
Equivalence Proof

Christopher Pulte, 22nd November 2018

Theorem 1. Let C = (po, rf, co, rmw) be a candidate execution. C is legal under ARMv8 Ax-
iomatic if and only if there exists a trace of Flat Operational that induces po, rf, co, and rmw.

The proof assumes a correct handling of the store exclusive dependencies in the axiomatic
model (see remarks in the paper)—whereby a syntactic dependency out of the store exclusive’s
register write does not create memory model ordering from the load exclusive or the store
exclusive. As before, the proof only covers finite executions, and only the behaviour of programs
in which all memory accesses are not misaligned and of the same size (this also exclusive
load-pair, store-pair; as the axiomatic model does not cover mixed-size accesses), and it does
not cover the LDAPR weaker acquire instructions (which at the time of writing the proof was
not covered by the operational model). The proof assumes that if a load and store exclusive
instruction are successfully paired (rmw-related in the axiomatic model), then they are to the
same address (see remarks in the paper). For simplicity, the proof assumes no reading from
initial memory, i.e. that every memory read is satisfied from a write that originates from a
store in the input program. Finally, the proof assumes the two models share the definition of
the instruction semantics and thus agree on the definition of dependencies.
Hence, the assumptions are:
1. Finite candidate executions and finite Flat traces.
2. That if a write exclusive is successfully paired with a read exclusive, then they are to

the same address.
3. ARMv8 Axiomatic and Flat Operational use the same instruction semantics.
4. (E, E′) ∈ addr if and only if: E is a read and E′ is a read or a write and E feeds into a

register write that affects the address of E′. Note: this means (E, E′) ∈ addr does not
hold if E is a write exclusive.

5. (E, E′) ∈ data: E is a read and E′ is a write and E feeds into a register write that affects
the value written by E′. Note: this means (E, E′) ∈ data does not hold if E is a write
exclusive.

1

6. (E, E′) ∈ ctrl: E is a read and E′ is a write and E feeds into a register write that affects a
conditional branch or a computed branch instruction program-order before E’. Note: this
means (E, E′) ∈ ctrl does not hold if E is a write exclusive, and that control dependencies
are not delimited — ctrl; po ⊆ ctrl.

7. All register reads of a load affect its address.
8. All register reads of a store affect its address and data.
The structure is as follows:
1. Section 1 (p. 2) gives the proof that ARMv8-axiomatic allows all behaviours allowed by

the Flat operational model. First slightly simplifying the axiomatic model, then showing
that for every candidate execution induced by Flat the main axiom external holds (in
Section 1.1), then proving the intra-thread coherence axiom internal holds (Section 1.2),
and last showing the atomic axiom holds (Section 1.3).

2. Section 2 (p. 13) defines the Flat-axiomatic intermediate model.
3. Section 3 (p. 18) proves that the Flat operational model allows the behaviours allowed

by the Flat-axiomatic model.
4. Finally, Section 4 (p. 36) shows that the Flat-axiomatic model allows all behaviours

allowed by the ARMv8-axiomatic model.
The statement then follows by Theorems 2 to 4.

1 Flat Operational behaviour included in ARMv8 Axiomatic

Let (po, rf, co, rmw) be a candidate execution. Ignoring weak acquire loads (“Q”), ARMv8
Axiomatic is the following:

let ca = fr | co
let obs = rfe | fre | coe
let dob = addr | data

| ctrl; [W]
| (ctrl | (addr; po)); [ISB]; po; [R]
| addr; po; [W]
| (addr | data); rfi
| (ctrl | data); coi

let aob = rmw
| [range(rmw)]; rfi; [A]

let bob = po; [DMB.SY]; po
| [L]; po; [A]
| [R]; po; [DMB.LD]; po
| [A]; po
| [W]; po; [DMB.ST]; po; [W]
| po; [L]
| po; [L]; coi

let rec ob = obs | dob | aob | bob | ob; ob
acyclic po−loc | ca | rf as internal

2

irreflexive ob as external
empty rmw \& (fre; coe) as atomic

This can be simplified for the purposes of the proof:
1. Since ca is used only in the definition of the internal axiom it can be inlined there.
2. Assume there is a cycle using an edge from [R];po;[dmb.ld];po. Then there is also one

just using [R];po;[dmb.ld];po[R|W]: all aob|dob|bob edges are subset of program-order
and therefore acyclic; and all edges in obs start from a read or write.

3. In the same way, replace [A];po with [A];po;[R|W],
4. po;[L] with [R|W];po;[L], and
5. po;[L];coi with [R|W];po;[L];coi.
6. The recursion in the definition of ob can be replaced by transitive closure.

With these simplifications, the model is equivalent to the one below:

let obs = rfe | fre | coe
let dob = addr | data

| ctrl; [W]
| (ctrl | (addr; po)); [ISB]; po; [R]
| addr; po; [W]
| (addr | data); rfi
| (ctrl | data); coi

let aob = rmw
| [range(rmw)]; rfi; [A]

let bob = po; [dmb.full]; po
| [L]; po; [A]
| [R]; po; [dmb.ld]; po; [R|W]
| [A]; po; [R|W]
| [W]; po; [dmb.st]; po; [W]
| [R|W]; po; [L]
| [R|W]; po; [L]; coi

let ob = (obs | aob | dob | bob)+
acyclic po−loc | fr | co | rf as internal
irreflexive ob as external
empty rmw & (fre; coe) as atomic

Lemma 1. Let Tr be a valid trace of Flat Operational that induces the relations po, co, rf, and
rmw. Then there is a valid trace Tr’ that induces the same po, co, rf, and rmw relations but has
no restarts and no discarded instruction tree branches (“always speculates the correct successor
instruction of a branch”).

1.1 Show ob acyclic

Lemma 2. Let Tr be a valid trace of Flat Operational that has no restarts or discarded instruction
tree branches, which induces the relations po, co, rf, and rmw. Let Edge be an edge from ARMv8

3

Axiomatic ob. Then the following property holds for Tr:
• Edge: barrier E→ barrier E’. In Tr E is committed before E’.
• Edge: barrier E→ write E’. In Tr E is committed before E’ is propagated.
• Edge: write E→ barrier E’. In Tr E is propagated before E’ is committed.
• Edge: write E→ write E’. In Tr E is propagated before E’.
• Edge: barrier E→ read R. In Tr E is committed before R is satisfied.
• Edge: write E→ read R. In Tr E is propagated before R is satisfied.
• Edge: read R→ barrier E. In Tr R is satisfied before E is committed.
• Edge: read R→ write E. In Tr R is satisfied before E is propagated.
• Edge: read R→ read R’. In Tr R is satisfied before R’.

Proof. By induction on the definition of ob.

Induction step: Edge ∈ obs | aob | dob | bob. Then there are multiple cases:
Edge ∈ rfe.

Then Edge : W → R and W and R are from different threads. In Flat Operational for R
to read from R, W must be propagated to memory, so the induction statement holds.

Edge ∈ coe.
Then Edge: W→ W’, and W and W’ in co. By assumption the coherence order induced
by Tr is the same as co. By definition for (W,W’) in Flat Operational’s coherence order
W has to propagated to memory before W’. So the induction statement holds.

Edge ∈ fre.
Then Edge : R→W , R and W are from different threads, and there is W ′ with (W ′, R) ∈
rf and (W ′, W) ∈ co. Now there are two cases:
R is satisfied by forwarding from W ′. Then R is satisfied before W ′ propagates in Tr

and by the proof for Edge ∈ coe the write W ′ propagates to memory before W . So
R is satisfied before W propagates to memory and the induction statement holds.

R satisfied in memory. Then when R is satisfied W ′ is already propagated and in Tr
the write W ′ propagates before W . Since R reads from the last write to the location
of R and (W ′, R) ∈ rf it must be that W ′ is in memory and W is not yet in memory.
So R satisfies before W is propagated to memory.

Edge ∈ rmw.
Then Edge : R → W . Then R and W are a successful load/store exclusive pair and
by definition of pop_commit_store_cand the read R must be finished, and therefore
satisfied, for W to commit, hence propagate.

Edge ∈ [range(rmw)];rfi;[A].
Then Edge : W → R. Then W is a successful store exclusive and R an acquire read.

4

Since by definition of Flat Operational R cannot read from W by forwarding W must
propagate to memory before R can satisfy.

Edge ∈ addr.
Then either Edge : R→ R′ or Edge : R→W .
Edge : R→ R′. In Tr the read R′ can only be satisfied if initiated, so after its address is

available, so R must be satisfied before R′ is.
Edge : R→ W . In Tr the write W can only propagate if initiated, so after its address is

available, so R must be satisfied before W propagates.
Edge ∈ data.

Then Edge : R→W . W can only propagate after committing, and commit if its data-
feeding memory reads are finished, including being satisfied. So R is satisfied before W

propagates in Tr.
Edge ∈ ctrl;[W].

Then Edge : R→W . W can only propagate when committed, and by pop_commit_store_
cand commit when the memory reads feeding into the register reads of conditional
branches are finished, including being satisfied. So R is satisfied before W propagates
in Tr.

Edge ∈ (ctrl | (addr;po)); [ISB];po;[R].
Then Edge : R→ R′. Before R′ can finish it has to satisfy. By definition of pop_memory_
read_request_cand the read R′ can only satisfy if all po-earlier isb are finished and
therefore committed. By pop_commit_barrier_cand any such isb can only commit if
the memory reads feeding into the conditional branches po-before the isb are finished,
including being satisfied, and if all po-earlier memory accesses have their address-
feeding memory reads finished, including being satisfied. Therefore R must be satisfied
before R′ can be satisfied in Tr.

Edge ∈ addr;po;[W].
Then Edge : R→W . The write W can only propagate when committed, and commit only
when the address-feeding memory reads of all po-earlier memory accesses are finished,
including being satisfied. Therefore R must be satisfied in Tr before W propagates.

Edge ∈ (addr|data);rfi.
Then Edge : R→ R′. For R′ to satisfy, the write it reads from must have both address
and data available, so any memory read feeding into the address or data register reads
of this write has to be satisfied. Therefore R must be satisfied before R′ can satisfy.

Edge ∈ (ctrl|data);coi.
Then Edge : R→W and there is W ′ such that (R, W ′) ∈ (ctrl|data) and (W ′, W) ∈ coi.
By definition of how Flat Operational induces coherence W ′ must propagate to memory

5

before W does. Before W ′ propagates it must commit, and therefore all memory reads
feeding into the data registers reads of W ′ and all memory reads feeding into the register
reads by conditional branch instructions po-before W ′ must be finished, including being
satisfied. Therefore R must be satisfied before W ′ can propagate, before W can propagate
in Tr.

Edge ∈ po;[dmb.full];po.
Let DMB be the dmb. Now there are different cases for the type of the event on the
right of the edge. (RBW stands for a read, write, or barrier).
Case Edge : RBW→ R. R can only satisfy when DMB is finished, hence committed.

DMB can only commit when all po-earlier instructions are finished, including
being satisfied (for reads)/committed (for barriers)/propagated (for writes).

Case Edge : RBW→ B. B can only commit when DMB is finished, hence committed.
DMB can only commit when all po-earlier instructions are finished, including being
satisfied (for reads)/committed (for barriers)/propagated (for writes).

Case Edge : RBW→ W . W can only propagate when committed, and it can only com-
mit when DMB is finished, hence committed. DMB can only commit when all po-
earlier instructions are finished, including being satisfied (for reads)/committed
(for barriers)/propagated (for writes).

Edge ∈ [L];po;[A].
Then Edge : W → R. By definition of pop_memory_read_request_cand, the acquire read
R can only initiate when all po-earlier releases are finished and hence propagated. So
W propagated before R satisfied in Tr.

Edge ∈ [R];po;[dmb.ld];po;[R|W].
Let B be the dmbld. Now there are two cases for the type of the event on the right of
the edge.
Case Edge : R→ W . Then B can only commit after R is finished, including being satis-

fied, and W can only commit and hence propagate after B is finished and hence
committed. So R is satisfied before W propagates in Tr.

Case Edge : R→ R′. Then B can only commit after R is finished, including being sat-
isfied, and by definition of read_request_cand R′ can only satisfy, if B is finished
and therefore committed. So R is satisfied before R′ in Tr.

Edge ∈ [A];po;[R|W].
Now there are two cases for the type of the event on the right of the edge.
Case Edge : R→ R′. Then by definition of read_request_cand R must be completed

and hence satisfied before R′ can satisfy.
Case Edge : R→ W . Then by definition of pop_commit_cand W can only commit and

6

hence propagate after R is finished, including being satisfied in Tr.
Edge ∈ [W];po;[dmb.st];po;[W].

Then Edge : W →W ′. Let B be the dmbst. Then by definition of pop_commit_barrier_
cand the barrier B can only commit when W is finished and hence propagated and W ′

can only commit and hence propagate when B is finished and hence committed. So W

propagates before W ′ in Tr.
Edge ∈ [R|W];po;[L].

There are two cases for the type of the event on the right of the edge.
Case Edge : R→ W . Then by definition of pop_commit_store_cand the write W can

only commit and hence propagate when R is finished and hence satisfied in Tr.
Case Edge : W → W ′. Then by definition of pop_commit_store_cand the write W ′ can

only commit and hence propagate when W is finished and hence propagated in
Tr.

Edge ∈ [R|W];po;[L];coi.
Let L be the write release. There are two cases for the type of the event on the right of
the edge.
Case Edge : R→ W . As shown above L can only commit when R is satisfied, and by

definition of pop_write_co_check the write W can only propagate when L is
propagated. So R must be satisfied before W can propagate in Tr.

Case Edge : W → W ′. As shown above L can only commit when W is propagated, and
by definition of pop_write_co_check the write W ′ can only propagate when L is
propagated. So W must propagate before W ′ in Tr.

Induction step: Edge = Edge′;Edge′′ ∈ ob;ob. This holds by transitivity of implication.

Corollary 1. Let Tr be a trace of Flat Operational that has no restarts or discarded instruction
tree branches that induces the relations rf, co, rmw, and po. Then ARMv8-axiomatic’s ob relation
is acyclic for the candidate execution (po, rf, co, rmw).

Proof. Assume a cycle in ARMv8 Axiomatic;s ob. Let Edge be the cycle. So Edge : R→ R or
Edge : B→ B or Edge : W →W .
Case Edge : R→ R. But from Lemma 2 follows that in Tr R is satisfied before R is satisfied. But

since Tr has no restarts or discarded branches, R can only be satisfied once, contradiction.
Case Edge : B→ B. But from Lemma 2 follows that in Tr B is committed before B is commit-

ted. But every barrier is only committed once, contradiction.
Case Edge : W → W . But from Lemma 2 follows that in Tr W is propagated before W is

propagated. But every write is only propagated once, contradiction.

7

1.2 Show po-loc | fr | co | rf acyclic

Lemma 3. Let Tr be a valid trace of Flat Operational that has no restarts or discarded instruction
tree branches, which induces the relations po, co, rf, and rmw. Let Edge be an edge from ARMv8
Axiomatic ob. Then po-loc | fr | co | rf acyclic.

Proof. Assume a cycle in po-loc | fr | co | rf as induced by the trace Tr and let C be the cycle
that is derived using a minimal number of po-loc edges, and among the cycles with the same
number of po-loc edges minimises the total number of edges. Then C has exactly one po-loc
edge.

Assume C has no po-loc edge. Then C ∈ (rf | co | fr)+. But then C ∈ (rf | co): assume it is not,
so it includes at least one fr edge. (By type rf−1;co itself is acyclic.) C = C ′; (E1, E2); (E2, E3)

with (E2, E3) ∈ fr = rf−1; co. So there exists W such that (E2, W) ∈ rf−1 and (W, E3) ∈ co.
Since E2 is a read, by type (E1, E2) ∈ rf, and it is E1 =W . But then C ′; (W, E3) is a shorter
cycle with no po-loc edges.
So C ∈ (rf | co)+. But then by type C ∈ co+: No edge in (rf | co)+ starts from a read, so rf cannot

participate in the cycle C . By definition of Flat Operational’s co relation it is (W, W ′) ∈ co if
W propagates to memory before W ′ in Tr. But since every write only propagates once, co+ is
acyclic.

So assume C has at least one po-loc edge. Show it cannot have multiple. Assume C has
multiple po-loc edges. Then it must be C = C ′; (E1, E2); C ′′; (E3, E4) with (E1, E2) ∈ po-loc
and (E3, E4) ∈ po-loc and without loss of generality assuming C ′′ does not contain a po-loc
edge. Since po-loc; po-loc ⊆ po-loc assume also C ′′ non-empty. So C ′′ ⊆ (co|rf|fr)+. Now there
are different cases for the type of (E1, E2) ∈ po-loc:
(E1, E2) : W → W ′. The writes E1 and E2 must be coherence related, and it must be (E1, E2) ∈

co; otherwise it is (E2, E1) ∈ co and (E2, E1); (E1, E2) is a cycle in co;po-loc with fewer
po-loc edges. But then C can be constructed without using (E1, E2) as po-loc but using
(E1, E2) as co, contradicting the minimality of C’s po-loc edges.

(E1, E2) : W → R. If it is (E1, E2) ∈ rf then (E1, E2) can be derived using rf instead of po-loc,
contradicting the minimality of po-loc edges in C . So assume (E1, E2) not in rf. So
(W ′, E2) ∈ rf for some W ′. If (W, W ′) ∈ co it is (E1, E2) ∈ co; rf; contradicting the
minimality of po-loc edges in C . So assume (W ′, W) ∈ co. But then it is (E2, E1) ∈ fr

8

and (E2, E1); (E1, E2) is a cycle in fr;po-loc with a smaller number of po-loc edges than
C .

E1→ E2 : R→ W . LetW ′ be such that (W ′, R) ∈ rf. Now it is eitherW ′ =W or not. IfW ′ =W

then (E2, E1); (E1, E2) is a cycle in rf;po-locwith fewer po-loc edges. So assume W 6=W ′.
Then it is either (W, W ′) ∈ co or (W ′, W) ∈ co. If (W ′, W) ∈ co then (E1, E2) ∈ fr and the
same cycle can be derived with fewer po-loc edges, contradiction. If (W, W ′) ∈ co then
(W ′, E1); (E1, E2); (E2, W ′) is a cycle in rf;po-loc; co with fewer po-loc edges (deriving
(E1, E2) using fr instead of po-loc).

E1→ E2 : R→ R′. Now there are two cases: R and R′ read the same write or not. Assume R

and R′ read from the same write W . By type C ′ = (E5, E6); C ′′′ with (E5, E6) ∈ fr. But
since R and R′ read from the same write it is also (E1, E6) ∈ fr. Contradiction, since then
(E1, E6); C ′′′; (E3, E4), C ′′ is a cycle with fewer po-loc edges.
So assume (W, R) ∈ rf and (W ′, R′) ∈ rf for W 6=W ′. Now there are two cases: (W, W ′) ∈
co or (W ′, W) ∈ co. If (W, W ′) ∈ co it is (R, W ′) ∈ fr, so (E1,E2) can be derived using fr;
rf contradicting the minimality of po-loc edges in C . So assume (W ′, W) ∈ co. But then
(R′, W) ∈ fr and (E2, W); (W, E1); (E1, E2) is a cycle in fr; rf;po-loc with fewer po-loc
edges, contradiction.

So assume C has exactly one po-loc edge. Then C ∈ (co | rf | fr)+; po-loc, so C = C ′; P for
some C ′ ∈ (co | rf | fr)+ and P ∈ po-loc. Now look at all possible cases for the type of P.
Case P : W → W ′. Then C ′ : W ′ → W ∈ co+. Assume otherwise. Then by type it must

be C ′ = C ′′; (E1, E2); (E2, E3); C ′′′ for some (E1, E2) ∈ rf and (E2, E3) ∈ fr. But then
(E1, E3) ∈ co and C ′′; (E1, E3); C ′′′; P is a shorter cycle in co | rf | fr | po-loc with the same
number of po-loc edges. Contradiction to the assumption that C is the shortest cycle.
So C ′ ∈ co+. Then by definition of the operational model’s coherence it must be that
W ′ propagates to memory before W . But by pop_write_co_check and (W, W ′) ∈ po-loc
the write W ′ can only propagate after W is propagated to memory, contradiction.

Case P : W → R. Then C ′: R→W ∈ fr. Assume otherwise. Then by type
• Either C ′ ∈ fr; co+= rf−1; co; co+ ⊆ rf−1; co+ ⊆ rf−1; co ⊆ fr, as by definition of Flat

Operational’s coherence relation co is transitive.
• Or C ′ = (E1, E2); C ′′; (E3, E4); (E4, E5); C ′′′ for some (E1, E2) ∈ fr, (E3, E4) ∈ rf,
(E4, E5) ∈ fr, and C ′′ ∈ co∗ and C ′′′ ∈ (co | rf | fr)*. But then (E3, E5) ∈ co and
(E1, E2); C ′′; (E3, E5); C ′′′ is a shorter cycle, contradicting the assumption of mini-
mality of C .

So C ′ : R → W ∈ fr. Let W ′ be the write R reads from. So we have (W ′, R) ∈ rf and
(W ′, W) ∈ co. Now there are two cases: R is satisfied by forwarding or in memory.

9

R is satisfied by forwarding. Then it must be (W ′, R) ∈ po-loc because by definition
of the satisfy-read-by-forwarding transition W ′ must be before R in the instruction
tree.
Now assume there is another write po-between W ′ and R to the address. Let W ′′

be the po-closest predecessor to R. Then when W ′′ propagates, by definition of
pop_memory_write_propagate_action_restart_roots it restarts R since R did not
read from W and not from a po-successor of W ′′. Contradiction to the assumption
of Tr not having restarts.
So W ′ must be the closest po-predecessor of R to the same address. Now there are
two cases: (W, W ′) ∈ po or (W ′, W) ∈ po.
(W, W ′) ∈ po. Then (W, W ′) and (W ′, R) ∈ po, so (W, W ′) ∈ po, But then W ′ by

definition of pop_write_co_check can only propagate when W is propagated,
so it is (W, W ′) ∈ co. Contradiction to the assumption (W ′, W) ∈ co.

(W ′, W) ∈ po. (W ′, W) ∈ po. Since W ′ is the closest po-predecessor of R to the
same address it must be (R, W) ∈ po. Contradiction to (W, R) ∈ po-loc.

R is satisfied in memory. Then W ′ is the most recent write to the same address in
memory when R is satisfied. By (W ′, W) ∈ co the write W ′ propagates before W .
So R is satisfied before W propagates. But when W propagates by definition of
pop_memory_write_propagate_action_restart_roots the read R is restarted since
R is to the address of W and read from a different write but not by forwarding.
Contradiction to the assumption that Tr has no restarts.

Case P : R→ W . Then C ′ : W → R ∈ co?; rf. Proof. Assume otherwise. Then by type C ′ has
to end with an edge from rf, and so C ′ = C ′′; (E1, E2); (E2, E3); C ′′′ with (E1, E2) ∈ rf,
(E2, E3) ∈ fr, and C ′′′ ∈ co?;rf. But then (E1, E3) ∈ co and C ′′; (E1, E3); C ′′′; P is a shorter
cycle. Contradiction to the assumption of the minimality of C.
So there exists W ′ such that (W, W ′) ∈ co? and (W ′, R) ∈ rf for some W’. Now there are
two cases: W =W ′ or W 6=W ′.
W = W ′. If R is satisfied by forwarding it is (W, R) ∈ po, contradiction to the assumption.

So assume R is satisfied inmemory. ThenW must be propagated before R is satisfied.
But by pop_write_co_check the read R must be satisfied before W can propagated,
and will not be restarted and satisfied again later, contradiction.

W 6= W ′. Now there are two cases: R satisfied by forwarding or from storage.
R satisfied by forwarding. Then it is (W ′, R) ∈ po-loc and by (R, W) ∈ po-loc

also (W ′, W) ∈ po-loc. But then W ′ can only propagate when W is propagated
and it must be (W ′, W) ∈ co, contradiction.

R satisfied in memory. Then W ′ reaches memory before R is satisfied. By as-

10

sumption of no restarts in Tr the read R is only satisfied once. By definition of
pop_write_co_check the read R must be satisfied before W propagates. So W ′

propagates before W and it must be (W ′, W) ∈ co, contradiction.
Case P : R→ R′. Then C ′ : R′→ R ∈ fr; rf. Proof. Assume otherwise. By type C ′ starts with fr

and ends with rf. So it is either (1.) C ′ ∈ fr;co+;rf or (2.) C ′ ∈ fr;C”;rf;fr;C”’;rf for some
C ′′ and C ′′′.
1. But then C ′ ∈ rf−1;co;co+;rf ⊆ rf−1;co+;rf ⊆ rf−1;co;rf ⊆ fr;rf.
2. But then C ′ ⊆ fr;C ′′;rf;rf−1;co;C ′′′;rf ⊆ fr;C ′′;co;C ′′′;rf, for some C ′′ and C ′′′. Con-

tradiction to the assumption of minimality of C .
Let (W, R) ∈ rf and (W ′, R′) ∈ rf. Then it is (W ′, W) ∈ co by definition of fr. W is either
from the same thread as R and R′ or not. Assume W is from the same thread as R and R′.
Then it must be either (R, W) ∈ po or (W, R) ∈ po. If (R, W) ∈ po then there is a cycle
in rf;po-loc using only R and W that has already been dealt with in Case P : R→ W .
If (W, R) ∈ po, then it is (W, R) ∈ po-loc and (R, R′) ∈ po-loc, so also (W, R′) ∈ po-loc
and there is a smaller cycle in po-loc;fr using only R′ and W that has been dealt with in
Case P : W → R.
So assume W is from a different thread than R and R′. Then R must read from W in
memory. It cannot be (R, W ′) in po since otherwise there would be a smaller cycle of R,
W ′, and W in po-loc;co;rf. Now there are two cases: R′ is satisfied before R or after.
R′ is satisfied before R. If R′ is satisfied before R, at the point where R is satisfied by

definition of satisfy_read_action_restart_roots the read R′ is restarted since it reads
from a different write from R that is not po-after R, contradicting the assumption
of no restarts in Tr. So assume R is satisfied before R′.

R′ is satisfied after R. By (W ′, W) ∈ co it must be that W ′ propagates to memory
before W does, and since R reads from W in memory, W propagates to memory
before R satisfies. SoW ′ propagates, and thenW propagates, before R′ satisfies. But
then R′ cannot read from W ′: it cannot read from W ′ by thread-local forwarding,
since W ′ is already propagated when R′ is satisfied; and it cannot read from W ′ in
memory since W propagated to memory after W ′ before R′ is satisfied, overwriting
W ′.

Thus in Tr by definition of Flat Operational: po-loc | fr | co | rf acyclic.

1.3 Show rmw & (fre; coe) empty

Lemma 4. Let Tr be a valid trace of Flat Operational that has no restarts or discarded instruction
tree branches, which induces the relations po, co, rf, and rmw. Let Edge be an edge from ARMv8
Axiomatic ob. Then rmw & (fre; coe) empty.

11

Proof. Now assume rmw & (fre; coe) non-empty. So there exists a successful load/store exclu-
sive pair (RE,WE) such that RE reads from a write W and there exists a write W ′ to the same
address as RE but from a different thread such that (W, W ′) ∈ co and (W ′,WE) ∈ co. Then it
must be that W propagates to memory before W ′, and W ′ propagates to memory before WE.
Now there are two cases: RE is satisfied by thread-internal forwarding or in memory.
RE satisfied by forwarding. Here there are again two cases: (1.) At the point where W

propagates to memory WE has promised its success or (2.) not.
1. Then when W propagates to memory it adds t = (RE,[(W ,_)]) to flat_ss_exclusive_

reads and by definition of Flat Operational t can only be removed by the unique
write exclusive WE paired with RE.
Since W ′ propagates after W and before WE, when W ′ propagates t is in flat_ss_
exclusive_reads. But since RE and W ′ are from a different thread and to the same
address W ′ cannot propagate, contradiction.

2. WE must promise its success before propagating. When WE promises its success
W is already propagated to memory, by assumption. For WE to be able promise its
success there can be no write coherence-after W (overlapping W) from a different
thread than RE in memory. So W ′ cannot be propagated yet and must propagate
after the promise-write-exclusive-success transition of WE.
WE’s promise-write-exlusive-success transition now adds (RE,[(W ,_)]) to flat_ss_
exclusive_reads. Since (RE,[(W ,_)]) can only be removed from flat_ss_exclusive_
reads when propagating WE, and since W ′ propagates before WE by assumption,
this element must be in flat_ss_exclusive_reads when W ′ propagates. But since W ′

overlaps W and is from a different thread than RE, the write W ′ cannot propagate.
Contradiction.

RE satisfied in memory. Since RE reads from W in memory it has to enter memory after
W . RE’s satisfy-read transition returns the last memory write written to its location,
and since W ′ propagates after W , the read RE satisfies before W ′ propagates, which in
turn is before WE propagates. Now there are two cases: 1. when RE is satisfied WE has
promised its success or 2. not.
1. Then when RE reads from W in memory it adds t = (RE,[(W ,_)]) to flat_ss_

exclusive_reads. Since t can only be removed when propagating WE and since W ′

propagates before WE, when W ′ propagates t must be in flat_ss_exclusive_reads.
But since W ′ is to the same address as RE and W but from a different thread than
RE, the write W ′ cannot propagate, contradiction.

2. WE must promise its success before propagating. For WE to promise its success
after RE is satisfied there must be no write overlapping W from a different thread

12

coherence-after W in memory. So W ′ cannot be propagated to memory when
promising the success of WE.
The promise-write-exclusive-success transition for WE Flat adds t = (RE,[(W ,_)])
to flat_ss_exclusive_reads. Since t can only be removed when propagating WE
and since W ′ propagates before WE, when W ′ propagates, t must be in flat_ss_
exclusives. But since W ′ is to the same address as RE and W but from a different
thread than RE, the write W ′ cannot propagate, contradiction.

Therefore rmw & (fre;coe) empty.

Theorem 2. Let Tr be a valid trace of Flat Operational that induces the relations po, rf, co, and
rmw. Then C = (po, rf, co, rmw) is a legal execution in ARMv8-axiomatic

Proof. Let Tr′ be an equivalent Flat Operational trace that induces the same relations po,
rf, co, and rmw and has no restarts or discarded instruction tree branches, by Lemma 1. By
Corollary 1 C satisfies the external axiom, by Lemma 3 C satisfies the internal axiom, and by
Lemma 4 C satisfies the atomic axiom.

2 Flat-axiomatic definition

In order to show that any behaviour allowed by the ARMv8 Axiomatic model is allowed by Flat
Operational, define an intermediate model, called Flat Axiomatic. Flat Axiomatic is supposed
to express the rules of Flat Operational as precisely as possible as an axiomatic model defined
in herd. The model is defined as follows, with the intuition behind some of the definitions
given as comments inline.

(* Exclude all executions that violate coherence ... *)
acyclic po−loc | rf | fr | co as internal
(* ... and the read/write exclusive guarantee. *)
empty rmw & (fre;coe) as exclusives

let Xw = range(rmw) (* successful store exclusives *)
let Xr = domain(rmw) (* load exclusives *)

(* auxiliary definitions, explained when used in the rules below: *)
let po−R−loc = po−loc \ (po−loc; [W]; po−loc)
let po−no−W−loc = po \ (po; [W]; po−loc)

(* Define the relations in the rmem thread subsystem as relations
between barrier committing or finishing / write propagating or

13

finishing / read satisfying or finishing.

R: read, W: write, B: barrier,
S, satisfy,
C: barrier commit / write propagate / read finish *)

let BC_RS = [DMB.SY|ISB|DMB.LD]; po; [R] (* 1 *)
let WC_RS = [Rel];po;[A] (* 2 *)

| [Xw];rfi;[A] (* 3 *)
| [W];(po−loc\rf\(po;rf));[R] (* 4 *)

let RS_RS = [A];po;[R] (* 5 *)
| [R];addr;[R] (* 6 *)
| [R];(addr|data);rfi;[R] (* 7 *)
| [R];(po−loc\(rf^−1;rf)\(po;rf));[R] (* 8 *)

let RS_RC = id (* 9 *)
let RC_RC = [R];addr;[R] (* 10 *)

| [R];addr;po−no−W−loc;[R] (* 11 *)
| [A];po;[R] (* 12 *)
| [R];ctrl;[R] (* 13 *)
| [R];(addr|data);rfi;[R] (* 14 *)
| [R];po−R−loc;[R] (* 15 *)

let WC_RC = [Rel];po;[A] (* 16 *)
| [W];(po−R−loc\rf);[R] (* 17 *)

let BC_RC = [DMB.SY|ISB|DMB.LD];po;[R] (* 18 *)
let BC_BC = [DMB.SY];po;[F] (* 19 *)

| [F];po;[DMB.SY] (* 20 *)
let RC_BC = [R];po;[DMB.SY|DMB.LD] (* 21 *)

| [R];ctrl;[F] (* 22 *)
| [R];addr;po;[ISB] (* 23 *)

let WC_BC = [W];po;[DMB.SY|DMB.ST] (* 24 *)
let RC_WC = [R];po;[Rel] (* 25 *)

| [R];addr;[W] (* 26 *)
| [R];data;[W] (* 27 *)
| [R];ctrl;[W] (* 28 *)
| [R];addr;po;[W] (* 29 *)
| [A];po;[W] (* 30 *)
| [R];po−loc;[W] (* 31 *)

14

| [R];rmw;[W] (* 32 *)
let WC_WC = [W];po−loc;[W] (* 33 *)

| [W];po;[Rel] (* 34 *)
let BC_WC = [F];po;[W] (* 35 *)

(* For writes being finished implies being propagated and committed.
For barrier being finished implies being committed.

1: BARRIERS: Reads can only satisfy state when
po−earlier DMB.SYs, ISBs, DMB.LDs are finished.

2: REL/ACQ: Load acquires can only satisfy
when po−earlier write releases are finished.

3: REL/ACQ: Load acquires cannot be satisfied by forwarding from
store exclusives.

4: COHERENCE: The propagation of a write restarts all po−later reads
to the same location that did not read from po−a�er that write.

5: REL/ACQ: Reads can only satisfy when po−earlier acquire reads are
satisfied.

6: DATAFLOW: Reads cannot satisfy until their address is known.
7: DATAFLOW: Reads can only satisfy when the write they read from has

its address and data.
8: COHERENCE: If two reads to the same location, R1−po−> R2, read

from di�erent writes where R2’s write is not po−a�er R1, they
must satisfy in order, or R1’s satisfaction restarts R2.

9: A read can only finish when it is satisfied.
10: DATAFLOW: Reads can only finish if their dataflow is finished.
11: COHERENCE: Reads can only finish if all instructions up to the

closest po−predecessor write to the same address have their
address−feeding reads finished.

12: REL/ACQ: Reads can only finish if all po−earlier acquires are
finished.

13: COHERENCE: Reads can only finish when the memory reads feeding
into po−earlier conditional branches are finished.

14: COHERENCE: Reads can only finish when the dataflow of the
write they read from is finished.

15: COHERENCE: (Aproximation) Reads can only finish when all
same−location reads in−between them and the earliest

15

po−predecessor write to the same address are finished.
16: REL/ACQ: Acquire reads can only finish if all po−earlier release

writes are finished.
17: COHERENCE: Reads that are not satisfied by the nearest

po−predecessor write can only finish when that write is
propagated.

18: BARRIERS: Reads can only finish if all po−earlier DMB.SYs,
ISBs, DMB.LDs are finished.

19: BARRIERS: Barriers can only commit if po−earlier DMB.SYs are
finished.

20: BARRIERS: DMB.SYs can only commit if po−earlier barriers are
finished.

21: BARRIERS: DMB.SYs and DMB.LDs can only commit if po−earlier
reads are finished.

22: COHERENCE: Barriers can only commit if all memory reads
feeding into po−earlier conditional branches are finished.

23: BARRIERS: ISBs can only commit if po−earlier address−feeding
memory reads are finished.

24: BARRIERS: DMB.SYs and DMB.STs can only commit if po−earlier
writes are finished.

25: REL/ACQ: Release writes can only commit if po−earlier reads
are finished.

26: COHERENCE: Writes can only commit if their data flow is
finished (here feeding into the address).

27: COHERENCE: Writes can only commit if their data flow is
finished (here feeding into the data).

28: COHERENCE: Writes can only commit if the memory reads
feeding into po−earlier conditional branches are finished.

29: COHERENCE: Writes can only commit if po−earlier memory
accesses have their address−feeding memory reads finished.

30: REL/ACQ: Writes can only commit if po−earlier read acquires
are finished.

31: COHERENCE: (Approximation) Writes can only propagate if
po−predecessor same−address reads are finished.

32: EXCLUSIVES: Exclusive writes can only commit a�er their
matching exclusive reads are finished.

16

33: COHERENCE: No write subsumption: writes can only propagate
when all po−previous writes to the same location are propagated.

34: REL/ACQ: Release writes can only commit when po−previous
writes are finished.

35: BARRIERS: A write can only commit when po−earlier barriers
are finished.

*)

(* Now compose these edges in the relation "order", where
order(E,E’) <=>

E finishes (if E is a barrier) /
propagates or finishes, (E write) /
satisfies (E read)

before
E’ commits (E’ barrier) /
commits or propagates (E’ write) /
satisfies (E’ read).

Edges XX_RS; RC_YY are composable, edges XX_RC; RS_YY are not. To
list all the edges that are composable− remove all edges XX_RC and
replace themwith edges of type XX_RS, XX_BC, or XX_WC;

So:
− delete RC_RC
− replace RS_RC by RS_RC?; RC_RC*; (RC_BC | RC_WC)
− replace WC_RC by WC_RC?; RC_RC*; (RC_BC | RC_WC)
− replace BC_RC by BC_RC?; RC_RC*; (RC_BC | RC_WC)

The resulting order is below.

− Coherence in operational flat axiomatic is determined by the
order in which writes propagate to memory. Conversely, for the candidate
execution to be allowed by the operational model this write
propagation order has to be compatible with the other constraints on
the thread behaviuor. Therefore include co in the order.

− If a read reads in storage it reads the most recent write that
went into memory before it. Conversely, to get an operational
trace where the reads−from is as in the candidate execution for
(w,r) in rf the write w has to propagate before r is satisfied and

17

any write w’ with (w,w’) co−− so (r,w’) in fr−−must not propagate
until a�er r is satisfied. If a read reads by forwarding it
must do this before that write propagates and therefore also before
any coherence later writes propagate. So include fr in the order.

− For a read to read from a di�erent−thread write it has to go
into memory a�er it. So include rfe in the order.

To match a valid Flat trace this order has to be acyclic.

*)

let Order = BC_RS
| WC_RS
| RS_RS
| RS_RC; RC_RC*; (RC_BC | RC_WC)
| WC_RC; RC_RC*; (RC_BC | RC_WC)
| BC_RC; RC_RC*; (RC_BC | RC_WC)
| BC_BC
| RC_BC
| WC_BC
| RC_WC
| WC_WC
| BC_WC

| co
| rfe
| fr

Acyclic (Order+) as external

3 Flat Axiomatic behaviour included in Flat Operational

3.1 Auxiliary result for load/store exclusives

Lemma 5. Let (po, rf, co, rmw) be a candidate execution of Flat-axiomatic. Let S be a linearisation
of Order. Let (R, W) ∈ rmw with R and W to the same address, WR the write such that (WR, R) ∈
rf. Then

1. (WR, W) ∈ S,
2. (R, W) ∈ S,

18

3. and there is no W ′ with (WR, W ′) ∈ S, (W ′, W) ∈ S for a write W ′ to the same address as
W but from a different thread than W .

Proof. It is (R, W) ∈ rmw ⊆ RC_WC ⊆ S, so (2.) holds. Now either (WR, R) ∈ rfi, then (WR, R) ∈
po by internal axiom and by (R, W) ∈ po also have (WR, W) ∈ po. Therefore it is (WR, W) ∈
[W];po-loc;[W] ⊆ WC_WC ⊆ S, so have (1.). Or (WR, R) ∈ rfe ⊆ S and by (R, W) ∈ rmw ⊆
RC_WC ⊆ S it is (WR, W) ∈ S, so have (1.).
Since co totally orders same-address writes and co ⊆ S it is (WR, W) ∈ co by (1.). (3.)

Now assume there is such a write W ′. Then since co ⊆ S and co totally orders same-address
writes, (WR, W ′) ∈ co and (W ′, W) ∈ co. But then (R, W ′) ∈ fre and (W ′, W) ∈ coe so that
(R, W ′) ∈ (fre;coe) & rmw. Contradiction to the Exclusives axiom.

Lemma 6. Let (po, rf, co, rmw) be a candidate execution of Flat-axiomatic. Let (R, W) ∈ rmw
and (R′, W ′) ∈ rmw and R,R′,W ,W ′ all from the same thread to the same address, with R 6= R′.
Let (RW, R) ∈ rf and (RW ′, R′) ∈ rf. Then it cannot be RW= RW’.

Proof. Assume RW = RW’. Then it is (R, W) ∈ po, and (R′, W ′) ∈ po. Assume without loss
of generality (R, R′) ∈ po. Now because of (R, W) ∈ rmw it cannot be (R, R′); (R′, W) ∈ po.
So po must order them as R;W ;R′;W ′. But then it must be (RW, W) ∈ co, so (R′, W) ∈ fr.
Contradiction to internal axiom: cycle in fr|po.

3.2 Write-finish lemma

Lemma 7. Let St be a state of Flat operational. For any store W : if the write of W is committed,
and all eager transitions taken, then W is finished.

Proof. Since W by assumption is aligned, W is its only write. Hence after committing, W was
eagerly completed. Since all register reads done by a store are reads to determine its address
and data, such register reads have already been completed, and the pseudocode execution of
W can be eagerly finished. Since W has committed its write its data must be fully determined
and all program-order preceding conditional branches are finished. Thus the condition for
finishing W holds and W has been eagerly finished.

3.3 Read-finish lemma

Lemma 8. Let St be a state of Flat operational. For any read R: if R is satisfied, all writes and
barriers E with (E, R) ∈ (WC_RC | BC_RC); RC_RC* are finished, and all reads R′ with (R′, R) ∈
RC_RC+ are satisfied, and all eager transitions taken, then R is finished.

Proof. By induction on the instruction tree.

19

Induction start: empty instruction tree. If the instruction tree is empty there is no such
read R in it.

Induction hypothesis: assume the statement holds for some instruction tree IT, show it
also holds for adding a leaf II to IT. By the induction assumption the induction hypothesis
holds for all satisfied reads R in IT also with II added. (The pop_finish_load_cand condition
is unaffected by po-later instructions.) So remains to show that the induction hypothesis
holds for II. Let R be the leaf II and assume R is satisfied, all writes and barriers E with
(E, R) ∈ (WC_RC | BC_RC); RC_RC* are finished and all reads R′ with (R′, R) ∈ RC_RC+ are
satisfied. Have to show that R is finished.
For R to finish the following have to hold:
1. commitDataflow. The memory reads feeding into the register reads of R have to be

finished. Let R′ be one such read. Have (R′, R) ∈ [R];addr;[R]⊆RC_RC. Therefore R′

is satisfied in St, all reads (R′′, R′) ∈ RC_RC+ are satisfied since (R′′, R′); (R′, R) ∈
RC_RC+; RC_RC ⊆ RC_RC+, and all writes E′ are propagated and barriers E′ commit-
ted and thus E′ eagerly finished for (E′, R′) ∈ (WC_RC | BC_RC); RC_RC*, since have
(E′, R′); (R′, R) ∈ (WC_RC|BC_RC); RC_RC*; RC_RC ⊆ (WC_RC|BC_RC); RC_RC*. Then by
induction hypothesis R′ is finished.

2. commitControlflow. Conditional branches po-before R have to be finished. Assume there
is an uncommitted branch instruction po-before R, let BR be the po-earliest one. BR’s
finish transition is taken eagerly, so if BR is not finished, then it is because BR cannot
finish yet.
Since BR is the po-earliest unfinished branch its control flow is finished. So it must be
the dataflow going into BR that is unfinished: there is at least one read R′ that feeds
into the register reads of BR that is unfinished. But then (R′, R) ∈ [R];ctrl;[R] ⊆ RC_RC
and therefore R′ satisfied and all writes E′ are propagated and barriers E′ commit-
ted and E′ therefore eagerly finished for (E′, R′) ∈ (WC_RC|BC_RC); RC_RC*, since
(E′, R′); (R′, R) ∈ (WC_RC|BC_RC);RC_RC*, and all reads R′′ with (R′′, R′) ∈ RC_RC+ satis-
fied, since (R′′, R′); (R′, R) ∈ RC_RC+. Therefore by induction hypothesis R′ is finished,
contradiction.

3. All po-earlier dmbsy, dmbld, isb are finished. Since [DMB.SY|ISB|DMB.LD];po;[R] ⊆
BC_RC, by assumption all of these are finished in St.

4. All po-earlier acquire reads are finished.
Let R′ be a po-earlier acquire. So (R′, R) ∈ [Acq];po;[R] ⊆ RC_RC. Then R′ satisfied. And
all writes E′ are propagated and barriers E′ committed and E′ thus eagerly finished for
(E′, R′) ∈ (WC_RC|BC_RC);RC_RC*, by (E′, R′); (R′, R) ∈ (WC_RC|BC_RC);RC_RC*, and all

20

reads R′′ with (R′′, R′) ∈ RC_RC+ are satisfied, since (R′′, R′); (R′, R) ∈ RC_RC+. Then by
induction hypothesis R′ is finished.

5. If R is an acquire then all po-earlier releases are finished. This is true in St, since
by [Rel];po;[Acq] ⊆ WC_RC these write releases are propagated and therefore eagerly
finished.

6. If the closest po-earlier write W to the same address was forwarded to R the memory
reads feeding into the register reads of W must be finished.
Let R′ be one such read. Then (R′, R) ∈ [R];(addr|data);rfi ⊆ RC_RC. Then by as-
sumption R′ is satisfied, all reads R′′ with (R′′, R′) ∈ RC_RC+ are satisfied, since it
is (R′′, R′); (R′, R) ∈ RC_RC+, and all writes E′ are propagated and barriers E′ com-
mitted and therefore E′ eagerly finished for (E′, R′) ∈ (WC_RC | BC_RC); RC_RC*, since
(E′, R′); (R′, R) ∈ (WC_RC | BC_RC); RC_RC*. Then by induction hypothesis R′ is finished.

7. If the closest po-earlier write W to the same address was not forwarded to R it must be
propagated. By assumption R is satisfied in St. Now there are two cases:
(W, R) ∈ rf. Since by assumption W was not forwarded to R, the read R read from W

in memory, so W propagated.
(W,R) /∈ rf. Then (W, R) ∈ [W];(po-R-loc\rf);[R] ⊆ WC_RC, so by assumption W is fin-

ished and therefore propagated.
8. All memory accesses between this write W and R have their address-feeding memory

reads finished and are initiated.
Let R′ be one such read. Then (R′, R) ∈ [R];addr;po-no-W-loc;[R] ⊆ RC_RC ⊆ S.
Therefore R′ is satisfied, all reads R′′ with (R′′, R′) ∈ RC_RC+ are satisfied, since
(R′′, R′); (R′, R) ∈ RC_RC+, and all writes E′ are propagated and barriers E′ commit-
ted and therefore E′ eagerly finished for (E′, R′) ∈ (WC_RC | BC_RC); RC_RC*, since
(E′, R′); (R′, R) ∈ (WC_RC | BC_RC); RC_RC*. Then by induction hypothesis R′ is finished.
Moreover, since all such R′ are satisfied, all memory accesses between W and R have ea-
gerly done the register reads necessary to determine their address and eagerly initiated.

9. All reads R′ to the same address between W and R must be satisfied and not-restartable.
Let R′ be such a read. Then (R′, R) ∈ [R];po-R-loc;[R] ⊆ RC_RC. Therefore R′ is sat-
isfied, all reads R′′ with (R′′, R′) ∈ RC_RC+ are satisfied, since (R′′, R′); (R′, R) ∈
RC_RC+, and all writes E′ are propagated and barriers E′ committed and there-
fore E′ finished for (E′, R′) ∈ (WC_RC|BC_RC); RC_RC*, because it is (E′, R′); (R′, R) ∈
(WC_RC|BC_RC); RC_RC*. Then by induction hypothesis R′ is finished.

Now have: R is satisfied, so the load is eagerly completed. Since there are no additional
register reads to be done by R its pseudocode execution is finished. Since all the conditions
for finishing R hold in St and the read-finish transition is an eager transition, R is finished

21

and the induction hypothesis holds.

3.4 Main proof

Theorem 3. If a candidate execution (po, rf, co, rmw) is allowed in Flat-axiomatic, then there
exists a trace Tr of Flat Operational where for each (W, R) ∈ rf the read R is satisfied by the
write W , where for each (W, W ′) ∈ co the write W is propagated before W ′, where for each
(R, W) ∈ rmw the read R and the write W are a successful read-write-exclusive pair, and where
the instruction tree viewed as a relation is po.

Proof. Let S be a linearisation of the candidate execution’s Order. Define rfs = Order & rf,
r�= rf \ rfs, Rs= range rfs, Rt= range r�. Then rfe ⊆ rfs since rfe ⊆ Order.

3.4.1 Trace construction

Now construct Tr as follows:
1. Start with an empty trace.
2. Fetch all instructions one-by-one following po of the candidate-execution. In program

order, for each write exclusive W :
• if W ∈ range rmw, promise the success of the write exclusive
• if W /∈ range rmw promise the failure of the write exclusive

3. Take all enabled eager transitions.
4. For each next element E of S:

4.1. If E is a read R ∈ Rt satisfy R by forwarding from the unique W with (W, R) ∈ rf
using the transition T = T_mem_forward_write.

If E is a read R ∈ Rs satisfy R in memory with T = T_Flat_mem_satisfy_read
with the write W with (W, R) ∈ rf.

If E is a write W take transition T = T_propagate_mem_writeW .
If B is a barrier take transition T = T_commit_barrierB.

4.2. Take all enabled eager non-fetch, non-barrier-commit transitions (these include
the pseudocode-internal transitions, register reads and writes, initiating of reads
and writes, completing loads and stores that have done all their respective reads
and writes, and finishing instructions).

3.4.2 Trace is valid trace

Now show by induction on n: if Tr is the trace constructed for S[0..n], then:

22

0. Assume (RE,[(W ,_)]) ∈ flat_ss_exclusive_reads after executing Tr. Then (W,RE) ∈ rf
and there exists a write exclusive WE such that (RE,WE) ∈ rmw. Let WE be this write
exclusive. Then W ∈ S[0..n] and WE /∈ S[0..n] and RE satisfied after Tr.

1. For all satisfy-read transitions in Tr for reads R (whether by forwarding or frommemory),
the write W it reads from is the write in (W, R) in the rf relation from the candidate
execution above. For all write-propagate transitions in Tr for writes W , they occur in Tr
consistent with the co relation in the candidate execution above. For each (R, W) ∈ rmw
in the candidate execution above, the write exclusive W is successfully paired with
R ∈ Tr. The instruction tree viewed as a relation is po.

2. Tr involves no restarts and no discarding of branches in the instruction tree.
3. Tr is a valid (partial) trace of Flat Operational.
4. If there are any enabled transitions after Tr, they can only be one of:

• satisfy memory read by forwarding
• satisfy memory read from storage
• propagate memory write
• commit barrier
• fetch next instruction

Induction start, empty prefix of S.
0. After executing only fetch and promise-write-exclusive-success or promise-write-

exclusive-failure transitions the flat_ss_exclusive_reads component of the state is empty.
1. Since the fetch and promise-write-exclusive-success/failure transitions do not satisfy

reads or commit writes (1.) holds for rf and co. Since by construction of Tr the success
of a write exclusive W is promised if-and-only-if W ∈ range rmw, (1.) holds for rmw as
well. By construction the instruction-tree unfolding matches po, since by proof of (2.)
the instruction tree is not pruned.

2. By definition of Flat Operational fetching and the promise-write-exclusive-success
transition cannot cause restarts. The promise-write-exclusive-failure transition of a write
WE can only restart reads that have read from WE. But by construction no reads are
satisfied yet. Neither fetching nor the promise-write-exclusive-success/failure transition
discard instruction tree branches.

3. By definition of Flat Operational for “constant” conditional branches both possible
targets of the branch can be fetched, for computed branches any address can be fetched.

4. By definition, all the eager transitions (all except the ones in the inductive hypotheses)
are taken.
For each (R, W) ∈ rmw it is (R, W) ∈ po with no other exclusive instruction in-between

23

R and W in program order. So the promise-write-exclusive-success transition for W

is enabled. For all unsuccessful write exclusive the promise-write-exclusive-failure
transition is enabled.

Induction step: n→ n+1. Now extend Tr to Tr′ for the next element E = S[n+ 1].
Case E is a read R from Rt. Show extending the trace for E preserves properties 0. – 3..

0. Only the promise-write-success, satisfy-read-in-memory and propagate-memory-
write transitions change the flat_ss_exclusive_reads field. Since E is a read in Rt
and satisfied by forwarding, 0. still holds by induction hypothesis.

1. By induction hypothesis the trace Tr induces the rf, co, and rmw relations from the
candidate execution, the instruction tree matches po, extending Tr to Tr′ preserves
this. Only have to show that extending Tr to Tr′ for E preserves this as well. But
this follows from the construction of Tr′: R is satisfied by W for (W, R) ∈ rf. The
relations po, co and rmw are unaffected.

2. Have to show that the satisfaction of R does not cause the restart or discarding
of any instructions. By definition T does not discard instruction tree branches.
Let restart_roots be the result of calling pop_memory_read_action_restart_roots.
These and their dependent reads or writes are the instructions that will be restarted
as part of the memory read action. Then restart_roots is the set of all reads R′

with (R, R′) ∈ po-loc for which R′ has been satisfied, but by neither W nor a write
po-between R and R′ after executing Tr′. Show that restart_roots for this memory
read action T is empty. From that follows that extending the trace for E preserves
2..
Assume there is such a read R′ that is satisfied by a write W ′ that is neither W

nor po-between R and R′ after executing Tr′. Then have (R, R′) ∈ po-loc, and
therefore (R, R′) ∈ [R];(po-loc\(rf−1;rf)\(po;rf));[R] ⊆ RS_RS ⊆ S. By construction R′

can only have already been satisfied if (R′, R) ∈ S. But already have (R, R′) ∈ S.
Contradiction to the acyclicity of S.

3. To be able satisfy R from W by thread-internal forwarding,
3.1. R must be in MOS_pending_mem_read state and read_request_cand hold,
3.2. W must be in state MOS_potential_mem_writeq with data available,
3.3. W must be before R in the instruction tree,
3.4. there must be no write W ′ to the same address between R and W in the

instruction tree,
3.5. there must be no R′ to the same address in between R and W in the instruction

tree that read from another write W 6=W ′,

24

3.6. if R is a read acquire, then W is not a store exclusive.
3.1. After executing Tr the read R is in MOS_pending_mem_read state and read_

request_cand holds.
The reads feeding into the register reads of R have been satisfied and therefore
eagerly completed: for any read R′ whose read value feeds into the address of
R it is (R′, R) ∈ RS_RS ⊆ Order ⊆ S; therefore by construction R′ is satisfied and
eagerly completed after executing Tr; the register writes of any write exclusive
WE’s success bits feeding into the address of R are eagerly done, since by
construction WE has been promised to be successful; any other, non-memory,
instructions feeding into R’s registers reads have been done eagerly.
Remains to show that read_request_cand holds and that R is not already
satisfied after Tr. Then, since register read transitions and load initiation are
eager, 3.1. follows.
Show the predicate pop_memory_read_request_cand holds. This is true if

3.1.1. All program-order earlier dmbsy, isb, dmbld are finished. By definition
of BC_RS have [DMB.SY|ISB|DMB.LD];po;[R] ⊆ BC_RS ⊆ S. So by construc-
tion of Tr all dmbsy, isb, dmbld are committed after executing Tr, and
therefore eagerly finished after Tr.

3.1.2. If R is an acquire read then all po-earlier write releases are finished. It is
[Rel];po;[Acq] ∈WC_RS ⊆S. So by construction all po-earlier write releases
are propagated if R is an acquire, and therefore eagerly completed and
finished after Tr.

3.1.3. All po-earlier acquire reads are completed. It is [Acq];po;[R] ⊆ RS_RS ⊆ S.
So by construction all acquires po-before R are satisfied and eagerly
completed after executing Tr.

R cannot be satisfied after Tr: by construction R could only be satisfied after
Tr if (R, R) ∈ S, but S is acyclic.

3.2. After executing Tr the write W is in state MOS_potential_mem_write state
with data available.
The memory reads feeding into the register reads of W have been completed:
for any read R′ that feeds into W ’s address or data it is (R′, R) ∈ RS_RS ⊆
Order ⊆ S; therefore by construction R′ is satisfied after executing Tr′ and
therefore eagerly completed; any register write of a write exclusive’s success
bit feeding into the address or data of W has been done eagerly, since all write
exclusives have already promised success or failure after Tr; all non-memory
instructions feeding into W ′ registers reads have been done eagerly.

25

To show W is in state MOS_potential_mem_write after executing Tr, remains
to show that W has not propagated yet.
By construction W can only be propagated if (W, R) ∈ S, so assume (W, R) ∈ S.
But by definition of r� it is (R, W) ∈ S. Since S acyclic, contradiction: (W, W) ∈
S.

3.3. This follows by definition of the operational model if (W, R) ∈ po. As shown
above, rfe ⊆ r f s. Therefore, since r� = rf \ rfs it is (W, R) ∈ rfi, so W and R

from the same thread. And it must be (W, R) ∈ po because the coherence
axiom requires the acyclicity of po | rf.

3.4. This follows by definition of the operational model if there is no (W, W ′) ∈
po and (W ′, R) ∈ po for a W ′ to the same address. There cannot be such
(W, W ′) ∈ po and (W ′, R) ∈ po since by the coherence axiom in the candidate
execution po | co | rf | fr acyclic.

3.5. Assume there is such a read R′.
Then by construction (R′, R) ∈ S, and by induction hypothesis (W ′, R′) ∈ rf
of the candidate execution. Now in the candidate execution W and W ′ must
be coherence related. If it is (W ′, W) ∈ co, then (R′, W ′); (W ′, W) ∈ rf−1;co=
fr and there is a cycle in fr;po, contradiction to the assumption that Flat-
axiomatic’s internal axiom holds for the candidate execution.
So assume it is (W, W ′) ∈ co. By assumption it is (W, R) ∈ rf, so (R, W ′) ∈ fr of
the candidate execution. But then there is a cycle in fr; rf;po in the candidate
execution. Contradiction to the assumption that the internal axiom holds.

3.6. Assume R is a read acquire and W a store exclusive. But then by definition of
rfs the read R is required to be in Rs, since [Xw];rfi;[A] ⊆ WC_RS ⊆ Order ⊆ S,
contradiction.

Case E is a read R from Rs. Show extending the trace for E preserves properties 0. – 3..
0. The transition T for R only changes the flat_ss_exclusive_reads field in case it

is a read exclusive RE with a program-order following write exclusive WE for
which Tr contains the promise-write-exclusive-success transition. By construction
in that case (RE,WE) ∈ rmw. Let W be the write with (W,RE) ∈ rf. Then T adds
the element (RE,[(W ,_)]) to flat_ss_write_exclusives. It is (W,RE) ∈ rfs ⊆ S, so
W ∈ S[0..n+ 1]. By construction, after Tr′ the read R = RE is satisfied. Left to
show that WE /∈ S[0..n+ 1]. This follows by (RE,WE) ∈ fr ⊆ S. Since R is a read,
for the other elements in flat_ss_exclusive_reads 0. still holds.

1. By induction hypothesis the trace Tr induces the rf and co relation from the
candidate execution, the instruction tree matches po. Have to show that extending

26

Tr to Tr′ for E preserves this. But this follows from the construction: R is satisfied
by W for (W, R) ∈ rf. po, co, and rmw are unchanged.

2. Have to show that the satisfaction of R does not cause the restart or discarding
of any instructions. By definition T does not discard instruction-tree branches.
Let restart_roots be the result of calling pop_memory_read_action_restart_roots.
These and their dependent reads or writes are the instructions that will be restarted
as part of the memory read action. Then restart_roots is the set of all reads R′ with
(R, R′) ∈ po-loc for which R′ has read neither from W nor from a write po-between
R and R′.
Show that after executing Tr restart_roots for this memory read action T is empty.
From that follows that extending the trace to Tr′ for E preserves 2..
Assume there is such a read R′ that is satisfied by a write W ′ that is neither W nor
po-between R and R′ after executing Tr′.
Then (R, R′) ∈ [R];(po-loc \ (rf−1;rf) \ (po;rf));[R] ⊆ RS_RS ⊆ S. But by construc-
tion R′ can only have been satisfied if it was already satisfied, so if (R′, R) ∈ S.
Contradiction to the acyclicity of S.

3. To be able to satisfy R from W in memory after Tr′,
3.1. R must be in MOS_pending_mem_read state and read_request_cand hold,
3.2. W must be propagated to memory.
3.3. There must not be a write W ′ to the same address that propagated after W

3.4. If R is an exclusive read in the storage subsystem state there must be no
element (RE’,[(W ′,_)]) ∈ flat_ss_exclusive_reads where RE’ and R are to the
same address but from different threads.

3.1. After executing Tr the read R is in state MOS_pending_mem_read state and
read_request_cand holds.
The memory reads feeding into the register reads of R have been completed:
for any read R′ whose read value feeds into the address of R it is (R′, R) ∈
RS_RS ⊆ Order ⊆ S; therefore by construction R′ is satisfied and therefore
eagerly completed after executing Tr; the register writes of the success bit
of any store exclusive feeding into the register reads of R have been done
eagerly since all write exclusives have promised success or failure after Tr; all
non-memory data dependent instructions feeding into the register reads of R

have been done eagerly.
Remains to show pop_memory_read_request_cand holds and that R is not
already satisfied after Tr. Since register read transitions and load initiation
are eager, then 3.1. follows.

27

Show pop_memory_read_request_cand holds. This is true if
3.1.1. All program-order earlier dmbsy, isb, dmbld are finished. By definition

of BC_RS it is [DMB.SY|ISB|DMB.LD];po;[R] ⊆ BC_RS ⊆ S. So by construction
of Tr all dmbsy, isb, dmbld are committed after executing Tr, and
therefore eagerly finished.

3.1.2. If R is an acquire read then all po-earlier write releases are finished.
It is [Rel];po;[Acq] ∈ WC_RS ⊆ S. So by construction all po-earlier write
releases are propagated if R is an acquire, and therefore eagerly completed
and finished.

3.1.3. All po-earlier acquires are completed. It is [Acq];po;[R] ∈ RS_RS ⊆ S. So by
construction all acquires po-before R are satisfied and eagerly completed
after executing Tr.

R cannot be satisfied after Tr: by construction R could only have been satisfied
if there was (R, R) ∈ S. But S is acyclic.

3.2. After executing Tr the write W is propagated. By definition of rfs it is (W, R) ∈
rfs ⊆ S, so by construction W has already been propagated.

3.3. Assume after executing Tr there is a write W ′ to the same address that
propagated after W . Then this must be because (W, W ′) ∈ S and (W ′, R) ∈ S.
Since co ⊆ S and co totally orders same-address writes it must be (W, W ′) ∈ co
and therefore (R, W ′) ∈ fr ⊆ S. But then S cyclic. Contradiction.

3.4. Assume R is a read exclusive R = RE and (RE,WE) ∈ rmw. Assume there is
such a (RE’,[(W ′,_)]) ∈ flat_ss_exclusive_reads. Then by induction hypothesis
it is (W ′,RE’) ∈ rf, there is WE’ such that (RE’,WE’) ∈ rmw, W ′ ∈ S[0..n],
RE’ satisfied after Tr′, and WE’ not in S[0..n]. Then have (W ′,RE) ∈ S. Also
have (W,RE) ∈ rfs ⊆ S. Since RE’ is satisfied, by construction it must be
RE’ ∈ S[0..n] and therefore (RE’,RE) ∈ S. And it is (RE,WE’) ∈ S.
Also have (RE,WE) ∈ fr ⊆ S. Since by assumption RE and RE’ from different
threads it must also be that WE and WE’ are from different threads.
Now there are two cases:
(WE, WE′) ∈ S. Then it is (W ′, RE) ∈ S, (RE, W E) ∈ S, and (W E, W E′) ∈ S.

But WE and WE’ are to the same address from different threads, contra-
dicting Lemma 5 for (R′,WE’) ∈ rmw.

(WE′, WE) ∈ S. Then it is (W,RE) ∈ S, (RE,WE’) ∈ S, and (W E′, W E) ∈ S.
But WE and WE’ are to the same address from different threads, contra-
dicting Lemma 5 for (R,WE) ∈ rmw.

Case E is a write W . Show extending the trace for E preserves properties 0. – 3..

28

0. Assume t = (RE’,[(W ′,_)]) ∈ flat_ss_exclusive_reads after executing Tr′. Now there
are two possibilities:
t ∈ flat_ss_exclusive_reads before T . Then by IH there is (W ′,RE’) ∈ rf and there

exists WE’ such that (RE’,WE’) ∈ rmw with W ′ ∈ S[0..n] and WE’ not in
S[0..n] and RE’ satisfied after Tr′. Have to show T preserves this. rf and rmw
are unaffected by T , after T it will still be W ′ in S[0..n + 1] and RE’ still
satisfied. So have to showWE’ not in S[0..n+1]. Assume it is. Then W =WE’.
But then T = T_propagate_writeW is annotated with RE’ and (RE’,[(W ′,_)])
deleted by T from flat_ss_exclusive_reads, contradiction.

otherwise. Then RE’ is a read exclusive that was satisfied by thread-internal
forwarding from W and it is paired with a write exclusive WE’ for which Tr
contains the promise-write-success transition. Then have (W,RE’) ∈ rf. By
construction it is (RE’,WE’) ∈ rmw. RE’ is satisfied and it is W in S[0..n+ 1].
Still have to show that WE’ not in S[0..n+ 1].
By (RE’,WE’) ∈ rmw it is (RE’,WE’) ∈ po. Since RE’ read from W by thread-
internal forwarding it is also (W,RE’) ∈ po, so (W,WE’) ∈ po and they
are writes to the same location. But then it is (W,WE’) ∈ [W];po-loc;[W] ⊆
WC_WC ⊆ S, and since W = S[n+ 1] it must be that WE’ /∈ S[0..n+ 1].

1. By induction hypothesis the trace Tr induces the rf, co, and rmw relation from the
candidate execution, the instruction tree matches po. Have to show that extending
Tr′ to Tr′′ for E preserves this. Since in the operational model the coherence relation
is determined by the order in which writes reach memory, have to show: (1.1.) for
all (W ′, W) ∈ co the write W ′ has already been propagated after Tr and (1.2.) for
all W’ to the same address as W that have been propagated before W in Tr it is
(W ′, W) ∈ co.
1.1. Since co ⊆ S by construction of Tr all such writes W ′ have already been

propagated.
1.2. Let W ′ be any same-address write that is propagated after in Tr. Then by

construction of Tr it must be (W ′, W) ∈ S. But since co ⊆ S, since co totally
orders all same-address writes, and since S is acyclic W ′ it must be (W ′, W) ∈
co.

po, rf, and rmw are unaffected by T , so 1. follows.
2. Have to show that the propagation of W does not cause the restart or discarding

of any instructions. By definition T does not discard instruction-tree branches. Let
restart_roots be the result of calling propagate_write_action_restart_roots. These
and their dependent reads or writes are the instructions that will be restarted as

29

part of the memory write propagate action. Then restart_roots is the set of all reads
R with (W, R) ∈ po-loc for which R has been satisfied, but neither from W nor from
a write po-between W and R after Tr. Show that after executing Tr restart_roots
for this memory write action is empty. From that follows that extending the trace
for E preserves 2..
Assume after executing Tr, R is such a read that is satisfied by write W ′ that
is neither W nor po-between W and R. So (W, R) ∈ [W];(po-loc\rf\(po;rf));[R] ⊆
WC_RS ⊆ S. By construction of Tr the read R can only have already been satisfied
if (R, W) ∈ S. Contradiction to the acyclicity of S.

3. To propagate W , its store has to be committed and pop_write_co_check has to
hold. Since write commitment transitions are eager only have to show:
3.1. W must be in state MOS_potential_mem_write with its data available
3.2. pop_commit_store_cand and pop_write_co_check must hold.
3.3. There exists no (RE’,[(W ′,_)]) ∈ flat_ss_exclusive_reads after Tr′ where RE’ and

W are to the same address but from different threads.
3.1. After executing Tr the write W is in state MOS_potential_mem_write.

The memory reads feeding into the register reads of W have been satisfied: for
any read R whose read value feeds into the address and data of W it is (R, W) ∈
RC_WC ⊆ Order ⊆ S; therefore by construction of Tr the read R is satisfied and
eagerly completed after executing Tr; the register writes of the success bit of
any write exclusives are done eagerly since all write exclusives have promised
their success or failure; all non-memory data dependent instructions that feed
into the register reads of W have been done eagerly.

3.2. pop_commit_store_cand and pop_write_co_check must hold.
3.2.1. All po-earlier dmbsy, isb, dmbld, dmbst are finished.
3.2.2. If W is a release then all po-earlier reads and writes are finished.
3.2.3. All po-earlier read acquires are finished.
3.2.4. commitDataflow holds.
3.2.5. commitControlflow holds.
3.2.6. pop_write_co_check holds.
3.2.7. If W is a successful store exclusive WE paired with a load exclusive RE,

then RE is finished, and if RE read from a same-thread write W ′, that
write is propagated.

3.2.1. It is [F];po;[W] ⊆ BC_WC ⊆ Order ⊆ S. So by construction of Tr all po-earlier
dmbsy, isb, dmbld, dmbst are committed, and therefore eagerly fin-
ished.

30

3.2.2. Assume W is a write release and let W ′ be a po-earlier write. Then
by (W ′, W) ∈ [W];po;[Rel] ⊆ WC_WC ⊆ S and by construction of
Tr, the write W ′ is propagated and therefore eagerly finished. Let
R be a program-order earlier read. Then by (R, W) ∈ [R];po;[Rel] ⊆
RC_WC ⊆ S, and by construction of Tr the read R is satisfied. More-
over, by construction of Tr all reads R′ with (R′, R) ∈ RC_RC+ are sat-
isfied, since it is (R′, R); (R, W) ∈ RC_RC+; RC_WC ⊆ S, and writes E′

are propagated and barriers E′ are committed and E′ thus eagerly fin-
ished for all (E′, R) ∈ (WC_RC|BC_RC);RC_RC*, since (E′, R); (R, W) ∈
(WC_RC|BC_RC); RC_RC*; RC_WC ⊆ S. Then by Lemma 8 R is finished.

3.2.3. Let R be a read acquire po-before W . Then (R, W) ∈ [Acq];po;[W] ⊆
RC_WC ⊆ S. So by construction of Tr the read R is satisfied, all reads R′ with
(R′, R) ∈ RC_RC+ are satisfied, by (R′, R); (R, W) ∈ RC_RC+;RC_WC ⊆ S,
and all writes E′ are propagated and barriers E′ are committed and
E′ therefore eagerly finished for (E′, R) ∈ (WC_RC|BC_RC);RC_RC*, since
(E′, R); (R, W) ∈ (WC_RC|BC_RC);RC_RC*; RC_WC. Then by Lemma 8, R is
finished.

3.2.4. The memory reads feeding into the register reads of W have to be fin-
ished. Let R be one such read. Then the read value of R feeds into the
address or data of W and have (R, W) ∈ [R];(addr|data);[W] ⊆ RC_WC ⊆ S.
Then by construction R is satisfied and eagerly completed, all reads
(R′, R) ∈ RC_RC+ are satisfied since (R′, R); (R, W) ∈ RC_RC+; RC_WC and
writes E are propagated and barriers E committed and E therefore ea-
gerly finished for (E, R) ∈ (WC_RC | BC_RC); RC_RC* since (E, R); (R, W) ∈
(WC_RC | BC_RC); RC_RC*; RC_WC. Then by Lemma 8 R is finished.

3.2.5. Conditional branches po-before W have to be finished.
Assume there is an unfinished branch instruction po-before W , let BR be
the po-earliest one. The finish transition for BR is taken eagerly, so if BR
is unfinished, then it is because BR cannot finish yet.
Since BR is the po-earliest unfinished branch its control flow is finished. So
it must be the dataflow of BR that is unfinished: there is at least one read
R that feeds into the register reads of BR register reads that is unfinished.
But then (R, W) ∈ [R];ctrl;[W] ⊆ RC_WC ⊆ S. So by construction of Tr
the read R is satisfied, all writes E are propagated and barriers E are
committed for (E, R) ∈ (WC_RC | BC_RC); RC_RC* are therefore eagerly
finished, since (E, R); (R, W) ∈ (WC_RC | BC_RC); RC_RC*; RC_WC ⊆ S, and

31

all reads R′ with (R′, R) ∈ RC_RC+ are satisfied, since (R′, R); (R, W) ∈
RC_RC*; RC_WC ⊆ S. So by Lemma 8 R is finished.

3.2.6. pop_write_co_check holds.
3.2.6.1. All program-order previous same-address writes have to be propagated.

Have [W];po-loc;[W] ⊆ WC_WC ⊆ S, so all po-earlier writes to the ad-
dress of W are propagated and therefore eagerly finished.

3.2.6.2. All po-previous memory accesses have their address-feeding memory
reads finished and are initiated. Let R be such an address-feeding
read. Then (R, W) ∈ [R];addr;po;[W] ⊆ RC_WC ⊆ S. So by construc-
tion R is satisfied, all reads R′ with (R′, R) ∈ RC_RC+ are satisfied,
since (R′, R); (R, W) ∈ RC_RC+; RC_WC ⊆ S, and all writes E′ are prop-
agated and barriers E′ are committed and thus E′ eagerly finished
for all E′ with (E′, R) ∈ (WC_RC|BC_RC); RC_RC*, since for these it is
(E′, R); (R, W) ∈ (WC_RC | BC_RC); RC_RC*; RC_WC. Then by Lemma 8
R is finished. Moreover, since all such R are satisfied, all memory ac-
cesses po-before W have eagerly done the register reads necessary to
determine their address and have eagerly initiated.

3.2.6.3. All po-previous memory reads to the same address must be satisfied,
and not restartable. Let R be one such read. Then it is (R, W) ∈ fr ⊆ S

and by construction of S the read R is satisfied. (By 3.2.6.1. have that
all same-address writes po-before W are propagated.) Remains to show
that all po-earlier memory reads to the same address are not-restartable.
Show instead that they are all already finished by induction on the
program order prefix of W .

Induction start. For the empty program-order prefix all reads to the
location of W are trivially finished.

Induction hypothesis. Assume the statement holds for Prefix, show
appending an instruction II to the prefix preserves the statement. Only
have to show that if II is a same-address read it is finished. For R to
finish the following have to hold:
• commitDataflow. The memory reads feeding into the register writes

R reads from have to be finished. Since the register reads of R are
all used to determine the address of R these memory reads are all
finished by proof of (3.2.6.2.).

32

• commitControlflow. Since any instruction that R is control-flow de-
pendent on, W is also control-flow dependent on, these instructions
have to be finished by proof of (3.2.5.).

• All po-earlier dmbsy, dmbld, isb are finished. By proof of 3.2.1.
all po-earlier dmbsy, dmbld, isb are finished.

• All po-earlier acquire reads are finished. By proof of (3.2.3.) all
po-earlier read acquires are finished.

• If R is an acquire then all po-earlier releases are finished. If R is an
acquire then it has to be finished by proof of (3.2.3.).

• If the closest po-earlier write W ′ to the same address was forwarded
to R the memory reads feeding into the register reads of W ′ must be
finished. As proved above all po-earlier writes W ′ to the same address
as W are propagated, hence committed, which includes having the
memory reads feeding into W ′ finished.

• If the closest po-earlier write W ′ to the same address was not for-
warded to R it must be propagated. As proved above all po-earlier
writes W ′ to the same address as W are propagated.

• All memory accesses between W ′ and R have their address-feeding
memory reads finished. As proved for 3.2.6.2. all memory accesses
po-before W have their address-feeding memory reads finished.

• All reads R′ to the same address between W ′ and R must be non-
restartable. Since all these reads are po-before W and to the same
address as W by the induction hypothesis they are finished, so not
restartable anymore.

Now since R is satisfied it can be completed. Since pop_finish_load_cand
holds R can finish. Since memory-read-finish transitions are eager, R is
finished.

3.2.6.4. Any read R that was partially satisfied from W must have requested its
unsatisfied slices from storage. By assumption all memory accesses have
the same size, so if R was partially satisfied from W it is completely
satisfied and there are no such unsatisfied slices.

3.2.7. Assume W is a successful store exclusive WE that is paired with a load
exclusive RE. Then RE must be po-before WE. By proof of 3.2.6.3. all
po-earlier memory reads to the same address are already finished, so
RE finished. Assume RE read from a same-thread write W ′. Then it is
(W ′,RE) ∈ po and (RE, W) ∈ po. And since W ′ and W have the same

33

address, by proof of 3.2.6.1. the write W ′ is propagated.
3.3. Assume there exists (RE’,[(W ′,_)]) ∈ flat_ss_exclusive_reads after Tr′ where

RE’ and W are to the same address but from different threads.
Then by 0. of the induction hypothesis it is (W ′,RE’) ∈ rf and there exists a
write exclusive WE’ such that (RE’,WE’) ∈ rmw, W ′ ∈ S[0..n], and WE’ not in
S[0..n].
Since RE’ and W from different threads by assumption, also W and WE’ from
different threads, soWE’ 6=W andWE’ not in S[0..n+1] either, and therefore
(W,WE’) ∈ S. Since it is W ′ ∈ S[0..n] it is also (W ′, W) ∈ S. So (W ′, W) ∈ S

and (W,WE’) ∈ S where W and WE’ are from different threads but to the
same address. Contradiction to Lemma 5 for (RE’,WE’) ∈ rmw.

Case E is a barrier B. Show extending the trace for E preserves properties 0. – 3..
0. Committing a barrier does not change flat_ss_exclusive_reads, and since E is not

a write, 0. still holds.
1. By induction hypothesis the trace Tr for E induces the po, rf, co, and rmw relations

from the candidate execution. Since B does not fetch, satisfy reads, propagate
writes, or promise the success/failure of write exclusives this is still true for Tr′.

2. Have to show that committing B does not restart any instructions or discard
instruction-tree branches. But this follows from pop_commit_barrier_action’s defi-
nition.

3. Tr′ is a valid trace of Flat Operational. Have to show that committing B is enabled
after Tr.
3.1. commitDataflow. Since B has no data this is vacuously true.
3.2. commitControlflow.

Conditional branches po-before B have to be finished. Assume there is an
unfinished branch instruction po-before B, let BR be the po-earliest one. The
finish transition for BR is taken eagerly, so if BR is unfinished, then it is because
BR cannot finish yet.
Since BR is the po-earliest unfinished branch its control flow is finished. So
it must be BR’s dataflow that is unfinished: there is at least one read R that
feeds into the register reads of BR register reads that is unfinished. But then
(R, B) ∈ [R];ctrl;[F] ⊆ RC_BC ⊆ S. So by construction of Tr the read R is satisfied,
all writes E are propagated and barriers E are committed and E therefore
eagerly finished for (E, R) ∈ (WC_RC | BC_RC); RC_RC*, since (E, R); (R, B) ∈
(WC_RC | BC_RC); RC_RC*; RC_BC, and all reads R′ with (R′, R) ∈ RC_RC+ are
satisfied, since (R′, R); (R, B) ∈ RC_RC*; RC_BC ⊆ S. Then R is finished.

34

3.3. If B is a dmbsy all barriers, reads, and writes, are finished.
Let B′ be a barrier po-before B. Then (B′, B) ∈ [F];po;[DMB.SY] ⊆ BC_BC ⊆ S,
so by construction of Tr the barrier B is committed and therefore eagerly fin-
ished. Let W be a po-earlier write. then (W, B) ∈ [W]; po; [DMB.SY] ⊆WC_BC ⊆
S. So by construction of Tr the write W is propagated and therefore eagerly
completed and finished.
Let R be a po-earlier read. So (R, B) ∈ [R];po;[DMB.SY] ⊆ RC_BC ⊆ S. So by
construction R is satisfied, all writes E are propagated and barriers E are
committed and E thus eagerly finished for (E, R) ∈ (WC_RC | BC_RC); RC_RC*,
since (E, R); (R, B) ∈ (WC_RC | BC_RC); RC_RC*; RC_BC ⊆ S, and all reads R′

with (R′, R) ∈ RC_RC+ are satisfied, since (R′, R); (R, B) ∈ RC_RC+; RC_BC.
Then by Lemma 8 R is finished.

3.4. All po-earlier dmbsy are finished. Let B′ be a dmbsy po-before B. Then it is
(B′, B) ∈ [DMB.SY];po;[F] ⊆ BC_BC ⊆ S. So by construction of Tr′ the barrier
B′ is committed and therefore eagerly finished.

3.5. If B is an isb all po-earlier memory accesses have their address-feeding
memory reads finished and have initiated.
Let R be a memory read feeding into the address of a po-earlier memory
access. Then (R, B) ∈ [R]; addr; po; [ISB] ⊆ RC_BC ⊆ S. So by construction R is
satisfied, all writes E are propagated and barriers E committed and E therefore
eagerly finished for (E, R) ∈ (WC_RC | BC_RC); RC_RC*, since (E, R); (R, B) ∈
(WC_RC | BC_RC); RC_RC*; RC_BC ⊆ S, and all reads R′ with (R′, R) ∈ RC_RC+
are satisfied, since (R′, R); (R, B) ∈ RC_RC+; RC_BC. Then by Lemma 8 R is
finished. Moreover, since all such R are satisfied, all memory accesses po-
before B have eagerly done the register reads necessary to determine their
address and have eagerly initiated.

3.6. If B is a dmbld all po-earlier memory loads are finished. Let R be a po-
earlier read. Then (R, B) ∈ [R];po;[DMB.LD] ⊆ RC_BC ⊆ S. So by construction
R is satisfied, all writes E are propagated and barriers E are committed
and E therefore eagerly finished for (E, R) ∈ (WC_RC | BC_RC); RC_RC*, since
(E, R); (R, B) ∈ (WC_RC | BC_RC); RC_RC*; RC_BC ⊆ S, and all reads R′ with
(R′, R) ∈ RC_RC+ are satisfied, since (R′, R); (R, B) ∈ RC_RC+; RC_BC. Then by
Lemma 8 R is finished.

3.7. If B is a dmbst all po-earlier memory stores are finished.
Let W be a po-earlier write. Then (W, B) ∈ [W];po;[DMB.ST] ⊆ WC_BC ⊆ S.
So by construction of Tr the write W is propagated and therefore eagerly

35

finished.
Take eager transitions. Repeatedly extend the trace Tr′ to Tr′′ for enabled eager transitions

T , until there are no more enabled eager transitions.
0. Only the promise-write-success, satisfy-read-in-memory and propagate-memory-

write transitions change the flat_ss_exclusive_reads field. These are not eager, so
flat_ss_exclusive_reads unchanged. And since the prefix of S has not changed: 0.
still holds.

1. By definition of transition-eagerness, T does not fetch, satisfy a read, propagate a
write, or promise success or failure of a write exclusive, so 1. is preserved.

2. Restarts are caused only by the transitions promise-write-exclusive-failure, satisfy-
read-by-forwarding, satisfy-read-from-memory, and propagate-memory-write. By
definition these transitions are not eager, so T does not cause restarts. Only
finishing of branch instructions causes instruction tree branches to be discarded. A
branch BR can only finish when the memory reads feeding into its register reads
are finished. Let R be any such memory read. If R= S[n+1] (R was the last event
from S to be handled before the eager steps) then R reads from the unique W such
that (W, R) ∈ rf by proof of 1.; for all other R the induced reads-from relation is a
subset of rf of the candidate execution by induction hypothesis. So the successor of
BR is determined as in the candidate execution’s po, and by induction hypothesis
the instruction tree viewed as a relation matches po. Therefore, finishing such a
branch BR does not discard any instruction tree branches.

3. Since by assumption T is enabled after Tr′, Tr′′ is a valid trace.
4. When no more eager transitions are enabled, establish property 4.: the eager

transitions have all been taken by construction.

4 ARMv8 Axiomatic behaviour included in Flat Axiomatic

Theorem 4. Let C be a candidate execution accepted by ARMv8-axiomatic. Then C is accepted
by Flat-axiomatic

Proof. Since the Internal and Atomic axioms are the same in both models, only have to show
that when ARMv8-axiomatic’s axioms hold, then Flat-axiomatic’s Order acyclic. To do this,
start with Order, and show step-by-step that any edges in Order that are not included in
ARMv8-axiomatic’s ob are can be deleted safely: if there is a cycle in Order with them, then
there is also one in the relation without them.

36

(Order)+
= (BC_RS
| WC_RS
| RS_RS
| RS_RC; RC_RC*; (RC_BC | RC_WC)
| WC_RC; RC_RC*; (RC_BC | RC_WC)
| BC_RC; RC_RC*; (RC_BC | RC_WC)
| BC_BC
| RC_BC
| WC_BC
| RC_WC
| WC_WC
| BC_WC
| co
| rfe
| fr
)+

Apply most of the definitions.
. . .
= ([DMB.SY|ISB|DMB.LD]; po; [R]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| [W];(po−loc \ rf \ (po;rf));[R]
| [Acq];po;[R]
| [R];addr;[R]
| [R];(addr|data);rfi;[R]
| [R];(po−loc \ (rf−1;rf) \ (po;rf));[R]
| RC_RC*; (RC_BC | RC_WC)
| WC_RC; RC_RC*; (RC_BC | RC_WC)
| BC_RC; RC_RC*; (RC_BC | RC_WC)
| [DMB.SY];po;[F]
| [F];po;[DMB.SY]
| [R];po;[DMB.SY|DMB.LD]
| [R];ctrl;[F]
| [R];addr;po;[ISB]
| [W];po;[DMB.SY|DMB.ST]
| [R];po;[Rel]
| [R];addr;[W]
| [R];data;[W]
| [R];ctrl;[W]
| [R];addr;po;[W]
| [Acq];po;[W]
| [R];po−loc;[W]
| [R];rmw;[W]
| [W];po−loc;[W]
| [W];po;[Rel]
| [F];po;[W]
| co
| rfe
| fr
)+

Simplify.
. . .
= ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]

37

| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD]; po; [R]
| ctrl;[F]
| po;[Rel]
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| RC_RC*; (RC_BC | RC_WC)
| WC_RC; RC_RC*; (RC_BC | RC_WC)
| BC_RC; RC_RC*; (RC_BC | RC_WC)
| co
| rfe
| fr
| [R];(po−loc \ (rf−1;rf) \ (po;rf));[R]
| [W];(po−loc \ rf \ (po;rf));[R]
| [W];po−loc;[W]
| [R];po−loc;[W]
)+

[W];po-loc;[W] is included in co, so can delete this edge. [R];po-loc;[W] included in fr, so can
delete this edge.

. . .
= ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD]; po; [R]
| ctrl;[F]
| po;[Rel]
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| RC_RC*; (RC_BC | RC_WC)
| WC_RC; RC_RC*; (RC_BC | RC_WC)
| BC_RC; RC_RC*; (RC_BC | RC_WC)
| co
| rfe
| fr
| [R];(po−loc \ (rf−1;rf) \ (po;rf));[R]
| [W];(po−loc \ rf \ (po;rf));[R]
)+

Consider (W, R) ∈ [W];(po-loc\rf\(po;rf));[R]. By definition (W, R) /∈ rf. Let (W ′, R) ∈ rf with
W 6=W ′. By definition it is not (W, W ′)(W ′, R) ⊆ po. By coherence axiom it also cannot be

38

(W ′, W) ∈ po, because otherwise cycle in fr;po. Also cannot be (R, W ′) ∈ po because otherwise
cycle in po;rf. So (W ′, R) ∈ rfe, and by coherence axiom again it must be (W, W ′) ∈ co,
otherwise cycle in fr;po. So then (W, R) ∈ co;rfe. So the above edge is subsumed by co;rfe.

. . .
= ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD]; po; [R]
| ctrl;[F]
| po;[Rel]
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| RC_RC*; (RC_BC | RC_WC)
| WC_RC; RC_RC*; (RC_BC | RC_WC)
| BC_RC; RC_RC*; (RC_BC | RC_WC)
| co
| rfe
| fr
| [R];(po−loc \ (rf−1;rf) \ (po;rf));[R]
)+

Consider (R, R′) ∈ [R];(po-loc\ (rf−1;rf)\(po;rf));[R] and let (W, R) ∈ rf, (W ′, R′) ∈ rf. By defini-
tion W 6=W ′ and not (R, W ′), (W ′, R′) ⊆ po. It must be (W, W ′) ∈ co as otherwise (R′, W) ∈ fr
and there is a cycle in fr;rf;po.
By per-thread-coherence it cannot be (R′, W ′) ∈ po. Also cannot be (W ′, R) ∈ po, since

otherwise cycle in fr;po. So W ′ not from the same thread as R and R′ and it is (R, R′) ∈ fr;rfe.
So [R];(po-loc \ (rf−1;rf) \ (po;rf));[R] subsumed by fr;rfe and can delete the edge.

. . .
= ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD]; po; [R]
| ctrl;[F]
| po;[Rel]
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data

39

| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| RC_RC*; (RC_BC | RC_WC)
| WC_RC; RC_RC*; (RC_BC | RC_WC)
| BC_RC; RC_RC*; (RC_BC | RC_WC)
| co
| rfe
| fr
)+

Now apply the definitions of WC_RC and BC_RC.

. . .
= ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD]; po; [R]
| ctrl;[F]
| po;[Rel]
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| RC_RC*; (RC_BC | RC_WC) (* E2 *)
| ([Rel];po;[Acq] | [W];(po−R−loc\rf);[R]); RC_RC*; (RC_BC | RC_WC)
| [DMB.SY|ISB|DMB.LD];po;[R]; RC_RC*; (RC_BC | RC_WC) (* E1 *)
| co
| rfe
| fr
)+

Have E1= [DMB.SY|ISB|DMB.LD];po;[R];E2 [DMB.SY|ISB|DMB.LD];po;[R] already contained in the
relation using [DMB.SY];po and [ISB|DMB.LD];po;[R]. So E1 is already contained in the relation
using [DMB.SY];po, [ISB|DMB.LD];po;[R], and E2, and can delete E1.

. . .
= ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD]; po; [R]
| ctrl;[F]
| po;[Rel]
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw

40

| addr
| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| RC_RC*; (RC_BC | RC_WC) (* E2 *)
| ([Rel];po;[Acq] | [W];(po−R−loc\rf);[R]); RC_RC*; (RC_BC | RC_WC) (* E1 *)
| co
| rfe
| fr
)+

Have E1 = ([Rel];po;[Acq] | [W];(po-R-loc\rf);[R]);E2. Now assume W and R such that (W, R) ∈
[W];(po-R-loc \ rf);[R]. By definition R does not read from W , so (W ′, R) ∈ rf for W ′ 6=W . W

and W ′ have to be coherence related. It cannot be (W ′, W) ∈ co, because then there is a cycle
in po;fr. So have (W, W ′) ∈ co.
By (W, W ′) ∈ co it cannot be (W ′, W) ∈ po. By (W ′, R) ∈ rf it cannot be (R, W ′) ∈ po. And

by definition of po-R-loc it cannot be (W, W ′), (W ′, R) ∈ po. So W ′ not from the same thread
as R and it is (W ′, R) ∈ rfe. Therefore it is (W, W ′); (W ′, R) ∈ co;rfe, so (W, R) ∈ co;rfe. So
[W];(po-R-loc\rf);[R] is included in co;rfe.
Then ([Rel];po;[Acq] | [W];(po-R-loc\rf);[R]) is already included in the above relation using

[Rel];po;[Acq] and co and rfe, and E1 is subsumed by the combination of these and E2. So can
delete E1.

. . .
= ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD]; po; [R]
| ctrl;[F]
| po;[Rel]
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| RC_RC*; (RC_BC | RC_WC)
| co
| rfe
| fr
)+

Now consider RC_RC*:

([R];addr;[R] | [R];addr;po−no−W−loc;[R] | [Acq];po;[R] | [R];ctrl;[R] |
[R];(addr|data);rfi;[R] | [R];po−R−loc;[R])*

41

= (addr;[R] | addr;po−no−W−loc;[R] | [Acq];po;[R] | ctrl;[R] |
(addr|data);rfi;[R] | [R];po−R−loc;[R])*

This is included in the following:

(addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] |
(addr|data);rfi;[R] | [R];po−R−loc;[R])*.

Can rewrite this to the following, using the fact that [R];po-R-loc;[R] is transitive:

([R];po−R−loc;[R])?; (addr;[R]
| addr;[R];po−R−loc;[R]
| addr;po;[R]
| addr;po;[R];po−R−loc;[R]
| [Acq];po;[R]
| [Acq];po;[R];po−R−loc;[R]
| ctrl;[R]
| ctrl;[R];po−R−loc;[R]
| (addr|data);rfi;[R]
| (addr|data);rfi;[R];po−R−loc;[R])*

But some edges are subsumed by others:
• addr;[R];po-R-loc;[R] by addr;po;[R],
• addr;po;[R];po-R-loc;[R] by addr;po;[R],
• [Acq];po;[R];po-R-loc;[R] by [Acq];po;[R],
• ctrl;[R];po-R-loc;[R] by ctrl;[R].

So rewrite to:

([R];po−R−loc;[R])?; (addr;[R]
| addr;po;[R]
| [Acq];po;[R]
| ctrl;[R]
| (addr|data);rfi;[R]
| (addr|data);rfi;[R];po−R−loc;[R])* =

So RC_RC* included in:

([R];po−R−loc;[R])?; (addr;[R] | addr;po;[R] | [Acq];po;[R] |
ctrl;[R] | (addr|data);rfi;[R] | (addr|data);rfi;[R];po−R−loc;[R])*

So can strengthen the order below by including this edge instead.

. . .
⊆ ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD]; po; [R]
| ctrl;[F]
| po;[Rel]
| [Acq];po;[R|W]

42

| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| ([R];po−R−loc;[R])?; (addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] |

(addr|data);rfi;[R] | (addr|data);rfi;[R];po−R−loc;[R])*; (RC_BC | RC_WC)
| co
| rfe
| fr
)+

Apply the definition of RC_BC and RC_WC.

. . .
= ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD]; po; [R]
| ctrl;[F]
| po;[Rel]
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| ([R];po−R−loc;[R])?; [R]; (addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] |

(addr|data);rfi;[R] | (addr|data);rfi;[R];po−R−loc;[R])*;
([R];po;[DMB.SY|DMB.LD] | [R];ctrl;[F] | [R];addr;po;[ISB] |
[R];po;[Rel] | [R];addr;[W] | [R];data;[W] | [R];ctrl;[W] |
[R];addr;po;[W] | [Acq];po;[W] | [R];po−loc;[W] | [R];rmw;[W]) (* E *)

| co
| rfe
| fr
)+

Some cases of E are subsumed by other edges in the relation, so can delete these: set of edges
ending in [R];po;[DMB.SY|DMB.LD] is subsumed by po;[DMB.SY] and [R];po;[DMB.LD]; the set of
edges ending with [R];po;[Rel] is subsumed by po;[Rel].

. . .
= ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD]; po; [R]

43

| ctrl;[F]
| po;[Rel]
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| ([R];po−R−loc;[R])?; [R]; (addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] |

(addr|data);rfi;[R] | (addr|data);rfi;[R];po−R−loc;[R])*;
([R];ctrl;[DMB.ST|ISB] | [R];addr;po;[ISB] | [R];addr;[W] |
[R];data;[W] | [R];ctrl;[W] | [R];addr;po;[W] | [Acq];po;[W] |
[R];po−loc;[W] | [R];rmw;[W]) (* E *)

| co
| rfe
| fr
)+

The set of edges E is a subset of program order and cannot create cycles by itself. So it can
only create cycles in composition with other edges. In particular, the subset of E ending with
[DMB.ST] can only create cycles in composition with others. Since E cannot be composed with
itself, replace it with its post-composition with every other edge from the relation above.

. . .
only has a cycle if the following has a cycle
([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD]; po; [R]
| ctrl;[F]
| po;[Rel]
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| ([R];po−R−loc;[R])?; [R]; (addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] |

(addr|data);rfi;[R] | (addr|data);rfi;[R];po−R−loc;[R])*;
([R];ctrl;[DMB.ST];(po;[DMB.SY]|po;[W]|po;[Rel]) | [R];ctrl;[ISB] |
[R];addr;po;[ISB] | [R];addr;[W] | [R];data;[W] | [R];ctrl;[W] |
[R];addr;po;[W] | [Acq];po;[W] | [R];po−loc;[W] | [R];rmw;[W]) (* E *)

| co
| rfe
| fr
)+

The definition of E contains some duplication, so simplify.

44

. . .
= ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD]; po; [R]
| ctrl;[F]
| po;[Rel]
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| ([R];po−R−loc;[R])?; [R]; (addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] |

(addr|data);rfi;[R] | (addr|data);rfi;[R];po−R−loc;[R])*;
([R];ctrl;[DMB.ST];po;[DMB.SY] | [R];ctrl;[ISB] | [R];addr;po;[ISB] |
[R];addr;[W] | [R];data;[W] | [R];ctrl;[W] | [R];addr;po;[W] |
[Acq];po;[W] | [R];po−loc;[W] | [R];rmw;[W]) (* E *)

| co
| rfe
| fr)+

Now the subset of E ending with DMB.SY is subsumed by the edges po;[DMB.SY], so can delete
it. Also rewrite [R];po-loc;[W] to fri (by Internal axiom).

. . .
= ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD];po;[R]
| ctrl;[F]
| po;[Rel]
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| ([R];po−R−loc;[R])?; [R]; (addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] |

(addr|data);rfi;[R] | (addr|data);rfi;[R];po−R−loc;[R])*; ([R];ctrl;[ISB] |
[R];addr;po;[ISB] | [R];addr;[W] | [R];data;[W] | [R];ctrl;[W] |
[R];addr;po;[W] | [Acq];po;[W] | fri | [R];rmw;[W]) (* E *)

| co
| rfe
| fr)+

Split E by definition of the ‘?’ operator.

45

. . .
= ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD];po;[R]
| ctrl;[F]
| po;[Rel]
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| [R];(addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi;[R] |

(addr|data);rfi;[R];po−R−loc;[R])*;
([R];ctrl;[ISB] | [R];addr;po;[ISB] | [R];addr;[W] | [R];data;[W] |
[R];ctrl;[W] | [R];addr;po;[W] | [Acq];po;[W] | fri |
[R];rmw;[W]) (* E1 *)

| [R];po−R−loc;[R]; (addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] |
(addr|data);rfi;[R] | (addr|data);rfi;[R];po−R−loc;[R])*;
([R];ctrl;[ISB] | [R];addr;po;[ISB] | [R];addr;[W] | [R];data;[W] |
[R];ctrl;[W] | [R];addr;po;[W] | [Acq];po;[W] | fri |
[R];rmw;[W]) (* E2 *)

| co
| rfe
| fr
)+

Now consider (W, R′) ∈ rfi;[R];po-R-loc;[R]. Then there exists a read R such that (W, R) ∈ rfi
and (R, R′) ∈ po-R-loc. Let (W ′, R′) ∈ rf. Now there are two cases W =W ′ or W 6=W ′.
W = W ′ Then (W, R′) ∈ rfi.
W 6= W ′ W and W ′ must be coherence-related. Assume (W ′, W) ∈ co. Then (R′, W) ∈ fr and

there is a cycle in po;fr. So (W, W ′) ∈ co. It cannot be (W ′, R) ∈ po because otherwise
cycle in po;fr, and it cannot be (R′, W ′) ∈ po because otherwise cycle in po;rf. By
definition of po-R-loc, W ′ not po-between R and R′. So W ′ and R′ from different threads
and it is (W ′, R′) ∈ rfe. Therefore (W, W ′); (W ′, R′) ∈ co;rfe, so (W, R′) ∈ co;rfe.

So rfi;[R];po-R-loc;[R] included in rfi | (co;rfe) & po-loc. Use this to strengthen E1 and E2.

. . .
⊆ ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD];po;[R]
| ctrl;[F]
| po;[Rel]

46

| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| [R];(addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |

(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W]) (* E1 *)

| [R];po−R−loc;[R]; (addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] |
(addr|data);rfi | (addr|data);((co;rfe) & po−loc))*; [R]; (ctrl;[ISB] |
addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] | addr;po;[W] |
[Acq];po;[W] | fri | rmw;[W])

| co
| rfe
| fr
)+

Simplify: E1 is subsumed by the combination of the following edge sets:
• addr;po;[ISB],
• addr;po;[W],
• [Acq];po;[R],
• ctrl;[ISB],
• [Acq];po;[W],
• ctrl;[W],
• addr;[W],
• data;[W],
• fr,
• rmw,
• (addr|data);rfi,
• co,
• rfe,
• rmw.

So can drop E1.

. . .
= ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD];po;[R]
| ctrl;[F]
| po;[Rel]
| [Acq];po;[R|W]

47

| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| [R];po−R−loc;[R]; (addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] |

(addr|data);rfi | (addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W]) (* E2 *)

| co
| rfe
| fr
)+

The edge set E2 cannot create cycles by itself since it is a subset of program order (which in
turn is acyclic). Any cycle contained in the order above that has a cycle using an edge from
E2 must be one that uses it in composition with more edges from the relation. E2 does not
compose with itself. So it suffices to replace E2 by the post-composition of all other edges
with this one.

. . .
only has a cycle if the following has a cycle
([DMB.SY];po
| [DMB.SY];po;[R];po−R−loc;[R];

(addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |
(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W]) (* E1*)

| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD];po;[R]
| [ISB|DMB.LD];po;[R];po−R−loc;[R];

(addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |
(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W]) (* E2 *)

| ctrl;[F]
| po;[Rel]
| [Acq];po;[R|W]
| [Acq];po;[R|W];[R];po−R−loc;[R];

(addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |
(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W]) (* E3 *)

| [Rel];po;[Acq]
| [Rel];po;[Acq];[R];po−R−loc;[R];

(addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |
(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W]) (* E4 *)

| [Xw];rfi;[Acq]

48

| [Xw];rfi;[Acq];[R];po−R−loc;[R];
(addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |
(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W]) (* E5 *)

| rmw
| addr
| addr;[R];po−R−loc;[R];

(addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |
(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W]) (* E6 *)

| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| (addr|data);rfi;[R];po−R−loc;[R];

(addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |
(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W])

| co
| rfe
| rfe;[R];po−R−loc;[R];

(addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |
(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W])

| fr)+

Some of these are easily subsumed by existing edges:
• E1 by [DMB.SY];po
• E2 by [F];po;[W] and [ISB|DMB.LD];po;[R] and ctrl;[ISB] | addr;po;[ISB]
• E3 by [Acq];po;[W] and [Acq];po;[R] and ctrl;[ISB] | addr;po;[ISB]
• E4 by the sets [Rel];po;[Acq] and [Acq];po;[W] and [Acq];po;[R] and ctrl;[ISB] and
addr;po;[ISB].

• E5 by the sets [Xw];rfi;[Acq] and [Acq];po;[W] and [Acq];po;[R] and ctrl;[ISB] and
addr;po;[ISB].

• E6 is subsumed by addr;po;[ISB] and addr;po;[W].

. . .
= ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD];po;[R]
| ctrl;[F]
| po;[Rel]
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr

49

| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| (addr|data);rfi;[R];po−R−loc;[R];

(addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |
(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W]) (* E1 *)

| co
| rfe
| rfe;[R];po−R−loc;[R];

(addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |
(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W])

| fr
)+

As shown before, rfi;[R];po-R-loc;[R] included in (rfi | ((co;rfe)&po-loc)). Use this to strengthen
E1.

. . .
⊆ ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD];po;[R]
| ctrl;[F]
| po;[Rel]
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| (addr|data);(rfi | ((co;rfe) & po−loc));[R];

(addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |
(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W])

| co
| rfe
| rfe;[R];po−R−loc;[R];

(addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |
(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W]) (* E2 *)

| fr)+

Now consider (W, R′) ∈ rfe;[R];po-R-loc;[R]. Then (W, R) ∈ rfe for some read R and (R, R′) ∈
po-R-loc. Now there are two cases: (W, R′) ∈ rf or otherwise.
(W,R′) ∈ rf Then (W,R’) in rfe, by Internal axiom.

50

otherwise Then there is a write W ′ with (W ′, R′) ∈ rf and W 6= W ′. W and W ′ must be
coherence-related. Assume the coherence is (W ′, W) ∈ co. Then it is (R′, W) ∈ fr
and there is a cycle fr;rf;po. So the coherence must be (W, W ′) ∈ co. It cannot be
(W ′, R) ∈ po because then there would be a cycle in po;fr. By definition of the edge, W ′

not po-between R and R′. And it cannot be (R′, W ′) ∈ po since then there would
be a cycle in po;rf. So W ′ not from the same thread as R and R′. But then it is
(W, R); (R, W ′); (W ′, R′) ∈ rfe;fre;rfe.

So rfe;[R];po-R-loc;[R] included in (rfe | rfe;fre;rfe). Use this to strengthen E2.

. . .
⊆ ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD];po;[R]
| ctrl;[F]
| po;[Rel]
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| (addr|data);(rfi | ((co;rfe) & po−loc));[R];

(addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |
(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W])

| co
| rfe
| (rfe | rfe;fre;rfe);

(addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |
(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W])

| fr
)+

Split the first and the second long edge.

. . .
= ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD];po;[R]
| ctrl;[F]
| po;[Rel]

51

| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| (addr|data);rfi;[R];

(addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |
(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W]) (* E1 *)

| (addr|data);((co;rfe) & po−loc);[R];
(addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |
(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W]) (* E2 *)

| co
| rfe
| rfe;

(addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |
(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W]) (* E3 *)

| rfe;fre;rfe;
(addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |
(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W]) (* E4 *)

| fr
)+

Now check E1 – E4, each with a different prefix.
• E1 starting wt (addr|data);rfi. Since already have (addr|data);rfi in the relation can

strengthen the order by dropping this prefix.
• E2 starts with (addr|data);((co;rfe)&po-loc). Since have the edges addr, data, co, rfe, can

delete this prefix and strengthen the order.
• E3 starts with rfe. Since have rfe in the relation, can strengthen the order by deleting

this prefix.
• E4 starts with rfe;fre;rfe. Since rfe and fr are already in the relation, can strengthen it

by deleting this prefix.

. . .
⊆ ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD];po;[R]
| ctrl;[F]
| po;[Rel]
| [Acq];po;[R|W]

52

| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| (addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |

(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W]) (* E1 *)

| (addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |
(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W]) (* E2 *)

| co
| rfe
| (addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |

(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W]) (* E3 *)

| (addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |
(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W]) (* E4 *)

| fr
)+

Now have four copies of the same edge, can delete all but one.

. . .
= ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD];po;[R]
| ctrl;[F]
| po;[Rel]
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| (addr;[R] | addr;po;[R] | [Acq];po;[R] | ctrl;[R] | (addr|data);rfi |

(addr|data);((co;rfe) & po−loc))*; [R];
(ctrl;[ISB] | addr;po;[ISB] | addr;[W] | data;[W] | ctrl;[W] |
addr;po;[W] | [Acq];po;[W] | fri | rmw;[W]) (* E *)

| co
| rfe
| fr
)+

E is subsumed by the combination of other edges already in the relation: addr;po;[ISB] and

53

[Acq];po;[R] and ctrl;[ISB] and (addr|data);rfi and addr and data and co and rfe and addr;po;[W]
and [Acq];po;[W] and ctrl;[W] and addr;[W] and data;[W] and fri and rmw.

. . .
= ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD];po;[R]
| ctrl;[F]
| po;[Rel]
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| co
| rfe
| fr
)+

Split co and fr.

. . .
= ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD];po;[R]
| ctrl;[F]
| po;[Rel]
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| ctrl;[W]
| addr;po;[W]
| (addr|data);rfi
| coe
| coi
| rfe
| fre
| fri
)+

coi is acyclic itself. It can only contribute to cycles in composition with other edges. Post-
compose every edge EDGE in the relation with coi and add EDGE;coi.

54

. . .
only has a cycle if the following has a cycle
([DMB.SY];po
| [DMB.SY];po;coi
| po;[DMB.SY]
| [F];po;[W]
| [F];po;[W];coi
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD];po;[R]
| ctrl;[F]
| po;[Rel]
| po;[Rel];coi
| [Acq];po;[R|W]
| [Acq];po;[R|W];coi
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| rmw;coi
| addr
| addr;coi
| data
| data;coi
| ctrl;[W]
| ctrl;[W];coi
| addr;po;[W]
| addr;po;[W];coi
| (addr|data);rfi
| coe
| coe;coi
| rfe
| fre
| fre;coi
| fri
| fri;coi
)+

Most of those edges are subsumed by others:
• [DMB.SY];po;coi subsumed by [DMB.SY];po,
• [F];po;[W];coi by [F];po;[W],
• [Acq];po;[W];coi by [Acq];po;[W],
• rmw;coi subsumed by fri,
• addr;coi subsumed by addr;po;[W],
• addr;po;[W];coi subsumed by addr;po;[W],
• coe;coi subsumed by coe,
• fre;coi subsumed by fre,
• fri;coi subsumed by fri.

. . .
= ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]

55

| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD];po;[R]
| ctrl;[F]
| po;[Rel]
| po;[Rel];coi
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| data;coi
| ctrl;[W]
| ctrl;[W];coi
| addr;po;[W]
| (addr|data);rfi
| coe
| rfe
| fre
| fri
)+

fri is acyclic itself, so can only create cycles in composition with other edges. Post-compose all
edges EDGE with fri and add EDGE;fri.

. . .
only has a cycle if the following has a cycle
([DMB.SY];po
| [DMB.SY];po;fri
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD];po;[R]
| [ISB|DMB.LD];po;[R];fri
| ctrl;[F]
| po;[Rel]
| po;[Rel];coi
| [Acq];po;[R|W]
| [Acq];po;[R|W];fri
| [Rel];po;[Acq]
| [Rel];po;[Acq];fri
| [Xw];rfi;[Acq]
| [Xw];rfi;[Acq];fri
| rmw
| addr
| addr;fri
| data
| data;coi
| ctrl;[W]
| ctrl;[W];coi
| addr;po;[W]
| (addr|data);rfi
| (addr|data);rfi;fri
| coe
| rfe
| rfe;fri
| fre

56

)+

But these edges are subsumed by others in the relation.
• [DMB.SY];po;fri by [DMB.SY];po,
• [ISB|DMB.LD];po;[R];fri by [F];po;[W],
• [Acq];po;[R|W];fri by [Acq];po;[R|W],
• [Rel];po;[Acq];fri by [Rel];po;[Acq] and [Acq];po;[R|W],
• [Xw];rfi;[Acq];fri by [Xw];rfi;[Acq] and [Acq];po;[R|W],
• addr;fri by addr;po;[W],
• (addr|data);rfi;fri by addr;po;[W] and data;coi,
• rfe;fri by coe.

. . .
= ([DMB.SY];po
| po;[DMB.SY]
| [F];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD];po;[R]
| ctrl;[F]
| po;[Rel]
| po;[Rel];coi
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| data;coi
| ctrl;[W]
| ctrl;[W];coi
| addr;po;[W]
| (addr|data);rfi
| coe
| rfe
| fre
)+

Simplify.

. . .
= ([DMB.SY];po
| po;[DMB.SY]
| [DMB.LD|ISB];po;[W]
| [DMB.ST];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST]
| [R];addr;po;[ISB]
| [ISB|DMB.LD];po;[R]
| ctrl;[DMB.ST]
| ctrl;[ISB]
| po;[Rel]
| po;[Rel];coi

57

| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| data;coi
| ctrl;[W]
| ctrl;[W];coi
| addr;po;[W]
| (addr|data);rfi
| coe
| rfe
| fre
)+

The edges with DMB.ST themselves are acyclic. Replace them by all possible compositions
using them.

. . .
only has a cycle if the following has a cycle
([DMB.SY];po
| po;[DMB.SY]
| [DMB.LD|ISB];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST];po;[W]
| [R];addr;po;[ISB]
| [ISB|DMB.LD];po;[R]
| ctrl;[DMB.ST];po;[W]
| ctrl;[ISB]
| po;[Rel]
| po;[Rel];coi
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| data;coi
| ctrl;[W]
| ctrl;[W];coi
| addr;po;[W]
| (addr|data);rfi
| coe
| rfe
| fre
)+

The ctrl;[DMB.ST];po;[W] edge is subsumed by ctrl;[W].

. . .
= ([DMB.SY];po
| po;[DMB.SY]
| [DMB.LD|ISB];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST];po;[W]
| [R];addr;po;[ISB]
| [ISB];po;[R]
| [DMB.LD];po;[R]

58

| ctrl;[ISB]
| po;[Rel]
| po;[Rel];coi
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| data;coi
| ctrl;[W]
| ctrl;[W];coi
| addr;po;[W]
| (addr|data);rfi
| coe
| rfe
| fre
)+

Merge two ISB edge sets.

. . .
only has a cycle if the following has one
([DMB.SY];po
| po;[DMB.SY]
| [DMB.LD|ISB];po;[W]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST];po;[W]
| [R];(ctrl|(addr;po));[ISB]
| [ISB];po;[R]
| [DMB.LD];po;[R]
| po;[Rel]
| po;[Rel];coi
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| data;coi
| ctrl;[W]
| ctrl;[W];coi
| addr;po;[W]
| (addr|data);rfi
| coe
| rfe
| fre
)+

The ISB edge sets themselves are acyclic. Replace them by all possible compositions with
other edges.

. . .
only has a cycle if the following has one
([DMB.SY];po
| po;[DMB.SY]
| [DMB.LD];po;[W|R]
| [R];po;[DMB.LD]
| [W];po;[DMB.ST];po;[W]

59

| [R];(ctrl|(addr;po));[ISB];po;[W|R]
| po;[Rel]
| po;[Rel];coi
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| data;coi
| ctrl;[W]
| ctrl;[W];coi
| addr;po;[W]
| (addr|data);rfi
| coe
| rfe
| fre
)+

Do the same with the DMB.LD.

. . .
only has a cycle if the following has one
([DMB.SY];po
| po;[DMB.SY]
| [R];po;[DMB.LD];po;[W|R]
| [W];po;[DMB.ST];po;[W]
| [R];(ctrl|(addr;po));[ISB];po;[W|R]
| po;[Rel]
| po;[Rel];coi
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw
| addr
| data
| data;coi
| ctrl;[W]
| ctrl;[W];coi
| addr;po;[W]
| (addr|data);rfi
| coe
| rfe
| fre
)+

And do the same with the DMB.SY edges.

. . .
only has a cycle if the following has one
(po;[DMB.SY];po
| [R];po;[DMB.LD];po;[W|R]
| [W];po;[DMB.ST];po;[W]
| [R];(ctrl|(addr;po));[ISB];po;[W|R]
| po;[Rel]
| po;[Rel];coi
| [Acq];po;[R|W]
| [Rel];po;[Acq]
| [Xw];rfi;[Acq]
| rmw

60

| addr
| data
| data;coi
| ctrl;[W]
| ctrl;[W];coi
| addr;po;[W]
| (addr|data);rfi
| coe
| rfe
| fre
)+

Rearrange.

. . .
= (rfe | fre | coe
| addr | data
| ctrl; [W]
| (ctrl| (addr; po)); [ISB]; po; [W|R]
| addr; po; [W]
| (ctrl | data); coi
| (addr | data); rfi
| rmw
| [Xw];rfi;[Acq]
| po;[DMB.SY];po
| [Rel];po;[Acq]
| [R];po;[DMB.LD];po;[W|R]
| [Acq];po;[R|W]
| [W];po;[DMB.ST];po;[W]
| po;[Rel]
| po;[Rel];coi
)+

(ctrl|(addr;po));[ISB];po;[W] is subsumed by ctrl;[W], addr;po;[W]

. . .
= (rfe | fre | coe
| addr | data
| ctrl; [W]
| (ctrl| (addr; po)); [ISB]; po; [R]
| addr; po; [W]
| (ctrl | data); coi
| (addr | data); rfi
| rmw
| [Xw];rfi;[Acq]
| po;[DMB.SY];po
| [Rel];po;[Acq]
| [R];po;[DMB.LD];po;[W|R]
| [Acq];po;[R|W]
| [W];po;[DMB.ST];po;[W]
| po;[Rel]
| po;[Rel];coi
)+

Apply Xw= range(rmw). And strengthen the DMB.LD and [Acq];po[R|W] edges.

. . .

61

⊆ (rfe | fre | coe
| addr | data
| ctrl; [W]
| (ctrl | (addr; po)); [ISB]; po; [R]
| addr; po; [W]
| (ctrl | data); coi
| (addr | data); rfi
| rmw
| [range(rmw)];rfi;[Acq]
| po;[DMB.SY];po
| [Rel];po;[Acq]
| [R];po;[DMB.LD];po
| [Acq];po
| [W];po;[DMB.ST];po;[W]
| po;[Rel]
| po;[Rel];coi
)+

Finally, the relation above is the same as ARMv8-axiomatic’s ob with the definitions of obs,
dob, aob, and bob inlined, and the transitive closure replacing the recursive definition.

62

	Flat Operational behaviour included in ARMv8 Axiomatic
	Flat-axiomatic definition
	Flat Axiomatic behaviour included in Flat Operational
	ARMv8 Axiomatic behaviour included in Flat Axiomatic

