq LetTP, Expl Top Seq Case.

B5.2.3 Rules which restrict the resource context

No-resource / “pure” rules: IG Cmp Eq, IG Cmp Lt, IG Cmp Gt, IG Cmp None, Q Cmp
Name Neq, Q Cmp PtrStep Neq, Q Cmp IG Neq, Q Cmp IArg Neq, Q Cmp
Comparable, Req Eq PP Name Neq, Req Eq PP IArg Neq, Req Eq PP Eq, Req Eq
QQ Eq, Req Eq QQ Neq, Res Eq Emp, Res Eq Phi, Res Eq Pred, Res Eq QPred,
Res Eq SepConj, Res Eq Exists, Res Eq OrdDisj, Res SimpRec If True, Res
SimpRec If False, Res SimpRec SepConj, Res SimpRec Exists, Res SimpRec
NoChange, Simp NoSimp, Simp Simp, Ret Eq End, Ret Eq Comp, Ret Eq Log, Ret
Eq Phi, Ret Eq Res, Pat Comp No Sym Annot, Pat Comp Sym Annot, Pat Comp Nil,
Pat Comp Cons, Pat Comp Tuple, Pat Comp Array, Pat Comp Specified, Pat Sym
Or Pat Sym, Pat Sym Or Pat Pat, Pat Res Match Emp, Pat Res Match Phi, Pat
Res Match If True, Pat Res Match If False, Pat Res Match Var, Pat Res Match
SepConj, Pat Res Match Pack, Pat Res Match Fold, Pat Ret Empty, Pat Ret
Comp, Pat Ret Log, Pat Ret Res, Pat Ret Phi, Pat Ret’ Aux, Pure Val Obj Int,
Pure Val Obj Ptr, Pure Val Obj Arr, Pure Val Obj Struct, Pure Val Var, Pure
Val Obj, Pure Val Loaded, Pure Val Unit, Pure Val True, Pure Val False, Pure
Val List, Pure Val Tuple, Pure Val Ctor Nil, Pure Val Ctor Cons, Pure Val
Ctor Tuple, Pure Val Ctor Array, Pure Val Ctor Specified, Pure Val Struct,
Pure Expr Val, Pure Expr Array Shift, Pure Expr Member Shift, Pure Expr Not,
Pure Expr Arith Binop, Pure Expr Rel Binop, Pure Expr Bool Binop, Pure Expr
Call, Pure Expr Assert Undef, Pure Expr Bool To Integer, Pure Expr WrapI,
Pure Top Val Undef, Pure Top Val Error, Pure Top Val Done.

Resource-mentioning rules: Res Syn Emp, Res Syn Var, Res Syn VarSimp, Res Syn Pred,
Res Syn QPred, Res Syn SepConj, Res Chk Phi, Res Chk SepConj, Expl Spine Ret,

10

Expl Spine Res, Expl Is Action Create, Expl Is Memop Rel Binop, Expl Is Memop
IntFromPtr, Expl Is Memop PtrFromInt, Expl Is Memop PtrValidForDeref, Expl
Is Memop PtrWellAligned, Expl Is Memop IntFromPtr, Expl Top Val Undef,
Expl Top Val Error, Expl Top Seq Run, Subs Chk Empty, Subs Chk Res.

B5.2.4 Rules which add constraints and restrict the resource context

Pure Top If.

B5.2.5 Rules which add constraints and variables, and restrict the resource context

Pure Top Let, Pure Top LetT, Pure Top Case, Expl Top Seq Let, Expl Top Seq
LetT, Expl Top Is LetS.

B5.3 Value typing rules

Pure Val Obj Int, Pure Val Obj Ptr, Pure Val Obj Arr, Pure Val Obj Struct,
Pure Val Var, Pure Val Obj, Pure Val Loaded, Pure Val Unit, Pure Val True,
Pure Val False, Pure Val Tuple, Pure Val Ctor Nil, Pure Val Ctor Cons, Pure
Val Ctor Tuple, Pure Val Ctor Array, Pure Val Ctor Specified, Pure Val
Struct, Pure Top Val Done, Res Syn Emp, Res Syn Var, Res Syn VarSimp, Res Syn
Pred, Res Syn QPred, Res Chk Phi, Expl Top Val Done.

11

B6 Weakening

If C;L; Φ;R ⊑ C′;L′; Φ′;R′ and C;L; Φ;R ⊢ J then C′;L′; Φ′;R′ ⊢ J .

Assume: 1. C;L; Φ;R ⊑ C′;L′; Φ′;R′.
2. C;L; Φ;R ⊢ J

Prove: C′;L′; Φ′;R′ ⊢ J .

⟨1⟩1. Case: Pure Val Var.
Proof: By Weak Cons Comp, if x :β ∈ C then x :β ∈ C′.

⟨1⟩2. Case: Typing rules with an smt (Φ ⇒ qterm) premise (see B5.1).

Assume: smt (Φ ⇒ qterm).
Prove: smt (Φ′ ⇒ qterm).

⟨2⟩1. For all term, if term ∈ Φ then term ∈ Φ′.
Proof: By Weak Cons Phi.

⟨2⟩2. Any extra constraints in Φ′ (by Weak Skip Phi) would either be irrelevant,
redundant, or inconsistent.

⟨2⟩3. In all cases, smt (Φ′ ⇒ qterm) as required.

⟨1⟩3. Case: All remaining rules.

⟨2⟩1. R = R′.
Proof: Only Weak Cons Res exists.

⟨2⟩2. All remaining rules are functorial in C;L; Φ, so one can proceed by straightforward
induction.

⟨2⟩3. So C′;L′; Φ′;R′ ⊢ J as required.

12

B7 Substitution

B7.1 Substitutions preserve SMT results

If smt (Φ ⇒ qterm) and C;L;σ(Φ);R ⊢ σ ⇐ (C′;L′;R′), then smt (σ(Φ) ⇒ σ(qterm)).

Proof: By the first assumption, qterm holds for all (well-typed, ensured by the second
assumption) instantiations of its free variables.

B7.2 Substitutions can be split up

If C;L; Φ;R ⊢ σ ⇐ (C′;L′;R′
1,R′

2) then
∃R1,R2, σ1, σ2. C;L; Φ;R1 ⊢ σ1 ⇐ (C′;L′;R′

1) ∧ C;L; Φ;R2 ⊢ σ2 ⇐ (C′;L′;R′
2).

Proof sketch: By induction on the substitution. If σ = [res term/r , σ′] where r :res:

⟨1⟩1. Let R′ be such that C;L; Φ;R′ ⊢ res term ⇐ res.

⟨1⟩2. Recursively split σ′ into σ′1 and R′′
1; σ

′
2 and R′′

2.

⟨1⟩3. If r ∈ R′
1, let σ1 = [res term/r , σ′1] and R1 = R′,R′′

1 .

⟨1⟩4. If r ∈ R′
2, let σ2 = [res term/r , σ′2].

⟨1⟩5. For other cases, both are treated exactly the same.

B7.3 Substitution

If C′;L′; Φ;R′ ⊢ J , then ∀ C,L,R, σ. (C;L;σ(Φ);R ⊢ σ ⇐ (C′;L′;R′)) ⇒ C;L;σ(Φ);R ⊢ σ(J).

For types, substitutions are only defined over resource types res, and return types res, not base
types β. Similarly, for terms, substitutions are only defined over expressions (including SMT
terms term), but not (computational, resource or return) patterns.

Since Φ is scoped to C′;L′, we must substitute over it as well as all the usual suspects on the right.

Substitution of contexts is defined by substituting over each constraint in Φ. As a result,
σ(Φ1,Φ2) = σ(Φ1), σ(Φ2), and if σ(Φ) = Φ′

1,Φ
′
2 then ∃Φ1,Φ2. σ(Φ1,Φ2) = σ(Φ1), σ(Φ2).

Proof sketch: Induction over the typing judgements.
1. Variable rules: Pure Val Var, Res Syn VarSimp, Res Syn Var.
2. Expl Top Val Done: prove that to fun commutes with substitution.
3. Typing rules which change the context (see B5.2).
4. Remaining rules by straightforward induction.

Assume: 1. C′;L′; Φ;R′ ⊢ J .
2. Arbitrary C,L,R, σ.
3. C;L;σ(Φ);R ⊢ σ ⇐ (C′;L′;R′).

13

Prove: C;L;σ(Φ);R ⊢ σ(J).

⟨1⟩1. Case: Pure Val Var.
C′;L′ ⊢ x ⇒ β
C;L;σ(Φ);R ⊢ σ ⇐ (C′;L′; ·).

⟨2⟩1. x :β ∈ C′.
Proof: By inversion on assumption 1.

⟨2⟩2. R is empty.
Proof: Subs Chk Res is the only rule which could require a non-empty resource
context, and it is never used because R′ is empty.

⟨2⟩3. ∃σ1, pval , σ2, β, C1, C2,L1,L2.
1. σ = [σ1, pval/x , σ2]
2. C;L; Φ; · ⊢ σ1 ⇐ (C1;L1; ·)
3. C;L; Φ; · ⊢ σ1(pval/x) ⇐ (x :β; ·; ·)
4. C ⊢ σ1(pval) ⇒ β
5. C;L; Φ; · ⊢ σ1(pval/x (σ2)) ⇐ (C2;L2; ·).
Proof: Repeated inversion on assumption 3 until the Subs Chk Comp responsible
for adding x (by ⟨2⟩1, there must be at least one).

⟨2⟩4. Since σ(x) = σ1(pval), we are done.
Proof: By C;L ⊢ σ(x) ⇒ β .

⟨1⟩2. Case: Res Syn VarSimp.
C′;L′; Φ; r :res ⊢ r ⇒ res ′

C;L;σ(Φ);R ⊢ σ ⇐ (C′;L′; r :res ′).

⟨2⟩1. ∃σ1, res term, σ2, C1, C2,L1,L2.
1. σ = [σ1, res term/r , σ2]
2. C;L;σ(Φ); · ⊢ σ1 ⇐ (C1;L1; ·)
3. ·; ·;σ(Φ);R ⊢ σ1(res term/r) ⇐ (·; ·; r :σ1(res ′))
4. C;L;σ(Φ);R ⊢ σ1(res term) ⇐ σ1(res

′)
5. C;L;σ(Φ); · ⊢ σ1(res term/r(σ2)) ⇐ (C2;L2; ·).
Proof: Repeated inversion on assumption 3 until the Subs Chk Res responsible for
adding r (there must be exactly one).

⟨2⟩2. Suffices: 1. σ(r) = σ1(res term)
2. σ(res ′) = [σ1, res term/r , σ2](res

′) = σ1(res
′).

⟨2⟩3. σ(r) = σ1(res term).
Proof: σ2(r) = r , because σ2 does not mention any resource variables.

⟨2⟩4. σ(res ′) = [σ1, res term/r , σ2](res
′) = σ1(res

′).

⟨3⟩1. [σ1, res term/r , σ2](res
′) = [σ1, σ2](res

′).
Proof: Resource types do not refer to resource variables.

14

⟨3⟩2. [σ1, σ2](res
′) = σ1(res).

Proof: By ·; ·;σ(Φ);R ⊢ σ1(res term) ⇐ σ1(res
′), we know that res ′ only refers

to variables in C, C1;L,L1.

⟨1⟩3. Case: Res Syn Var.
C′;L′; Φ′; r :res ⊢ r ⇒ res
Proof: Similar to Res Syn VarSimp, but with res ′ = res.

⟨1⟩4. Case: Expl Top Val Done.
Proof sketch: to fun recursively maps Σ to Π, ∃ to ∀, ∧ to ⊃ and ∗ to −∗, and otherwise
keeps any term and res the same. Hence, σ(to fun ret) = to funσ(ret), and the case
proceeds by induction straightforwardly.

⟨1⟩5. Case: Typing rules which change the context (see B5.2), except for Pure Val Var, Res
Syn Var, and Res Syn VarSimp.

For brevity, I shall only go over Expl Top Seq Let, as it is one of the most general rules;
one which adds constraints and variables, and restricts the resource context.

Proof sketch: The key idea is to apply lemma B7.2 (Substitutions can be split up) as
required by the restrictions on the resource context. If a rule has a smt (Φ ⇒ qterm)
premise, then apply lemma B7.1 (Substitutions preserve SMT results).

C′;L′; Φ;R′
1,R′

2 ⊢ let ret pat = seq expr in texpr ⇐ ret2
C;L;σ(Φ);R ⊢ σ ⇐ (C′;L′;R′

1,R′
2).

Prove: C;L;σ(Φ);R ⊢ let ret pat = σ(seq expr) inσ(texpr) ⇐ σ(ret2).

⟨2⟩1. ∃ret1, C3,L3,Φ3,R3.
1. C′;L′; Φ;R′

1 ⊢ seq expr ⇒ ret1
2. Φ ⊢ ret pat :ret1 ⇝ C3;L3; Φ3;R3

3. C′, C3;L′,L3; Φ,Φ3;R′
2,R3 ⊢ texpr ⇐ ret2.

Proof: Inversion on assumption 1.

⟨2⟩2. 1. ∀C,L,R1, σ1.
(C;L;σ1(Φ);R1 ⊢ σ1 ⇐ (C′;L′;R′

1)) ⇒
C;L;σ1(Φ);R1 ⊢ σ1(seq expr) ⇒ σ1(ret1).

2. ∀C,L,R4, σ2.
(C;L;σ2(Φ);R4 ⊢ σ2 ⇐ (C′;L′; ·)) ⇒
σ2(Φ) ⊢ ret pat :σ2(ret1)⇝ C3;L3;σ2(Φ3);σ2(R3).

3. ∀C,L,R2, σ3.
(C;L;σ3(Φ,Φ3);R2 ⊢ σ3 ⇐ (C′, C3;L′,L3;R′

2,R3)) ⇒
C;L;σ(Φ,Φ3);R2 ⊢ σ(texpr) ⇐ σ(ret2).

Proof: By induction on ⟨2⟩1.

⟨2⟩3. σ and R can be split up into σ1 and R1; σ2; and σ3 and R2 such that:
1. R = R1,R2

2. C;L;σ(Φ);R1 ⊢ σ1 ⇐ (C′;L′;R′
1)

3. C;L;σ(Φ); · ⊢ σ2 ⇐ (C′;L′; ·)
4. C;L;σ(Φ);R2 ⊢ σ3 ⇐ (C′;L′;R′

2).

15

Proof: By lemma B7.2 (Substitutions can be split up).

⟨2⟩4. 1. σ(Φ) = σ1(Φ) = σ2(Φ) = σ3(Φ)
2. σ(Φ3) = σ2(Φ3) = σ3(Φ3)
3. σ(R3) = σ2(R3) = σ3(R3).
Proof: All the substitutions differ only the resource-variable substitutions, but term
and res (and so ret and Φ) do not mention resource variables.

⟨2⟩5. Suffices: ∃R1,R2, ret1, C3,L3,Φ3,R3.
1. R = R1,R2

2. C;L;σ(Φ);R1 ⊢ σ(seq expr) ⇒ ret1
3. σ(Φ) ⊢ ret pat :σ(ret1)⇝ C3;L3; Φ3;R3

4. C, C3;L,L3;σ(Φ),Φ3;R2,R3 ⊢ σ(texpr) ⇐ σ(ret2).
Proof: By Expl Top Seq Let.

⟨2⟩6. Let: R1;R2;σ(ret1); C3;L3;σ(Φ3);σ(R3) be the witnesses for ⟨2⟩5.
Suffices: 1. R = R1,R2

2. C;L;σ(Φ);R1 ⊢ σ(seq expr) ⇒ σ(ret1)
3. σ(Φ) ⊢ ret pat :σ(ret1)⇝ C3;L3;σ(Φ3);σ(R3)
4. C, C3;L,L3;σ(Φ), σ(Φ3);R2, σ(R3) ⊢ σ(texpr) ⇐ σ(ret2).

⟨2⟩7. We are done.
Proof: Apply ⟨2⟩2 with ⟨2⟩3 and ⟨2⟩4.

⟨1⟩6. Case: All remaining rules.
Proof sketch: By straightforward induction. If the rule has a smt (Φ ⇒ qterm) premise,
apply lemma B7.1 (Substitutions preserve SMT results).

16

B8 Resource Term Lemmas

B8.1 Definition: Normalised contexts

A resource context is normalised is it contains only predicates, quantified predicates and
under-determined conditional resources.

B8.2 Resource contexts typing closed terms must be normalised

Assume: 1. Arbitrary res
2. Closed (no free-variables) res term
3. ·; ·; Φ;R ⊢ res term ⇐ res (or synthesising)

Prove: ∃R.R = R.

Proof sketch: By induction on the typing judgement.

⟨1⟩1. Case: Res Syn Emp, Res Syn Pred, Res Syn QPred, Res Chk Phi.
Proof: R = R (the context is already normalised).

⟨1⟩2. Case: Res Syn Var, Res Syn VarSimp
Proof: Impossible cases (res terms are not closed).

⟨1⟩3. Case: All remaining cases (Res Syn PredOps Iterate, Res Syn PredOps Congeal,
Res Syn PredOps Explode, Res Syn PredOps Implode, Res Syn PredOps
Break, Res Syn PredOps Glue, Res Syn PredOps Inj, Res Syn PredOps
Split, Res Syn PredOps, Res Syn Fold, Res Syn SepConj, Res Chk Pack,
Res Chk SepConj, Res Chk If True, Res Chk If False, Res Chk Switch).

Proof: By induction.

B8.3 Non-conditional resources determine context and values

This is a simple inversion lemma.

Assume: 1. Arbitrary res val
2. res ̸= if term then res1 else res2.
3. ·; ·; Φ;R ⊢ res val ⇐ res (or synthesising)

⟨1⟩1. The typing assumption cannot be any of: Res Syn Var, Res Syn VarSimp, Res Syn
Fold, Res Syn PredOps Iterate, Res Syn PredOps Congeal, Res Syn PredOps
Explode, Res Syn PredOps Implode, Res Syn PredOps Break, Res Syn
PredOps Glue, Res Syn PredOps Inj, Res Syn PredOps Split, Res Syn
PredOps.
Proof: res terms in these rules are not values.

⟨1⟩2. If res = emp, then R = · and res val = emp.
Proof: By inversion, the assumption must be Res Syn Emp (and optionally Res Chk

17

Switch).

⟨1⟩3. If res = term, then R = · and res val = term.
Proof: By inversion, the assumption must be Res Chk Phi.

⟨1⟩4. If res = pred term(oarg), then R = :pred term(oarg) and res val = pred term.
Proof: By inversion, the assumption must be Res Syn Pred (and optionally Res Chk
Switch).

⟨1⟩5. If res = qpred term(oarg), then R = :qpred term(oarg) and res val = qpred term.
Proof: By inversion, the assumption must be Res Syn QPred (and optionally Res
Chk Switch).

⟨1⟩6. If res = res1 ∗ res2, then R = R1,R2 and res val = ⟨res val1, res val2⟩.
Proof: By inversion, the assumption must be Res Syn SepConj (and optionally Res
Chk Switch), or Res Chk SepConj.

⟨1⟩7. If res = ∃ y :β. res, then res val = pack (oarg , res val ′).
Proof: By inversion, the assumption must be Res Chk Pack.

B8.4 Normalised resource context determines structure of heap

This is as simple inversion lemma.

Assume: Φ ⊢ h ⇐ R.
⟨1⟩1. If R = ·, then h = ·.

Proof: By inversion, the assumption must be Heap Empty.

⟨1⟩2. If pred = ptr
init7→τ value , R = :pred , then h = {pred ′ & None} for Φ ⊢ pred ≡ pred ′.

Proof: By inversion, the assumption must be Heap Pred Owned.

⟨1⟩3. If R = :pred , then h = {pred ′ & def & h ′}.
for Φ ⊢ pred ≡ pred ′.
Proof: By inversion, the assumption must be Heap Pred Other.

⟨1⟩4. If qpred =˚ x . iguard ⇒ ptr + x×size of(τ)
oarg [x].init

7→τ oarg [x].value, R = :qpred , then
h = {qpred ′ & ·} for Φ ⊢ qpred ≡ qpred ′.
Proof: By inversion, the assumption must be Heap QPred Owned.

⟨1⟩5. If R = :qpred , then h = {qpred ′ & arr def heap} for Φ ⊢ qpred ≡ qpred ′.
Proof: By inversion, the assumption must be Heap QPred Other.

⟨1⟩6. If R = R1,R2, then h = h1 + h2, where Φ ⊢ h1 ⇐ R1 and Φ ⊢ h2 ⇐ R2.
Proof: By inversion, the assumption must be Heap Concat.

18

B8.5 Well-typed resource value determines its footprint

Assume: ·; ·; Φ;R ⊢ res val ⇐ res (or synthesising)
Φ ⊢ h ⇐ R.

Prove: ∀f . footprint of res val in h + f ⇝ h rem f .

Proof sketch: By induction on the typing judgement.

⟨1⟩1. Case: Res Syn Emp or Res Chk Phi
R = · and so h = · by lemma B8.4.
Proof: Footprint Emp or Footprint Term respectively.

⟨1⟩2. Case: Res Syn Pred or Res Syn QPred
R = :pred term(oarg) or :qpred term(oarg), and so
h = {pred term(oarg) & opt def heap} or {qpred term(oarg) & arr def heap} by
lemma B8.4.
Proof: Footprint Pred or Footprint QPred respectively.

⟨1⟩3. Case: pack (oarg , res val ′).
Proof: By induction.

⟨1⟩4. Case: Footprint SepPair.
res val = ⟨res val1, res val2⟩,
R = R1,R2, and so
h = h1 + h2 where Φ ⊢ h1 ⇐ R1 and Φ ⊢ h2 ⇐ R2 by lemma B8.4.

⟨2⟩1. footprint of res val1 in h1 + h2 + f ⇝ h1 rem h2 + f .
Proof: Instantiate inductive hypothesis with h2 + f .

⟨2⟩2. footprint of res val1 in h2 + f ⇝ h2 rem f .
Proof: Instantiate inductive hypothesis with f .

B8.6 Progress and type preservation for resource terms

Assume: 1. Closed (no free-variables) res term
2. ·; ·; Φ;R ⊢ res term ⇐ res (or synthesising)
3. Φ ⊢ h ⇐ R

Prove: ∃res val ,R′, h ′.
1. ·; ·; Φ;R′ ⊢ res val ⇐ res (or synthesising respectively)
2. Φ ⊢ h ′ ⇐ R′

3. ∀f . ⟨h + f ; res term⟩ ⇓ ⟨h ′ + f ; res val⟩.

Proof sketch: Induction on the resource term typing assumption. The type dictates the value
and context, the latter of which dictates the shape of the heap.

Because of this direction of information, you cannot prove that

19

∀R′. (Φ ⊢ h ′ ⇐ R′) ⇒ (·; ·; ·;R′′ ⊢ res val ′ ⇐ res). The converse is already true by the
composition of lemmas B8.3 and B8.4. You need the existential, so that you can provide it as a
witness when proving heap typing for folded predicates, which you need to use in proving
unfolding predicates in pattern-matching.

⟨1⟩1. Case: Res Syn PredOps Iterate
Let: res term = iterate (res term ′,n)

qpred term = (x ; 0 ≤ x ∧ x ≤ n − 1){Owned ⟨τ⟩(ptr + x×size of(τ))}
res = qpred term(oarg)
pred term = Owned ⟨arrayn τ⟩(ptr)
res ′ = pred term(oarg ′).

⟨2⟩1. ·; ·; Φ;R ⊢ res term ′ ⇒ res ′ .
Proof: By inversion on the typing assumption.

⟨2⟩2. ∃h ′′,R′′, res val ′.
1. ·; ·; ·;R′′ ⊢ res val ′ ⇒ res ′

2. Φ ⊢ h ′′ ⇐ R′′

3. ∀f . ⟨h + f ; res term ′⟩ ⇓ ⟨h ′′ + f ; res val ′⟩.
Proof: By the induction hypothesis.

⟨2⟩3. res val ′ = pred term and R′′ = :res ′.
Proof: By ⟨2⟩2 and lemma B8.3 (Non-conditional resources determine context and
values).

⟨2⟩4. h ′′ = {pred term(oarg ′) & None}.
Proof: By ⟨2⟩3 and lemma B8.4 (Normalised resource context determines structure
of heap).

⟨2⟩5. Let: res val = (x ; 0 ≤ x ∧ x ≤ n − 1){Owned ⟨τ⟩(ptr + x×size of(τ))}
R′ = :qpred term(oarg) and h ′ = {qpred term(oarg) & ·}.

Proof: Prove value typing using Res Syn QPred; heaping typing using Heap
QPred Owned; reduction using PredOps ResV Iterate.

⟨1⟩2. Case: Res Syn PredOps Congeal
Proof: Like Res Syn PredOps Iterate, but with:
res term = congeal (res term ′,n)
res = pred term(oarg) where pred term = Owned ⟨arrayn τ⟩(ptr)

res ′ = qpred term(oarg ′) where qpred term = (x ; iguard){Owned ⟨τ⟩(ptr + x×size of(τ))}
res val ′ = qpred term and R′′ = :res ′, by lemma B8.3

Let res val = pred term, R′ = :pred term(oarg) and h ′ = {pred term(oarg) & None} to
prove: value typing using Res Syn Pred; heap typing using Heap Pred Owned;
reduction using PredOps ResV Congeal.

⟨1⟩3. Case: Res Syn PredOps Explode
Proof: Like Res Syn PredOps Iterate, but with:
res term = explode (res term ′)

20

res =˚ (pred termi(oargi)
i
) where pred termi = Owned ⟨τi⟩(ptr +ptr offset oftag(memberi))

res ′ = pred term(oarg) where pred term = Owned ⟨struct tag⟩(ptr)
res val ′ = pred term and R′′ = :pred term(oarg), by lemma B8.3

Let res val = ⟨ pred termi
i ⟩, R′ = :pred termi(oargi)

i
and

h ′ = {pred termi(oargi) & None} i
, to prove: value typing using Res Syn Pred and Res

Syn SepConj; heap typing using Heap Concat and Heap Pred Owned; reduction
using PredOps ResV Explode.

⟨1⟩4. Case: Res Syn PredOps Implode
Proof: Like Res Syn PredOps Iterate, but with:
res term = implode (res term ′, tag)
res = pred term(oarg) where pred term = Owned ⟨struct tag⟩(ptr)

res ′ =˚ (pred termi(oargi)
i
) where pred termi = Owned ⟨τi⟩(ptr+ptr offset oftag(memberi))

res val ′ = pred termi
i
and R′′ = :pred termi(oargi)

i
, by lemma B8.3

Let res val = Owned ⟨struct tag⟩(ptr), R′ = :pred term(oarg), and
h ′ = {pred term(oarg) & None}, to prove: value typing using Res Syn Pred; heap typing
using Heap Pred Owned; reduction using PredOps ResV Implode.

⟨1⟩5. Case: Res Syn PredOps Break
Proof: Like Res Syn PredOps Iterate, but with:
res term = break (res term ′, term)
res = qpred term(oarg) ∗ pred term(oarg [term]) where
qpred term = (x ; iguard ∧ (x ̸= term)){α(ptr + x×step, iargs)} and
pred term = α(ptr + (term × step), term/x (iargs))

res ′ = qpred term ′(oarg) where qpred term ′ = (x ; iguard){α(ptr + x×step, iargs)}
res val ′ = qpred term ′, and R′′ = :qpred term ′(oarg), by lemma B8.3.

If predicate is Owned ⟨τ⟩, h ′′ = {qpred term ′(oarg) & ·} (by lemma B8.4), so let
h ′ = {qpred term(oarg) & ·}+ {pred term(oarg [term]) & None} (by ·[term] = None).
Otherwise, h ′′ = {qpred term ′(oarg) & arr def heap}, (again by lemma B8.4), so let
h ′ = {qpred term(oarg) & arr def heap}+ {pred term(oarg [term]) & arr def heap[term]}.

Let res val = ⟨qpred term, pred term⟩ and
R′ = :qpred term(oarg), :pred term(oarg [term]) to prove: value typing using Res Syn
QPred, Res Syn Pred, Res Syn SepConj; heap typing using Heap Concat, Heap
QPred Owned / Heap QPred Other, and Heap Pred Owned / Heap Pred Other
(with witness :pred term(oarg [term])); reduction using PredOps ResV Break.

⟨1⟩6. Case: Res Syn PredOps Glue
Proof: Like Res Syn PredOps Iterate, but with:
res term = glue (res term ′)

21

res = qpred term(oarg1[term] := oarg2) where

qpred term = (x ; iguard ∨ x = term){α(ptr1 + x×step, iarg1 i
i
)}

res ′ = qpred term1(oarg1) ∗ pred term(oarg2) where

qpred term1 = (x ; iguard){α(ptr1 + x×step, iarg1 i
i
)} and pred term = α(ptr2, iarg2 i

i
).

res val ′ = ⟨qpred term1, pred term⟩, and R′′ = :qpred term1(oarg1), :pred term(oarg2), by
lemma B8.3.

If predicate is Owned ⟨τ⟩, h ′′ = {qpred term1(oarg1) & ·}+ {pred term(oarg2) & None} (by
lemma B8.4), so let h ′ = {qpred term(oarg) & ·} (by ·[term] := None = ·). Otherwise,
h ′′ = {qpred term1(oarg1) & arr def heap}+ {pred term(oarg2) & def & heap} (again by
lemma B8.4), so let h ′ = {qpred term(oarg) & arr def heap[term] := def & heap}.

Let res val = qpred term and R = :qpred term(oarg1[term] := oarg2), to prove: value
typing using Res Syn QPred; heap typing using Heap QPred Owned / Heap QPred
Other; reduction using PredOps ResV Glue.

⟨1⟩7. Case: Res Syn PredOps Inj
Proof: Like Res Syn PredOps Iterate, but with:
res term = inj (res term ′, ptr1, step, x . iarg1

i
)

res = qpred term((default arrayβ)[term] := oarg) where

qpred term = (x ; x = term){α(ptr1 + x×step, iarg1 i
i
)}

res ′ = pred term(oarg) where pred term = α(ptr2, iarg2 i
i
)

res val ′ = pred term, and R′′ = :pred term(oarg), by lemma B8.3.

If predicate is Owned ⟨τ⟩, h ′′ = {pred term(oarg) & None} (by lemma B8.4), so let
h ′ = {qpred term((default arrayβ)[term] := oarg) & ·} (by ·[term] := None = ·).
Otherwise, h ′′ = {pred term(oarg) & def & heap} (again by lemma B8.4), so let
h ′ = {qpred term((default arrayβ)[term] := oarg) & ·[term] := def & heap}.

Let res val = qpred term, and R = :qpred term((default arrayβ)[term] := oarg), to
prove typing using Heap QPred Owned / Heap QPred Other, and reduction using
PredOps ResV Inj.

⟨1⟩8. Case: Res Syn PredOps Split
Proof: Like Res Syn PredOps Iterate, but with:
res term = split (res term ′, iguard)
res = qpred term1(oarg) ∗ qpred term2(oarg) where
qpred term1 = (x ; iguard){α(ptr + x×step, iargs)} and
qpred term2 = (x ; iguard2){α(ptr + x×step, iargs)}

res ′ = qpred term(oarg) where qpred term = (x ; iguard ′){α(ptr + x×step, iargs)}
res val ′ = qpred term, and R′′ = :qpred term(oarg), by lemma B8.3.

If predicate is Owned ⟨τ⟩, h ′′ = {qpred term(oarg) & ·} (by lemma B8.4), so let
h ′ = {qpred term1(oarg) & ·}+ {qpred term2(oarg) & ·}. Otherwise,

22

h ′′ = {qpred term(oarg) & arr def heap} (again by lemma B8.4), so let
h ′ = {qpred term1(oarg) & arr def heap}+ {qpred term2(oarg) & arr def heap}.

Let res val = ⟨qpred term1, qpred term2⟩, and
R = :qpred term1(oarg), :qpred term2(oarg), to prove: value typing using Res Syn
QPred and Res Syn SepConj; heap typing using Heap Concat and Heap QPred
Owned / Heap QPred Other; reduction using PredOps ResV Split.

⟨1⟩9. Case: Res Syn Emp, Res Syn Pred, Res Syn QPred, Res Chk Phi.
Proof: In these cases, h = h ′, R = R′ and res term = res val .
Typing holds by assumption; prove reduction using ResT ResV Val.

⟨1⟩10. Case: Res Syn PredOps
Proof: Both typing and reduction (using ResT ResV PredOps) hold by induction.

⟨1⟩11. Case: Res Syn SepConj, Res Chk SepConj.
res = res1 ∗ res2,
res term = ⟨res term1, res term2⟩,
h = h1 + h2, so R = R1,R2,
Φ ⊢ h1 ⇐ R1 and Φ ⊢ h2 ⇐ R2.

⟨2⟩1. ∃h ′
1,R′

1, res val1 . . . ∧ (∀f1 . . .)
∃h ′

2,R′
2, res val2 . . . ∧ (∀f2 . . .)

Proof: By induction.

⟨2⟩2. ⟨h1 + h2 + f ; res term1⟩ ⇓ ⟨h ′
1 + h2 + f ; res val1⟩.

⟨h ′
1 + h2 + f ; res term⟩ ⇓ ⟨h ′

1 + h ′
2 + f ; res val2⟩.

Proof: Instantiate f1 with h2 + f , and f2 with, h ′
1 + f .

⟨2⟩3. Let: res val = ⟨res val1, res val2⟩, R′ = R′
1,R′

2, and h ′ = h ′
1 + h ′

2.
Prove value typing using Res Syn SepConj / Res Chk SepConj; heap typing
using Heap Concat; reduction using ⟨2⟩2 and ResT ResV SepPair.

⟨1⟩12. Case: Res Chk Pack
Proof: Like Res Syn PredOps Iterate, but with:
res term = pack (oarg , res term ′), res = ∃ y :β. res ′′, res ′ = oarg/y(res ′′)
res val = pack (oarg , res val ′). Value and heap typing hold by induction; prove reduction
using ResT ResV Pack.

⟨1⟩13. Case: Res Syn Fold
Proof: Like Res Syn PredOps Iterate, but with:
α ≡ xp : , xi : i

i , y : 7→ res ′′ ∈ Globals

res term = fold res term ′:α(ptr, iargi
i
)(oarg)

res = α(ptr, iargi
i
)(oarg)

res ′ = [oarg/y , [iargi/xi
i
], ptr/xp](res

′′).

∃h1,R′, res val ′.
1. ·; ·; Φ;R′ ⊢ res val ′ ⇐ res ′

23

2. Φ ⊢ h1 ⇐ R′

3. ∀f . ⟨h + f ; res term⟩ ⇓ ⟨h1 + f ; res val ′⟩
(by induction).

Let res val = α(ptr, iargi
i
), R′ = :α(ptr, iargi

i
)(oarg) and

h ′ = {α(ptr, iargi
i
)(oarg) & res val ′ & h1}, to prove: value typing using Res Syn Pred;

heap typing using Heap Pred Other.
Since footprint of res val ′ in h1 + f ⇝ h1 rem f by lemma B8.5 (Well-typed resource
value determines its footprint), prove reduction using ResT ResV Fold.

⟨1⟩14. Case: Res Chk If True, Res Chk If False
Proof: By induction with res ′ as res1 or res2 respectively. This is exhaustive because only
variables can synthesise under-determined conditional resources and those are excluded by
assumption of res term being closed.

⟨1⟩15. Case: Res Chk Switch
Proof: By induction on the synthesising judgement.

B8.7 Resource term reduction is deterministic

Proof sketch: Induction over the definition: it is syntax directed.

B8.8 Resource term reduction is isolated

If res term is closed, ·; ·; Φ;R ⊢ res term ⇐ res Φ ⊢ h ⇐ R and ⟨h + f ; res term⟩ ⇓ ⟨heap; res val⟩
then ∃h ′,R′. heap = h ′ + f ∧ (Φ ⊢ h ′ ⇐ R′) ∧ (·; ·; Φ;R′ ⊢ res val ⇐ res).

Proof: This simply the composition of lemma B8.7 (Resource term reduction is deterministic)
and lemma B8.6 (Progress and type preservation for resource terms).

24

B9 Progress

B9.1 Φ ⊢ res ∼ res ′ is an equivalence relation

Proof sketch: By induction and term ∼ term ′ assumed to be an equivalence relation (see
section B4 Proof Judgements).

B9.2 Φ ⊢ res ∼ res ′ is preserved by substitution

If x ∼ y in Φ ⊢ res ∼ res ′ and term ∼ term ′ then Φ ⊢ term/x (res) ∼ term/y(res ′).

Proof sketch: By induction and term ∼ term ′ assumed to be preserved by substitution (see
section B4 Proof Judgements).

B9.3 Well-typed spines produce substitutions and the same return type

Assume: ·; ·; Φ;R ⊢ spine elemi
i
:: ψ1(fun1) ≫ ret1

Φ ⊢ h ⇐ R and ψ1(fun1) = ψ2(fun2) = ψ2(fun3)

⟨h + f ; xi = spine elemi
i ⟩ :: ψ2(fun2) ≫ ⟨heap; σ2 ; ret2 ⟩

xi
i :: fun3 ⇝ C;L; Φ′;R′ | ret3 .

Prove: ψ1(ret1) = ψ2(ret2) = [ψ2, σ2](ret3)
∃h ′,R′. heap = h ′ + f ,Φ ⊢ h ′ ⇐ R′ and
·; ·; Φ;R′ ⊢ ψ2(σ2) ⇐ (C;L;ψ2(R′)).

⟨1⟩1. Case: Expl Spine Ret
·; ·; Φ; · ⊢ ::ψ1(ret1) ≫ ψ1(ret)
Φ ⊢ · ⇐ · (by inversion, Heap Empty).
⟨f ; ⟩ :: ψ2(ret) ≫ ⟨f ; · ; ψ2(ret)⟩ (by inversion, Subs Spine Empty).
::ret ⇝ ·; ·; ·; · | ret where ret ′′ = ret (by inversion, Fun Env Ret).

ψ1(ret1) = ψ2(ret2) = [ψ2, ·](ret3) (by assumption)
Let: h ′ = · , R′ = ·.
f = h ′ + f trivally.
Φ ⊢ · ⇐ · by Heap Empty.
·; ·; Φ; · ⊢ · ⇐ (·; ·; ·) by Subs Chk Empty.

⟨1⟩2. Case: Expl Spine Comp

·; ·; Φ;R ⊢ spine elemi
i
:: [pval/x , ψ1](fun

′
1) ≫ ret1

· ⊢ pval ⇒ β

⟨h + f ; xi = spine elemi
i ⟩ :: [pval/x , ψ2](fun

′
2) ≫ ⟨heap; σ′2 ; ret2 ⟩

(by inversion, Subs Spine Comp) x , xi
i :: Π x :β. fun ′

3 ⇝ x :β, C;L; Φ′;R′ | ret3 (by
inversion, Fun Env Comp).

[pval/x , ψ1](ret1) = [pval/x , ψ2](ret2) = [pval/x , ψ2, σ
′
2](ret3)

∃h ′,R′. heap = h ′ + f ,Φ ⊢ h ′ ⇐ R′ and
·; ·; Φ;R′ ⊢ [pval/x , ψ2](σ

′
2) ⇐ (C′;L; [pval/x , ψ2](R′)) (by induction).

25

[ψ2, pval/x , σ
′
2](ret3) = [pval/x , ψ2, σ

′
2] and

·; ·; Φ;R′ ⊢ ψ2([pval/x , σ
′
2]) ⇐ (C′, x :β;L;ψ2(R′)),

by Subs Chk Comp and Subs Chk Concat (because pval is closed, we have
[pval/x , ψ2(σ

′
2)] = ψ2([pval/x , σ

′
2])).

⟨1⟩3. Case: Expl Spine Comp
Similar to Expl Spine Compbut with Subs Chk Log.

⟨1⟩4. Case: Expl Spine Phi
By induction (does not affect substitution).

⟨1⟩5. Case: Expl Spine Res

·; ·; Φ;R2 ⊢ spine elemi
i
:: ψ1(fun1) ≫ ret1

·; ·; Φ;R1 ⊢ res term ⇐ ψ1(res)
∃h1, h2. h = h1 + h2 ∧ Φ ⊢ h1 ⇐ R1 ∧ Φ ⊢ h2 ⇐ R2 (by B8.4).
⟨h1 + h2 + f ; res term⟩ ⇓ ⟨heap1; res val⟩
⟨heap1; xi = spine elemi

i ⟩ :: [res val/x , ψ′
2](fun2) ≫ ⟨heap2; σ′2 ; ret2 ⟩ (by inversion, Subs

Spine Res).

∃h ′
1,R′

1, res val ′. ·; ·; Φ;R′
1 ⊢ res val ′ ⇐ ψ1(res), Φ ⊢ h ′

1 ⇐ R′
1

and ⟨h1 + h2 + f ; res term⟩ ⇓ ⟨h ′
1 + h2 + f ; res val ′⟩

(by lemma B8.6 (Progress and type preservation for resource terms)).
heap1 = h ′

1 + h2 + f and res val = res val ′

(by lemma B8.8 (Resource term reduction is isolated))

ψ1(ret1) = [res val/x , ψ2](ret2) = [res val/x , ψ2, σ
′
2](ret3)

(because resources variables not in types)
∃h ′

2,R′
2. heap2 = h ′

2 + h ′
1 + f ∧ Φ ⊢ h ′

2 ⇐ R′
2

·; ·; Φ;R′
2 ⊢ [res val/x , ψ2](σ

′
2) ⇐ (C;L; [res val/x , ψ2](R′)) (by induction).

Let: h ′ = h ′
1 + h ′

2 and R′ = R′
1,R′

2.
Hence Φ ⊢ h ′ ⇐ R′

1,R′
2 (by Heap Concat),

[res val/x , ψ2, σ
′
2](ret3) = [ψ2, res val/x , σ′2](ret3) and

·; ·; Φ;R′
1,R′

2 ⊢ ψ2([res val/x , σ′2]) ⇐ (C;L;ψ2(x :res,R′)), by Subs Chk Res and Subs
Chk Concat (because res val is closed, we have [res val/x , ψ2(σ

′
2)] = ψ2([res val/x , σ′2])).

B9.4 Well-typed values pattern-match successfully

Note that the definition of term ∼ term ′ is not explicitly stated; see section B4 (Proof
Judgements) for more details.

Assume: 1. C;L; Φ ⊢ ret pati
i
:ret ⇝ C′;L′; Φ′;R′

2. ret pati
i
is exhaustive

3. Φ ⊢ fun ∼ ret
4. ·; ·; Φ;R ⊢ ret termi

i
:: fun ≫ I

5. Φ ⊢ h ⇐ R

26

Prove: ∃h ′, σ.
∀f . ⟨h + f ; ret pati = ret termi

i ⟩⇝ ⟨h ′ + f ; σ ⟩
∃R′.
C;L; Φ ⊢ h ′ ⇐ R′ ∧ C;L; Φ;R′ ⊢ σ ⇐ (C′;L′;R′).

Proof sketch: Induction over the pattern-matching judgement.

⟨1⟩1. Case: Pat Ret Empty
C;L; Φ ⊢ :I⇝ ·; ·; ·; ·
which means fun = I (by inversion, Rel Ret I)
and so C;L; Φ; · ⊢ ::I ≫ I (by inversion, Expl Spine Ret),
and h = · (by lemma B8.4).
Let h ′ = ·, to step with Subs Pat Ret Empty.
Let R′ = ·, to type h ′ with Heap Empty and σ with Subs Chk Empty.

⟨1⟩2. Case: Pat Ret Comp

C;L; Φ ⊢ comp ident or pat, ret patj
j
:Σ y :β. ret ⇝ C1, C2;L2; Φ2;R2

which means fun = Π x :β. fun ′ (by inversion, Rel Ret Comp),

and so C;L; Φ;R ⊢ pval , ret termj
j
:: Π x :β. fun ′ ≫ I (by inversion, Expl Spine Comp).

ident or pat:β ⇝ C1 with term1 (from the pattern-matching assumption),
ident or pat is exhaustive (from the exhaustive asumption),
and · ⊢ pval ⇒ β (from the spine typing assumption),
imply term1 ∼ pval , ident or pat = pval ⇝ σ1
and ·; ·; ·; · ⊢ σ1 ⇐ (C1; ·; ·) (by the nested proof below).

C, C1;L; Φ ⊢ ret patj
j
:term1/y(ret

′)⇝ C2;L2; Φ2;R2 (from the pattern-matching
assumption),
∀ term1 ∼ pval . Φ ⊢ pval/x (fun ′) ∼ term1/y(ret

′) (from the related assumption),

·; ·; ·;R ⊢ ret termj
j
:: pval/x (fun ′) ≫ I (from the spine typing assumption),

and Φ ⊢ h ⇐ R, imply ⟨h + f ; ret patj = ret termj
j ⟩⇝ ⟨h ′′ + f ; σ2 ⟩

and that ∃R′′ such that C, C1;L; Φ ⊢ h ′′ ⇐ R′′ and C, C1;L; Φ;R′′ ⊢ σ2 ⇐ (C2;L2;R2) (by
induction).

Since C;L;σ1(Φ);σ1(R′) ⊢ [id, σ1] ⇐ (C, C1;L;R′), and σ1(Φ) = Φ (because Φ is well-scoped
/ does not contain any variables from C1) we have C;L; Φ ⊢ σ1(h ′′) ⇐ σ1(R′′) and
C;L; Φ;σ1(R′) ⊢ σ1(σ2) ⇐ (C2;L2;σ1(R2)) (by lemma B7.3 (Substitution)).

Let: h ′ = σ1(h
′′), σ = [σ1, σ2] to step with Subs Pat Ret Comp.

R′ = σ1(R′′).
So C;L; Φ ⊢ h ′ ⇐ R′

and C;L; Φ;R′ ⊢ σ ⇐ (C1, C2;L2;R2) hold by lemma B6 (Weakening) and Subs Chk
Concat.

Assume: 1. ident or pat:β ⇝ C1 with term1

2. ident or pat is exhaustive

27

3. · ⊢ pval ⇒ β

Prove: 1. term1 ∼ pval
2. ∃σ. ident or pat = pval ⇝ σ and ·; ·; ·; · ⊢ σ ⇐ (C1; ·; ·).

⟨2⟩1. Case: Pat Comp No Sym Annot
Proof: term1 is a wildcard (fresh variable) which would unfiy with pval ; let σ = · for
Subs Pat Value No Sym Annot / Subs Chk Empty.

⟨2⟩2. Case: Pat Comp Sym Annot, Pat Sym Or Pat Sym
Proof: term1 = x , a fresh pattern variable, so would unify with pval ;
let σ = pval / x for Subs Pat Value Sym Annot / Subs Chk Comp (using
· ⊢ pval ⇒ β).

⟨2⟩3. Case: Pat Comp Nil
Proof: term1 = nil, and by inversion on the typing assumption, and then by
exhaustiveness, pval = Nilβ(), so would unify; let σ = · for Subs Pat Value Nil /
Subs Chk Empty.

⟨2⟩4. Case: Pat Comp Cons
Proof: term1 = term11 :: term12, and by inversion on the typing assumption, and
then by exhaustiveness, pval = Cons(pval1, pval2). By induction (1) they would unify
and (2) let σ = [σ1, σ2] for Subs Pat Value Cons / Subs Chk Comp and Subs
Chk Concat (both are independent).

⟨2⟩5. Case: Pat Comp Tuple

Proof: term1 = (termi
i
), and by inversion on the typing assumption,

pval = Tuple(pvali
i
). By induction (1) they would unify

(2) let σ = [σi
i] for Subs Pat Value Tuple /

SubsChkComp and Subs Chk Concat.

⟨2⟩6. Case: Pat Comp Array
Proof: Similar to Pat Comp Tuple, but with Subs Pat Value Array.

⟨2⟩7. Case: Pat Comp Specified
Proof: By induction we have (1) term1 ∼ pval , and by the Specified exception (see
Section B4, Proof Judgements) term1 ∼ Specified(pval);
σ for Subs Pat Value Specified, typing by induction.

⟨2⟩8. Case: Pat Sym Or Pat Pat
Proof: By induction.

⟨1⟩3. Case: Pat Ret Log

C;L; Φ ⊢ log y ′, ret patj
j
:∃ y :β. ret ⇝ C2; y ′:β,L2; Φ2;R2

which means fun = ∀ x :β. fun ′ (by inversion, Rel Ret Log)

and so ·; ·; Φ;R ⊢ oarg , ret termj
j
:: ∀ x :β. fun ′ ≫ I (by inversion, Expl Spine Log).

C;L, y :β; Φ ⊢ ret patj
j
:ret ′ ⇝ C2;L2; Φ2;R2 (from the pattern-matching assumption),

28

∀ oarg ∼ oarg ′. Φ ⊢ oarg/x (fun ′) ∼ oarg ′/y ′(ret ′) (from the related assumption),

·; ·; Φ;R ⊢ ret termj
j
:: oarg/x (fun ′) ≫ I (from the spine typing assumption)

and Φ ⊢ h ⇐ R, imply ⟨h + f ; ret patj = ret termj
j ⟩⇝ ⟨h ′′ + f ; σ ⟩

and ∃R′ such that C;L, y ′:β; Φ ⊢ h ′ ⇐ R′′ and C;L, y ′:β; Φ;R′′ ⊢ σ2 ⇐ (C2;L2;R2) (by
induction).

Since ·; · ⊢ oarg ⇒ β , and oarg/y ′(Φ) = Φ (because it is well-scoped / doesn’t refer to y ′)
and C;L; oarg/y ′(Φ); oarg/y ′(R′) ⊢ [id, oarg/y ′] ⇐ (C;L, y ′:β;R′),
we have C;L; Φ ⊢ oarg/y ′(h ′′) ⇐ oarg/y ′(R′′), and
C;L; Φ; oarg/y ′(R′′) ⊢ oarg/y ′(σ2) ⇐ (C2;L2; oarg/y

′(R2)) (by lemma B7.3 (Substitution)).

Let: h ′ = oarg/y ′(h ′′), σ = [oarg/y ′, σ2] to step with Subs Pat Ret Log.
R′ = oarg/y ′(R′′).

So C;L; Φ ⊢ h ′ ⇐ R′

and C;L; Φ;R′ ⊢ σ ⇐ (C2; y ′:β,L2;R2) by Subs Chk Concat.

⟨1⟩4. Case: Pat Ret Phi

C;L; Φ ⊢ ret pati
i
:term ′ ∧ ret ′ ⇝ C′;L′; Φ′, term ′;R′

which means fun = term ⊃ fun ′ (by inversion, Rel Ret Phi),

and so ·; ·; Φ;R ⊢ ret termj
j
:: term −∗ fun ′ ≫ I (by inversion, Expl Spine Res).

C;L; Φ ⊢ ret pati
i
:ret ′ ⇝ C′;L′; Φ′, term ′;R′ (from the pattern-matching assumption)

Φ ⊢ fun ′ ∼ ret ′ (from the related assumption),

·; ·; Φ;R ⊢ ret termj
j
:: fun ′ ≫ I (from the spine typing assumption)

imply ⟨h + f ; ret pati = ret termi
i ⟩⇝ ⟨h ′ + f ; σ ⟩ and the heap and substitution typings

(by induction).

⟨1⟩5. Case: Pat Ret Res
C;L; Φ ⊢ res res pat , ret pat :res ′ ∗ ret ′ ⇝ C4;L3,L4; Φ3,Φ4;R3,R4

which means fun = res −∗ fun ′ (by inversion, Rel Ret Res),
and so ·; ·; Φ;R1,R2 ⊢ res term, spine :: res −∗ fun ≫ I (by inversion, Expl Spine Res),
and h = h1 + h2 where Φ ⊢ h1 ⇐ R1 and Φ ⊢ h2 ⇐ R2 (by lemma B8.4).

·; ·; ·;R1 ⊢ res term ⇐ res (from the spine typing assumption)
and Φ ⊢ h1 ⇐ R1, imply ∃res val ,R′

1, h
′
1 such that Φ ⊢ h ′

1 ⇐ R′
1, ·; ·; Φ;R′

1 ⊢ res val ⇐ res ′

and ⟨h1 + h2 + f ; res term⟩ ⇓ ⟨h ′
1 + h2 + f ; res val⟩ (by lemma B8.6 (Progress and type

preservation for resource terms)).

L; Φ ⊢ res pat :res ′ ⇝ L3; Φ3;R3 (from the pattern matching assumption),
Φ ⊢ res ∼ res ′ (from the related assumption),
·; ·; Φ;R′

1 ⊢ res val ⇐ res and Φ ⊢ h ′
1 ⇐ R′

1, imply
∃h ′′

1 ,R′′
1 such that ⟨h ′

1 + h2 + f ; res pat = res val⟩⇝ ⟨h ′′
1 + h2 + f ; σ1 ⟩ C;L; Φ ⊢ h ′′

1 ⇐ R′′
1,

and C;L; Φ;R′′
1 ⊢ σ1 ⇐ (·;L3;R3) (by the nested proof below).

C;L; Φ ⊢ ret patj
j
:ret ′ ⇝ C4;L4; Φ4;R4 (from the pattern matching assumption),

Φ ⊢ fun ′ ∼ ret ′ (from the related assumption),

29

·; ·; Φ;R2 ⊢ ret termj
j
:: fun ′ ≫ I (from the spine typing assumption),

and Φ ⊢ h2 ⇐ R2, imply ⟨h2 + h ′′
1 + f ; ret patj = ret termj

j ⟩⇝ ⟨h ′
2 + h ′′

1 + f ; σ2 ⟩ and ∃R′
2

such that C;L; Φ ⊢ h ′
2 ⇐ R′

2, and C;L; Φ;R′
2 ⊢ σ2 ⇐ (C4;L4;R4) (by induction).

Let: h ′ = h ′′
1 + h ′

2

σ = [σ1, σ2] to step with Subs Pat Ret Res.
R′ = R′

1,R′
2.

So C;L; Φ ⊢ h ′ ⇐ R′ by Heap Concat
and C;L; Φ;R′ ⊢ σ ⇐ (C4;L3,L4;R3,R4) by Subs Chk Concat
(because R′

2 is well-formed w.r.t. C;L, it does not contain any variables from L3;R3 so
σ1(R′

2) = R′
2).

Assume: 1. L; Φ ⊢ res pat :res ′ ⇝ L′; Φ′;R′

2. Φ ⊢ res ∼ res ′

3. ∃R.(·; ·; Φ;R ⊢ res val ⇐ res) ∧ (C;L; Φ ⊢ h ⇐ R)

Prove: ∃h ′, σ.
∀f . ⟨h + f ; res pat = res val⟩⇝ ⟨h ′ + f ; σ ⟩
∃R′. C;L; Φ ⊢ h ′ ⇐ R′ ∧ C;L; Φ;R′ ⊢ σ ⇐ (·;L′;R′).

⟨2⟩1. Case: Pat Res Match Fold

L; Φ ⊢ fold (res pat ′):α(ptr′, iarg ′i
i
)(oarg ′)⇝ L′; Φ′;R′

which means res = α(ptr, iargi
i
)(oarg) (by inversion, Rel Res Pred)

and so R = :α(ptr, iargi
i
)(oarg) and res val = α(ptr2, iarg2 i

i
) (by lemma B8.3).

⟨3⟩1. h = {α(ptr, iargi
i
)(oarg) & def & heap}

Proof: α ̸= Owned ⟨τ⟩ (from the pattern-matching assumption), and
lemma B8.4 (Normalised resource context determines structure of heap).

⟨3⟩2. ∃R′
1.

1. α ≡ xp :pointer , xi :βi
i
, y :record tagj :β′j

j 7→ res ′′ ∈ Globals

2. C;L; Φ;R′
1 ⊢ def ⇐ [oarg/y , [iarg/xi

i
], ptr/xp](res

′′)
3. C;L; Φ ⊢ heap ⇐ R′

1

Proof: By inversion, C;L; Φ ⊢ h ⇐ R is Heap Pred Other.

⟨3⟩3. L; Φ ⊢ res pat ′:[oarg ′/y , [iarg ′i/xi
i
], ptr′/xp](res

′′)⇝ L; Φ;R
Proof: By inversion on the pattern-matching assumption.

⟨3⟩4. Φ ⊢ [oarg/y , [iarg/xi
i
], ptr/xp](res

′′) ∼ [oarg ′/y , [iarg ′i/xi
i
], ptr′/xp](res

′′)
Proof: By lemma B9.2, using Φ ⊢ res ′′ ∼ res ′′ (by lemma B9.1) and ptr ∼ ptr′,

iargi ∼ iarg ′i
i
and oarg ∼ oarg ′.

⟨3⟩5. ⟨heap + f ; res pat = res val⟩⇝ ⟨h ′ + f ; σ ⟩
Proof: By induction, using ⟨3⟩2, ⟨3⟩3 and ⟨3⟩4.

⟨3⟩6. Step with Subs Pat Res Fold.

⟨3⟩7. h ′,R′ as given by induction.

30

⟨2⟩2. Case: Pat Res Match Emp / Pat Res Match Phi
res = emp or term (by inversion, Rel Res Emp / Rel Res Phi) and so
res val = emp or term and R = · (by lemma B8.3), meaning h = · (by lemma B8.4).
Proof: Let h ′ = · to step with Subs Pat Res Emp / Subs Pat Res Phi.
R′ = ·, so Heap Empty and Subs Chk Emptysuffice.

⟨2⟩3. Case: Pat Res Match If True / Pat Res Match If False
Only showing true case, false case is symmetric.

res ′ = if term ′ then res ′1 else res
′
2 so

res = if term then res1 else res2 (by inversion, Rel Res If).

Since smt (Φ ⇒ term ′) (from the pattern-matching assumption) and
smt (Φ ⇒ term ↔ term ′), we can conclude the typing assumption must be Res Chk
If True.

From there, we proceed by induction.

⟨2⟩4. Case: Pat Res Match Var
Proof: Let h ′ = h to step with Subs Pat Res Var.
R′ = R so Subs Chk Res.

⟨2⟩5. Case: Pat Res Match SepConj
L; Φ ⊢ ⟨res pat1, res pat2⟩:res ′1 ∗ res ′2 ⇝ L1,L2; Φ1,Φ2;R1,R2

res = res1 ∗ res2 (by inversion, Rel Res SepConj) and
·; ·; Φ;R1,R1 ⊢ ⟨res val1, res val2⟩ ⇐ res1 ∗ res2 (by lemma B8.3),
so h = h1 + h2 where Φ ⊢ h ⇐ R1 and Φ ⊢ h ⇐ R2.

By induction, obtain h ′
1 and h ′

2, and then let h ′ = h ′
1 + h ′

2. Instantiate the frame, from
the inductive hypothesis with h2 + f and then h ′

1 + f to conclude
⟨h1 + h2 + f ; res pat1 = res val1⟩⇝ ⟨h ′

1 + h2 + f ; σ1 ⟩ and
⟨h2+ h ′

1+ f ; res pat2 = res val2⟩⇝ ⟨h ′
2+ h ′

1+ f ; σ2 ⟩ to step with Subs Pat Res Pair.
Let: R′ = R′

1,R′
2 (obtained from induction).

We then have and C;L; Φ ⊢ h ′
1 + h ′

2 ⇐ R′ and (since σ1(R2) = R2 because it can not
refer to L1) C;L; Φ;R′ ⊢ [σ1, σ2] ⇐ (·;L1,L2;R1,R2).

⟨2⟩6. Case: Pat Res Match Pack
L; Φ ⊢ pack (x , res pat ′):∃ y ′:β. res ′1 ⇝ x :β,L′; Φ′;R′

res = ∃ y :β. res1 (by inversion, Rel Res Exists) and
·; ·; Φ;R ⊢ pack (oarg , res val ′) ⇐ ∃ y :β. res1 (by lemma B8.3).
L, x :β; Φ ⊢ res pat ′:x/y ′(res ′1)⇝ L′; Φ′;R′ (from the pattern-matching assumption),
·; ·; Φ;R ⊢ res val ′ ⇐ oarg/y(res1) (from the typing assumption),
∀ term ∼ term ′. Φ ⊢ term/y(res1) ∼ term ′/y ′(res ′1) (from the related assumption),
oarg ∼ x imply ∃h ′′, σ′, . ∀f . . .
and ∃R′′. C;L, x :β; Φ ⊢ h ′ ⇐ R′ ∧ C; x :β,L; Φ;R′′ ⊢ σ′ ⇐ (·;L′;R′)

Since ·; · ⊢ oarg ⇒ β , and oarg/x (Φ) = Φ (because it is well-scoped / doesn’t refer to

31

x) and C;L; oarg/x (Φ); oarg/x (R′) ⊢ [id, oarg/x] ⇐ (C; x :β,L′;R′),
we have C;L; Φ ⊢ oarg/x (h ′′) ⇐ oarg/x (R′′), and
C;L; Φ; oarg/x (R′′) ⊢ oarg/x (σ′) ⇐ (·;L′; oarg/x (R2)) (by lemma B7.3
(Substitution)).

Let: h ′ = oarg/x (h ′′)
σ = [oarg/x , σ′] to step with Subs Pat Res Pack.
R′ = oarg/x (R′′) so C;L; Φ; oarg/x (R′′) ⊢ [oarg/x , σ′] ⇐ (·;L′;R2) by Subs
Chk Concat.

B9.5 Φ ⊢ to fun ret ∼ ret

Proof sketch: Induction over ret .

B9.6 Statement and proof

Assume: 1. Closed (no free-variables) expression texpr .
2. ·; ·; Φ;R ⊢ texpr ⇐ ret
3. All patterns in texpr are exhaustive.

Prove: Either texpr is a value tval , or it is unreachable, or
∀h,R. (Φ ⊢ h ⇐ R) ⇒ ∃h ′, texpr ′. ⟨h; texpr⟩ −→ ⟨h ′; texpr ′⟩.

Proof sketch: Induction over the typing rules.

⟨1⟩1. Case: Value typing rules (see B5.3).
Proof: All these judgements/rules give types to syntactic values; and there are no
operational rules corresponding to them (see Section B3).

⟨1⟩2. Case: Pure Top Val Undef, Pure Top Val Error,Expl Top Val Undef, Expl
Top Val Error.

Proof: All these rules require inconsistent constraint context, and so would be unreachable.

⟨1⟩3. Case: Pure Expr Array Shift.
Proof: By inversion on · ⊢ pval1 ⇒ pointer , pval1 must be a mem ptr (Pure Val Obj
Ptr). Similarly pval2 must be a mem int, so step with PE TP Array Shift.

⟨1⟩4. Case: Pure Expr Member Shift.
Proof: pval must be a mem ptr so step with PE TP Member Shift.

⟨1⟩5. Case: Pure Expr Not.
Proof: pval must be a bool value so step with PE TP Not True or PE TP Not False.

⟨1⟩6. Case: Pure Expr Arith Binop, Pure Expr Rel Binop.
Proof: pval1 and pval2 must be mem ints, so step with PE TP Arith Binop or PE TP
Rel Binop respectively.

32

⟨1⟩7. Case: Pure Expr Bool Binop.
Proof: pval1 and pval2 must be bool values, so step with PE TP Bool Binop.

⟨1⟩8. Case: Pure Expr Call.

⟨2⟩1. 1. name:pure fun ≡ xi
i 7→ tpexpr ∈ Globals.

2. ·; ·; Φ; · ⊢ pvali
i
:: pure fun ≫ Σ y :β. term ∧ I .

Proof: By inversion on the assumption.

⟨2⟩2. ⟨·; xi = pvali
i ⟩ :: pure fun ≫ ⟨·; σ ; Σ y :β. term ∧ I⟩.

Proof: By lemma B9.3.

⟨2⟩3. Thus it can step with PE TP Call.

⟨1⟩9. Case: Pure Expr Assert Undef.

⟨2⟩1. pval must be a bool value Proof: By Pure Val True, Pure Val False.

⟨2⟩2. smt (Φ ⇒ pval). Proof: By inversion on the assumption.

⟨2⟩3. If it is False, then by the latter, we have an inconsistent constraints context, meaning
the code is unreachable.

⟨2⟩4. If it is True, we may step with PE TP Assert Undef.

⟨1⟩10. Case: Pure Expr Bool To Integer.
Proof: pval must be a bool value (Pure Val True, Pure Val False) and so step with
PE TP Bool To Integer True, PE TP Bool To Integer False respectively.

⟨1⟩11. Case: Pure Expr WrapI.
Proof: pval must be a mem int (Pure Val Obj Ptr) and so step with PE TP
WrapI.

⟨1⟩12. Case: Pure Top If, Pure Top Case, Pure Top Let, Pure Top LetT.
Proof: See Expl Top Seq If, Expl Top Seq Case, Expl Top Seq Let, Expl
Top Seq LetT, case for more general proofs.

⟨1⟩13. Case: Expl Is Action Create.

⟨2⟩1. pval must be a mem int.
Proof: By Pure Val Obj Ptr.

⟨2⟩2. h must be · (empty).
Proof: By Heap Empty.

⟨2⟩3. Step with Action Is Create.
Proof: mem ptr is free in the premises and so can be constructed to satisfy the
requirements.

⟨1⟩14. Case: Expl Is Action Load.

33

⟨2⟩1. pval0 must be a mem ptr.
Proof: By Pure Val Obj Ptr.

⟨2⟩2. ·; ·; Φ;R′ ⊢ res term ⇒ term
init7→τ pval1 .

smt (Φ ⇒ (term = mem ptr) ∧ (init = constτtrue)).
Proof: By inversion on the typing assumption and ⟨2⟩1.

⟨2⟩3. ∃h ′,R′, res val .
1. Φ ⊢ h ′ ⇐ R′

2. ⟨h; res term⟩ ⇓ ⟨h ′; res val⟩
3. ·; ·; Φ;R′ ⊢ res val ⇒ term

init7→τ pval1
Proof: By ⟨2⟩2 and lemma B8.6 (Progress and type preservation for resource
terms).

⟨2⟩4. res val = Owned ⟨τ⟩(term).
Proof: By lemma B8.3 (Non-conditional resources determine context and values).

⟨2⟩5. h ′ = {term init7→τ pval1 & None}.
Proof: By inversion on the term typing assumption in ⟨2⟩3 using ⟨2⟩4, Φ ⊢ h ′ ⇐ R′

and lemma B8.4 (Normalised resource context determines structure of heap).

⟨2⟩6. Step with Action Is Load.

⟨1⟩15. Case: Expl Is Action Store.

⟨2⟩1. pval0 must both be a mem ptr.
Proof: By Pure Val Obj Ptr.

⟨2⟩2. smt (Φ ⇒ representable (τ, pval1))
·; ·; Φ;R ⊢ res term ⇒ term 7→τ

smt (Φ ⇒ term = mem ptr).
Proof: By inversion on the typing assumption and ⟨2⟩1.

⟨2⟩3. ∃h ′,R′, res val .
1. Φ ⊢ h ′ ⇐ R′

2. ⟨h; res term⟩ ⇓ ⟨h ′; res val⟩
3. ·; ·; ·;R′ ⊢ res val ⇒ term 7→τ .
Proof: By ⟨2⟩2 and lemma B8.6 (Progress and type preservation for resource
terms).

⟨2⟩4. res val = Owned ⟨τ⟩(term).
Proof: By lemma B8.3 (Non-conditional resources determine context and values).

⟨2⟩5. h ′ = {term 7→τ & None}.
Proof: By inversion on the term typing assumption in ⟨2⟩3, Φ ⊢ h ′ ⇐ R′ and
lemma B8.4 (Normalised resource context determines structure of heap).

⟨2⟩6. Step with Action Is Store.

⟨1⟩16. Case: Expl Is Action Kill Static

34

⟨2⟩1. pval must be a mem ptr.
Proof: By Pure Val Obj Ptr.

⟨2⟩2. ·; ·; Φ;R ⊢ res term ⇒ term 7→τ

smt (Φ ⇒ term = mem ptr).
Proof: By inversion on the typing assumption and ⟨2⟩1.

⟨2⟩3. ∃h ′,R′, res val .
1. Φ ⊢ h ′ ⇐ R′

2. ⟨h; res term⟩ ⇓ ⟨h ′; res val⟩
3. ·; ·; Φ;R′ ⊢ res val ⇒ term 7→τ .
Proof: By ⟨2⟩2 and lemma B8.6 (Progress and type preservation for resource
terms).

⟨2⟩4. res val = Owned ⟨τ⟩(term).
Proof: By lemma B8.3 (Non-conditional resources determine context and values).

⟨2⟩5. h ′ = {term 7→τ & None}.
Proof: By inversion on the typing assumption in ⟨2⟩3, Φ ⊢ h ′ ⇐ R′ and
lemma B8.4 (Normalised resource context determines structure of heap).

⟨2⟩6. Step with Action Is Kill Static.

⟨1⟩17. Case: Expl Is Memop Rel Binop.
Proof: Similar to Pure Expr Rel Binop, but step with Memop Is Rel Binop.

⟨1⟩18. Case: Expl Is Memop IntFromPtr.
Proof: pval must be a mem ptr, so step with Memop Is IntFromPtr.

⟨1⟩19. Case: Expl Is Memop PtrFromInt.
Proof: pval must be a mem int, so step with Memop Is PtrFromInt.

⟨1⟩20. Case: Expl Is Memop PtrValidForDeref.

⟨2⟩1. pval must be a mem ptr.
Proof: By Pure Val Obj Ptr.

⟨2⟩2. ·; ·; Φ;R ⊢ res term ⇒ term
init7→τ .

smt (Φ ⇒ (term = mem ptr) ∧ (init = constτtrue)).
Proof: By inversion on the typing assumption and ⟨2⟩1.

⟨2⟩3. ∃h ′R′, res val .
1. Φ ⊢ h ′ ⇐ R′

2. ⟨h; res term⟩ ⇓ ⟨h ′; res val⟩
3. ·; ·; Φ;R′ ⊢ res val ⇒ term

init7→τ .
Proof: By ⟨2⟩2 and lemma B8.6 (Progress and type preservation for resource
terms).

⟨2⟩4. res val = Owned ⟨τ⟩(term).

35

Proof: By lemma B8.3 (Non-conditional resources determine context and values).

⟨2⟩5. h ′ = {term init7→τ & None}.
Proof: By inversion on the typing assumption in ⟨2⟩3 using ⟨2⟩4, Φ ⊢ h ′ ⇐ R′ and
lemma B8.4 (Normalised resource context determines structure of heap).

⟨2⟩6. Step with Memop Is PtrValidForDeref.

⟨1⟩21. Case: Expl Is Memop PtrWellAligned.
Proof: pval must be a mem ptr, so step with Memop Is PtrWellAligned.

⟨1⟩22. Case: Expl Is Memop PtrArrayShift.
Proof: pval1 must be a mem ptr and pval2 must be a mem int, so step with Memop Is
PtrArrayShift.

⟨1⟩23. Case: Expl Seq CCall.

⟨2⟩1. ident:fun ≡ xi
i 7→ texpr ∈ Globals

·; ·; Φ;R ⊢ spine elemi
i
:: fun ≫ ret .

Proof: By inversion.

⟨2⟩2. ⟨h; xi = spine elemi
i ⟩ :: fun ≫ ⟨h ′; σ2 ; ret ⟩.

Proof: By ⟨2⟩1 and lemma B9.3 (Well-typed spines produce substitutions and the
same return type).

⟨2⟩3. Step with Seq T CCall.

⟨1⟩24. Case: Expl Seq Proc, Expl Top Seq Run.
Proof: Similar to Expl Seq CCall, but step with Seq T Proc / TSeq T Run.

⟨1⟩25. Case: Expl Is Memop.
Proof: By induction, if memop is unreachable, then the whole expression is so. memops
are not values. Only stepping cases applies, so step with Is Is Memop.

⟨1⟩26. Case: Expl Is Action, Expl Is Neg Action.
Proof: By induction, if action is unreachable, then the whole expression is so. actions are
not values. Only stepping case applies, so step with Is Is Action (or Is Is Neg Action
respectively).

⟨1⟩27. Case: Expl Top Seq LetP, Expl Top Seq LetTP.
Proof: See Expl Top Seq Let / Expl Top Seq LetT for more general cases and
proofs.

⟨1⟩28. Case: Expl Top Seq Let.
Proof: By induction, since seq expr is not value, if it is unreachable, the whole expression
is so. If seq expr takes a step, the whole expression steps with TSeq T Let LetT.

⟨1⟩29. Case: Expl Top Seq LetT.

36

Proof: By induction, if texpr is unreachable, so is the whole expression.

If if it a tval , use lemma B9.4 (Well-typed values pattern-match successfully), with
lemma B9.5 (Φ ⊢ to fun ret ∼ ret) and the assumption that all patterns are exhaustive, so
the whole expression steps with TSeq T LetT Sub.

If texpr takes a step, the whole expression steps with TSeq T LetT LetT.

⟨1⟩30. Case: Expl Top Seq Case.
Proof: By assumption that all patterns are exhaustive, and lemma B9.4 (Well-typed
values pattern-match successfully), there is at least one pattern against which pval will
match, so TSeq T Case.

⟨1⟩31. Case: Expl Top Seq If.
Proof: pval must be a bool value and so TSeq T If True/ TSeq T If False.

⟨1⟩32. Case: Expl Top Seq Bound.
Proof: Step with TSeq T Bound.

⟨1⟩33. Case: Expl Top Is LetS.
Proof: Similar to Expl Top Seq LetT, but step with TIs T LetS Sub / TIs T
LetS LetSinstead.

⟨1⟩34. Case: Expl Top Seq, Expl Top Is.
Proof: Step with T T TSeq T / T T TIs T respectively.

37

B10 Type Preservation

B10.1 Owned ⟨τ⟩ resource output values have type βτ

If C;L; Φ;R ⊢ Owned ⟨τ⟩(ptr) ⇐ ptr′
init7→τ pval then C ⊢ pval ⇒ βτ and C;L ⊢ init ⇒ boolτ .

Proof sketch: Induction over the typing judgements. Only Expl Is Action Store constrain
.value of Owned ⟨τ⟩ resources, and its premises ensure it has type βτ ; Expl Is Action Load
and Expl Is Memop PtrValidForDeref simply propagate the value. Expl Is Action
Create, Expl Is Action Load and Expl Is Action Store and ensure .init has type boolτ .

B10.2 Type Preservation Statement and Proof

If ·; ·; Φ;R ⊢ texpr ⇐ ret and Φ ⊢ h ⇐ R, and all top-level functions are well-typed1 then
∀f . ⟨h + f ; texpr⟩ −→ ⟨heap; texpr ′⟩ ⇒ ∃Φ′, h ′,R′. (·; ·; Φ; · ⊑ ·; ·; Φ′; ·) ∧ heap = h ′ + f ∧ (Φ′ ⊢ h ′ ⇐
R′) ∧ (·; ·; Φ′;R′ ⊢ texpr ′ ⇐ ret).

You can equally well prove ∀R′. Φ ⊢ h ′ ⇐ R′ ⇒ ·; ·; Φ;R′ ⊢ texpr ′ ⇐ ret instead. Instead of
supplying R′ and proving heap typing, you instead invert heap typing to deduce that R′ can only
be what you would have supplied anyways.

It’s worth noting that the constraint context will always only contain trivially true constraints
(since C;L are both empty, all the terms in Φ;R will be closed). This does not, by itself, guarantee
that all conditional resources will be determined (e.g. if default bool then res1 else res2), but
there are other ways of excluding this (not allowing under-determined in heaps).

Proof sketch: Induction over the typing rules, which don’t refer to values or unreachable
program points.

Assume: 1. ·; ·; Φ;R ⊢ texpr ⇐ ret ,
2. Φ ⊢ h ⇐ R
3. all top-level functions are well-typed
4. ∀f . ⟨h + f ; texpr⟩ −→ ⟨heap; texpr ′⟩

Prove: ∃Φ′, h ′,R′.
1. ·; ·; Φ; · ⊑ ·; ·; Φ′; ·
2. heap = h ′ + f
3. Φ′ ⊢ h ′ ⇐ R′

4. ·; ·; Φ′;R′ ⊢ texpr ′ ⇐ ret .

⟨1⟩1. Case: Pure Expr Array Shift.
For all pure expressions, Φ ⊢ h ⇐ ·, h = ·, heap = f .
Let: h ′ = · and R′ = ·, so heap = h ′ + f trivially and Φ ⊢ · ⇐ · (by Heap Empty).
ret = Σ y :pointer. y = mem ptr +ptr (mem int× size of(τ)) ∧ I

Proof: By Pure Top Val Done, suffices to show · ⊢ mem ptr′ ⇒ pointer (true by

1More precisely, if ident: fun ≡ xi
i 7→ texpr ∈ Globals and xi

i :: fun ⇝ C′′;L′′; Φ′′;R′′ | ret ′′ then
C′′;L′′; Φ′′;R′′ ⊢ texpr ⇐ ret ′′.

38

Pure Val Obj Ptr) and smt (Φ ⇒ mem ptr′ = mem ptr +ptr (mem int× size of(τ)))
(true by definition of PE TP Array Shift).

⟨1⟩2. Case: Pure Expr Member Shift, Pure Expr Not, Pure Expr Arith Binop,
Pure Expr Bool Binop, Pure Expr Rel Binop, Pure Expr Assert Undef,
Pure Expr Bool To Integer, Pure Expr WrapI.

Proof: Similar to Pure Expr Array Shift.

⟨1⟩3. Case: Pure Expr Call
Proof: See Expl Seq CCall for a more general case and proof.

⟨1⟩4. Case: Pure Top If.
Proof: See Expl Top Seq If for a more general case and proof.

⟨1⟩5. Case: Pure Top Let.
Proof: See Expl Top Seq Let for a more general case and proof.

⟨1⟩6. Case: Pure Top LetT.
Proof: See Expl Top Seq LetT for a more general case and proof.

⟨1⟩7. Case: Pure Top Case.
Proof: See Expl Top Seq Case for a more general case and proof.

⟨1⟩8. Case: Expl Is Action Create.

Let: ret = Σ yp:pointer. term ∧ (yp
constτfalse7→τ defaultβτ) ∗ I

where term = representable (τ∗, yp) ∧ alignedI (mem int, yp).
pt = Owned ⟨τ⟩(mem ptr)(oarg) where
oarg = {init = constτfalse, value = defaultβτ}.

Assume: ·; ·; Φ; · ⊢ create (mem int, τ) ⇒ ret and so h = · (by inversion, Heap Empty)
and heap = f + {pt & None}.

Let: h ′ = {pt & None}, R′ = :pt .
This means heap = h ′ + f (trivially) and Φ ⊢ h ′ ⇐ R′ (by Heap Pred Owned).

Prove: ·; ·; Φ;R′ ⊢ done ⟨mem ptr, Owned ⟨τ⟩(mem ptr)⟩:ret ⇒ ret .

⟨2⟩1. · ⊢ mem ptr ⇒ pointer by Pure Val Obj Ptr and Pure Val Obj.

⟨2⟩2. smt (· ⇒ term) by construction of mem ptr.

⟨2⟩3. ·; ·; ·;R′ ⊢ Owned ⟨τ⟩(mem ptr) ⇐ pt by Res Syn Pred.

⟨2⟩4. Prove typing with Expl Spine Ret; ⟨2⟩3 – ⟨2⟩1 with Expl Spine Res, Expl
Spine Phi, Expl Spine Comp respectively; Expl Is TVal.

⟨1⟩9. Case: Expl Is Action Load.

Let: ret = Σ y :βτ . y = pval ∧ (mem ptr
constτtrue7→τ pval) ∗ I

39

pt = Owned ⟨τ⟩(mem ptr)(oarg) where oarg = {init = constτtrue, value = pval}.

Assume: ·; ·; Φ;R ⊢ load (τ,mem ptr, , res term) ⇒ ret
and heap = heap′ + {pt & None} so
⟨h + f ; res term⟩ ⇓ ⟨heap′ + {pt & None}; Owned ⟨τ⟩(mem ptr)⟩.

Let: h ′ and R′ be as per lemma B8.8 (Resource term reduction is isolated).
R′ = :pt by lemma B8.3 and h ′ = {pt & None} by lemma B8.4, hence heap′ = f .
This means heap = h ′ + f , Φ ⊢ h ′ ⇐ R′ and ·; ·; Φ;R′ ⊢ Owned ⟨τ⟩(mem ptr) ⇒ pt .

Prove: ·; ·; Φ;R′ ⊢ done ⟨pval , Owned ⟨τ⟩(mem ptr)⟩:ret ⇒ ret .

⟨2⟩1. · ⊢ pval ⇒ βτ by lemma B10.1 (Owned ⟨τ⟩ resource output values have type βτ).

⟨2⟩2. smt (· ⇒ pval = pval) trivially.

⟨2⟩3. ·; ·; Φ;R′ ⊢ Owned ⟨τ⟩(mem ptr) ⇒ pt , already established.

⟨2⟩4. Prove typing with Expl Spine Ret; ⟨2⟩3 – ⟨2⟩1 with Expl Spine Res, Expl
Spine Log, Expl Spine Comp respectively; Expl Is TVal.

⟨1⟩10. Case: Expl Is Action Store.

Let: ret = Σ :unit. (mem ptr
constτtrue7→τ pval) ∗ I.

pt = Owned ⟨τ⟩(mem ptr)(), pt ′ = Owned ⟨τ⟩(mem ptr)(oarg), where
oarg = {init = constτtrue, value = pval}.

Assume: ·; ·; Φ;R ⊢ store (, τ,mem ptr, pval , , res term) ⇒ ret and
heap = heap′ + {pt ′ & None} so
⟨h + f ; res term⟩ ⇓ ⟨heap′ + {pt & None}; Owned ⟨τ⟩(mem ptr)⟩.

∃h ′′,R′′ such that heap′ + {pt & None} = h ′′ + f , Φ ⊢ h ′′ ⇐ R′′ and
·; ·; Φ;R′′ ⊢ Owned ⟨τ⟩(mem ptr) ⇒ pt , by lemma B8.8 (Resource term reduction is
isolated).

R′′ = :pt by lemma B8.3 and h ′′ = {pt & None} by lemma B8.4, hence heap′ = f .
Let: h ′ = {pt ′ & None} and R′ = :pt ′.
This means heap = h ′ + f and Φ ⊢ h ′ ⇐ R′ (by Heap Pred Owned).

Prove: ·; ·; Φ;R′ ⊢ done ⟨Unit, Owned ⟨τ⟩(mem ptr)⟩:ret ⇒ ret .

⟨2⟩1. · ⊢ Unit ⇒ unit by Pure Val Unit.

⟨2⟩2. ·; ·; Φ; :pt ′ ⊢ Owned ⟨τ⟩(mem ptr) ⇐ pt ′ by Res Syn Pred.

⟨2⟩3. Prove typing with Expl Spine Ret; ⟨2⟩2 – ⟨2⟩1 with Expl Spine Res, Expl
Spine Comp respectively; Expl Is TVal.

⟨1⟩11. Case: Expl Is Action Kill Static.
Assume: ·; ·; Φ;R ⊢ kill (static τ,mem ptr, res term) ⇒ Σ :unit. I and

40

⟨h + f ; res term⟩ ⇓ ⟨heap + {pt & None}; Owned ⟨τ⟩(mem ptr)⟩.

∃h ′′,R′′ such that heap + {pt & None} = h ′′ + f , Φ ⊢ h ′′ ⇐ R′′ and
·; ·; Φ;R′′ ⊢ Owned ⟨τ⟩(mem ptr) ⇒ pt , by lemma B8.8 (Resource term reduction is
isolated).

R′′ = :pt by lemma B8.3 and h ′′ = {pt & None} by lemma B8.4, hence heap = f .
Let: h ′ = · and R′ = ·.
This means heap = h ′ + f and Φ ⊢ h ′ ⇐ R′ (by Heap Empty).

Prove: ·; ·; Φ; · ⊢ done ⟨Unit⟩:Σ :unit. I ⇒ Σ :unit. I
Proof: By Expl Spine Ret, Pure Val Unit, Expl Spine Comp, Expl Is TVal.

⟨1⟩12. Case: Expl Is Memop Rel Binop.
Proof: Similar to Pure Expr Rel Binop.

⟨1⟩13. Case: Expl Is Memop IntFromPtr.
Let: ret = Σ y :integer. y = cast ptr to intmem ptr ∧ I. Since Φ ⊢ h ⇐ ·, h = ·,

heap = f .
Assume: ·; ·; Φ; · ⊢ intFromPtr (τ1, τ2,mem ptr) ⇒ ret .
Let: h ′ = · and R′ = ·, so heap = h ′ + f trivially and Φ ⊢ · ⇐ · (by Heap Empty).
Prove: ·; ·; ·; · ⊢ done ⟨mem int⟩:ret ⇒ ret
Proof: Prove typing with Expl Spine Ret, Expl Spine Phi, Expl Spine Comp and
Expl Top Val Done instead.

⟨1⟩14. Case: Expl Is Memop PtrFromInt.
Proof: Similar to Expl Is Memop IntFromPtr, swapping base types integer and
pointer.

⟨1⟩15. Case: Expl Is Memop PtrValidForDeref.
Let: pt = Owned ⟨τ⟩(mem ptr)(oarg) where oarg = {init = constτtrue, value = value}

ret = Σ y :bool. y = aligned (τ, pval) ∧ pt ∗ I

Assume: ·; ·; Φ;R ⊢ ptrValidForDeref (τ,mem ptr, res term) ⇒ ret
and heap = heap′ + {pt & None} so
⟨h + f ; res term⟩ ⇓ ⟨heap′ + {pt & None}; Owned ⟨τ⟩(mem ptr)⟩.

Let: h ′ and R′ be as per lemma B8.8 (Resource term reduction is isolated).
R′ = :pt by lemma B8.3 and h ′ = {pt & None} by lemma B8.4, hence heap′ = f .
This means heap = h ′ + f , Φ ⊢ h ′ ⇐ R′ and ·; ·; Φ;R′ ⊢ Owned ⟨τ⟩(mem ptr) ⇒ pt .

Prove: ·; ·; Φ;R′ ⊢ done ⟨bool value, Owned ⟨τ⟩(mem ptr)⟩:ret ⇒ ret .

⟨2⟩1. · ⊢ bool value ⇒ bool by Pure Val True/ Pure Val False.

⟨2⟩2. smt (· ⇒ bool value = aligned (τ,mem ptr)).
Proof: By construction of bool value (inversion on the transition).

41

⟨2⟩3. ·; ·; Φ; :pt ⊢ Owned ⟨τ⟩(mem ptr) ⇐ pt , already established.

⟨2⟩4. Prove typing with Expl Spine Ret; ⟨2⟩3 – ⟨2⟩1 with Expl Spine Res, Expl
Spine Phi, Expl Spine Comp respectively; Expl Is TVal.

⟨1⟩16. Case: Expl Is Memop PtrWellAligned.
Let: ret = Σ y :bool. y = aligned (τ,mem ptr) ∧ I.
Assume: ·; ·; Φ; · ⊢ ptrWellAligned (τ,mem ptr) ⇒ ret .

Since Φ ⊢ h ⇐ ·, h = ·, heap = f .
Let: h ′ = · and R′ = ·, so heap = h ′ + f trivially and Φ ⊢ · ⇐ · (by Heap Empty).
Prove: ·; ·; Φ; · ⊢ done ⟨bool value⟩:ret ⇒ ret .

⟨2⟩1. · ⊢ bool value ⇒ bool by Pure Val True/ Pure Val False.

⟨2⟩2. smt (· ⇒ bool value = aligned (τ,mem ptr)) by construction of bool value.

⟨2⟩3. Prove typing with Expl Spine Ret, Expl Spine Phi, Expl Spine Comp, Expl
Is TVal.

⟨1⟩17. Case: Expl Is Memop PtrArrayShift.
Proof: Similar to Pure Expr Array Shift, but with Expl Is TVal.

⟨1⟩18. Case: Expl Seq CCall.
Assume: ident:fun ≡ xi

i 7→ texpr ∈ Globals

·; ·; Φ;R ⊢ spine elemi
i
:: fun ≫ ret .

Φ ⊢ h ⇐ R
⟨h + f ; ccall (τ, ident, spine elemi

i
)⟩ −→ ⟨heap;σ2(texpr):ret ′⟩

C;L; Φ′′;R′′ ⊢ texpr ⇐ ret ′′ where xi
i :: fun ⇝ C;L; Φ′′;R′′ | ret ′′ .

Prove: ∃h ′,Φ′,R′ such that
·; ·; Φ; · ⊑ ·; ·; Φ′; ·
heap = h ′ + f
Φ′ ⊢ h ′ ⇐ R′

and ·; ·; Φ′;R′ ⊢ σ2(texpr) ⇐ ret .

⟨2⟩1. C;L; Φ,Φ′′;R′′ ⊢ texpr ⇐ ret ′′

Φ, σ2(Φ
′′) ⊢ h ⇐ R′

·; ·; Φ, σ2(Φ′′);R ⊢ spine elemi
i
:: fun ≫ ret .

Proof: By lemma B6 (Weakening).

⟨2⟩2. ret = ret ′ = σ2(ret
′′) ∧ ∃h ′

1,R′
1.

heap = h ′
1 + f , and (Φ, σ2(Φ

′′) ⊢ h ′
1 ⇐ R′

1)
·; ·; Φ, σ2(Φ′′);R′

1 ⊢ σ2 ⇐ (C;L;R′′).
Proof: By lemma B9.3 (Well-typed spines produce substitutions and the same
return type).

⟨2⟩3. ·; ·; Φ, σ2(Φ′′);R′
1 ⊢ σ(texpr) ⇐ σ(ret ′′).

Proof: By lemma B7.3 (Substitution), because σ2(Φ) = Φ since it contains only
closed terms / is well-formed w.r.t ·; ·.

42

⟨2⟩4. Let: h ′ = h ′
1; Φ

′ = Φ, σ2(Φ
′′); R′ = R′

1.

⟨2⟩5. ·; ·; Φ; · ⊑ ·; ·; Φ, σ2(Φ′′); · trivially.

⟨1⟩19. Case: Expl Seq Proc.
Proof: Similar to Expl Seq Proc.

⟨1⟩20. Case: Expl Is Memop, Expl Is Action, Expl Is Neg Action.
Proof: By induction.

⟨1⟩21. Case: Expl Top Seq LetP, Expl Top Seq LetTP, Expl Top Seq Let.
Proof: See Expl Top Seq LetTfor a more general case and proof.

⟨1⟩22. Case: Expl Top Seq LetT.

Assume: ·; ·; ·;R1,R2 ⊢ let ret pati
i
:ret1 = done ⟨ret termi

i⟩ in texpr2 ⇐ ret2
so ·; ·; Φ;R1 ⊢ done ⟨ret termi

i⟩ ⇐ ret1
and Φ ⊢ ret pat :ret1 ⇝ C3;L3; Φ3;R3

and C3;L3; Φ,Φ3;R2,R3 ⊢ texpr ⇐ ret2 (by inversion).

Φ ⊢ h ⇐ R1,R2 so h = h1 + h2 where Φ ⊢ h1 ⇐ R1 and Φ ⊢ h2 ⇐ R2 by lemma B8.4
(Normalised resource context determines structure of heap).

⟨h + f ; let ret pati
i
:ret1 = done ⟨ret termi

i⟩ in texpr⟩ −→ ⟨heap;σ(texpr)⟩.
where ⟨h; ret pati = ret termi

i ⟩⇝ ⟨heap; σ ⟩.

Prove: ∃Φ′, h ′,R′.
·; ·; Φ; · ⊑ ·; ·; Φ′; ·
heap = h ′ + f and Φ′ ⊢ h ′ ⇐ R′

·; ·; Φ′;R′ ⊢ σ(texpr2) ⇐ σ(ret2).

∃R′
1. heap = h ′

1 + h2 + f
Φ ⊢ h ′

1 ⇐ R′
1 and ·; ·; Φ;R′

1 ⊢ σ ⇐ (C′;L′;R′)
by lemma B9.4 (Well-typed values pattern-match successfully).

This means ·; ·; [id, σ](Φ,Φ3);R′
1,R2 ⊢ [id, σ] ⇐ (C′;L′;R2,R′) by lemma B6 (Weakening).

Let: Φ′ = Φ, σ(Φ3), h
′ = h ′

1 + h2 and R′ = R′
1,R2.

By lemma B7.3 (Substitution), because σ(Φ) = Φ since it contains only closed terms / is
well-formed w.r.t ·; ·.

⟨1⟩23. Case: Expl Top Seq LetT.

Assume: ·; ·; Φ;R1,R2 ⊢ let ret pati
i
:ret1 = texpr1 in texpr2 ⇐ ret2

so ·; ·; Φ;R1 ⊢ texpr1 ⇐ ret1
and h = h1 + h2 where Φ ⊢ h1 ⇐ R1 and Φ ⊢ h2 ⇐ R2 by lemma B8.4
(Normalised resource context determines structure of heap).
⟨h; texpr1⟩ −→ ⟨heap; texpr ′1⟩.

Proceed by induction, instantiating the frame from the inductive hypothesis with h2 + f .

43

⟨1⟩24. Case: Expl Top Seq Case.

Assume: ·; ·; Φ;R ⊢ case pval of | pati ⇒ texpri
i
end ⇐ ret

pati :β1 ⇝ Ci with termi
i

C, Ci ;L; Φ, termi = pval ;R ⊢ texpri ⇐ ret
i
.

patj = pval ⇝ σj and ∀ i < j . not (pati = pval ⇝ σi).

Let: Φ′ = Φ, σj (termj = pval), h ′ = h and R′ = R.
·; ·; Φ′;R ⊢ [id, σj] ⇐ (Cj ; ·;R) by lemma B9.4 (Well-typed values pattern-match
successfully) and lemma B6 (Weakening).
Hence ·; ·; Φ; · ⊑ ·; ·; Φ′; · and ·; ·; Φ′;R ⊢ σj (texprj) ⇐ σj (ret) by lemma B7.3 (Substitution).

⟨1⟩25. Case: Expl Top Seq If.
See Expl Top Seq Case for more general case and proof.

⟨1⟩26. Case: Expl Top Seq Run.
Proof: Similar to Expl Seq CCall.

⟨1⟩27. Case: Expl Top Seq Bound.
Proof: By induction.

⟨1⟩28. Case: Expl Top Is LetS.
Proof: Similar to Expl Top Seq LetT.

44

	Commentary
	Typing Judgements
	Operational Semantics Judgements
	Proof Judgements
	Groups of Rules
	Typing rules with an smt (Φ ⇒ qterm) premise
	Typing rules which change the context
	Value typing rules

	Weakening
	Substitution
	Substitutions preserve SMT results
	Substitutions can be split up
	Substitution

	Resource Term Lemmas
	Definition: Normalised contexts
	Resource contexts typing closed terms must be normalised
	Non-conditional resources determine context and values
	Normalised resource context determines structure of heap
	Well-typed resource value determines its footprint
	Progress and type preservation for resource terms
	Resource term reduction is deterministic
	Resource term reduction is isolated

	Progress
	 N ⊢ res ∼ res' is an equivalence relation
	 N ⊢ res ∼ res' is preserved by substitution
	Well-typed spines produce substitutions and the same return type
	Well-typed values pattern-match successfully
	 N ⊢ to_fun ret ∼ ret
	Statement and proof

	Type Preservation
	Owned⟨τ⟩ resource output values have type βτ
	Type Preservation Statement and Proof

