Soundness proof of type checking

Dhruv C. Makwana

B1	Comme	entary
B2	Typing	Judgements
B3	Operat	ional Semantics Judgements
B4	Proof J	udgements
B5	Groups	of Rules
	B5.1	Typing rules with an $\operatorname{smt}(\Phi \Rightarrow qterm)$ premise
	B5.2	Typing rules which change the context
	B5.3	Value typing rules
B6	Weaker	ning
B7	Substit	ution \ldots \ldots \ldots \ldots \ldots 13
	B7.1	Substitutions preserve SMT results
	B7.2	Substitutions can be split up 13
	B7.3	Substitution
B8	Resour	ce Term Lemmas
	B8.1	Definition: Normalised contexts
	B8.2	Resource contexts typing closed terms must be normalised
	B8.3	Non-conditional resources determine context and values 17
	B8.4	Normalised resource context determines structure of heap 18
	B8.5	Well-typed resource value determines its footprint
	B8.6	Progress and type preservation for resource terms
	B8.7	Resource term reduction is deterministic
	B8.8	Resource term reduction is isolated
B9	Progres	38
	B9.1	$\Phi \vdash res \sim res'$ is an equivalence relation
	B9.2	$\Phi \vdash res \sim res'$ is preserved by substitution
	B9.3	Well-typed spines produce substitutions and the same return type 25
	B9.4	Well-typed values pattern-match successfully 26
	B9.5	$\Phi \vdash \texttt{to_fun} ret \sim ret$
	B9.6	Statement and proof
B10		$reservation \ldots 38$
-	B10.1	Owned $\langle \tau \rangle$ resource output values have type β_{τ}
	B10.2	Type Preservation Statement and Proof

B1 Commentary

Since Core is a first-order language, and we require that all functions and labels are annotated with the correct type, it suffices to only use purely syntactic techniques to prove soundness. This remains true despite the addition of linear types, systems with which are normally proved using logical relations. There are three main components to this: a joint progress-and-type-preservation proof for resource term reduction, a progress theorem and a type-preservation theorem.

Let a resource be called *normalised* if it is either a *pred*, *qpred* or an under-determined conditional resource. Let a resource context $\underline{\mathcal{R}}$ be called normalised if it contains only normalised resources. Even though the grammar of resources is richer, we can, in all the proofs relating to well-typed closed resource terms, are assume the resource context to be normalised. This is fine because of the following lemma: if a well-typed resource term is closed, then the context in which it is well-typed must normalised.

Operational semantics for resource term happens to be defined using big-step style; this makes its definition concise and modular, at the cost of making the proof of soundness of resource term reduction more complicated since it requires joint progress and type preservation. The configuration for the operational semantics is a pair of a heap and an annotated and let-normalised Core program.

Heaps only contain normalised resources. Predicates in heaps are optionally tagged with their "definition" *def* (a resource value of the type of the predicate body) and a sub-heap (of the resources used by the definition). This is to support folding and unfolding predicates in the operational semantics, and to capture the

$$pred \equiv pred_term(oarg)$$

$$\langle h + h'; res_pat = def \rangle \rightsquigarrow \langle h''; \sigma \rangle$$

$$\langle h + \{pred \& def \& h'\}; \texttt{fold}(res_pat) = pred_term \rangle \rightsquigarrow \langle h''; \sigma \rangle$$

$$pred \equiv pred_term(oarg) \quad \langle h; res_term \rangle \Downarrow \langle h_1; def \rangle$$

$$\texttt{footprint_of} def \texttt{in} h_1 \rightsquigarrow h_2 \texttt{rem} h_3$$

$$\langle h; \texttt{fold} res_term: pred \rangle \Downarrow \langle h_3 + \{pred \& def \& h_2\}; pred_term \rangle$$

idea that predicate encapsulate their contents until opened.

The types of heaps are normalised contexts; the rules for these are straightforward, except the fact a heap with a folded predicate requires there exists a context for which the resource value *def* and *heap* is well-typed. This becomes necessary for proving the progress of pattern-matching for the whole of the annotated and let-normalised Core.

Theorem 1 (Progress and type preservation for resource terms) For all closed resource terms (res_term) which type check or synthesise $(\cdot; \cdot; \Phi; \underline{\mathcal{R}} \vdash res_term \leftarrow res)$ and all well-typed heaps $(\Phi \vdash h \leftarrow \underline{\mathcal{R}})$ there exists a resource value (res_val), context ($\underline{\mathcal{R}}'$) and heap (h'), such that: the value is well-typed ($\cdot; \cdot; \Phi; \underline{\mathcal{R}}' \vdash res_val \leftarrow res$); the heap is well-typed ($\Phi \vdash h' \leftarrow \underline{\mathcal{R}}'$); for all frame-heaps (f), the resource term reduces to the resource value without affecting the frame-heap ($(h + f; res_term) \Downarrow (h' + f; res_val)$).

The interesting case in the proof of this is folding a predicate; proving this case requires a notion of *footprint* of a resource value: the subheap containing the resources referred to by the value.

Theorem 2 (Progress for the annotated and let-normalised Core) If a top-level expression (texpr) is well-typed $(\cdot; \cdot; \Phi; \underline{\mathcal{R}} \vdash texpr \leftarrow ret)$ and all computational patterns in it are exhaustive, then either it is a value (tval), or it is unreachable, or for all heaps (h), if the heap is well-typed $(\Phi \vdash h \leftarrow \underline{\mathcal{R}})$ then there exists another heap (h') and expression (texpr') which is stepped to $(\langle h; texpr \rangle \longrightarrow \langle h'; texpr' \rangle)$ in the operational semantics.

The assumption that all computational patterns are exhaustive is justified because they are generated by Cerberus. As one might expect, proving progress requires well-typed patterns successfully produce substitutions. However, this complicated by two things, the solution to which requires the introduction of a relation on SMT terms and resource types, $\Phi \vdash res \sim res'$ (to be read "under constraints Φ , res is related to res'").

The first is that the constraint term generated when typing a computational pattern (this is required to record, in the constraint context, which branch the type system is assuming it is in) is not exactly equal to the values it can match in the operational semantics (nor would we want it to be: the pattern $Cons(x_1, x_2)$ should match the value $Cons(pval_1, Cons(pval_{21}, Nil \beta()))$). Hence, we must weaken the notion of equality on types to ~ relatedness, which links the two, so that during the proof can substitute the constraint term $x_1 :: x_2$ at the type-level, and maintain a link to the corresponding value. The second is that the conditions of related conditional resource must remain SMT-equivalent (with reference to a constraint context), so that pattern-match typing and resource term typing are consistent.

Theorem 3 (Type preservation for the annotated and let-normalised Core) For all closed and well-typed top-level expressions $(\cdot; \cdot; \Phi; \underline{\mathcal{R}} \vdash texpr \leftarrow ret)$, well typed heaps $(\Phi \vdash h \leftarrow \underline{\mathcal{R}})$, frameheaps (f), new heaps (heap), and new top-level expressions (texpr'), which are connected by a step in the operational semantics $(\langle h + f; texpr \rangle \longrightarrow \langle heap; texpr' \rangle)$, if all top-level functions are annotated correctly, there exists a constraint context (Φ') , sub-heap (h'), and resource context $(\underline{\mathcal{R}}')$, such that the constraint context is Φ extended, the frame is unaffected (heap = h' + f), the sub-heap is well-typed $(\Phi' \vdash h' \leftarrow \underline{\mathcal{R}}')$, and the top-level expression too $(\cdot; \cdot; \Phi'; \underline{\mathcal{R}}' \vdash texpr' \leftarrow ret)$.

A few things are noteworthy about the proof. First is that a frame-heap has to be explicitly passed around. Whilst this is inconvenient, it becomes necessary in the EXPL_TOP_SEQ_LETT case. The next is that proof that well-typed spines produce well-typed substitutions require quantifying over the substitutions done so far, so that the inductive case matches up and the substitution so far ψ shows up in the conclusion, 'closing' otherwise 'open' substitutions: unfortunately quantifying over the substitutions done so far is not helpful because even the substitution itself can be 'open' (refer to free variables). Hence the peculiar typing of pattern-matching, so that all terms are well-scoped. This allows us to induct usefully, and get the required substitution in the output substitution and its type, making way to apply the substitution lemma afterwards. Lastly, we gather constraints throughout the proof, since these are accumulated by the typing rules, during pattern-matching, case and if. Given the constraint context is always well-formed (w.r.t. to the empty contexts), this means that all the constraints must be trivial (though extra effort would be required to show that they are trivially true, for example, showing that default bool cannot occur.

B2 Typing Judgements

In this document, $C; \mathcal{L}; \Phi; \mathcal{R} \vdash J$ stands for all *defined* judgements, listed in the remainder of this section after this paragraph. In particular, it does not stand for $\mathcal{C} \vdash mem_val \Rightarrow \beta$ or $\mathcal{C}; \mathcal{L} \vdash term \Rightarrow \beta$. Furthermore, I assume that lemma B6 (Weakening) and lemma B7.3 (Substitution) (proven for the *defined* judgements in the referenced sections) hold for these ($\mathcal{C} \vdash mem_val \Rightarrow \beta$, and $\mathcal{C}; \mathcal{L} \vdash term \Rightarrow \beta$) judgements.

res_judge	::=	
res_juuge	—	$\Phi \vdash \text{cmp_min}(iguard, iguard') \rightsquigarrow opt_cmp_term$
	I	given constraints Φ , <i>iguard</i> is potentially in-
		cluded in <i>iquard'</i> (or vice-versa) with ordering and
		minimum opt_cmp_term
		$\Phi \vdash qpred_term \sqsubseteq? qpred_term' \rightsquigarrow opt_cmp$
		given constraints Φ , <i>qpred_term</i> is potentially in-
		cluded in $qpred_term'$ (or vice-versa) with order-
		ing opt_cmp
		$\Phi \vdash res_req \equiv res_req' \rightsquigarrow bool$
		resource equality: given constraints Φ , res_req
		and res_req' are equal according to bool
		$\Phi \vdash res \equiv res'$
		resource equality: given constraints Φ , res is equal
		to res'
		$\Phi \vdash \mathtt{simp_rec}(res) \rightsquigarrow \underline{res'}, \underline{bool}$
		partial-simplification of resources: given con- straints Φ me partially simplifies (string ifs) to
		straints Φ , res partially simplifies (strips ifs) to res'
	I	$\Phi \vdash \operatorname{simp}(res) \rightsquigarrow opt_res$
	I	partial-simplification of resources: given con-
		straints Φ , res attempts a partial simplification
		(strips ifs) to <i>opt_res</i>
ret_judge	::=	
0 0		$\Phi \vdash ret \equiv ret'$
		return type equality: given constraints Φ , ret is
		equal to ret'
pat_judge	::=	
		$pat: \beta \rightsquigarrow \ \mathcal{C} \text{ with } term$
		computational pattern to context: <i>pat</i> and type
		β produces context C and constraint <i>term</i>
		$ident_or_pat:\beta \rightsquigarrow \mathcal{C}$ with $term$
		identifier-or-pattern to context: <i>ident_or_pat</i> and
		type β produces context \mathcal{C} and constraint <i>term</i>

		$\mathcal{L}; \Phi \vdash res_pat:res \rightsquigarrow \mathcal{L}'; \Phi'; \mathcal{R}'$ resources pattern to context: given constraints Φ , res_pat of type res produces contexts $\mathcal{L}'; \Phi'; \mathcal{R}'$
		$C; \mathcal{L}; \Phi \vdash ret_pat:ret \rightsquigarrow \mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}'$ return pattern to context: given context $C; \mathcal{L}; \Phi$, ret_pat and return type ret produces contexts
		$\begin{array}{l} \mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}' \\ \Phi \vdash ret_pat:ret \rightsquigarrow \mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}' \\ return pattern to context: given constraints \Phi, \\ ret_pat \text{ and return type } ret \text{ produces contexts} \end{array}$
		$\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}'$
$expl_pure$::=	
	I	$\mathcal{C} \vdash object_value \Rightarrow \beta$ object value synthesises: given \mathcal{C} , object_value synthesises type β
	I	synthesises type β $\mathcal{C} \vdash pval \Rightarrow \beta$
	I	pure value synthesises: given C , <i>pval</i> synthesises type β
		$\mathcal{C}; \mathcal{L}; \Phi \vdash pexpr \Rightarrow pure_ret$
	1	pure expression synthesises: given $C; \mathcal{L}; \Phi, pexpr$
		synthesises a pure (non-resourceful) return type <u>pure_ret</u>
		$\mathcal{C}; \mathcal{L}; \Phi \vdash tpval \Leftarrow pure_ret$
		pure top-level value checks: given $C; \mathcal{L}; \Phi, tpval$
		checks against $pure_ret$
		$\mathcal{C}; \mathcal{L}; \Phi \vdash tpexpr \Leftarrow pure_ret$
		pure top-level expression checks: given $C; \mathcal{L}; \Phi$, tpexpr checks against pure_ret
$expl_res$::=	
		$C; \mathcal{L}; \Phi; \mathcal{R} \vdash pred_ops \Rightarrow res$ resource (q)predicate operation term synthesis: given $C; \mathcal{L}; \Phi; \mathcal{R}, pred_ops$ synthesises resource
		res
		$\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term \Rightarrow res$
		resource term synthesises: given $C; \mathcal{L}; \Phi; \mathcal{R},$
	I	res_term synthesises resource res
	I	$\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term \Leftarrow res$ resource term checks: given $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}, res_term$
		checks against resource res
$expl_spine$::=	$\mathcal{L} \left(\Delta, \mathcal{D} \right)$ with a set from $\Sigma = 1$
		$C; \mathcal{L}; \Phi; \mathcal{R} \vdash spine :: fun \gg ret$ function call spine checks: given $C; \mathcal{L}; \Phi; \mathcal{R}$, com-
		patible <i>spine</i> , <i>fun</i> produces an <i>ret</i>
		parisis spond, june produces dir ree

$expl_is_expr$::=	
		$\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash action \Rightarrow \underline{ret}$
		memory action synthesises: given $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R},$
		action synthesises return type ret
	1	$\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash memop \Rightarrow ret$
	1	memory operation synthesises: given $C; \mathcal{L}; \Phi; \mathcal{R}$,
		<i>memory</i> synthesises return type <i>ret</i>
		$\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash is_expr \Rightarrow \underline{ret}$
		indet. seq. expression synthesises: given
		$\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}, is_expr$ synthesises return type ret
$expl_seq_expr$::=	
		$\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash seq_expr \Rightarrow $ ret
		seq. expression synthesises: given $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R},$
		$seq_{-}expr$ synthesises return type ret
$expl_top$::=	
		$\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash tval \Leftarrow ret$
	I	top-level value checks: given $C; \mathcal{L}; \Phi; \mathcal{R}, tval$
		checks against return type ret
	1	
		$\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash seq_texpr \Leftarrow ret$
		top-level seq. expression checks: given $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R},$
		seq_texpr checks against return type ret
		$\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash is_texpr \Leftarrow ret$
		top-level indet. seq. expression checks: given
		$\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}, is_texpr$ checks against return type ret
		$\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret$
	I	top-level expression checks: given $C; \mathcal{L}; \Phi; \mathcal{R},$
		texpr checks against return type ret
		toop, cheens against retain type for

B3 Operational Semantics Judgements

$subs_judge$::=	
		$pat = pval \rightsquigarrow \sigma$
		computational value deconstruction: pat decon-
		structs <i>pval</i> to produce substitution σ
		$ident_or_pat = pval \rightsquigarrow \sigma$
		computational value deconstruction: ident_or_pat
		deconstructs $pval$ to produce substitution σ
		$\langle h; res_pat = res_val \rangle \rightsquigarrow \langle h'; \sigma \rangle$
		resource term deconstruction: res_pat decon-
		structs res_val to produce substitution σ
		$\langle h; \overline{ret_pat_i = ret_term_i}^i \rangle \rightsquigarrow \langle h'; \sigma \rangle$
	I	return value deconstruction: ret_pat_i decon-
		structs ret_val_i to produce substitution σ
	I	$\langle h; \overline{x_i = spine_elem_i}^i \rangle :: fun \gg \langle h'; \sigma; ret \rangle$
	I	function call spine: heap h and formal param-
		eters x_i assigned to $spine_elem_i$ for function of
		type fun, produce new heap h' substitution σ and
		result type ret
pure_opsem_defns		result type ret
pure_opsem_acjns		$ nernr\rangle \longrightarrow tnernr:nure ret\rangle$
		$ \langle pexpr \rangle \longrightarrow \langle tpexpr:pure_ret \rangle \\ \langle tpexpr \rangle \longrightarrow \langle tpexpr' \rangle $
	I	(ipexpi /> \ipexpi /
$opsem_defns$::=	
- <u>1</u>		$\langle h; pred_ops \rangle \Downarrow \langle h'; res_val \rangle$
	I	big-step resource (q)points-to operation reduc-
		tion: $\langle h; pred_ops \rangle$ reduces to $\langle h'; res_val \rangle$
		footprint_of res_val in $h \rightsquigarrow h_1$ rem h_2
	I	footprint of res_val in heap h is h_1 with h_2 re-
		mainder/frame
		$\langle h; res_term \rangle \Downarrow \langle h'; res_val \rangle$
	I	big-step resource term reduction: $\langle h; res_term \rangle$
		reduces to $\langle h'; res_val \rangle$
		$\langle h; action \rangle \longrightarrow \langle h'; is_expr \rangle$
	İ	$\langle h; memop \rangle \longrightarrow \langle h'; is_expr \rangle$
		$\langle h; is_expr \rangle \longrightarrow \langle h'; is_expr' \rangle$
		$\langle h; seq_expr \rangle \longrightarrow \langle h'; texpr:ret \rangle$
		$\langle h; seq_texpr \rangle \longrightarrow \langle h'; texpr \rangle$
	ĺ	$\langle h; is_texpr \rangle \longrightarrow \langle h'; texpr \rangle$
		$\langle h; texpr \rangle \longrightarrow \langle h'; texpr' \rangle$

B4 Proof Judgements

Note that the definition of $term \sim term'$ is omitted/assumed. It simply means that term and term' can be unified. Informally, $term \sim term'$ are defined recursively over the structure of SMT terms, using the standard definition of unification: variables unify with anything (modulo an occurs check), atoms unify if they are identical, compound terms unify if their constructors (except for Specified) and arity are identical, and their arguments unify recursively.

To clarify the Specified exception: $term \sim \text{Specified}(pval)$ (and $\text{Specified}(pval) \sim term$) iff $term \sim pval$.

~ is additionally assumed to be an equivalence relation and preserved by substitution: if $term \sim term'$ and $x \sim y$ in $term_1 \sim term'_1$ then $term/x(term_1) \sim term'/y(term'_1)$.

Note: \sim is only used in the proof of soundness, and not in the explicit CN type system. There is no unification required in the type system, but the notion of related terms is required to argue for the soundness of pattern-matching (Section B9.4 Well-typed values pattern-match successfully).

$misc_extra$::=	extra judgements for proof-related definitions
		$\forall x. iguard \Rightarrow \mathcal{C}; \mathcal{L}; \Phi \vdash h \Leftarrow \mathcal{R}$
		meta-logical quantification over heap-typing
		$\forall term \sim term'. \Phi \vdash fun \sim ret$
		meta-logical quantification over related fun and
		ret
		$\forall term \sim term'. \ \Phi \vdash res \sim res'$
		meta-logical quantification over related res and
		res'
		$term \sim term'$
		omitted/assumed definiton: SMT terms $term$ and
		term' are related
$proof_defns$::=	
		$\overline{x_i}^i :: fun \rightsquigarrow \frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}} \mid ret$
		matching $\overline{x_i}^i$ and fun produces contexts
		$\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}$ and return type <i>ret</i>
		$\mathcal{C};\mathcal{L};\Phi;\mathcal{R}\sqsubseteq\mathcal{C}';\mathcal{L}';\Phi';\mathcal{R}'$
		context weakening: $C; \mathcal{L}; \Phi; \mathcal{R}$ is stronger than
		$\mathcal{C}';\mathcal{L}';\Phi';\mathcal{R}'$
		$\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma \Leftarrow (\mathcal{C}; \mathcal{L}; \mathcal{R})$
		well-typed substitution: given $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}, \sigma$ checks
		against type $(\mathcal{C}; \mathcal{L}; \mathcal{R})$. It is complicated by the
		fact that substitutions are assumed to be sequen-
		tial/telescoping.
		$\mathcal{C}; \mathcal{L}; \Phi \vdash h \Leftarrow \underline{\mathcal{R}}$
		heap typing: under context $C; \mathcal{L}; \Phi$, heap h checks
	1	against context/type $\underline{\mathcal{R}}$
		$\Phi \vdash h \Leftarrow \underline{\mathcal{R}}$
		heap typing: under context Φ , heap h checks
	1	against context/type $\underline{\mathcal{R}}$ $\Phi \vdash res \sim res'$
	I	$\Psi \vdash res \sim res$ res is related to res'
	1	$\Phi \vdash fun \sim ret$
	I	fun is related to ret
		Jun 15 related to rec

B5 Groups of Rules

B5.1 Typing rules with an smt $(\Phi \Rightarrow qterm)$ premise

IG_CMP_EQ, IG_CMP_LT, IG_CMP_GT, Q_CMP_PTRSTEP_NEQ, Q_CMP_IG_NEQ, Q_CMP_IARG_NEQ, Q_CMP_COMPARABLE, REQ_EQ_PP_IARG_NEQ, REQ_EQ_PP_EQ, RES_EQ_PHI, RES_EQ_ORDDISJ, RES_SIMPREC_IF_TRUE, RES_SIMPREC_IF_FALSE, RET_EQ_PHI, PAT_RES_MATCH_IF_TRUE, PAT_RES_MATCH_IF_FALSE, PURE_EXPR_ASSERT_UNDEF, PURE_TOP_VAL_DONE, PURE_TOP_VAL_UNDEF, PURE_TOP_VAL_ERROR, RES_SYN_PREDOPS_CONGEAL, RES_SYN_PREDOPS_IMPLODE, RES_SYN_PREDOPS_BREAK, RES_SYN_PREDOPS_GLUE, RES_SYN_PREDOPS_INJ, RES_SYN_PREDOPS_SPLIT, RES_CHK_PHI, RES_CHK_IF_TRUE, RES_CHK_IF_FALSE, EXPL_IS_ACTION_LOAD, EXPL_IS_ACTION_STORE, EXPL_IS_ACTION_KILL_STATIC, EXPL_IS_MEMOP_PTRVALIDFORDEREF, EXPL_TOP_VAL_UNDEF, EXPL_TOP_VAL_ERROR.

B5.2 Typing rules which change the context

B5.2.1 Rules which add constraints

EXPL_TOP_SEQ_IF.

B5.2.2 Rules which add constraints and computational or logical variables

EXPL_TOP_SEQ_LETP, EXPL_TOP_SEQ_LETTP, EXPL_TOP_SEQ_CASE.

B5.2.3 Rules which restrict the resource context

No-resource / "pure" rules: IG_CMP_EQ, IG_CMP_LT, IG_CMP_GT, IG_CMP_NONE, Q_CMP_ NAME_NEQ, Q_CMP_PTRSTEP_NEQ, Q_CMP_IG_NEQ, Q_CMP_IARG_NEQ, Q_CMP_ COMPARABLE, REQ_EQ_PP_NAME_NEQ, REQ_EQ_PP_IARG_NEQ, REQ_EQ_PP_EQ, REQ_EQ_ QQ_EQ, REQ_EQ_QQ_NEQ, RES_EQ_EMP, RES_EQ_PHI, RES_EQ_PRED, RES_EQ_QPRED, RES_EQ_SEPCONJ, RES_EQ_EXISTS, RES_EQ_ORDDISJ, RES_SIMPREC_IF_TRUE, RES_ SIMPREC_IF_FALSE, RES_SIMPREC_SEPCONJ, RES_SIMPREC_EXISTS, RES_SIMPREC_ NOCHANGE, SIMP_NOSIMP, SIMP_SIMP, RET_EQ_END, RET_EQ_COMP, RET_EQ_LOG, RET_ EQ_PHI, RET_EQ_RES, PAT_COMP_NO_SYM_ANNOT, PAT_COMP_SYM_ANNOT, PAT_COMP_NIL, PAT_COMP_CONS, PAT_COMP_TUPLE, PAT_COMP_ARRAY, PAT_COMP_SPECIFIED, PAT_SYM_ OR_PAT_SYM, PAT_SYM_OR_PAT_PAT, PAT_RES_MATCH_EMP, PAT_RES_MATCH_PHI, PAT_ RES_MATCH_IF_TRUE, PAT_RES_MATCH_IF_FALSE, PAT_RES_MATCH_VAR, PAT_RES_MATCH_ SEPCONJ, PAT_RES_MATCH_PACK, PAT_RES_MATCH_FOLD, PAT_RET_EMPTY, PAT_RET_ COMP, PAT_RET_LOG, PAT_RET_RES, PAT_RET_PHI, PAT_RET'AUX, PURE_VAL_OBJ_INT, PURE_VAL_OBJ_PTR, PURE_VAL_OBJ_ARR, PURE_VAL_OBJ_STRUCT, PURE_VAL_VAR, PURE_ VAL_OBJ, PURE_VAL_LOADED, PURE_VAL_UNIT, PURE_VAL_TRUE, PURE_VAL_FALSE, PURE_ VAL_LIST, PURE_VAL_TUPLE, PURE_VAL_CTOR_NIL, PURE_VAL_CTOR_CONS, PURE_VAL_ CTOR_TUPLE, PURE_VAL_CTOR_ARRAY, PURE_VAL_CTOR_SPECIFIED, PURE_VAL_STRUCT, PURE_EXPR_VAL, PURE_EXPR_ARRAY_SHIFT, PURE_EXPR_MEMBER_SHIFT, PURE_EXPR_NOT, PURE_EXPR_ARITH_BINOP, PURE_EXPR_REL_BINOP, PURE_EXPR_BOOL_BINOP, PURE_EXPR_ CALL, PURE_EXPR_ASSERT_UNDEF, PURE_EXPR_BOOL_TO_INTEGER, PURE_EXPR_WRAPI, PURE_TOP_VAL_UNDEF, PURE_TOP_VAL_ERROR, PURE_TOP_VAL_DONE.

Resource-mentioning rules: Res_Syn_Emp, Res_Syn_Var, Res_Syn_VarSimp, Res_Syn_Pred, Res_Syn_QPred, Res_Syn_SepConj, Res_Chk_Phi, Res_Chk_SepConj, Expl_Spine_Ret,

EXPL_SPINE_RES, EXPL_IS_ACTION_CREATE, EXPL_IS_MEMOP_REL_BINOP, EXPL_IS_MEMOP_ INTFROMPTR, EXPL_IS_MEMOP_PTRFROMINT, EXPL_IS_MEMOP_PTRVALIDFORDEREF, EXPL_ IS_MEMOP_PTRWELLALIGNED, EXPL_IS_MEMOP_INTFROMPTR, EXPL_TOP_VAL_UNDEF, EXPL_TOP_VAL_ERROR, EXPL_TOP_SEQ_RUN, SUBS_CHK_EMPTY, SUBS_CHK_RES.

B5.2.4 Rules which add constraints and restrict the resource context

PURE_TOP_IF.

B5.2.5 Rules which add constraints and variables, and restrict the resource context

PURE_TOP_LET, PURE_TOP_LETT, PURE_TOP_CASE, EXPL_TOP_SEQ_LET, EXPL_TOP_SEQ_LETT, EXPL_TOP_IS_LETS.

B5.3 Value typing rules

PURE_VAL_OBJ_INT, PURE_VAL_OBJ_PTR, PURE_VAL_OBJ_ARR, PURE_VAL_OBJ_STRUCT, PURE_VAL_VAR, PURE_VAL_OBJ, PURE_VAL_LOADED, PURE_VAL_UNIT, PURE_VAL_TRUE, PURE_VAL_FALSE, PURE_VAL_TUPLE, PURE_VAL_CTOR_NIL, PURE_VAL_CTOR_CONS, PURE_ VAL_CTOR_TUPLE, PURE_VAL_CTOR_ARRAY, PURE_VAL_CTOR_SPECIFIED, PURE_VAL_ STRUCT, PURE_TOP_VAL_DONE, RES_SYN_EMP, RES_SYN_VAR, RES_SYN_VARSIMP, RES_SYN_ PRED, RES_SYN_QPRED, RES_CHK_PHI, EXPL_TOP_VAL_DONE.

B6 Weakening

If $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq \mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}' \text{ and } \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash J \text{ then } \mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash J.$

ASSUME: 1. $C; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq C'; \mathcal{L}'; \Phi'; \mathcal{R}'.$ 2. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash J$

PROVE: $\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash J.$

- $\langle 1 \rangle$ 1. CASE: PURE_VAL_VAR. PROOF: By WEAK_CONS_COMP, if $x: \beta \in C$ then $x: \beta \in C'$.
- (1)2. CASE: Typing rules with an smt ($\Phi \Rightarrow qterm$) premise (see B5.1).

ASSUME: smt ($\Phi \Rightarrow qterm$). PROVE: smt ($\Phi' \Rightarrow qterm$).

- $\langle 2 \rangle$ 1. For all term, if term $\in \Phi$ then term $\in \Phi'$. PROOF: By WEAK_CONS_PHI.
- (2)2. Any extra constraints in Φ' (by WEAK_SKIP_PHI) would either be irrelevant, redundant, or inconsistent.
- $\langle 2 \rangle 3$. In all cases, smt $(\Phi' \Rightarrow qterm)$ as required.
- $\langle 1 \rangle$ 3. CASE: All remaining rules.
 - $\langle 2 \rangle$ 1. $\mathcal{R} = \mathcal{R}'$. PROOF: Only WEAK_CONS_RES exists.
 - $\langle 2 \rangle 2$. All remaining rules are functorial in $C; \mathcal{L}; \Phi$, so one can proceed by straightforward induction.
 - $\langle 2 \rangle$ 3. So $\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash J$ as required.

B7 Substitution

B7.1 Substitutions preserve SMT results

If smt $(\Phi \Rightarrow qterm)$ and $\mathcal{C}; \mathcal{L}; \sigma(\Phi); \mathcal{R} \vdash \sigma \leftarrow (\mathcal{C}'; \mathcal{L}'; \mathcal{R}')$, then smt $(\sigma(\Phi) \Rightarrow \sigma(qterm))$.

PROOF: By the first assumption, *qterm* holds for all (well-typed, ensured by the second assumption) instantiations of its free variables.

B7.2 Substitutions can be split up

If $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma \leftarrow (\mathcal{C}'; \mathcal{L}'; \mathcal{R}'_1, \mathcal{R}'_2)$ then $\exists \mathcal{R}_1, \mathcal{R}_2, \sigma_1, \sigma_2. \ C; \mathcal{L}; \Phi; \mathcal{R}_1 \vdash \sigma_1 \leftarrow (\mathcal{C}'; \mathcal{L}'; \mathcal{R}'_1) \land C; \mathcal{L}; \Phi; \mathcal{R}_2 \vdash \sigma_2 \leftarrow (\mathcal{C}'; \mathcal{L}'; \mathcal{R}'_2).$

PROOF SKETCH: By induction on the substitution. If $\sigma = [res_term/r, \sigma']$ where r:res:

 $\langle 1 \rangle$ 1. Let \mathcal{R}' be such that $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}' \vdash res_term \Leftarrow res.$

 $\langle 1 \rangle 2$. Recursively split σ' into σ'_1 and \mathcal{R}''_1 ; σ'_2 and \mathcal{R}''_2 .

 $\langle 1 \rangle$ 3. If $r \in \mathcal{R}'_1$, let $\sigma_1 = [res_term/r, \sigma'_1]$ and $\mathcal{R}_1 = \mathcal{R}', \mathcal{R}''_1$.

 $\langle 1 \rangle 4$. If $r \in \mathcal{R}'_2$, let $\sigma_2 = [res_term/r, \sigma'_2]$.

 $\langle 1 \rangle$ 5. For other cases, both are treated exactly the same.

B7.3 Substitution

If $\mathcal{C}'; \mathcal{L}'; \Phi; \mathcal{R}' \vdash J$, then $\forall \mathcal{C}, \mathcal{L}, \mathcal{R}, \sigma$. $(\mathcal{C}; \mathcal{L}; \sigma(\Phi); \mathcal{R} \vdash \sigma \leftarrow (\mathcal{C}'; \mathcal{L}'; \mathcal{R}')) \Rightarrow \mathcal{C}; \mathcal{L}; \sigma(\Phi); \mathcal{R} \vdash \sigma(J)$.

For types, substitutions are only defined over resource types res, and return types res, not base types β . Similarly, for terms, substitutions are only defined over expressions (including SMT terms term), but not (computational, resource or return) patterns.

Since Φ is scoped to $\mathcal{C}'; \mathcal{L}'$, we must substitute over it as well as all the usual suspects on the right.

Substitution of contexts is defined by substituting over each constraint in Φ . As a result, $\sigma(\Phi_1, \Phi_2) = \sigma(\Phi_1), \sigma(\Phi_2)$, and if $\sigma(\Phi) = \Phi'_1, \Phi'_2$ then $\exists \Phi_1, \Phi_2, \sigma(\Phi_1, \Phi_2) = \sigma(\Phi_1), \sigma(\Phi_2)$.

PROOF SKETCH: Induction over the typing judgements.

- 1. Variable rules: Pure_Val_Var, Res_Syn_VarSimp, Res_Syn_Var.
- 2. EXPL_TOP_VAL_DONE: prove that to_fun commutes with substitution.
- 3. Typing rules which change the context (see B5.2).
- 4. Remaining rules by straightforward induction.

ASSUME: 1. $\mathcal{C}'; \mathcal{L}'; \Phi; \mathcal{R}' \vdash J$. 2. Arbitrary $\mathcal{C}, \mathcal{L}, \mathcal{R}, \sigma$. 3. $\mathcal{C}; \mathcal{L}; \sigma(\Phi); \mathcal{R} \vdash \sigma \leftarrow (\mathcal{C}'; \mathcal{L}'; \mathcal{R}')$. PROVE: $C; \mathcal{L}; \sigma(\Phi); \mathcal{R} \vdash \sigma(J).$

- $\begin{array}{l} \langle 1 \rangle 1. \text{ CASE: PURE_VAL_VAR.} \\ \mathcal{C}'; \mathcal{L}' \vdash x \Rightarrow \beta \\ \mathcal{C}; \mathcal{L}; \sigma(\Phi); \mathcal{R} \vdash \sigma \Leftarrow (\mathcal{C}'; \mathcal{L}'; \cdot). \end{array}$
 - $\langle 2 \rangle 1. \ x: \beta \in \mathcal{C}'.$ PROOF: By inversion on assumption 1.
 - $\langle 2 \rangle 2$. \mathcal{R} is empty.

PROOF: SUBS_CHK_RES is the only rule which could require a non-empty resource context, and it is never used because \mathcal{R}' is empty.

- $\begin{array}{l} \langle 2 \rangle 3. \ \exists \sigma_1, pval, \sigma_2, \beta, \mathcal{C}_1, \mathcal{C}_2, \mathcal{L}_1, \mathcal{L}_2. \\ 1. \ \sigma = [\sigma_1, pval/x, \sigma_2] \\ 2. \ \mathcal{C}; \mathcal{L}; \Phi; \vdash \sigma_1 \leftarrow (\mathcal{C}_1; \mathcal{L}_1; \cdot) \\ 3. \ \mathcal{C}; \mathcal{L}; \Phi; \vdash \sigma_1(pval/x) \leftarrow (x;\beta; \cdot; \cdot) \\ 4. \ \mathcal{C} \vdash \sigma_1(pval) \Rightarrow \beta \\ 5. \ \mathcal{C}; \mathcal{L}; \Phi; \vdash \sigma_1(pval/x(\sigma_2)) \leftarrow (\mathcal{C}_2; \mathcal{L}_2; \cdot). \\ \text{PROOF: Repeated inversion on assumption 3 until the SUBS_CHK_COMP responsible for adding x (by <math>\langle 2 \rangle 1$, there must be at least one). \end{array}
- $\langle 2 \rangle 4$. Since $\sigma(x) = \sigma_1(pval)$, we are done. PROOF: By $\mathcal{C}; \mathcal{L} \vdash \sigma(x) \Rightarrow \beta$.
- $\begin{array}{l} \langle 1 \rangle 2. \text{ CASE: } \text{Res_Syn_VarSIMP.} \\ \mathcal{C}'; \mathcal{L}'; \Phi; r: res \vdash r \Rightarrow res' \\ \mathcal{C}; \mathcal{L}; \sigma(\Phi); \mathcal{R} \vdash \sigma \leftarrow (\mathcal{C}'; \mathcal{L}'; r: res'). \end{array}$

 - $\langle 2 \rangle 2$. SUFFICES: 1. $\sigma(r) = \sigma_1(res_term)$ 2. $\sigma(res') = [\sigma_1, res_term/r, \sigma_2](res') = \sigma_1(res').$
 - $\langle 2 \rangle$ 3. $\sigma(r) = \sigma_1(res_term)$. PROOF: $\sigma_2(r) = r$, because σ_2 does not mention any resource variables.
 - $\langle 2 \rangle 4. \ \sigma(res') = [\sigma_1, res_term/r, \sigma_2](res') = \sigma_1(res').$
 - $\langle 3 \rangle$ 1. $[\sigma_1, res_term/r, \sigma_2](res') = [\sigma_1, \sigma_2](res')$. PROOF: Resource types do not refer to resource variables.

- $\begin{array}{l} \langle 3 \rangle 2. \ [\sigma_1, \sigma_2](res') = \sigma_1(res). \\ \text{PROOF: By } ; ; ; \sigma(\Phi); \mathcal{R} \vdash \sigma_1(res_term) \Leftarrow \sigma_1(res'), \text{ we know that } res' \text{ only refers} \\ \text{ to variables in } \mathcal{C}, \mathcal{C}_1; \mathcal{L}, \mathcal{L}_1. \end{array}$
- (1)3. CASE: RES_SYN_VAR. $\mathcal{C}'; \mathcal{L}'; \Phi'; r:res \vdash r \Rightarrow res$ PROOF: Similar to RES_SYN_VARSIMP, but with res' = res.
- $\langle 1 \rangle 4$. Case: Expl_Top_Val_Done.

PROOF SKETCH: to_fun recursively maps Σ to Π , \exists to \forall , \land to \supset and * to $\neg*$, and otherwise keeps any *term* and *res* the same. Hence, $\sigma(\texttt{to}_fun ret) = \texttt{to}_fun \sigma(ret)$, and the case proceeds by induction straightforwardly.

(1)5. CASE: Typing rules which change the context (see B5.2), except for PURE_VAL_VAR, RES_SYN_VAR, and RES_SYN_VARSIMP.

For brevity, I shall only go over EXPL_TOP_SEQ_LET, as it is one of the most general rules; one which adds constraints and variables, and restricts the resource context.

PROOF SKETCH: The key idea is to apply lemma B7.2 (Substitutions can be split up) as required by the restrictions on the resource context. If a rule has a smt ($\Phi \Rightarrow qterm$) premise, then apply lemma B7.1 (Substitutions preserve SMT results).

 $\begin{array}{l} \mathcal{C}'; \mathcal{L}'; \Phi; \mathcal{R}'_1, \mathcal{R}'_2 \vdash \texttt{let} \ ret_pat = seq_expr \ \texttt{in} \ texpr \Leftarrow ret_2 \\ \mathcal{C}; \mathcal{L}; \sigma(\Phi); \mathcal{R} \vdash \sigma \Leftarrow (\mathcal{C}'; \mathcal{L}'; \mathcal{R}'_1, \mathcal{R}'_2). \\ \text{PROVE:} \quad \mathcal{C}; \mathcal{L}; \sigma(\Phi); \mathcal{R} \vdash \texttt{let} \ ret_pat = \sigma(seq_expr) \ \texttt{in} \ \sigma(texpr) \Leftarrow \sigma(ret_2). \end{array}$

- $\begin{array}{l} \langle 2 \rangle 1. \ \exists ret_1, \mathcal{C}_3, \mathcal{L}_3, \Phi_3, \mathcal{R}_3. \\ 1. \ \mathcal{C}'; \mathcal{L}'; \Phi; \mathcal{R}'_1 \vdash seq_expr \Rightarrow ret_1 \\ 2. \ \Phi \vdash ret_pat: ret_1 \rightsquigarrow \mathcal{C}_3; \mathcal{L}_3; \Phi_3; \mathcal{R}_3 \\ 3. \ \mathcal{C}', \mathcal{C}_3; \mathcal{L}', \mathcal{L}_3; \Phi, \Phi_3; \mathcal{R}'_2, \mathcal{R}_3 \vdash texpr \Leftarrow ret_2. \\ \text{PROOF: Inversion on assumption } 1. \end{array}$
- $\begin{array}{l} \langle 2 \rangle 2. \ 1. \ \forall \mathcal{C}, \mathcal{L}, \mathcal{R}_{1}, \sigma_{1}. \\ & (\mathcal{C}; \mathcal{L}; \sigma_{1}(\Phi); \mathcal{R}_{1} \vdash \sigma_{1} \leftarrow (\mathcal{C}'; \mathcal{L}'; \mathcal{R}'_{1})) \Rightarrow \\ & \mathcal{C}; \mathcal{L}; \sigma_{1}(\Phi); \mathcal{R}_{1} \vdash \sigma_{1}(seq_expr) \Rightarrow \sigma_{1}(ret_{1}). \\ 2. \ \forall \mathcal{C}, \mathcal{L}, \mathcal{R}_{4}, \sigma_{2}. \\ & (\mathcal{C}; \mathcal{L}; \sigma_{2}(\Phi); \mathcal{R}_{4} \vdash \sigma_{2} \leftarrow (\mathcal{C}'; \mathcal{L}'; \cdot)) \Rightarrow \\ & \sigma_{2}(\Phi) \vdash ret_pat: \sigma_{2}(ret_{1}) \rightsquigarrow \mathcal{C}_{3}; \mathcal{L}_{3}; \sigma_{2}(\Phi_{3}); \sigma_{2}(\mathcal{R}_{3}). \\ 3. \ \forall \mathcal{C}, \mathcal{L}, \mathcal{R}_{2}, \sigma_{3}. \\ & (\mathcal{C}; \mathcal{L}; \sigma_{3}(\Phi, \Phi_{3}); \mathcal{R}_{2} \vdash \sigma_{3} \leftarrow (\mathcal{C}', \mathcal{C}_{3}; \mathcal{L}', \mathcal{L}_{3}; \mathcal{R}'_{2}, \mathcal{R}_{3})) \Rightarrow \\ & \mathcal{C}; \mathcal{L}; \sigma(\Phi, \Phi_{3}); \mathcal{R}_{2} \vdash \sigma(texpr) \leftarrow \sigma(ret_{2}). \\ \end{array} \right.$
- $\begin{array}{l} \langle 2 \rangle 3. \ \sigma \ \text{and} \ \mathcal{R} \ \text{can be split up into} \ \sigma_1 \ \text{and} \ \mathcal{R}_1; \ \sigma_2; \ \text{and} \ \sigma_3 \ \text{and} \ \mathcal{R}_2 \ \text{such that:} \\ 1. \ \mathcal{R} = \mathcal{R}_1, \mathcal{R}_2 \\ 2. \ \mathcal{C}; \mathcal{L}; \sigma(\Phi); \mathcal{R}_1 \vdash \sigma_1 \leftarrow (\mathcal{C}'; \mathcal{L}'; \mathcal{R}_1') \\ 3. \ \mathcal{C}; \mathcal{L}; \sigma(\Phi); \cdot \vdash \sigma_2 \leftarrow (\mathcal{C}'; \mathcal{L}'; \cdot) \\ 4. \ \mathcal{C}; \mathcal{L}; \sigma(\Phi); \mathcal{R}_2 \vdash \sigma_3 \leftarrow (\mathcal{C}'; \mathcal{L}'; \mathcal{R}_2'). \end{array}$

PROOF: By lemma B7.2 (Substitutions can be split up).

- $\langle 2 \rangle$ 4. 1. $\sigma(\Phi) = \sigma_1(\Phi) = \sigma_2(\Phi) = \sigma_3(\Phi)$ 2. $\sigma(\Phi_3) = \sigma_2(\Phi_3) = \sigma_3(\Phi_3)$ 3. $\sigma(\mathcal{R}_3) = \sigma_2(\mathcal{R}_3) = \sigma_3(\mathcal{R}_3)$. PROOF: All the substitutions differ only the resource-variable substitutions, but *term* and *res* (and so *ret* and Φ) do not mention resource variables.
- $\begin{array}{l} \langle 2 \rangle 5. \text{ SUFFICES: } \exists \mathcal{R}_1, \mathcal{R}_2, ret_1, \mathcal{C}_3, \mathcal{L}_3, \Phi_3, \mathcal{R}_3. \\ 1. \mathcal{R} = \mathcal{R}_1, \mathcal{R}_2 \\ 2. \mathcal{C}; \mathcal{L}; \sigma(\Phi); \mathcal{R}_1 \vdash \sigma(seq_expr) \Rightarrow ret_1 \\ 3. \sigma(\Phi) \vdash ret_pat: \sigma(ret_1) \rightsquigarrow \mathcal{C}_3; \mathcal{L}_3; \Phi_3; \mathcal{R}_3 \\ 4. \mathcal{C}, \mathcal{C}_3; \mathcal{L}, \mathcal{L}_3; \sigma(\Phi), \Phi_3; \mathcal{R}_2, \mathcal{R}_3 \vdash \sigma(texpr) \Leftarrow \sigma(ret_2). \end{array}$ PROOF: By EXPL_TOP_SEQ_LET.

 $\begin{array}{l} \langle 2 \rangle 6. \text{ LET: } \mathcal{R}_1; \mathcal{R}_2; \sigma(\mathit{ret}_1); \mathcal{C}_3; \mathcal{L}_3; \sigma(\Phi_3); \sigma(\mathcal{R}_3) \text{ be the witnesses for } \langle 2 \rangle 5. \\ \text{ SUFFICES: } 1. \mathcal{R} = \mathcal{R}_1, \mathcal{R}_2 \\ 2. \mathcal{C}; \mathcal{L}; \sigma(\Phi); \mathcal{R}_1 \vdash \sigma(\mathit{seq_expr}) \Rightarrow \sigma(\mathit{ret}_1) \\ 3. \sigma(\Phi) \vdash \mathit{ret_pat:} \sigma(\mathit{ret}_1) \rightsquigarrow \mathcal{C}_3; \mathcal{L}_3; \sigma(\Phi_3); \sigma(\mathcal{R}_3) \\ 4. \mathcal{C}, \mathcal{C}_3; \mathcal{L}, \mathcal{L}_3; \sigma(\Phi), \sigma(\Phi_3); \mathcal{R}_2, \sigma(\mathcal{R}_3) \vdash \sigma(\mathit{texpr}) \Leftarrow \sigma(\mathit{ret}_2). \end{array}$

 $\langle 2 \rangle$ 7. We are done. PROOF: Apply $\langle 2 \rangle$ 2 with $\langle 2 \rangle$ 3 and $\langle 2 \rangle$ 4.

$\langle 1 \rangle 6$. CASE: All remaining rules.

PROOF SKETCH: By straightforward induction. If the rule has a smt ($\Phi \Rightarrow qterm$) premise, apply lemma B7.1 (Substitutions preserve SMT results).

B8 Resource Term Lemmas

B8.1 Definition: Normalised contexts

A resource context is *normalised* is it contains only predicates, quantified predicates and under-determined conditional resources.

B8.2 Resource contexts typing closed terms must be normalised

ASSUME: 1. Arbitrary res 2. Closed (no free-variables) res_term 3. $:; :; \Phi; \mathcal{R} \vdash res_term \Leftarrow res$ (or synthesising)

PROVE: $\exists \underline{\mathcal{R}}. \ \mathcal{R} = \underline{\mathcal{R}}.$

PROOF SKETCH: By induction on the typing judgement.

- $\langle 1 \rangle$ 1. CASE: RES_SYN_EMP, RES_SYN_PRED, RES_SYN_QPRED, RES_CHK_PHI. PROOF: $\underline{\mathcal{R}} = \mathcal{R}$ (the context is already normalised).
- (1)2. CASE: RES_SYN_VAR, RES_SYN_VARSIMP PROOF: Impossible cases (*res_terms* are not closed).
- (1)3. CASE: All remaining cases (RES_SYN_PREDOPS_ITERATE, RES_SYN_PREDOPS_CONGEAL, RES_SYN_PREDOPS_EXPLODE, RES_SYN_PREDOPS_IMPLODE, RES_SYN_PREDOPS_ BREAK, RES_SYN_PREDOPS_GLUE, RES_SYN_PREDOPS_INJ, RES_SYN_PREDOPS_ SPLIT, RES_SYN_PREDOPS, RES_SYN_FOLD, RES_SYN_SEPCONJ, RES_CHK_PACK, RES_CHK_SEPCONJ, RES_CHK_IF_TRUE, RES_CHK_IF_FALSE, RES_CHK_SWITCH). PROOF: By induction.

B8.3 Non-conditional resources determine context and values

This is a simple inversion lemma.

- ASSUME: 1. Arbitrary res_val
 - 2. $res \neq if term then res_1 else res_2$.
 - 3. $:;:; \Phi; \underline{\mathcal{R}} \vdash res_val \Leftarrow res$ (or synthesising)
- (1)1. The typing assumption cannot be any of: RES_SYN_VAR, RES_SYN_VARSIMP, RES_SYN_ FOLD, RES_SYN_PREDOPS_ITERATE, RES_SYN_PREDOPS_CONGEAL, RES_SYN_PREDOPS_ EXPLODE, RES_SYN_PREDOPS_IMPLODE, RES_SYN_PREDOPS_BREAK, RES_SYN_ PREDOPS_GLUE, RES_SYN_PREDOPS_INJ, RES_SYN_PREDOPS_SPLIT, RES_SYN_ PREDOPS.

PROOF: res_terms in these rules are not values.

(1)2. If res = emp, then $\underline{\mathcal{R}} = \cdot$ and $res_val = emp$. PROOF: By inversion, the assumption must be RES_SYN_EMP (and optionally RES_CHK_ SWITCH).

- (1)3. If res = term, then $\underline{\mathcal{R}} = \cdot$ and $res_val = \texttt{term}$. PROOF: By inversion, the assumption must be RES_CHK_PHI.
- (1)4. If $res = pred_term(oarg)$, then $\underline{\mathcal{R}} = _:pred_term(oarg)$ and $res_val = pred_term$. PROOF: By inversion, the assumption must be RES_SYN_PRED (and optionally RES_CHK_SWITCH).
- (1)5. If $res = qpred_term(oarg)$, then $\underline{\mathcal{R}} = _:qpred_term(oarg)$ and $res_val = qpred_term$. PROOF: By inversion, the assumption must be RES_SYN_QPRED (and optionally RES_CHK_SWITCH).
- (1)6. If $res = res_1 * res_2$, then $\underline{\mathcal{R}} = \underline{\mathcal{R}}_1, \underline{\mathcal{R}}_2$ and $res_val = \langle res_val_1, res_val_2 \rangle$. PROOF: By inversion, the assumption must be RES_SYN_SEPCONJ (and optionally RES_CHK_SWITCH), or RES_CHK_SEPCONJ.
- (1)7. If $res = \exists y:\beta$. res, then $res_val = pack (oarg, res_val')$. PROOF: By inversion, the assumption must be RES_CHK_PACK.

B8.4 Normalised resource context determines structure of heap

This is as simple inversion lemma.

Assume: $\Phi \vdash h \Leftarrow \underline{\mathcal{R}}$. (1)1. If $\underline{\mathcal{R}} = \cdot$, then $h = \cdot$. PROOF: By inversion, the assumption must be HEAP_EMPTY.

- (1)2. If $pred = ptr \xrightarrow{init}_{\tau} value$, $\underline{\mathcal{R}} = _:pred$, then $h = \{pred' \& \text{None}\}$ for $\Phi \vdash pred \equiv pred'$. PROOF: By inversion, the assumption must be HEAP_PRED_OWNED.
- $\langle 1 \rangle$ 3. If $\underline{\mathcal{R}} = _:pred$, then $h = \{pred' \& def \& h'\}$. for $\Phi \vdash pred \equiv pred'$. PROOF: By inversion, the assumption must be HEAP_PRED_OTHER.
- (1)4. If qpred = x. $iguard \Rightarrow ptr + x \times \text{size}_of(\tau) \xrightarrow{oarg[x].init} oarg[x].value, \underline{\mathcal{R}} = _:qpred$, then $h = \{qpred' \& \cdot\}$ for $\Phi \vdash qpred \equiv qpred'$. PROOF: By inversion, the assumption must be HEAP_QPRED_OWNED.
- (1)5. If $\underline{\mathcal{R}} = _:qpred$, then $h = \{qpred' \& arr_def_heap\}$ for $\Phi \vdash qpred \equiv qpred'$. PROOF: By inversion, the assumption must be HEAP_QPRED_OTHER.
- $\langle 1 \rangle$ 6. If $\underline{\mathcal{R}} = \underline{\mathcal{R}}_1, \underline{\mathcal{R}}_2$, then $h = h_1 + h_2$, where $\Phi \vdash h_1 \Leftarrow \underline{\mathcal{R}}_1$ and $\Phi \vdash h_2 \Leftarrow \underline{\mathcal{R}}_2$. PROOF: By inversion, the assumption must be HEAP_CONCAT.

B8.5 Well-typed resource value determines its footprint

PROOF SKETCH: By induction on the typing judgement.

- (1)1. CASE: RES_SYN_EMP or RES_CHK_PHI $\underline{\mathcal{R}} = \cdot$ and so $h = \cdot$ by lemma B8.4. PROOF: FOOTPRINT_EMP or FOOTPRINT_TERM respectively.
- (1)2. CASE: RES_SYN_PRED or RES_SYN_QPRED $\frac{\mathcal{R} = _:pred_term(oarg) \text{ or } _:qpred_term(oarg), \text{ and so} \\
 h = \{pred_term(oarg) \& opt_def_heap\} \text{ or } \{qpred_term(oarg) \& arr_def_heap\} \text{ by} \\
 \text{lemma B8.4.} \\
 \text{PROOF: FOOTPRINT_PRED or FOOTPRINT_QPRED respectively.}$
- (1)3. CASE: pack (oarg, res_val').PROOF: By induction.
- (1)4. CASE: FOOTPRINT_SEPPAIR. $res_val = \langle res_val_1, res_val_2 \rangle,$ $\underline{\mathcal{R}} = \underline{\mathcal{R}}_1, \underline{\mathcal{R}}_2,$ and so $h = h_1 + h_2$ where $\Phi \vdash h_1 \Leftarrow \underline{\mathcal{R}}_1$ and $\Phi \vdash h_2 \Leftarrow \underline{\mathcal{R}}_2$ by lemma B8.4.
 - $\langle 2 \rangle$ 1. footprint_of res_val_1 in $h_1 + h_2 + f \rightsquigarrow h_1$ rem $h_2 + f$. PROOF: Instantiate inductive hypothesis with $h_2 + f$.
 - $\langle 2 \rangle 2$. footprint_of res_val_1 in $h_2 + f \rightsquigarrow h_2$ rem f. PROOF: Instantiate inductive hypothesis with f.

B8.6 Progress and type preservation for resource terms

ASSUME: 1. Closed (no free-variables) res_term 2. $\cdot; \cdot; \Phi; \underline{\mathcal{R}} \vdash res_term \leftarrow res$ (or synthesising) 3. $\Phi \vdash h \leftarrow \underline{\mathcal{R}}$

PROVE: $\exists res_val, \underline{\mathcal{R}}', h'.$ 1. $\cdot; \cdot; \Phi; \underline{\mathcal{R}}' \vdash res_val \Leftarrow res$ (or synthesising respectively) 2. $\Phi \vdash h' \Leftarrow \underline{\mathcal{R}}'$ 3. $\forall f. \langle h+f; res_term \rangle \Downarrow \langle h'+f; res_val \rangle.$

PROOF SKETCH: Induction on the resource term typing assumption. The type dictates the value and context, the latter of which dictates the shape of the heap.

Because of this direction of information, you cannot prove that

 $\forall \underline{\mathcal{R}}'. (\Phi \vdash h' \leftarrow \underline{\mathcal{R}}') \Rightarrow (\cdot; \cdot; \mathcal{R}'' \vdash res_val' \leftarrow res).$ The converse is already true by the composition of lemmas B8.3 and B8.4. You need the existential, so that you can provide it as a witness when proving heap typing for folded predicates, which you need to use in proving unfolding predicates in pattern-matching.

- $\langle 1 \rangle$ 1. Case: Res_Syn_PredOps_Iterate
 - LET: $res_term = iterate (res_term', n)$ $qpred_term = (x; 0 \le x \land x \le n - 1) \{ \texttt{Owned} \langle \tau \rangle (ptr + x \times \text{size_of}(\tau)) \}$ $res = qpred_term(oarg)$ $pred_term = \texttt{Owned} \langle \texttt{array} n \tau \rangle (ptr)$ $res' = pred_term(oarg').$
 - $\langle 2 \rangle 1. \quad :; :; \Phi; \underline{\mathcal{R}} \vdash res_term' \Rightarrow res'.$ PROOF: By inversion on the typing assumption.
 - $\begin{array}{l} \langle 2 \rangle 2. \ \exists h'', \underline{\mathcal{R}}'', res_val'. \\ 1. \ ;; ;; ; \mathcal{R}'' \vdash res_val' \Rightarrow res' \\ 2. \ \Phi \vdash h'' \Leftarrow \underline{\mathcal{R}}'' \\ 3. \ \forall f. \ \langle h+f; res_term' \rangle \Downarrow \langle h''+f; res_val' \rangle. \\ \text{PROOF: By the induction hypothesis.} \end{array}$
 - $\langle 2 \rangle$ 3. $res_val' = pred_term$ and $\underline{\mathcal{R}}'' = _:res'$. PROOF: By $\langle 2 \rangle$ 2 and lemma B8.3 (Non-conditional resources determine context and values).
 - $\langle 2 \rangle 4.$ $h'' = \{ pred_term(oarg') \& None \}.$ PROOF: By $\langle 2 \rangle 3$ and lemma B8.4 (Normalised resource context determines structure of heap).
 - $\langle 2 \rangle$ 5. LET: $res_val = (x; 0 \le x \land x \le n 1) \{ \texttt{Owned} \langle \tau \rangle (ptr + x \times \text{size_of}(\tau)) \}$ $\underline{\mathcal{R}}' = _:qpred_term(oarg) \text{ and } h' = \{ qpred_term(oarg) \& \cdot \}.$ PROOF: Prove value typing using RES_SYN_QPRED; heaping typing using HEAP_QPRED_OWNED; reduction using PREDOPS_RESV_ITERATE.
- $\langle 1 \rangle 2$. Case: Res_Syn_PredOps_Congeal

PROOF: Like RES_SYN_PREDOPS_ITERATE, but with: $res_term = congeal (res_term', n)$ $res = pred_term(oarg)$ where $pred_term = 0wned \langle array n \tau \rangle (ptr)$

 $res' = qpred_term(oarg')$ where $qpred_term = (x; iguard) \{ \texttt{Owned} \langle \tau \rangle (ptr + x \times \text{size_of}(\tau)) \}$ $res_val' = qpred_term$ and $\underline{\mathcal{R}}'' = _:res'$, by lemma B8.3

Let $res_val = pred_term$, $\underline{\mathcal{R}}' = _:pred_term(oarg)$ and $h' = \{pred_term(oarg) \& None\}$ to prove: value typing using RES_SYN_PRED; heap typing using HEAP_PRED_OWNED; reduction using PREDOPS_RESV_CONGEAL.

(1)3. CASE: RES_SYN_PREDOPS_EXPLODE
 PROOF: Like RES_SYN_PREDOPS_ITERATE, but with:
 res_term = explode (res_term')

 $res = * (\overline{pred_term_i(oarg_i)}^i)$ where $pred_term_i = \texttt{Owned} \langle \tau_i \rangle (ptr +_{ptr} offset_of_{tag}(member_i))$

 $res' = pred_term(oarg)$ where $pred_term = 0wned \langle struct tag \rangle (ptr)$ $res_val' = pred_term$ and $\underline{\mathcal{R}}'' = _:pred_term(oarg)$, by lemma B8.3

Let $res_val = \langle \overline{pred_term_i}^i \rangle$, $\underline{\mathcal{R}}' = \overline{_:pred_term_i(oarg_i)}^i$ and $h' = \overline{\{pred_term_i(oarg_i) \& None\}}^i$, to prove: value typing using RES_SYN_PRED and RES_SYN_SEPCONJ; heap typing using HEAP_CONCAT and HEAP_PRED_OWNED; reduction using PREDOPS_RESV_EXPLODE.

\langle \

 $res' = * \left(\overline{pred_term_i(oarg_i)}^i \right) \text{ where } pred_term_i = \texttt{Owned} \langle \tau_i \rangle (ptr +_{ptr} \text{ offset_of}_{tag}(member_i))$ $res_val' = \overline{pred_term_i}^i \text{ and } \underline{\mathcal{R}}'' = \overline{_:pred_term_i(oarg_i)}^i, \text{ by lemma B8.3}$

Let $res_val = 0wned \langle struct tag \rangle (ptr), \underline{\mathcal{R}}' = _:pred_term(oarg), and$ $h' = \{ pred_term(oarg) \& None \}$, to prove: value typing using RES_SYN_PRED; heap typing using HEAP_PRED_OWNED; reduction using PREDOPS_RESV_IMPLODE.

$\langle 1 \rangle$ 5. Case: Res_Syn_PredOps_Break

PROOF: Like RES_SYN_PREDOPS_ITERATE, but with: $res_term = break (res_term', term)$ $res = qpred_term(oarg) * pred_term(oarg[term])$ where $qpred_term = (x; iguard \land (x \neq term)) \{\alpha(ptr + x \times step, iargs)\}$ and $pred_term = \alpha(ptr + (term \times step), term/x(iargs))$

 $res' = qpred_term'(oarg)$ where $qpred_term' = (x; iguard) \{\alpha(ptr + x \times step, iargs)\}$ $res_val' = qpred_term'$, and $\underline{\mathcal{R}}'' = _:qpred_term'(oarg)$, by lemma B8.3.

If predicate is $\texttt{Owned} \langle \tau \rangle$, $h'' = \{qpred_term'(oarg) \& \cdot\}$ (by lemma B8.4), so let $h' = \{qpred_term(oarg) \& \cdot\} + \{pred_term(oarg[term]) \& \texttt{None}\}$ (by $\cdot[term] = \texttt{None}$). Otherwise, $h'' = \{qpred_term'(oarg) \& arr_def_heap\}$, (again by lemma B8.4), so let $h' = \{qpred_term(oarg) \& arr_def_heap\} + \{pred_term(oarg[term]) \& arr_def_heap[term]\}$.

Let $res_val = \langle qpred_term, pred_term \rangle$ and $\underline{\mathcal{R}}' = _:qpred_term(oarg), _:pred_term(oarg[term])$ to prove: value typing using RES_SYN_ QPRED, RES_SYN_PRED, RES_SYN_SEPCONJ; heap typing using HEAP_CONCAT, HEAP_ QPRED_OWNED / HEAP_QPRED_OTHER, and HEAP_PRED_OWNED / HEAP_PRED_OTHER (with witness $_:pred_term(oarg[term])$); reduction using PREDOPS_RESV_BREAK.

(1)6. CASE: RES_SYN_PREDOPS_GLUE
PROOF: Like RES_SYN_PREDOPS_ITERATE, but with:
 res_term = glue (res_term')

 $res = qpred_term(oarg_1[term] := oarg_2) \text{ where}$ $qpred_term = (x; iguard \lor x = term)\{\alpha(ptr_1 + x \times step, \overline{iarg_1}_i^i)\}$

 $res' = qpred_term_1(oarg_1) * pred_term(oarg_2) \text{ where}$ $qpred_term_1 = (x; iguard) \{\alpha(ptr_1 + x \times step, \overline{iarg_1}_i^i)\} \text{ and } pred_term = \alpha(ptr_2, \overline{iarg_2}_i^i).$ $res_val' = \langle qpred_term_1, pred_term \rangle, \text{ and } \underline{\mathcal{R}}'' = _:qpred_term_1(oarg_1), _:pred_term(oarg_2), \text{ by}$ lemma B8.3.

If predicate is $\mathsf{Owned} \langle \tau \rangle$, $h'' = \{qpred_term_1(oarg_1) \& \cdot\} + \{pred_term(oarg_2) \& \mathsf{None}\}$ (by lemma B8.4), so let $h' = \{qpred_term(oarg) \& \cdot\}$ (by $\cdot[term] := \mathsf{None} = \cdot$). Otherwise, $h'' = \{qpred_term_1(oarg_1) \& arr_def_heap\} + \{pred_term(oarg_2) \& def \& heap\}$ (again by lemma B8.4), so let $h' = \{qpred_term(oarg) \& arr_def_heap[term] := def \& heap\}$.

Let $res_val = qpred_term$ and $\underline{\mathcal{R}} = _:qpred_term(oarg_1[term] := oarg_2)$, to prove: value typing using RES_SYN_QPRED; heap typing using HEAP_QPRED_OWNED / HEAP_QPRED_OTHER; reduction using PREDOPS_RESV_GLUE.

 $\langle 1 \rangle 7.$ Case: Res_Syn_PredOps_Inj

PROOF: Like RES_SYN_PREDOPS_ITERATE, but with: $res_term = inj (res_term', ptr_1, step, x. iarg_1^i)$ $res = qpred_term((default array \beta)[term] := oarg)$ where $qpred_term = (x; x = term) \{\alpha(ptr_1 + x \times step, iarg_1^i)\}$

 $res' = pred_term(oarg)$ where $pred_term = \alpha(ptr_2, \overline{iarg_2}_i^i)$ $res_val' = pred_term$, and $\underline{\mathcal{R}}'' = _:pred_term(oarg)$, by lemma B8.3.

If predicate is $\texttt{Owned} \langle \tau \rangle$, $h'' = \{pred_term(oarg) \& \texttt{None}\}$ (by lemma B8.4), so let $h' = \{qpred_term((\texttt{defaultarray }\beta)[term] := oarg) \& \cdot\}$ (by $\cdot[term] := \texttt{None} = \cdot)$. Otherwise, $h'' = \{pred_term(oarg) \& def \& heap\}$ (again by lemma B8.4), so let $h' = \{qpred_term((\texttt{defaultarray }\beta)[term] := oarg) \& \cdot[term] := def \& heap\}$.

Let $res_val = qpred_term$, and $\underline{\mathcal{R}} = _:qpred_term((defaultarray \beta)[term] := oarg)$, to prove typing using HEAP_QPRED_OWNED / HEAP_QPRED_OTHER, and reduction using PREDOPS_RESV_INJ.

 $\langle 1 \rangle 8.$ Case: Res_Syn_PredOps_Split

PROOF: Like RES_SYN_PREDOPS_ITERATE, but with: $res_term = split(res_term', iguard)$ $res = qpred_term_1(oarg) * qpred_term_2(oarg)$ where $qpred_term_1 = (x; iguard) \{\alpha(ptr + x \times step, iargs)\}$ and $qpred_term_2 = (x; iguard_2) \{\alpha(ptr + x \times step, iargs)\}$

 $res' = qpred_term(oarg)$ where $qpred_term = (x; iguard') \{\alpha(ptr + x \times step, iargs)\}$ $res_val' = qpred_term,$ and $\underline{\mathcal{R}}'' = _:qpred_term(oarg)$, by lemma B8.3.

If predicate is $\texttt{Owned} \langle \tau \rangle$, $h'' = \{qpred_term(oarg) \& \cdot\}$ (by lemma B8.4), so let $h' = \{qpred_term_1(oarg) \& \cdot\} + \{qpred_term_2(oarg) \& \cdot\}$. Otherwise,

 $h'' = \{qpred_term(oarg) \& arr_def_heap\} \text{ (again by lemma B8.4), so let} \\ h' = \{qpred_term_1(oarg) \& arr_def_heap\} + \{qpred_term_2(oarg) \& arr_def_heap\}.$

Let $res_val = \langle qpred_term_1, qpred_term_2 \rangle$, and $\underline{\mathcal{R}} = _:qpred_term_1(oarg), _:qpred_term_2(oarg)$, to prove: value typing using RES_SYN_ QPRED and RES_SYN_SEPCONJ; heap typing using HEAP_CONCAT and HEAP_QPRED_ OWNED / HEAP_QPRED_OTHER; reduction using PREDOPS_RESV_SPLIT.

- (1)9. CASE: RES_SYN_EMP, RES_SYN_PRED, RES_SYN_QPRED, RES_CHK_PHI. PROOF: In these cases, h = h', $\underline{\mathcal{R}} = \underline{\mathcal{R}}'$ and $res_term = res_val$. Typing holds by assumption; prove reduction using REST_RESV_VAL.
- (1)10. CASE: RES_SYN_PREDOPS PROOF: Both typing and reduction (using REST_RESV_PREDOPS) hold by induction.
- $\begin{array}{l} \langle 1 \rangle 11. \ \text{CASE: RES_SYN_SEPCONJ, RES_CHK_SEPCONJ.} \\ res = res_1 * res_2, \\ res_term = \langle res_term_1, res_term_2 \rangle, \\ h = h_1 + h_2, \text{ so } \underline{\mathcal{R}} = \underline{\mathcal{R}}_1, \underline{\mathcal{R}}_2, \\ \Phi \vdash h_1 \Leftarrow \underline{\mathcal{R}}_1 \text{ and } \Phi \vdash h_2 \Leftarrow \underline{\mathcal{R}}_2. \end{array}$
 - $\langle 2 \rangle 1. \ \exists h'_1, \underline{\mathcal{R}}'_1, res_val_1 \dots \land (\forall f_1 \dots) \\ \exists h'_2, \underline{\mathcal{R}}'_2, res_val_2 \dots \land (\forall f_2 \dots) \\ \text{PROOF: By induction.}$
 - $\begin{array}{l} \langle 2 \rangle 2. \quad \langle h_1 + h_2 + f; res_term_1 \rangle \Downarrow \langle h'_1 + h_2 + f; res_val_1 \rangle. \\ \langle h'_1 + h_2 + f; res_term \rangle \Downarrow \langle h'_1 + h'_2 + f; res_val_2 \rangle. \\ \text{PROOF: Instantiate } f_1 \text{ with } h_2 + f, \text{ and } f_2 \text{ with, } h'_1 + f. \end{array}$
 - $\langle 2 \rangle$ 3. LET: $res_val = \langle res_val_1, res_val_2 \rangle$, $\underline{\mathcal{R}}' = \underline{\mathcal{R}}'_1, \underline{\mathcal{R}}'_2$, and $h' = h'_1 + h'_2$. Prove value typing using RES_SYN_SEPCONJ / RES_CHK_SEPCONJ; heap typing using HEAP_CONCAT; reduction using $\langle 2 \rangle$ 2 and REST_RESV_SEPPAIR.

$\langle 1 \rangle 12$. Case: Res_Chk_Pack

- PROOF: Like RES_SYN_PREDOPS_ITERATE, but with: $res_term = pack (oarg, res_term'), res = \exists y:\beta. res'', res' = oarg/y(res'')$ $res_val = pack (oarg, res_val').$ Value and heap typing hold by induction; prove reduction using REST_RESV_PACK.
- $\langle 1 \rangle$ 13. CASE: RES_SYN_FOLD

PROOF: Like RES_SYN_PREDOPS_ITERATE, but with: $\alpha \equiv x_p: _, \overline{x_i: _i}^i, y: _ \mapsto res'' \in \text{Globals}$ $res_term = \text{fold} res_term': \alpha(ptr, \overline{iarg_i}^i)(oarg)$ $res = \alpha(ptr, \overline{iarg_i}^i)(oarg)$ $res' = [oarg/y, [\overline{iarg_i/x_i}^i], ptr/x_p](res'').$

 $\begin{aligned} \exists h_1, \underline{\mathcal{R}}', res_val'. \\ 1. \quad \cdot; \cdot; \Phi; \underline{\mathcal{R}}' \vdash res_val' \Leftarrow res' \end{aligned}$

2. $\Phi \vdash h_1 \Leftarrow \underline{\mathcal{R}}'$ 3. $\forall f. \langle h + f; res_term \rangle \Downarrow \langle h_1 + f; res_val' \rangle$ (by induction).

Let $res_val = \alpha(ptr, \overline{iarg_i}^i)$, $\underline{\mathcal{R}}' = _:\alpha(ptr, \overline{iarg_i}^i)(oarg)$ and $h' = \{\alpha(ptr, \overline{iarg_i}^i)(oarg) \& res_val' \& h_1\}$, to prove: value typing using RES_SYN_PRED; heap typing using HEAP_PRED_OTHER. Since footprint_of res_val' in $h_1 + f \rightsquigarrow h_1$ rem f by lemma B8.5 (Well-typed resource value determines its footprint), prove reduction using REST_RESV_FOLD.

- $\langle 1 \rangle$ 14. CASE: RES_CHK_IF_TRUE, RES_CHK_IF_FALSE PROOF: By induction with res' as res₁ or res₂ respectively. This is exhaustive because only variables can synthesise under-determined conditional resources and those are excluded by assumption of res_term being closed.
- $\langle 1 \rangle 15.$ CASE: Res_Chk_Switch Proof: By induction on the synthesising judgement.

B8.7 Resource term reduction is deterministic

PROOF SKETCH: Induction over the definition: it is syntax directed.

B8.8 Resource term reduction is isolated

If res_term is closed, $\cdot; \cdot; \Phi; \underline{\mathcal{R}} \vdash res_term \Leftarrow res \Phi \vdash h \Leftarrow \underline{\mathcal{R}} \text{ and } \langle h + f; res_term \rangle \Downarrow \langle heap; res_val \rangle$ then $\exists h', \underline{\mathcal{R}}'$. $heap = h' + f \land (\Phi \vdash h' \Leftarrow \underline{\mathcal{R}}') \land (\cdot; \cdot; \Phi; \underline{\mathcal{R}}' \vdash res_val \Leftarrow res).$

PROOF: This simply the composition of lemma B8.7 (Resource term reduction is deterministic) and lemma B8.6 (Progress and type preservation for resource terms).

B9 Progress

B9.1 $\Phi \vdash res \sim res'$ is an equivalence relation

PROOF SKETCH: By induction and $term \sim term'$ assumed to be an equivalence relation (see section B4 Proof Judgements).

B9.2 $\Phi \vdash res \sim res'$ is preserved by substitution

If $x \sim y$ in $\Phi \vdash res \sim res'$ and $term \sim term'$ then $\Phi \vdash term/x(res) \sim term/y(res')$.

PROOF SKETCH: By induction and $term \sim term'$ assumed to be preserved by substitution (see section B4 Proof Judgements).

B9.3 Well-typed spines produce substitutions and the same return type

ASSUME:
$$: :: :; \Phi; \underline{\mathcal{R}} \vdash \overline{spine_elem_i}^i :: \psi_1(fun_1) \gg \underline{ret_1}$$

 $\Phi \vdash h \Leftarrow \underline{\mathcal{R}} \text{ and } \psi_1(fun_1) = \psi_2(fun_2) = \psi_2(fun_3)$
 $\langle h + f; \overline{x_i = spine_elem_i}^i \rangle :: \psi_2(fun_2) \gg \langle heap; \sigma_2; \underline{ret_2} \rangle$
 $\overline{x_i}^i :: : fun_3 \rightsquigarrow \underline{\mathcal{C}; \mathcal{L}; \Phi'; \mathcal{R}'} \mid \underline{ret_3}.$

PROVE: $\psi_1(ret_1) = \psi_2(ret_2) = [\psi_2, \sigma_2](ret_3)$ $\exists h', \underline{\mathcal{R}}'. heap = h' + f, \Phi \vdash h' \leftarrow \underline{\mathcal{R}}' \text{ and}$ $\because; \because \Phi; \underline{\mathcal{R}}' \vdash \psi_2(\sigma_2) \leftarrow (\mathcal{C}; \mathcal{L}; \psi_2(\mathcal{R}')).$

 $\langle 1 \rangle 1$. Case: Expl_Spine_Ret

 $\begin{array}{l} \cdot; \cdot; \Phi; \cdot \vdash :: \psi_1(ret_1) \gg \psi_1(ret) \\ \Phi \vdash \cdot \Leftarrow \cdot \text{ (by inversion, HEAP_EMPTY).} \\ \langle f; \rangle :: \psi_2(ret) \gg \langle f; \cdot; \psi_2(ret) \rangle \text{ (by inversion, SUBS_SPINE_EMPTY).} \\ :: ret \rightsquigarrow :; \cdot; \cdot \mid ret \text{ where } ret'' = ret \text{ (by inversion, FUN_ENV_RET).} \end{array}$

$$\begin{split} \psi_1(ret_1) &= \psi_2(ret_2) = [\psi_2, \cdot](ret_3) \text{ (by assumption)} \\ \text{LET: } h' &= \cdot, \ \underline{\mathcal{R}}' = \cdot. \\ f &= h' + f \text{ trivally.} \\ \Phi &\vdash \cdot \Leftarrow \cdot \text{ by HEAP_EMPTY.} \\ \cdot; \cdot; \Phi; \cdot \vdash \cdot \Leftarrow (\cdot; \cdot; \cdot) \text{ by SUBS_CHK_EMPTY.} \end{split}$$

 $\langle 1 \rangle 2$. Case: Expl_Spine_Comp

 $\begin{array}{l} \cdot; \cdot; \Phi; \underline{\mathcal{R}} \vdash \overline{spine_elem_i}^i :: [pval/x, \psi_1](fun'_1) \gg ret_1 \\ \cdot \vdash pval \Rightarrow \underline{\beta} \\ \langle h+f; \overline{x_i = spine_elem_i}^i \rangle :: [pval/x, \psi_2](fun'_2) \gg \langle heap; \underline{\sigma'_2}; ret_2 \rangle \\ (\text{by inversion, SUBS_SPINE_COMP}) \ x, \ \overline{x_i}^i :: \Pi x: \beta. \ fun'_3 \rightsquigarrow x: \beta, \mathcal{C}; \mathcal{L}; \Phi'; \mathcal{R}' \mid ret_3 \ (\text{by inversion, FUN_ENV_COMP}). \end{array}$

 $[pval/x, \psi_1](ret_1) = [pval/x, \psi_2](ret_2) = [pval/x, \psi_2, \sigma'_2](ret_3)$ $\exists h', \underline{\mathcal{R}'}. heap = h' + f, \Phi \vdash h' \Leftarrow \underline{\mathcal{R}'} \text{ and}$ $\because \because [pval/x, \psi_2](\sigma'_2) \Leftarrow (\mathcal{C}'; \mathcal{L}; [pval/x, \psi_2](\mathcal{R}')) \text{ (by induction).}$ $[\psi_2, pval/x, \sigma'_2](ret_3) = [pval/x, \psi_2, \sigma'_2] \text{ and}$ $;;; \Phi; \underline{\mathcal{R}'} \vdash \psi_2([pval/x, \sigma'_2]) \Leftarrow (\mathcal{C}', x; \beta; \mathcal{L}; \psi_2(\mathcal{R}')),$ by SUBS_CHK_COMP and SUBS_CHK_CONCAT (because *pval* is closed, we have $[pval/x, \psi_2(\sigma'_2)] = \psi_2([pval/x, \sigma'_2])).$

- (1)3. CASE: EXPL_SPINE_COMP Similar to EXPL_SPINE_COMPbut with SUBS_CHK_LOG.
- (1)4. CASE: EXPL_SPINE_PHI By induction (does not affect substitution).
- $\langle 1 \rangle$ 5. Case: Expl_Spine_Res

 $\begin{array}{l} ::: \Phi; \underline{\mathcal{R}}_{2} \vdash \overline{spine_elem_{i}}^{i} ::: \psi_{1}(fun_{1}) \gg ret_{1} \\ ::: \Phi; \underline{\mathcal{R}}_{1} \vdash res_term \Leftarrow \psi_{1}(res) \\ \exists h_{1}, h_{2}. \ h = h_{1} + h_{2} \land \Phi \vdash h_{1} \Leftarrow \underline{\mathcal{R}}_{1} \land \Phi \vdash h_{2} \Leftarrow \underline{\mathcal{R}}_{2} \text{ (by B8.4).} \\ \langle h_{1} + h_{2} + f; res_term \rangle \Downarrow \langle heap_{1}; res_val \rangle \\ \langle heap_{1}; \overline{x_{i}} = spine_elem_{i}^{i} \rangle :: [res_val/x, \psi_{2}'](fun_{2}) \gg \langle heap_{2}; \sigma_{2}'; ret_{2} \rangle \text{ (by inversion, SUBS_SPINE_RES).} \end{array}$

 $\begin{aligned} \exists h_1', \underline{\mathcal{R}}_1', res_val'. \quad &;; \Phi; \underline{\mathcal{R}}_1' \vdash res_val' \Leftarrow \psi_1(res), \ \Phi \vdash h_1' \Leftarrow \underline{\mathcal{R}}_1' \\ \text{and } \langle h_1 + h_2 + f; res_term \rangle \Downarrow \langle h_1' + h_2 + f; res_val' \rangle \\ \text{(by lemma B8.6 (Progress and type preservation for resource terms)).} \\ heap_1 = h_1' + h_2 + f \text{ and } res_val = res_val' \\ \text{(by lemma B8.8 (Resource term reduction is isolated))} \end{aligned}$

$$\begin{split} \psi_1(\operatorname{ret}_1) &= [\operatorname{res}_{val}/x, \psi_2](\operatorname{ret}_2) = [\operatorname{res}_{val}/x, \psi_2, \sigma'_2](\operatorname{ret}_3) \\ (\text{because resources variables not in types}) \\ \exists h'_2, \underline{\mathcal{R}}'_2. \ heap_2 &= h'_2 + h'_1 + f \land \Phi \vdash h'_2 \Leftarrow \underline{\mathcal{R}}'_2 \\ \because \because \because \mathfrak{R}; \underline{\mathcal{R}}'_2 \vdash [\operatorname{res}_{val}/x, \psi_2](\sigma'_2) \Leftarrow (\mathcal{C}; \mathcal{L}; [\operatorname{res}_{val}/x, \psi_2](\mathcal{R}')) \text{ (by induction).} \end{split}$$

LET: $h' = h'_1 + h'_2$ and $\underline{\mathcal{R}}' = \underline{\mathcal{R}}'_1, \underline{\mathcal{R}}'_2$. Hence $\Phi \vdash h' \Leftarrow \underline{\mathcal{R}}'_1, \underline{\mathcal{R}}'_2$ (by HEAP_CONCAT), $[res_val/x, \psi_2, \sigma'_2](ret_3) = [\psi_2, res_val/x, \sigma'_2](ret_3)$ and $\because \because (\varphi; \underline{\mathcal{R}}'_1, \underline{\mathcal{R}}'_2 \vdash \psi_2([res_val/x, \sigma'_2]) \Leftarrow (\mathcal{C}; \mathcal{L}; \psi_2(x:res, \mathcal{R}')))$, by SUBS_CHK_RES and SUBS_ CHK_CONCAT (because res_val is closed, we have $[res_val/x, \psi_2(\sigma'_2)] = \psi_2([res_val/x, \sigma'_2])$).

B9.4 Well-typed values pattern-match successfully

Note that the definition of $term \sim term'$ is not explicitly stated; see section B4 (Proof Judgements) for more details.

ASSUME: 1. $C; \mathcal{L}; \Phi \vdash \overline{ret_pat_i}^i : ret \rightsquigarrow C'; \mathcal{L}'; \Phi'; \mathcal{R}'$ 2. $\overline{ret_pat_i}^i$ is exhaustive 3. $\Phi \vdash fun \sim ret$ 4. $\cdot; \cdot; \Phi; \underline{\mathcal{R}} \vdash \overline{ret_term_i}^i :: fun \gg \mathbf{I}$ 5. $\Phi \vdash h \Leftarrow \underline{\mathcal{R}}$ PROVE: $\exists h', \sigma$. $\forall f. \langle h+f; \overline{ret_pat_i = ret_term_i}^i \rangle \rightsquigarrow \langle h'+f; \sigma \rangle$ $\exists \underline{\mathcal{R}'}.$ $\mathcal{C}; \mathcal{L}; \Phi \vdash h' \Leftarrow \underline{\mathcal{R}'} \land \mathcal{C}; \mathcal{L}; \Phi; \underline{\mathcal{R}'} \vdash \sigma \Leftarrow (\mathcal{C}'; \mathcal{L}'; \mathcal{R}').$

PROOF SKETCH: Induction over the pattern-matching judgement.

(1)1. CASE: PAT_RET_EMPTY $C; \mathcal{L}; \Phi \vdash : \mathbf{I} \rightsquigarrow \vdots; ;; :$ which means $fun = \mathbf{I}$ (by inversion, REL_RET_I) and so $C; \mathcal{L}; \Phi; \cdot \vdash :: \mathbf{I} \gg \mathbf{I}$ (by inversion, EXPL_SPINE_RET), and $h = \cdot$ (by lemma B8.4). Let $h' = \cdot$, to step with SUBS_PAT_RET_EMPTY. Let $\underline{\mathcal{R}}' = \cdot$, to type h' with HEAP_EMPTY and σ with SUBS_CHK_EMPTY.

 $\langle 1 \rangle 2$. Case: Pat_Ret_Comp

 $C; \mathcal{L}; \Phi \vdash \text{comp} ident_or_pat, \overline{ret_pat_j}^j : \Sigma y: \beta. ret \rightsquigarrow C_1, C_2; \mathcal{L}_2; \Phi_2; \mathcal{R}_2$ which means $fun = \prod x: \beta. fun'$ (by inversion, REL_RET_COMP), and so $C; \mathcal{L}; \Phi; \underline{\mathcal{R}} \vdash pval, \overline{ret_term_j}^j :: \prod x: \beta. fun' \gg \mathbf{I}$ (by inversion, EXPL_SPINE_COMP).

 $ident_or_pat:\beta \rightsquigarrow C_1 \text{ with } term_1 \text{ (from the pattern-matching assumption),}$ $ident_or_pat \text{ is exhaustive (from the exhaustive asumption),}$ $and \cdot \vdash pval \Rightarrow \beta \text{ (from the spine typing assumption),}$ $imply term_1 \sim pval, ident_or_pat = pval \rightsquigarrow \sigma_1$ $and \cdot; \cdot; \cdot; \cdot \vdash \sigma_1 \leftarrow (C_1; \cdot; \cdot) \text{ (by the nested proof below).}$

 $\mathcal{C}, \mathcal{C}_1; \mathcal{L}; \Phi \vdash \overline{ret_pat_j}^j: term_1/y(ret') \rightsquigarrow \mathcal{C}_2; \mathcal{L}_2; \Phi_2; \mathcal{R}_2 \text{ (from the pattern-matching assumption),} \\ \forall term_1 \sim pval. \Phi \vdash pval/x(fun') \sim term_1/y(ret') \text{ (from the related assumption),} \end{cases}$

Since $C; \mathcal{L}; \sigma_1(\Phi); \sigma_1(\underline{\mathcal{R}}') \vdash [\mathrm{id}, \sigma_1] \leftarrow (\mathcal{C}, \mathcal{C}_1; \mathcal{L}; \underline{\mathcal{R}}')$, and $\sigma_1(\Phi) = \Phi$ (because Φ is well-scoped / does not contain any variables from \mathcal{C}_1) we have $\mathcal{C}; \mathcal{L}; \Phi \vdash \sigma_1(h'') \leftarrow \sigma_1(\underline{\mathcal{R}}'')$ and $\mathcal{C}; \mathcal{L}; \Phi; \sigma_1(\underline{\mathcal{R}}') \vdash \sigma_1(\sigma_2) \leftarrow (\mathcal{C}_2; \mathcal{L}_2; \sigma_1(\mathcal{R}_2))$ (by lemma B7.3 (Substitution)).

LET: $h' = \sigma_1(h''), \sigma = [\sigma_1, \sigma_2]$ to step with SUBS_PAT_RET_COMP. $\underline{\mathcal{R}}' = \sigma_1(\underline{\mathcal{R}}'').$ So $\mathcal{C}; \mathcal{L}; \Phi \vdash h' \leftarrow \underline{\mathcal{R}}'$ and $\mathcal{C}; \mathcal{L}; \Phi; \underline{\mathcal{R}}' \vdash \sigma \leftarrow (\mathcal{C}_1, \mathcal{C}_2; \mathcal{L}_2; \mathcal{R}_2)$ hold by lemma B6 (Weakening) and SUBS_CHK_ CONCAT.

ASSUME: 1. $ident_or_pat:\beta \rightsquigarrow C_1$ with $term_1$ 2. $ident_or_pat$ is exhaustive 3. $\cdot \vdash pval \Rightarrow \beta$

- PROVE: 1. $term_1 \sim pval$ 2. $\exists \sigma. ident_or_pat = pval \rightsquigarrow \sigma \text{ and } :; :; :; \cdot \vdash \sigma \leftarrow (\mathcal{C}_1; :; \cdot).$
- (2)1. CASE: PAT_COMP_NO_SYM_ANNOT PROOF: $term_1$ is a wildcard (fresh variable) which would unfiy with pval; let $\sigma = \cdot$ for SUBS_PAT_VALUE_NO_SYM_ANNOT / SUBS_CHK_EMPTY.
- (2)2. CASE: PAT_COMP_SYM_ANNOT, PAT_SYM_OR_PAT_SYM PROOF: $term_1 = x$, a fresh pattern variable, so would unify with *pval*; let $\sigma = pval / x$ for SUBS_PAT_VALUE_SYM_ANNOT / SUBS_CHK_COMP (using $\cdot \vdash pval \Rightarrow \beta$).
- (2)3. CASE: PAT_COMP_NIL PROOF: $term_1 = nil$, and by inversion on the typing assumption, and then by exhaustiveness, $pval = Nil \beta()$, so would unify; let $\sigma = \cdot$ for SUBS_PAT_VALUE_NIL / SUBS_CHK_EMPTY.
- (2)4. CASE: PAT_COMP_CONS PROOF: $term_1 = term_{11}$:: $term_{12}$, and by inversion on the typing assumption, and then by exhaustiveness, $pval = \text{Cons}(pval_1, pval_2)$. By induction (1) they would unify and (2) let $\sigma = [\sigma_1, \sigma_2]$ for SUBS_PAT_VALUE_CONS / SUBS_CHK_COMP and SUBS_ CHK_CONCAT (both are independent).

$\langle 2 \rangle$ 5. Case: Pat_Comp_Tuple

PROOF: $term_1 = (\overline{term_i}^i)$, and by inversion on the typing assumption, $pval = \text{Tuple}(\overline{pval_i}^i)$. By induction (1) they would unify (2) let $\sigma = [\overline{\sigma_i}^i]$ for SUBS_PAT_VALUE_TUPLE / SubsChkComp and SUBS_CHK_CONCAT.

- (2)6. CASE: PAT_COMP_ARRAY PROOF: Similar to PAT_COMP_TUPLE, but with SUBS_PAT_VALUE_ARRAY.
- (2)7. CASE: PAT_COMP_SPECIFIED PROOF: By induction we have (1) $term_1 \sim pval$, and by the Specified exception (see Section B4, Proof Judgements) $term_1 \sim \text{Specified}(pval)$; σ for SUBS_PAT_VALUE_SPECIFIED, typing by induction.
- (2)8. CASE: PAT_SYM_OR_PAT_PAT PROOF: By induction.

$\langle 1 \rangle$ 3. Case: Pat_Ret_Log

 $C; \mathcal{L}; \Phi \vdash \log y', \overline{ret_pat_j}^j : \exists y:\beta. ret \rightsquigarrow \mathcal{C}_2; y':\beta, \mathcal{L}_2; \Phi_2; \mathcal{R}_2$ which means $fun = \forall x:\beta. fun'$ (by inversion, REL_RET_LOG) and so $\cdot; \cdot; \Phi; \underline{\mathcal{R}} \vdash oarg, \overline{ret_term_j}^j :: \forall x:\beta. fun' \gg \mathbf{I}$ (by inversion, EXPL_SPINE_LOG).

 $\mathcal{C}; \mathcal{L}, y: \beta; \Phi \vdash \overline{ret_pat_j}^j: ret' \rightsquigarrow \mathcal{C}_2; \mathcal{L}_2; \Phi_2; \mathcal{R}_2$ (from the pattern-matching assumption),

 $\forall \ oarg \sim oarg'. \ \Phi \vdash oarg/x(fun') \sim oarg'/y'(ret') \ (from the related assumption), \\ :; :; \Phi; \underline{\mathcal{R}} \vdash \overline{ret_term_j}^j :: oarg/x(fun') \gg \mathbf{I} \ (from the spine typing assumption) \\ and \ \Phi \vdash h \Leftarrow \underline{\mathcal{R}}, \ imply \ \langle h + f; \ \overline{ret_pat_j} = ret_term_j^j \ \rangle \rightsquigarrow \langle h'' + f; \sigma \rangle \\ and \ \exists \underline{\mathcal{R}}' \ such \ that \ \mathcal{C}; \mathcal{L}, \ y': \beta; \Phi \vdash h' \Leftarrow \underline{\mathcal{R}}'' \ and \ \mathcal{C}; \mathcal{L}, \ y': \beta; \Phi; \underline{\mathcal{R}}'' \vdash \sigma_2 \Leftarrow (\mathcal{C}_2; \mathcal{L}_2; \mathcal{R}_2) \ (by \ induction).$

Since $:: \vdash oarg \Rightarrow \beta$, and $oarg/y'(\Phi) = \Phi$ (because it is well-scoped / doesn't refer to y') and $\mathcal{C}; \mathcal{L}; oarg/y'(\Phi); oarg/y'(\underline{\mathcal{R}}') \vdash [\mathrm{id}, oarg/y'] \leftarrow (\mathcal{C}; \mathcal{L}, y':\beta; \underline{\mathcal{R}}'),$ we have $\mathcal{C}; \mathcal{L}; \Phi \vdash oarg/y'(h'') \leftarrow oarg/y'(\underline{\mathcal{R}}''),$ and $\mathcal{C}; \mathcal{L}; \Phi; oarg/y'(\underline{\mathcal{R}}'') \vdash oarg/y'(\sigma_2) \leftarrow (\mathcal{C}_2; \mathcal{L}_2; oarg/y'(\mathcal{R}_2))$ (by lemma B7.3 (Substitution)).

LET: $h' = oarg/y'(h''), \sigma = [oarg/y', \sigma_2]$ to step with SUBS_PAT_RET_LOG. $\underline{\mathcal{R}}' = oarg/y'(\underline{\mathcal{R}}'').$ So $\mathcal{C}; \mathcal{L}; \Phi \vdash h' \Leftarrow \underline{\mathcal{R}}'$ and $\mathcal{C}; \mathcal{L}; \Phi; \underline{\mathcal{R}}' \vdash \sigma \Leftarrow (\mathcal{C}_2; y'; \beta, \mathcal{L}_2; \mathcal{R}_2)$ by SUBS_CHK_CONCAT.

$$\langle 1 \rangle 4$$
. Case: Pat_Ret_Phi

 $\mathcal{C}; \mathcal{L}; \Phi \vdash \overline{ret_pat_i}^i: term' \land ret' \rightsquigarrow \mathcal{C}'; \mathcal{L}'; \Phi', term'; \mathcal{R}'$ which means $fun = term \supset fun'$ (by inversion, REL_RET_PHI), and so $\cdot; \cdot; \Phi; \underline{\mathcal{R}} \vdash \overline{ret_term_j}^j: term \twoheadrightarrow fun' \gg \mathbb{I}$ (by inversion, EXPL_SPINE_RES).

 $C; \mathcal{L}; \Phi \vdash \overline{ret_pat_i}^i: ret' \rightsquigarrow \mathcal{C}'; \mathcal{L}'; \Phi', term'; \mathcal{R}'$ (from the pattern-matching assumption) $\Phi \vdash fun' \sim ret'$ (from the related assumption), $:; :; \Phi; \underline{\mathcal{R}} \vdash \overline{ret_term_j}^j :: fun' \gg \mathbb{I}$ (from the spine typing assumption) imply $\langle h + f; \overline{ret_pat_i} = \overline{ret_term_i}^i \rangle \rightsquigarrow \langle h' + f; \sigma \rangle$ and the heap and substitution typings (by induction).

 $\langle 1 \rangle$ 5. Case: Pat_Ret_Res

 $C; \mathcal{L}; \Phi \vdash \mathbf{res} \ res_pat, ret_pat:res' * ret' \rightsquigarrow C_4; \mathcal{L}_3, \mathcal{L}_4; \Phi_3, \Phi_4; \mathcal{R}_3, \mathcal{R}_4$ which means $fun = res \twoheadrightarrow fun'$ (by inversion, REL_RET_RES), and so $\cdot; \cdot; \Phi; \underline{\mathcal{R}}_1, \underline{\mathcal{R}}_2 \vdash res_term, spine :: res \twoheadrightarrow fun \gg \mathbf{I}$ (by inversion, EXPL_SPINE_RES), and $h = h_1 + h_2$ where $\Phi \vdash h_1 \Leftarrow \underline{\mathcal{R}}_1$ and $\Phi \vdash h_2 \Leftarrow \underline{\mathcal{R}}_2$ (by lemma B8.4).

 $C; \mathcal{L}; \Phi \vdash \overline{ret_pat_j}^j: ret' \rightsquigarrow \mathcal{C}_4; \mathcal{L}_4; \Phi_4; \mathcal{R}_4$ (from the pattern matching assumption), $\Phi \vdash fun' \sim ret'$ (from the related assumption), $\begin{array}{l} \cdot;\cdot;\Phi;\underline{\mathcal{R}}_{2}\vdash\overline{ret_term_{j}}^{j}::fun'\gg\mathbb{I} \text{ (from the spine typing assumption),}\\ \text{and }\Phi\vdash h_{2}\Leftarrow\underline{\mathcal{R}}_{2}, \text{ imply }\langle h_{2}+h_{1}''+f; \ \overline{ret_pat_{j}}=ret_term_{j}}^{j}\rangle\rightsquigarrow\langle h_{2}'+h_{1}''+f; \sigma_{2}\rangle \text{ and }\exists\underline{\mathcal{R}}_{2}'\\ \text{such that }\mathcal{C};\mathcal{L};\Phi\vdash h_{2}'\Leftarrow\underline{\mathcal{R}}_{2}', \text{ and }\mathcal{C};\mathcal{L};\Phi;\underline{\mathcal{R}}_{2}'\vdash\sigma_{2}\Leftarrow(\mathcal{C}_{4};\mathcal{L}_{4};\mathcal{R}_{4}) \text{ (by induction).} \end{array}$

- LET: $h' = h_1'' + h_2'$ $\sigma = [\sigma_1, \sigma_2]$ to step with SUBS_PAT_RET_RES. $\underline{\mathcal{R}}' = \underline{\mathcal{R}}'_1, \underline{\mathcal{R}}'_2.$ So $\mathcal{C}; \mathcal{L}; \Phi \vdash h' \leftarrow \underline{\mathcal{R}}'$ by HEAP_CONCAT and $\mathcal{C}; \mathcal{L}; \Phi; \underline{\mathcal{R}}' \vdash \sigma \leftarrow (\mathcal{C}_4; \mathcal{L}_3, \mathcal{L}_4; \mathcal{R}_3, \mathcal{R}_4)$ by SUBS_CHK_CONCAT (because $\underline{\mathcal{R}}'_2$ is well-formed w.r.t. $\mathcal{C}; \mathcal{L}$, it does not contain any variables from $\mathcal{L}_3; \mathcal{R}_3$ so $\sigma_1(\underline{\mathcal{R}}'_2) = \underline{\mathcal{R}}'_2).$
- ASSUME: 1. $\mathcal{L}; \Phi \vdash res_pat:res' \rightsquigarrow \mathcal{L}'; \Phi'; \mathcal{R}'$ 2. $\Phi \vdash res \sim res'$ 3. $\exists \underline{\mathcal{R}}.(\cdot; \cdot; \Phi; \underline{\mathcal{R}} \vdash res_val \Leftarrow res) \land (\mathcal{C}; \mathcal{L}; \Phi \vdash h \Leftarrow \underline{\mathcal{R}})$
- PROVE: $\exists h', \sigma$. $\forall f. \langle h + f; res_pat = res_val \rangle \rightsquigarrow \langle h' + f; \sigma \rangle$ $\exists \underline{\mathcal{R}'}. \mathcal{C}; \mathcal{L}; \Phi \vdash h' \Leftarrow \underline{\mathcal{R}'} \land \mathcal{C}; \mathcal{L}; \Phi; \overline{\mathcal{R}'} \vdash \sigma \Leftarrow (\cdot; \mathcal{L}'; \overline{\mathcal{R}'}).$
- $\langle 2 \rangle$ 1. CASE: PAT_RES_MATCH_FOLD $\mathcal{L}; \Phi \vdash \texttt{fold}(res_pat'): \alpha(ptr', \overline{iarg_i}^i)(oarg') \rightsquigarrow \mathcal{L}'; \Phi'; \mathcal{R}'$ which means $res = \alpha(ptr, \overline{iarg_i}^i)(oarg)$ (by inversion, REL_RES_PRED) and so $\underline{\mathcal{R}} = _: \alpha(ptr, \overline{iarg_i}^i)(oarg)$ and $res_val = \alpha(ptr_2, \overline{iarg_2i}^i)$ (by lemma B8.3).
 - $\begin{array}{l} \langle 3 \rangle 1. \ h = \{ \alpha(ptr, \overline{iarg_i}^{i})(oarg) \& def \& heap \} \\ & \text{PROOF: } \alpha \neq \texttt{Owned} \langle \tau \rangle \text{ (from the pattern-matching assumption), and} \\ & \text{lemma B8.4 (Normalised resource context determines structure of heap).} \end{array}$
 - $\begin{array}{l} \langle 3 \rangle 2. \ \exists \underline{\mathcal{R}}_{1}^{\prime}. \\ 1. \ \alpha \equiv x_{p}: \texttt{pointer}, \ \overline{x_{i}:\beta_{i}}^{i}, \ y: \texttt{record} \ \overline{tag_{j}:\beta_{j}^{\prime}}^{j} \mapsto \textit{res}^{\prime\prime} \in \texttt{Globals} \\ 2. \ \mathcal{C}; \mathcal{L}; \Phi; \underline{\mathcal{R}}_{1}^{\prime} \vdash \textit{def} \leftarrow [\textit{oarg}/y, [\ \overline{\textit{iarg}/x_{i}}^{i}], \textit{ptr}/x_{p}](\textit{res}^{\prime\prime}) \\ 3. \ \mathcal{C}; \mathcal{L}; \Phi \vdash \textit{heap} \leftarrow \underline{\mathcal{R}}_{1}^{\prime} \\ \text{PROOF: By inversion, } \mathcal{C}; \mathcal{L}; \Phi \vdash h \leftarrow \mathcal{R} \text{ is HEAP_PRED_OTHER.} \end{array}$
 - $\langle 3 \rangle 3. \mathcal{L}; \Phi \vdash res_pat': [oarg'/y, [\overline{iarg'_i/x_i}^i], ptr'/x_p](res'') \rightsquigarrow \mathcal{L}; \Phi; \mathcal{R}$ PROOF: By inversion on the pattern-matching assumption.
 - $\begin{array}{l} \langle 3 \rangle 4. \ \Phi \vdash [oarg/y, [\overline{iarg/x_i}^i], ptr/x_p](res'') \sim [oarg'/y, [\overline{iarg'_i/x_i}^i], ptr'/x_p](res'') \\ \\ \underline{PROOF: By lemma B9.2, using } \Phi \vdash res'' \sim res'' (by lemma B9.1) and ptr \sim ptr', \\ \\ \overline{iarg_i} \sim iarg'_i^i \text{ and } oarg \sim oarg'. \end{array}$
 - $\langle 3 \rangle$ 5. $\langle heap + f; res_pat = res_val \rangle \rightsquigarrow \langle h' + f; \sigma \rangle$ PROOF: By induction, using $\langle 3 \rangle 2$, $\langle 3 \rangle 3$ and $\langle 3 \rangle 4$.
 - $\langle 3 \rangle 6$. Step with SUBS_PAT_RES_FOLD.
 - $\langle 3 \rangle$ 7. $h', \underline{\mathcal{R}}'$ as given by induction.

- (2)2. CASE: PAT_RES_MATCH_EMP / PAT_RES_MATCH_PHI res = emp or term (by inversion, REL_RES_EMP / REL_RES_PHI) and so $res_val = emp \text{ or } term$ and $\underline{\mathcal{R}} = \cdot$ (by lemma B8.3), meaning $h = \cdot$ (by lemma B8.4). PROOF: Let $h' = \cdot$ to step with SUBS_PAT_RES_EMP / SUBS_PAT_RES_PHI. $\underline{\mathcal{R}}' = \cdot$, so HEAP_EMPTY and SUBS_CHK_EMPTYSuffice.
- (2)3. CASE: PAT_RES_MATCH_IF_TRUE / PAT_RES_MATCH_IF_FALSE Only showing true case, false case is symmetric.

 $res' = if term' then res'_1 else res'_2$ so $res = if term then res_1 else res_2$ (by inversion, REL_RES_IF).

Since smt ($\Phi \Rightarrow term'$) (from the pattern-matching assumption) and smt ($\Phi \Rightarrow term \leftrightarrow term'$), we can conclude the typing assumption must be RES_CHK_ IF_TRUE.

From there, we proceed by induction.

- (2)4. CASE: PAT_RES_MATCH_VAR PROOF: Let h' = h to step with SUBS_PAT_RES_VAR. $\underline{\mathcal{R}}' = \underline{\mathcal{R}}$ so SUBS_CHK_RES.
- $\langle 2 \rangle$ 5. CASE: PAT_RES_MATCH_SEPCONJ $\mathcal{L}; \Phi \vdash \langle res_pat_1, res_pat_2 \rangle : res'_1 * res'_2 \rightsquigarrow \mathcal{L}_1, \mathcal{L}_2; \Phi_1, \Phi_2; \mathcal{R}_1, \mathcal{R}_2$

 $res = res_1 * res_2$ (by inversion, REL_RES_SEPCONJ) and $:; :; \Phi; \underline{\mathcal{R}}_1, \underline{\mathcal{R}}_1 \vdash \langle res_val_1, res_val_2 \rangle \Leftarrow res_1 * res_2$ (by lemma B8.3), so $h = h_1 + h_2$ where $\Phi \vdash h \Leftarrow \underline{\mathcal{R}}_1$ and $\Phi \vdash h \Leftarrow \underline{\mathcal{R}}_2$.

By induction, obtain h'_1 and h'_2 , and then let $h' = h'_1 + h'_2$. Instantiate the frame, from the inductive hypothesis with $h_2 + f$ and then $h'_1 + f$ to conclude $\langle h_1 + h_2 + f; res_pat_1 = res_val_1 \rangle \rightsquigarrow \langle h'_1 + h_2 + f; \sigma_1 \rangle$ and $\langle h_2 + h'_1 + f; res_pat_2 = res_val_2 \rangle \rightsquigarrow \langle h'_2 + h'_1 + f; \sigma_2 \rangle$ to step with SUBS_PAT_RES_PAIR. LET: $\underline{\mathcal{R}}' = \underline{\mathcal{R}}'_1, \underline{\mathcal{R}}'_2$ (obtained from induction). We then have and $\mathcal{C}; \mathcal{L}; \Phi \vdash h'_1 + h'_2 \Leftarrow \underline{\mathcal{R}}'$ and (since $\sigma_1(\mathcal{R}_2) = \mathcal{R}_2$ because it can not refer to \mathcal{L}_1) $\mathcal{C}; \mathcal{L}; \Phi; \underline{\mathcal{R}}' \vdash [\sigma_1, \sigma_2] \Leftarrow (\cdot; \mathcal{L}_1, \mathcal{L}_2; \mathcal{R}_1, \mathcal{R}_2)$.

 $\langle 2 \rangle 6.$ CASE: PAT_RES_MATCH_PACK $\mathcal{L}; \Phi \vdash \mathsf{pack}(x, \mathit{res_pat'}) : \exists y': \beta. \mathit{res'_1} \rightsquigarrow x: \beta, \mathcal{L}'; \Phi'; \mathcal{R}'$

 $\begin{aligned} &res = \exists y:\beta. \ res_1 \ (by \ inversion, \ REL_RES_EXISTS) \ and \\ &:; \cdot; \Phi; \underline{\mathcal{R}} \vdash \mathsf{pack} \ (oarg, \ res_val') \Leftarrow \exists y:\beta. \ res_1 \ (by \ lemma \ B8.3). \\ &\mathcal{L}, x:\beta; \Phi \vdash \ res_val' : x/y'(res_1') \rightsquigarrow \mathcal{L}'; \Phi'; \mathcal{R}' \ (from \ the \ pattern-matching \ assumption), \\ &:; \cdot; \Phi; \underline{\mathcal{R}} \vdash \ res_val' \Leftarrow \ oarg/y(res_1) \ (from \ the \ typing \ assumption), \\ &\forall \ term \sim \ term'. \ \Phi \vdash \ term/y(res_1) \sim \ term'/y'(res_1') \ (from \ the \ related \ assumption), \\ &oarg \sim x \ imply \ \exists h'', \sigma', . \ \forall f \ \dots \\ &\text{and} \ \exists \underline{\mathcal{R}}''. \ C; \ \mathcal{L}, x:\beta; \Phi \vdash h' \Leftarrow \underline{\mathcal{R}}' \land C; x:\beta, \ \mathcal{L}; \Phi; \underline{\mathcal{R}}'' \vdash \sigma' \Leftarrow (\cdot; \mathcal{L}'; \mathcal{R}') \end{aligned}$

Since $:: \vdash oarg \Rightarrow \beta$, and $oarg/x(\Phi) = \Phi$ (because it is well-scoped / doesn't refer to

x) and $C; \mathcal{L}; oarg/x(\Phi); oarg/x(\underline{\mathcal{R}}') \vdash [id, oarg/x] \Leftarrow (C; x:\beta, \mathcal{L}'; \underline{\mathcal{R}}'),$ we have $C; \mathcal{L}; \Phi \vdash oarg/x(h'') \Leftarrow oarg/x(\underline{\mathcal{R}}''),$ and $C; \mathcal{L}; \Phi; oarg/x(\underline{\mathcal{R}}'') \vdash oarg/x(\sigma') \Leftarrow (\cdot; \mathcal{L}'; oarg/x(\mathcal{R}_2))$ (by lemma B7.3 (Substitution)).

LET: h' = oarg/x(h'') $\sigma = [oarg/x, \sigma']$ to step with SUBS_PAT_RES_PACK. $\underline{\mathcal{R}}' = oarg/x(\underline{\mathcal{R}}'')$ so $\mathcal{C}; \mathcal{L}; \Phi; oarg/x(\underline{\mathcal{R}}'') \vdash [oarg/x, \sigma'] \Leftarrow (\cdot; \mathcal{L}'; \mathcal{R}_2)$ by SUBS_CHK_CONCAT.

B9.5 $\Phi \vdash to_fun ret \sim ret$

PROOF SKETCH: Induction over ret.

B9.6 Statement and proof

- ASSUME: 1. Closed (no free-variables) expression *texpr*. 2. $\cdot; \cdot; \Phi; \underline{\mathcal{R}} \vdash texpr \leftarrow ret$ 3. All patterns in *texpr* are exhaustive.
- PROVE: Either *texpr* is a value *tval*, or it is unreachable, or $\forall h, \underline{\mathcal{R}}. (\Phi \vdash h \Leftarrow \underline{\mathcal{R}}) \Rightarrow \exists h', texpr'. \langle h; texpr \rangle \longrightarrow \langle h'; texpr' \rangle.$

PROOF SKETCH: Induction over the typing rules.

- (1)1. CASE: Value typing rules (see B5.3). PROOF: All these judgements/rules give types to syntactic values; and there are no operational rules corresponding to them (see Section B3).
- (1)2. CASE: PURE_TOP_VAL_UNDEF, PURE_TOP_VAL_ERROR, EXPL_TOP_VAL_UNDEF, EXPL_ TOP_VAL_ERROR.
 PROOF: All these rules require inconsistent constraint context, and so would be unreachable.
- (1)3. CASE: PURE_EXPR_ARRAY_SHIFT. PROOF: By inversion on $\cdot \vdash pval_1 \Rightarrow pointer$, $pval_1$ must be a mem_ptr (PURE_VAL_OBJ_PTR). Similarly $pval_2$ must be a mem_int, so step with PE_TP_ARRAY_SHIFT.
- (1)4. CASE: PURE_EXPR_MEMBER_SHIFT. PROOF: pval must be a mem_ptr so step with PE_TP_MEMBER_SHIFT.
- (1)5. CASE: PURE_EXPR_NOT. PROOF: *pval* must be a *bool_value* so step with PE_TP_NOT_TRUE or PE_TP_NOT_FALSE.
- (1)6. CASE: PURE_EXPR_ARITH_BINOP, PURE_EXPR_REL_BINOP. PROOF: *pval*₁ and *pval*₂ must be *mem_ints*, so step with PE_TP_ARITH_BINOP or PE_TP_ REL_BINOP respectively.

- (1)7. CASE: PURE_EXPR_BOOL_BINOP. PROOF: *pval*₁ and *pval*₂ must be *bool_values*, so step with PE_TP_BOOL_BINOP.
- $\langle 1 \rangle 8.$ Case: Pure_Expr_Call.
 - $\langle 2 \rangle$ 1. 1. name: <u>pure_fun</u> $\equiv \overline{x_i}^i \mapsto tpexpr \in Globals.$ 2. $\cdot; \cdot; \Phi; \cdot \vdash \overline{pval_i}^i :: pure_fun \gg \Sigma y:\beta. term \land I.$ PROOF: By inversion on the assumption.
 - $\langle 2 \rangle 2. \ \langle \cdot; \overline{x_i = pval_i}^i \rangle :: pure_fun \gg \langle \cdot; \sigma; \underline{\Sigma} y: \beta. term \land I \rangle.$ PROOF: By lemma B9.3.
 - $\langle 2 \rangle 3$. Thus it can step with PE_TP_CALL.
- $\langle 1 \rangle$ 9. Case: Pure_Expr_Assert_Undef.
 - $\langle 2 \rangle$ 1. pval must be a bool_value PROOF: By PURE_VAL_TRUE, PURE_VAL_FALSE.
 - $\langle 2 \rangle 2$. smt ($\Phi \Rightarrow pval$). PROOF: By inversion on the assumption.
 - $\langle 2 \rangle$ 3. If it is False, then by the latter, we have an inconsistent constraints context, meaning the code is unreachable.
 - $\langle 2 \rangle 4$. If it is **True**, we may step with PE_TP_ASSERT_UNDEF.
- (1)10. CASE: PURE_EXPR_BOOL_TO_INTEGER. PROOF: *pval* must be a *bool_value* (PURE_VAL_TRUE, PURE_VAL_FALSE) and so step with PE_TP_BOOL_TO_INTEGER_TRUE, PE_TP_BOOL_TO_INTEGER_FALSE respectively.
- (1)11. CASE: PURE_EXPR_WRAPI. PROOF: pval must be a mem_int (PURE_VAL_OBJ_PTR) and so step with PE_TP_WRAPI.
- (1)12. CASE: PURE_TOP_IF, PURE_TOP_CASE, PURE_TOP_LET, PURE_TOP_LETT. PROOF: See EXPL_TOP_SEQ_IF, EXPL_TOP_SEQ_CASE, EXPL_TOP_SEQ_LET, EXPL_ TOP_SEQ_LETT, case for more general proofs.
- $\langle 1 \rangle$ 13. Case: Expl_Is_Action_Create.
 - (2)1. pval must be a mem_int.PROOF: By PURE_VAL_OBJ_PTR.
 - $\langle 2 \rangle 2$. *h* must be \cdot (empty). PROOF: By HEAP_EMPTY.
 - $\langle 2 \rangle$ 3. Step with ACTION_IS_CREATE. PROOF: *mem_ptr* is free in the premises and so can be constructed to satisfy the requirements.
- $\langle 1 \rangle$ 14. Case: Expl_Is_Action_Load.

- $\langle 2 \rangle$ 1. pval₀ must be a mem_ptr. PROOF: By PURE_VAL_OBJ_PTR.
- $\begin{array}{l} \langle 2 \rangle 2. \quad & \langle ; \cdot ; \Phi ; \underline{\mathcal{R}'} \vdash res_term \Rightarrow \underline{term} \stackrel{init}{\mapsto_{\tau}} pval_{1} \\ & \text{smt} \left(\Phi \Rightarrow (term = mem_ptr) \land (init = \texttt{const}_{\tau}\texttt{true}) \right). \\ & \text{PROOF: By inversion on the typing assumption and } \langle 2 \rangle 1. \end{array}$
- ⟨2⟩3. ∃h', <u>R</u>', res_val.
 1. Φ ⊢ h' ⇐ <u>R</u>'
 2. ⟨h; res_term⟩ ↓ ⟨h'; res_val⟩
 3. ·; ·; Φ; <u>R</u>' ⊢ res_val ⇒ term ^{init}→_τ pval₁
 PROOF: By ⟨2⟩2 and lemma B8.6 (Progress and type preservation for resource terms).
- $\langle 2 \rangle$ 4. $res_val = 0wned \langle \tau \rangle (term)$. PROOF: By lemma B8.3 (Non-conditional resources determine context and values).
- $\langle 2 \rangle$ 5. $h' = \{term \stackrel{init}{\mapsto_{\tau}} pval_1 \& None\}$. PROOF: By inversion on the term typing assumption in $\langle 2 \rangle$ 3 using $\langle 2 \rangle$ 4, $\Phi \vdash h' \Leftarrow \underline{\mathcal{R}}'$ and lemma B8.4 (Normalised resource context determines structure of heap).
- $\langle 2 \rangle 6$. Step with ACTION_IS_LOAD.
- $\langle 1 \rangle$ 15. Case: Expl_Is_Action_Store.
 - $\langle 2 \rangle$ 1. *pval*₀ must both be a *mem_ptr*. PROOF: By PURE_VAL_OBJ_PTR.
 - $\begin{array}{l} \langle 2 \rangle 2. \hspace{0.5cm} \mathtt{smt} \left(\Phi \Rightarrow \mathtt{representable} \left(\tau, pval_{1} \right) \right) \\ \quad \cdot; \cdot; \Phi; \underline{\mathcal{R}} \vdash res_term \Rightarrow \underline{term} \mapsto_{\tau} _ \\ \quad \mathtt{smt} \left(\Phi \Rightarrow term = mem_ptr \right). \\ \quad \mathrm{PROOF:} \hspace{0.5cm} \mathrm{By} \hspace{0.5cm} \mathrm{inversion} \hspace{0.5cm} \mathrm{on} \hspace{0.5cm} \mathrm{the} \hspace{0.5cm} \mathrm{typing} \hspace{0.5cm} \mathrm{assumption} \hspace{0.5cm} \mathrm{and} \hspace{0.5cm} \langle 2 \rangle 1. \end{array}$
 - ⟨2⟩3. ∃h', <u>R</u>', res_val.
 1. Φ ⊢ h' ⇐ <u>R</u>'
 2. ⟨h; res_term⟩ U ⟨h'; res_val⟩
 3. ·; ·; ·; <u>R</u>' ⊢ res_val ⇒ term ⊢_τ.
 PROOF: By ⟨2⟩2 and lemma B8.6 (Progress and type preservation for resource terms).
 - $\langle 2 \rangle$ 4. $res_val = 0wned \langle \tau \rangle (term)$. PROOF: By lemma B8.3 (Non-conditional resources determine context and values).
 - $\langle 2 \rangle$ 5. $h' = \{ term \mapsto_{\tau} = \& \text{None} \}$. PROOF: By inversion on the term typing assumption in $\langle 2 \rangle$ 3, $\Phi \vdash h' \leftarrow \underline{\mathcal{R}}'$ and lemma B8.4 (Normalised resource context determines structure of heap).
 - $\langle 2 \rangle 6$. Step with ACTION_IS_STORE.
- $\langle 1 \rangle$ 16. Case: Expl_Is_Action_Kill_Static

- (2)1. pval must be a mem_ptr.PROOF: By PURE_VAL_OBJ_PTR.
- $\langle 2 \rangle 2. \quad :, :; \Phi; \underline{\mathcal{R}} \vdash res_term \Rightarrow \underline{term} \mapsto_{\tau} _$ smt ($\Phi \Rightarrow term = mem_ptr$). PROOF: By inversion on the typing assumption and $\langle 2 \rangle 1$.
- ⟨2⟩3. ∃h', <u>R</u>', res_val.
 1. Φ ⊢ h' ⇐ <u>R</u>'
 2. ⟨h; res_term⟩ U ⟨h'; res_val⟩
 3. ·; ·; Φ; <u>R</u>' ⊢ res_val ⇒ term ⊢₇.
 PROOF: By ⟨2⟩2 and lemma B8.6 (Progress and type preservation for resource terms).
- $\langle 2 \rangle$ 4. $res_val = 0wned \langle \tau \rangle (term)$. PROOF: By lemma B8.3 (Non-conditional resources determine context and values).
- $\langle 2 \rangle$ 5. $h' = \{ term \mapsto_{\tau} _\& \text{None} \}$. PROOF: By inversion on the typing assumption in $\langle 2 \rangle$ 3, $\Phi \vdash h' \Leftarrow \underline{\mathcal{R}}'$ and lemma B8.4 (Normalised resource context determines structure of heap).
- $\langle 2 \rangle 6$. Step with ACTION_IS_KILL_STATIC.
- (1)17. CASE: EXPL_IS_MEMOP_REL_BINOP. PROOF: Similar to Pure_Expr_Rel_BINOP, but step with MEMOP_IS_REL_BINOP.
- (1)18. CASE: EXPL_IS_MEMOP_INTFROMPTR. PROOF: *pval* must be a *mem_ptr*, so step with MEMOP_IS_INTFROMPTR.
- (1)19. CASE: EXPL_IS_MEMOP_PTRFROMINT. PROOF: *pval* must be a *mem_int*, so step with MEMOP_IS_PTRFROMINT.
- (1)20. Case: Expl_Is_Memop_PtrValidForDeref.
 - (2)1. pval must be a mem_ptr. PROOF: By PURE_VAL_OBJ_PTR.
 - $\begin{array}{l} \langle 2 \rangle 2. \quad & \vdots, \vdots, \\ \Phi \vdots \underbrace{\mathcal{R}} \vdash res_term \Rightarrow \underbrace{term} \stackrel{init}{\mapsto_{\tau}}_.\\ \text{smt} (\Phi \Rightarrow (term = mem_ptr) \land (init = \texttt{const}_{\tau}\texttt{true})).\\ \text{PROOF: By inversion on the typing assumption and } \langle 2 \rangle 1. \end{array}$
 - ⟨2⟩3. ∃h'<u>R</u>', res_val.
 1. Φ ⊢ h' ⇐ <u>R</u>'
 2. ⟨h; res_term⟩ U ⟨h'; res_val⟩
 3. ·; ·; Φ; <u>R</u>' ⊢ res_val ⇒ term →_τ __.
 PROOF: By ⟨2⟩2 and lemma B8.6 (Progress and type preservation for resource terms).
 - $\langle 2 \rangle 4. \ res_val = \texttt{Owned} \langle \tau \rangle (term).$

PROOF: By lemma B8.3 (Non-conditional resources determine context and values).

- $\langle 2 \rangle$ 5. $h' = \{ term \stackrel{init}{\mapsto_{\tau}} _\& \text{None} \}$. PROOF: By inversion on the typing assumption in $\langle 2 \rangle$ 3 using $\langle 2 \rangle$ 4, $\Phi \vdash h' \Leftarrow \underline{\mathcal{R}}'$ and lemma B8.4 (Normalised resource context determines structure of heap).
- $\langle 2 \rangle 6$. Step with MEMOP_IS_PTRVALIDFORDEREF.
- (1)21. CASE: EXPL_IS_MEMOP_PTRWELLALIGNED. PROOF: *pval* must be a *mem_ptr*, so step with MEMOP_IS_PTRWELLALIGNED.
- (1)22. CASE: EXPL_IS_MEMOP_PTRARRAYSHIFT. PROOF: *pval*₁ must be a *mem_ptr* and *pval*₂ must be a *mem_int*, so step with MEMOP_IS_ PTRARRAYSHIFT.
- $\langle 1 \rangle 23$. Case: Expl_Seq_CCall.
 - $\langle 2 \rangle$ 1. $ident: fun \equiv \overline{x_i}^i \mapsto texpr \in Globals$ $:; :; \Phi; \underline{\mathcal{R}} \vdash \overline{spine_elem_i}^i :: fun \gg ret.$ PROOF: By inversion.
 - $\langle 2 \rangle 2$. $\langle h; \overline{x_i = spine_elem_i}^i \rangle ::: fun \gg \langle h'; \sigma_2; ret \rangle$. PROOF: By $\langle 2 \rangle 1$ and lemma B9.3 (Well-typed spines produce substitutions and the same return type).
 - $\langle 2 \rangle 3$. Step with SEQ_T_CCALL.
- (1)24. CASE: EXPL_SEQ_PROC, EXPL_TOP_SEQ_RUN. PROOF: Similar to EXPL_SEQ_CCALL, but step with SEQ_T_PROC / TSEQ_T_RUN.
- (1)25. CASE: EXPL_IS_MEMOP. PROOF: By induction, if *memop* is unreachable, then the whole expression is so. *memops* are not values. Only stepping cases applies, so step with IS_IS_MEMOP.
- (1)26. CASE: EXPL_IS_ACTION, EXPL_IS_NEG_ACTION. PROOF: By induction, if *action* is unreachable, then the whole expression is so. *actions* are not values. Only stepping case applies, so step with IS_IS_ACTION (or IS_IS_NEG_ACTION respectively).
- (1)27. CASE: EXPL_TOP_SEQ_LETP, EXPL_TOP_SEQ_LETTP. PROOF: See EXPL_TOP_SEQ_LET / EXPL_TOP_SEQ_LETT for more general cases and proofs.
- (1)28. CASE: EXPL_TOP_SEQ_LET. PROOF: By induction, since seq_expr is not value, if it is unreachable, the whole expression is so. If seq_expr takes a step, the whole expression steps with TSEQ_T_LET_LETT.
- $\langle 1 \rangle$ 29. Case: Expl_Top_Seq_LetT.

PROOF: By induction, if *texpr* is unreachable, so is the whole expression.

If if it a *tval*, use lemma B9.4 (Well-typed values pattern-match successfully), with lemma B9.5 ($\Phi \vdash to_fun ret \sim ret$) and the assumption that all patterns are exhaustive, so the whole expression steps with TSEQ_T_LETT_SUB.

If texpr takes a step, the whole expression steps with TSEQ_T_LETT_LETT.

- (1)30. CASE: EXPL_TOP_SEQ_CASE. PROOF: By assumption that all patterns are exhaustive, and lemma B9.4 (Well-typed values pattern-match successfully), there is at least one pattern against which *pval* will match, so TSEQ_T_CASE.
- (1)31. CASE: EXPL_TOP_SEQ_IF. PROOF: *pval* must be a *bool_value* and so TSEQ_T_IF_TRUE/ TSEQ_T_IF_FALSE.
- (1)32. CASE: EXPL_TOP_SEQ_BOUND. PROOF: Step with TSEQ_T_BOUND.
- (1)33. CASE: EXPL_TOP_IS_LETS. PROOF: Similar to EXPL_TOP_SEQ_LETT, but step with TIS_T_LETS_SUB / TIS_T_ LETS_LETSinstead.
- (1)34. CASE: EXPL_TOP_SEQ, EXPL_TOP_IS. PROOF: Step with T_T_TSEQ_T / T_T_TIS_T respectively.

B10 Type Preservation

B10.1 Owned $\langle \tau \rangle$ resource output values have type β_{τ}

If $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \mathsf{Owned} \langle \tau \rangle(ptr) \leftarrow ptr' \stackrel{init}{\mapsto_{\tau}} pval$ then $\mathcal{C} \vdash pval \Rightarrow \beta_{\tau}$ and $\mathcal{C}; \mathcal{L} \vdash init \Rightarrow bool_{\tau}$.

PROOF SKETCH: Induction over the typing judgements. Only EXPL_IS_ACTION_STORE constrain _.value of Owned $\langle \tau \rangle$ resources, and its premises ensure it has type β_{τ} ; EXPL_IS_ACTION_LOAD and EXPL_IS_MEMOP_PTRVALIDFORDEREF simply propagate the value. EXPL_IS_ACTION_ CREATE, EXPL_IS_ACTION_LOAD and EXPL_IS_ACTION_STORE and ensure _.init has type $bool_{\tau}$.

B10.2 Type Preservation Statement and Proof

If $::: \Phi; \underline{\mathcal{R}} \vdash texpr \Leftarrow ret$ and $\Phi \vdash h \Leftarrow \underline{\mathcal{R}}$, and all top-level functions are well-typed¹ then $\forall f. \langle h + f; texpr \rangle \longrightarrow \langle heap; texpr' \rangle \Rightarrow \exists \Phi', h', \underline{\mathcal{R}}'. (::: \Phi; \cdot \sqsubseteq :: \Phi'; \cdot) \land heap = h' + f \land (\Phi' \vdash h' \Leftarrow \underline{\mathcal{R}}') \land (::: \Phi'; \underline{\mathcal{R}}' \vdash texpr' \Leftarrow ret).$

You can equally well prove $\forall \underline{\mathcal{R}}' . \Phi \vdash h' \Leftarrow \underline{\mathcal{R}}' \Rightarrow :; : \Phi; \underline{\mathcal{R}}' \vdash texpr' \Leftarrow ret$ instead. Instead of supplying $\underline{\mathcal{R}}'$ and proving heap typing, you instead invert heap typing to deduce that $\underline{\mathcal{R}}'$ can only be what you would have supplied anyways.

It's worth noting that the constraint context will always only contain trivially true constraints (since $C; \mathcal{L}$ are both empty, all the *terms* in $\Phi; \mathcal{R}$ will be closed). This does not, by itself, guarantee that all conditional resources will be determined (e.g. **if default bool then** res_1 **else** res_2), but there are other ways of excluding this (not allowing under-determined in heaps).

PROOF SKETCH: Induction over the typing rules, which don't refer to values or unreachable program points.

ASSUME: 1. $:; :; \Phi; \underline{\mathcal{R}} \vdash texpr \Leftarrow ret,$ 2. $\Phi \vdash h \Leftarrow \underline{\mathcal{R}}$ 3. all top-level functions are well-typed 4. $\forall f. \langle h + f; texpr \rangle \longrightarrow \langle heap; texpr' \rangle$

PROVE: $\exists \Phi', h', \underline{\mathcal{R}'}$. 1. $\cdot; \cdot; \Phi; \cdot \sqsubseteq \cdot; \cdot; \Phi'; \cdot$ 2. heap = h' + f3. $\Phi' \vdash h' \Leftarrow \underline{\mathcal{R}'}$ 4. $\cdot; \cdot; \Phi'; \underline{\mathcal{R}'} \vdash texpr' \Leftarrow ret$.

(1)1. CASE: PURE_EXPR_ARRAY_SHIFT. For all pure expressions, $\Phi \vdash h \Leftarrow \cdot$, $h = \cdot$, heap = f. LET: $h' = \cdot$ and $\underline{\mathcal{R}}' = \cdot$, so heap = h' + f trivially and $\Phi \vdash \cdot \Leftarrow \cdot$ (by HEAP_EMPTY). $ret = \Sigma y$:pointer. $y = mem_ptr + ptr (mem_int \times size_of(\tau)) \land I$

PROOF: By PURE_TOP_VAL_DONE, suffices to show $\cdot \vdash mem_ptr' \Rightarrow pointer$ (true by

¹More precisely, if *ident*: $fun \equiv \overline{x_i}^i \mapsto texpr \in \text{Globals}$ and $\overline{x_i}^i :: fun \rightsquigarrow \mathcal{C}''; \mathcal{L}''; \Phi''; \mathcal{R}'' \mid ret''$ then $\mathcal{C}''; \mathcal{L}''; \Phi''; \mathcal{R}'' \vdash texpr \leftarrow ret''$.

PURE_VAL_OBJ_PTR) and smt ($\Phi \Rightarrow mem_ptr' = mem_ptr +_{ptr} (mem_int \times size_of(\tau))$) (true by definition of PE_TP_ARRAY_SHIFT).

- (1)2. CASE: PURE_EXPR_MEMBER_SHIFT, PURE_EXPR_NOT, PURE_EXPR_ARITH_BINOP, PURE_EXPR_BOOL_BINOP, PURE_EXPR_REL_BINOP, PURE_EXPR_ASSERT_UNDEF, PURE_EXPR_BOOL_TO_INTEGER, PURE_EXPR_WRAPI. PROOF: Similar to PURE_EXPR_ARRAY_SHIFT.
- (1)3. CASE: PURE_EXPR_CALL PROOF: See EXPL_SEQ_CCALL for a more general case and proof.
- (1)4. CASE: PURE_TOP_IF.PROOF: See EXPL_TOP_SEQ_IF for a more general case and proof.
- (1)5. CASE: PURE_TOP_LET. PROOF: See EXPL_TOP_SEQ_LET for a more general case and proof.
- (1)6. CASE: PURE_TOP_LETT. PROOF: See EXPL_TOP_SEQ_LETT for a more general case and proof.
- (1)7. CASE: PURE_TOP_CASE.PROOF: See EXPL_TOP_SEQ_CASE for a more general case and proof.
- $\langle 1 \rangle 8.$ Case: Expl_Is_Action_Create.
 - LET: $ret = \Sigma y_p$:pointer. $term \land (y_p \xrightarrow{\texttt{const}_{\tau} \texttt{false}} \texttt{default} \beta_{\tau}) * \texttt{I}$ where $term = \texttt{representable} (\tau *, y_p) \land \texttt{alignedI} (mem_int, y_p)$. $pt = \texttt{Owned} \langle \tau \rangle (mem_ptr)(\textit{oarg})$ where $oarg = \{init = \texttt{const}_{\tau}\texttt{false}, value = \texttt{default} \beta_{\tau}\}.$

ASSUME: $:; :; \Phi; \vdash \text{create}(mem_int, \tau) \Rightarrow ret$ and so $h = \cdot$ (by inversion, HEAP_EMPTY) and $heap = f + \{pt \& \text{None}\}$. LET: $h' = \{pt \& \text{None}\}, \underline{\mathcal{R}'} = .:pt$. This means heap = h' + f (trivially) and $\Phi \vdash h' \leftarrow \underline{\mathcal{R}'}$ (by HEAP_PRED_OWNED).

PROVE: $:: :; :; \Phi; \mathcal{R}' \vdash \text{done} \langle mem_ptr, \text{Owned} \langle \tau \rangle (mem_ptr) \rangle : ret \Rightarrow ret.$

 $\langle 2 \rangle 1$. $\vdash mem_ptr \Rightarrow$ pointer by PURE_VAL_OBJ_PTR and PURE_VAL_OBJ.

- $\langle 2 \rangle 2$. smt ($\cdot \Rightarrow term$) by construction of mem_ptr.
- $\langle 2 \rangle 3. :; :; :; \underline{\mathcal{R}}' \vdash \mathsf{Owned} \langle \tau \rangle (mem_ptr) \Leftarrow pt \text{ by Res_Syn_Pred.}$
- $\langle 2 \rangle$ 4. Prove typing with EXPL_SPINE_RET; $\langle 2 \rangle 3 \langle 2 \rangle 1$ with EXPL_SPINE_RES, EXPL_SPINE_PHI, EXPL_SPINE_COMP respectively; EXPL_IS_TVAL.

 $\langle 1 \rangle 9$. Case: Expl_Is_Action_Load.

LET: $ret = \Sigma y: \beta_{\tau}. y = pval \land (mem_ptr \overset{const_{\tau}true}{\mapsto_{\tau}} pval) * I$

pt = 0 wned $\langle \tau \rangle (mem_ptr)(oarg)$ where $oarg = \{init = const_{\tau}true, value = pval\}.$

ASSUME: $: :: : \Phi; \underline{\mathcal{R}} \vdash \text{load}(\tau, mem_ptr, _, res_term) \Rightarrow ret$ and $heap = heap' + \{pt \& \text{None}\}$ so $\langle h + f; res_term \rangle \Downarrow \langle heap' + \{pt \& \text{None}\}; \text{Owned} \langle \tau \rangle (mem_ptr) \rangle.$

LET: h' and $\underline{\mathcal{R}}'$ be as per lemma B8.8 (Resource term reduction is isolated). $\underline{\mathcal{R}}' = _:pt$ by lemma B8.3 and $h' = \{pt \& \text{None}\}$ by lemma B8.4, hence heap' = f. This means heap = h' + f, $\Phi \vdash h' \Leftarrow \underline{\mathcal{R}}'$ and $\cdot; \cdot; \Phi; \underline{\mathcal{R}}' \vdash \text{Owned} \langle \tau \rangle (mem_ptr) \Rightarrow \underline{pt}$.

PROVE: $:: :; :; \Phi; \underline{\mathcal{R}}' \vdash \text{done} \langle pval, \text{Owned} \langle \tau \rangle (mem_ptr) \rangle : ret \Rightarrow \underline{ret}.$

- $\langle 2 \rangle 1. \quad \vdash pval \Rightarrow \beta_{\tau}$ by lemma B10.1 (Owned $\langle \tau \rangle$ resource output values have type β_{τ}).
- $\langle 2 \rangle 2$. smt ($\cdot \Rightarrow pval = pval$) trivially.
- $\langle 2 \rangle 3. :; :; \Phi; \underline{\mathcal{R}}' \vdash \mathsf{Owned} \langle \tau \rangle (mem_ptr) \Rightarrow \underline{pt}, already established.$
- $\langle 2 \rangle$ 4. Prove typing with EXPL_SPINE_RET; $\langle 2 \rangle 3 \langle 2 \rangle 1$ with EXPL_SPINE_RES, EXPL_SPINE_LOG, EXPL_SPINE_COMP respectively; EXPL_IS_TVAL.
- $\langle 1 \rangle 10$. Case: Expl_Is_Action_Store.
 - LET: $ret = \Sigma$:unit. $(mem_ptr \xrightarrow{const_{\tau}true} pval) * I.$ $pt = 0wned \langle \tau \rangle (mem_ptr)(_), pt' = 0wned \langle \tau \rangle (mem_ptr)(oarg), where$ $oarg = \{init = const_{\tau}true, value = pval\}.$

ASSUME: $::: \Phi; \underline{\mathcal{R}} \vdash \texttt{store}(_, \tau, mem_ptr, pval, _, res_term) \Rightarrow ret$ and $heap = heap' + \{pt' \& \texttt{None}\}$ so $\langle h + f; res_term \rangle \Downarrow \langle heap' + \{pt \& \texttt{None}\}; \texttt{Owned} \langle \tau \rangle (mem_ptr) \rangle.$

 $\exists h'', \underline{\mathcal{R}}'' \text{ such that } heap' + \{pt \& \text{None}\} = h'' + f, \Phi \vdash h'' \Leftarrow \underline{\mathcal{R}}'' \text{ and} \\ \because; \because; \Phi; \underline{\mathcal{R}}'' \vdash \texttt{Owned} \langle \tau \rangle (mem_ptr) \Rightarrow \underline{pt}, \text{ by lemma B8.8 (Resource term reduction is isolated).}$

 $\underline{\mathcal{R}}'' = _:pt$ by lemma B8.3 and $h'' = \{pt \& \text{None}\}$ by lemma B8.4, hence heap' = f. LET: $h' = \{pt' \& \text{None}\}$ and $\underline{\mathcal{R}}' = _:pt'$. This means heap = h' + f and $\Phi \vdash h' \Leftarrow \underline{\mathcal{R}}'$ (by HEAP_PRED_OWNED).

PROVE: $:::;:;\Phi;\underline{\mathcal{R}}' \vdash \texttt{done} \langle \texttt{Unit}, \texttt{Owned} \langle \tau \rangle (mem_ptr) \rangle: ret \Rightarrow \underline{ret}.$

- $\langle 2 \rangle 1.$ $\cdot \vdash$ Unit \Rightarrow unit by PURE_VAL_UNIT.
- $\langle 2 \rangle 2$. $:;:; \Phi; :: pt' \vdash \mathsf{Owned} \langle \tau \rangle (mem_ptr) \Leftarrow pt' \text{ by Res_Syn_Pred.}$
- $\langle 2 \rangle$ 3. Prove typing with EXPL_SPINE_RET; $\langle 2 \rangle 2 \langle 2 \rangle 1$ with EXPL_SPINE_RES, EXPL_SPINE_COMP respectively; EXPL_IS_TVAL.
- $\langle 1 \rangle$ 11. CASE: EXPL_IS_ACTION_KILL_STATIC. ASSUME: $\cdot; \cdot; \Phi; \underline{\mathcal{R}} \vdash \text{kill}(\text{static} \tau, mem_ptr, res_term) \Rightarrow \underline{\mathcal{D}}_:unit. I and$

 $\langle h+f; res_term \rangle \Downarrow \langle heap + \{pt \& None\}; Owned \langle \tau \rangle (mem_ptr) \rangle.$

 $\exists h'', \underline{\mathcal{R}}'' \text{ such that } heap + \{pt \& \text{None}\} = h'' + f, \Phi \vdash h'' \Leftarrow \underline{\mathcal{R}}'' \text{ and} \\ \because; \because; \Phi; \underline{\mathcal{R}}'' \vdash \texttt{Owned} \langle \tau \rangle (mem_ptr) \Rightarrow \underline{pt}, \text{ by lemma B8.8 (Resource term reduction is isolated).}$

 $\underline{\mathcal{R}}'' = _:pt$ by lemma B8.3 and $h'' = \{pt \& \text{None}\}$ by lemma B8.4, hence heap = f. LET: $h' = \cdot$ and $\underline{\mathcal{R}}' = \cdot$. This means heap = h' + f and $\Phi \vdash h' \Leftarrow \underline{\mathcal{R}}'$ (by HEAP_EMPTY).

PROVE: $\cdot; \cdot; \Phi; \cdot \vdash \text{done} \langle \text{Unit} \rangle : \Sigma _: \text{unit. I} \Rightarrow \Sigma _: \text{unit. I}$ PROOF: By EXPL_SPINE_RET, PURE_VAL_UNIT, EXPL_SPINE_COMP, EXPL_IS_TVAL.

- (1)12. CASE: EXPL_IS_MEMOP_REL_BINOP. PROOF: Similar to Pure_Expr_Rel_Binop.
- $\langle 1 \rangle 13$. Case: Expl_Is_Memop_IntFromPtr.

LET: $ret = \Sigma y$:integer. $y = cast_ptr_to_int mem_ptr \land I$. Since $\Phi \vdash h \Leftarrow \cdot, h = \cdot$, heap = f. ASSUME: $\cdot; \cdot; \Phi; \cdot \vdash intFromPtr(\tau_1, \tau_2, mem_ptr) \Rightarrow ret$. LET: $h' = \cdot$ and $\underline{\mathcal{R}}' = \cdot$, so heap = h' + f trivially and $\Phi \vdash \cdot \Leftarrow \cdot$ (by HEAP_EMPTY). PROVE: $\cdot; \cdot; \cdot; \cdot \vdash done \langle mem_int \rangle$: $ret \Rightarrow ret$ PROOF: Prove typing with EXPL_SPINE_RET, EXPL_SPINE_PHI, EXPL_SPINE_COMP and EXPL_TOP_VAL_DONE instead.

- (1)14. CASE: EXPL_IS_MEMOP_PTRFROMINT. PROOF: Similar to EXPL_IS_MEMOP_INTFROMPTR, swapping base types integer and pointer.
- $\langle 1 \rangle$ 15. CASE: EXPL_IS_MEMOP_PTRVALIDFORDEREF. LET: pt = 0wned $\langle \tau \rangle (mem_ptr)(oarg)$ where $oarg = \{init = const_{\tau}true, value = value\}$ $ret = \Sigma y$:bool. $y = aligned(\tau, pval) \land pt * I$
 - ASSUME: $:; :; \Phi; \underline{\mathcal{R}} \vdash \mathsf{ptrValidForDeref}(\tau, mem_ptr, res_term) \Rightarrow ret$ and $heap = heap' + \{pt \& \mathsf{None}\}$ so $\langle h + f; res_term \rangle \Downarrow \langle heap' + \{pt \& \mathsf{None}\}; \mathsf{Owned} \langle \tau \rangle (mem_ptr) \rangle.$

LET: h' and $\underline{\mathcal{R}}'$ be as per lemma B8.8 (Resource term reduction is isolated). $\underline{\mathcal{R}}' = _:pt$ by lemma B8.3 and $h' = \{pt \& \text{None}\}$ by lemma B8.4, hence heap' = f. This means heap = h' + f, $\Phi \vdash h' \Leftarrow \underline{\mathcal{R}}'$ and $\cdot; \cdot; \Phi; \underline{\mathcal{R}}' \vdash \text{Owned} \langle \tau \rangle (mem_ptr) \Rightarrow pt$.

PROVE: $:::; :; \Phi; \underline{\mathcal{R}}' \vdash \text{done} \langle bool_value, \texttt{Owned} \langle \tau \rangle (mem_ptr) \rangle: ret \Rightarrow \underline{ret}.$

- $\langle 2 \rangle 1. \mapsto bool_value \Rightarrow bool$ by PURE_VAL_TRUE/ PURE_VAL_FALSE.
- $\langle 2 \rangle 2$. smt ($\cdot \Rightarrow bool_value = \texttt{aligned}(\tau, mem_ptr)$). PROOF: By construction of *bool_value* (inversion on the transition).

- $\langle 2 \rangle 3. :; :; \Phi; :: pt \vdash \mathsf{Owned} \langle \tau \rangle (mem_ptr) \Leftarrow pt$, already established.
- $\langle 2 \rangle$ 4. Prove typing with EXPL_SPINE_RET; $\langle 2 \rangle 3 \langle 2 \rangle 1$ with EXPL_SPINE_RES, EXPL_SPINE_PHI, EXPL_SPINE_COMP respectively; EXPL_IS_TVAL.
- $\begin{array}{ll} \langle 1 \rangle 16. \ \text{CASE: EXPL_IS_MEMOP_PTRWELLALIGNED.} \\ \text{LET: } ret = \Sigma \ y: \texttt{bool. } y = \texttt{aligned} \ (\tau, mem_ptr) \land \texttt{I.} \\ \text{ASSUME: } \cdot; \cdot; \Phi; \cdot \vdash \texttt{ptrWellAligned} \ (\tau, mem_ptr) \Rightarrow \ ret. \\ \text{Since } \Phi \vdash h \Leftarrow \cdot, \ h = \cdot, \ heap = f. \\ \text{LET: } h' = \cdot \ \text{and} \ \underline{\mathcal{R}}' = \cdot, \ \text{so} \ heap = h' + f \ \text{trivially and} \ \Phi \vdash \cdot \Leftarrow \cdot \ (\texttt{by HEAP_EMPTY}). \\ \text{PROVE: } \quad :; \cdot; \Phi; \cdot \vdash \texttt{done} \ \langle \textit{bool_value} \rangle: ret \Rightarrow \ ret. \end{array}$
 - $\langle 2 \rangle 1. \mapsto bool_value \Rightarrow bool$ by PURE_VAL_TRUE/ PURE_VAL_FALSE.
 - $\langle 2 \rangle 2$. smt ($\cdot \Rightarrow bool_value = \texttt{aligned}(\tau, mem_ptr)$) by construction of bool_value.
 - (2)3. Prove typing with EXPL_SPINE_RET, EXPL_SPINE_PHI, EXPL_SPINE_COMP, EXPL_IS_TVAL.
- (1)17. CASE: EXPL_IS_MEMOP_PTRARRAYSHIFT. PROOF: Similar to PURE_EXPR_ARRAY_SHIFT, but with EXPL_IS_TVAL.
- $\begin{array}{ll} \langle 1 \rangle 18. \ \text{CASE: EXPL_SEQ_CCALL.} \\ \text{ASSUME: } ident: \underbrace{fun}_{i} \equiv \overline{x_i}^{i} \mapsto \underbrace{texpr}_{i} \in \texttt{Globals} \\ & \cdot; \cdot; \Phi; \underline{\mathcal{R}} \vdash \overline{spine_elem_i}^{i} :: fun \gg ret. \\ & \Phi \vdash h \Leftarrow \underline{\mathcal{R}} \\ & \langle h + f; \texttt{ccall}(\tau, ident, \overline{spine_elem_i}^{i}) \rangle \longrightarrow \langle heap; \sigma_2(texpr): ret' \rangle \\ & \mathcal{C}; \mathcal{L}; \Phi''; \mathcal{R}'' \vdash texpr \leftarrow ret'' \text{ where } \overline{x_i}^{i} :: fun \rightsquigarrow \mathcal{C}; \mathcal{L}; \Phi''; \mathcal{R}'' \mid ret''. \end{array}$
 - PROVE: $\exists h', \Phi', \underline{\mathcal{R}}'$ such that $\cdot; \cdot; \Phi; \cdot \sqsubseteq \cdot; \cdot; \Phi'; \cdot$ heap = h' + f $\Phi' \vdash h' \Leftarrow \underline{\mathcal{R}}'$ and $\cdot; \cdot; \Phi'; \underline{\mathcal{R}}' \vdash \sigma_2(texpr) \Leftarrow ret.$
 - $\begin{array}{l} \langle 2 \rangle 1. \ \mathcal{C}; \mathcal{L}; \Phi, \Phi''; \mathcal{R}'' \vdash texpr \Leftarrow ret'' \\ \Phi, \sigma_2(\Phi'') \vdash h \Leftarrow \underline{\mathcal{R}'} \\ \cdot; \cdot; \Phi, \sigma_2(\Phi''); \underline{\mathcal{R}} \vdash \overline{spine_elem_i}^i :: fun \gg ret. \\ \text{PROOF: By lemma B6 (Weakening).} \end{array}$
 - $\begin{array}{l} \langle 2 \rangle 2. \ ret = ret' = \sigma_2(ret'') \land \exists h_1', \underline{\mathcal{R}}_1'.\\ heap = h_1' + f, \ \text{and} \ (\Phi, \sigma_2(\Phi'') \vdash h_1' \Leftarrow \underline{\mathcal{R}}_1')\\ \because; \because; \Phi, \sigma_2(\Phi''); \underline{\mathcal{R}}_1' \vdash \sigma_2 \Leftarrow (\mathcal{C}; \mathcal{L}; \mathcal{R}'').\\ \text{PROOF: By lemma B9.3 (Well-typed spines produce substitutions and the same return type).} \end{array}$
 - $\langle 2 \rangle 3. :; :; \Phi, \sigma_2(\Phi''); \underline{\mathcal{R}}'_1 \vdash \sigma(texpr) \Leftarrow \sigma(ret'').$ PROOF: By lemma B7.3 (Substitution), because $\sigma_2(\Phi) = \Phi$ since it contains only closed terms / is well-formed w.r.t :; ..

 $\langle 2 \rangle 4$. Let: $h' = h'_1; \Phi' = \Phi, \sigma_2(\Phi''); \underline{\mathcal{R}}' = \underline{\mathcal{R}}'_1.$

 $\langle 2 \rangle 5. :; :; \Phi; \cdot \sqsubseteq :; :; \Phi, \sigma_2(\Phi''); \cdot \text{ trivially.}$

- (1)19. CASE: EXPL_SEQ_PROC. PROOF: Similar to EXPL_SEQ_PROC.
- (1)20. CASE: EXPL_IS_MEMOP, EXPL_IS_ACTION, EXPL_IS_NEG_ACTION. PROOF: By induction.
- (1)21. CASE: EXPL_TOP_SEQ_LETP, EXPL_TOP_SEQ_LETTP, EXPL_TOP_SEQ_LET. PROOF: See EXPL_TOP_SEQ_LETTfor a more general case and proof.

 $\begin{array}{l} \langle 1 \rangle 22. \ \text{CASE: EXPL_TOP_SEQ_LETT.} \\ \text{ASSUME: } \cdot; \cdot; \cdot; \underline{\mathcal{R}}_1, \underline{\mathcal{R}}_2 \vdash \texttt{let } \overline{ret_pat_i}^i : ret_1 = \texttt{done} \ \langle \overline{ret_term_i}^i \rangle \texttt{ in } texpr_2 \Leftarrow ret_2 \\ \text{ so } \cdot; \cdot; \Phi; \underline{\mathcal{R}}_1 \vdash \texttt{done} \ \langle \overline{ret_term_i}^i \rangle \Leftarrow ret_1 \\ \text{ and } \Phi \vdash ret_pat: ret_1 \rightsquigarrow \underline{\mathcal{C}}_3; \underline{\mathcal{L}}_3; \Phi_3; \underline{\mathcal{R}}_3 \\ \text{ and } \mathcal{C}_3; \underline{\mathcal{L}}_3; \Phi, \Phi_3; \underline{\mathcal{R}}_2, \mathcal{R}_3 \vdash texpr \Leftarrow ret_2 \ (\texttt{by inversion}). \end{array}$

 $\Phi \vdash h \Leftarrow \underline{\mathcal{R}}_1, \underline{\mathcal{R}}_2 \text{ so } h = h_1 + h_2 \text{ where } \Phi \vdash h_1 \Leftarrow \underline{\mathcal{R}}_1 \text{ and } \Phi \vdash h_2 \Leftarrow \underline{\mathcal{R}}_2 \text{ by lemma B8.4}$ (Normalised resource context determines structure of heap). $\langle h + f; \texttt{let } \overline{ret_pat_i}^i: ret_1 = \texttt{done } \langle \overline{ret_term_i}^i \rangle \texttt{ in } texpr \rangle \longrightarrow \langle heap; \sigma(texpr) \rangle.$ where $\langle h; \overline{ret_pat_i} = ret_term_i^i \rangle \rightsquigarrow \langle heap; \sigma \rangle.$

PROVE: $\exists \Phi', h', \underline{\mathcal{R}}'.$ $:; :; \Phi; \cdot \sqsubseteq :; :; \Phi'; \cdot$ $heap = h' + f \text{ and } \Phi' \vdash h' \Leftarrow \underline{\mathcal{R}}'$ $:; :; \Phi'; \underline{\mathcal{R}}' \vdash \sigma(texpr_2) \Leftarrow \sigma(ret_2).$

 $\exists \underline{\mathcal{R}}'_{1}. heap = h'_{1} + h_{2} + f$ $\Phi \vdash h'_{1} \Leftarrow \underline{\mathcal{R}}'_{1} \text{ and } :; :; \Phi; \underline{\mathcal{R}}'_{1} \vdash \sigma \Leftarrow (\mathcal{C}'; \mathcal{L}'; \mathcal{R}')$ by lemma B9.4 (Well-typed values pattern-match successfully).

This means $:;:; [\mathrm{id}, \sigma](\Phi, \Phi_3); \underline{\mathcal{R}}'_1, \underline{\mathcal{R}}_2 \vdash [\mathrm{id}, \sigma] \leftarrow (\mathcal{C}'; \mathcal{L}'; \underline{\mathcal{R}}_2, \mathcal{R}')$ by lemma B6 (Weakening).

LET: $\Phi' = \Phi, \sigma(\Phi_3), h' = h'_1 + h_2$ and $\underline{\mathcal{R}}' = \underline{\mathcal{R}}'_1, \underline{\mathcal{R}}_2$. By lemma B7.3 (Substitution), because $\sigma(\Phi) = \Phi$ since it contains only closed terms / is well-formed w.r.t $\cdot; \cdot$.

 $\langle 1 \rangle 23$. Case: Expl_Top_Seq_LetT.

ASSUME: $::: \Phi; \underline{\mathcal{R}}_1, \underline{\mathcal{R}}_2 \vdash \mathsf{let} \ \overline{ret_pat_i}^i: ret_1 = texpr_1 \ \mathsf{in} \ texpr_2 \Leftarrow ret_2$ so $::: \Phi; \underline{\mathcal{R}}_1 \vdash texpr_1 \Leftarrow ret_1$ and $h = h_1 + h_2$ where $\Phi \vdash h_1 \Leftarrow \underline{\mathcal{R}}_1$ and $\Phi \vdash h_2 \Leftarrow \underline{\mathcal{R}}_2$ by lemma B8.4 (Normalised resource context determines structure of heap). $\langle h; texpr_1 \rangle \longrightarrow \langle heap; texpr'_1 \rangle.$

Proceed by induction, instantiating the frame from the inductive hypothesis with $h_2 + f$.

 $\langle 1 \rangle$ 24. Case: Expl_Top_Seq_Case.

ASSUME: $:; :; \Phi; \underline{\mathcal{R}} \vdash \operatorname{case} pval \text{ of } \overline{\mid pat_i \Rightarrow texpr_i}^i \text{ end } \Leftarrow ret$ $\frac{\overline{pat_i: \beta_1 \rightsquigarrow \mathcal{C}_i \text{ with } term_i}^i}{\overline{\mathcal{C}, \mathcal{C}_i; \mathcal{L}; \Phi, term_i = pval; \mathcal{R} \vdash texpr_i \Leftarrow ret}^i}.$

 $pat_j = pval \rightsquigarrow \sigma_j$ and $\forall i < j$. not $(pat_i = pval \rightsquigarrow \sigma_i)$.

LET: $\Phi' = \Phi, \sigma_j(term_j = pval), h' = h \text{ and } \underline{\mathcal{R}}' = \underline{\mathcal{R}}.$ $:; :; \Phi'; \underline{\mathcal{R}} \vdash [id, \sigma_j] \Leftarrow (\mathcal{C}_j; :; \underline{\mathcal{R}})$ by lemma B9.4 (Well-typed values pattern-match successfully) and lemma B6 (Weakening). Hence $:; :; \Phi; : \sqsubseteq :; :; \Phi'; :$ and $:; :; \Phi'; \underline{\mathcal{R}} \vdash \sigma_j(texpr_j) \Leftarrow \sigma_j(ret)$ by lemma B7.3 (Substitution).

- (1)25. CASE: EXPL_TOP_SEQ_IF. See EXPL_TOP_SEQ_CASE for more general case and proof.
- (1)26. CASE: EXPL_TOP_SEQ_RUN. PROOF: Similar to EXPL_SEQ_CCALL.
- $\langle 1 \rangle$ 27. CASE: EXPL_TOP_SEQ_BOUND. PROOF: By induction.
- (1)28. CASE: EXPL_TOP_IS_LETS. PROOF: Similar to EXPL_TOP_SEQ_LETT.