
Implementation of Smart Contracts Using Hybrid
Architectures with On- and Off-Blockchain

Components
(Extended Version: 31 Jul 2018)

Carlos Molina-Jimenez
Computer Laboratory

University of Cambridge, UK
carlos.molina@cl.cam.ac.uk

Ioannis Sfyrakis
School of Computing

Newcastle University, UK
ioannis.sfyrakis@ncl.ac.uk

Ellis Solaiman
School of Computing

Newcastle University, UK
ellis.solaiman@ncl.ac.uk

Irene Ng
Hat Community Foundation

Cambridge, UK
irene.ng@hatcommunity.org

Meng Weng Wong
CodeX, Stanford University

mengwong@stanford.edu
Legalese.com

mengwong@legalese.com

Alexis Chun
Visiting Fellow,

Singapore Management University
Legalese.com

alexis@legalese.com

Jon Crowcroft
Computer Laboratory

University of Cambridge, UK
jon.crowcroft@cl.cam.ac.uk

Abstract—Recently, decentralised (on-blockchain) platforms
have emerged to complement centralised (off-blockchain) plat-
forms for the implementation of automated, digital (“smart”)
contracts. However, neither alternative can individually satisfy
the requirements of a large class of applications. On-blockchain
platforms suffer from scalability, performance, transaction costs
and other limitations. Off-blockchain platforms are afflicted by
drawbacks due to their dependence on single trusted third
parties. We argue that in several application areas, hybrid plat-
forms composed from the integration of on- and off-blockchain
platforms are more able to support smart contracts that deliver
the desired quality of service (QoS). Hybrid architectures are
largely unexplored. To help cover the gap, in this paper we discuss
the implementation of smart contracts on hybrid architectures.
As a proof of concept, we show how a smart contract can be split
and executed partially on an off-blockchain contract compliance
checker and partially on the Rinkeby Ethereum network. To test
the solution, we expose it to sequences of contractual operations
generated mechanically by a contract validator tool.

I. INTRODUCTION

This paper investigates scenarios involving two or more
commercial parties interacting digitally with each other in
a relationship regulated by some computer-readable formal
specification that details the operational aspects of the parties’
business with each other. If this specification were written in
natural language and signed on paper by the parties, it would
be considered a traditional legal contract enforceable by a
court. However, a specification written in a formal language,
intended for digital execution and performance by the parties,
constitutes a new breed of contract. The fact that such contracts
may be executed, performed, and enforced by technology
alone promises to largely obviate the need for “offline” court
enforcement. Hence the appellation ‘smart’ contract.

Approaches to automated contract execution pre-date to-
day’s on-blockchain Bitcoin and Ethereum contracts. For
decades, financial institutions have executed trades digitally;
Nick Szabo [1] used the term ”smart contract” prior to
Satoshi [2]; and purely mechanical vending machines have
sold cold drinks and train tickets long enough for Lord
Denning [3] to remark in 1970:

The customer pays his money and gets a ticket. He
cannot refuse it. He cannot get his money back. He
may protest to the machine, even swear at it. But
it will remain unmoved. He is committed beyond
recall. He was committed at the very moment when
he put his money into the machine. The contract was
concluded at that time.

This quote is as relevant to the smart contracts of today as
it was to the train tickets of 1970, with one key difference—
in 1970 the contract would still have to be performed in the
real world (the customer gets on the train, which moves him
to his destination), whereas today a smart contract could be
performed entirely digitally, without human involvement.

This paper uses the running example of an online data
sale, which translates the operational essence of a traditional
sale and purchase agreement toward smart-contract digital
execution. A seller offers some digital content; a buyer pays;
the seller delivers. The traditional, natural language version
of such a contract might say The data seller is obliged to
make the purchased data available for retrieval by the buyer
for a term of 3 days after payment is received. Such clauses
are clear candidates for formalisation and digital execution by
means of smart contracts.

A smart contract is an executable program (written in some

programming language like, Java, C++, Solidity, Go, etc.) that
is deployed to mediate contractual interactions between two
or more parties. Its task is to detect (and if possible prevent)
deviations from the agreed upon behaviour. To perform its
task, the smart contract i) intercepts each business event
generated by the parties, ii) analyses it to determine if it
is contract compliant or not, iii) produces a verdict, and iv)
records the outcome in an indelible log that is available for
verification, for example, to sort out disputes. Notice that in
some applications, the declaration of the verdict is directly
and intricately associated to an action (for example, collect
the payment) that is executed when the verdict is positive.
In this paper we separate the two acts and focus on the
verdict. We argue that the verdict is the most crucial task
and the essence of smart contracts. The subsequent action is
an arbitrary reaction to the verdict and can be immediately
or eventually executed by the smart contract or by another
component of the application.

We regard a smart contract as a piece of middleware
expected to deliver a service with some QoS. Examples of QoS
are: trust (who can be trusted with the deployment of the smart
contract), transparency (can the contracting and third parties
verify the verdicts), throughput (the number of operation that
the smart contract can verify per second), response time (the
time it takes to output a verdict), transaction fees (the monetary
cost that the parties pay to the smart contract for processing
each operation). Different applications (for example, a buyer–
seller contract, property renting contract, etc.) will demand
different QoS. The question here: what technology to use to
implement smart contracts that satisfy the imposed require-
ments. Note that in this paper we use the terms smart contract
and contract synonymously.

Centralised (off-blockchain) and decentralised (on-
blockchain) platforms are available for the implementation of
smart contracts. However, we argue that neither alternative can
individually provide the QoS demanded by some applications.

Currently, leading examples of smart-contract blockchain
platforms are Bitcoin [4], Hyperledger [5] and Ethereum [6].
Bitcoin has been criticised for throughput limitations: it can
only process 7 transactions per second, compared to Visa’s
2000 transaction per second [7]. And it takes Bitcoin about
10 minutes to publish a transaction in its block [8].

Off-blockchain platforms were available long before the
Satoshi’s seminal paper [9] that launched Bitcoin [10]–[13],
[13]–[17]. These platforms rely on Trusted Third Parties (TTP)
which may not deserve that trust.

The central argument of this paper is that in several appli-
cation areas, hybrid platforms composed from the integration
of off- and on-blockchain platforms are better [18] than either
alone. To date, the use of hybrid architectures in smart contract
implementations has been largely unexplored. This paper aims
at helping to close the research gap.

The main contribution of this paper is the implementation of
a smart contract on a hybrid architecture. At this stage we aim
at proving the concept rather than at evaluating performance.
We show how a smart contract can be split and executed

partially on an off–blockchain contract compliance checker
and partially on an Ethereum blockchain. To test the solution,
we expose it to sequences of contractual operations generated
mechanically by a contract validator tool.

We continue the discussion as follows: We present a con-
tract example as a motivating scenario in Section II. We
discuss different approaches to smart contract implementation
in Section III. Our experience in the implementation of the
hybrid architecture is discussed in Section IV. In Section
V we present an execution model of contractual operation
that accounts for exceptional completions. In Section VII we
place our research in context. In Section VI we discuss open
research questions and pending work. In Section VIII, we
present concluding remarks.

II. MOTIVATING SCENARIO

Alice sells data that she has aggregated from different sources
(domestic sensors, social networks, shopping, etc.) and stored
in a repository, as envisioned in the HAT project [19]. Bob (the
“buyer”) buys data from Alice (the “seller” or “store”). The
contract that governs their relationship includes the following
clauses.

1) The buyer (Bob) has the right to place a buy request
with the store to buy an item.

2) The store (Alice) has the obligation to respond with ei-
ther confirmation or rejection within 3 days of receiving
the request.

a) No response from the store within 3 days will be
treated as a rejection.

3) The buyer has the obligation to either pay or cancel the
request within 7 days of receiving a confirmation.

a) No response from the buyer within 7 days will be
treated as a cancellation.

4) The buyer has the right to get a voucher from the store,
within 5 days of submitting payment.

5) If, within 3 days of receiving the voucher, the buyer
presents the voucher to the store, then the store must
deliver the requested item.

The clauses include contractual operations (for example, buy
request, reject and confirmation) that the parties have the
right or obligation to execute under strict time constrains
to honour the contract. We have highlighted the operations
in bold. Though the clauses are relatively simple, they are
realistic enough to illustrate our arguments.

III. IMPLEMENTATION ALTERNATIVES

A close examination of the example reveals that the clauses
describe the set of legal execution paths that the interaction
between the two parties can follow. As such, the contract writ-
ten in English—pseudocode—can be converted into a smart
contract—a formalism—that can be enforced mechanically.
To show how this can be done, we convert the English text
contract into a systematic notation. Fig. 1 shows a graphical
view of the contract example.

2

buyer

store

BuyReq

buyer

store

Conf

buyer

store

Rej
buyer

store

Canc

buyer

store

Pay

buyer

store

GetVou

TO TO TO
O R O start end

Fig. 1. A contract between a buyer and store for trading personal data.

The operations in the English contract have been mapped
to messages sent by one party to another. For example, the
execution of the operation buy request corresponds to the
BuyReq message sent by the buyer to the store. Similarly,
the execution of the operation reject corresponds to the Rej
message sent by the store to the buyer. The diamonds represent
exclusive splits in the execution path and have been labeled
with O (Obligation) and R (Right). TO stands for Time Out
and is used for defaults. Failure to execute and obligatory
operations results in abnormal contract end (represented by
dashed lines) with disputes to be sorted off line.

Fig. 1 reveals that the contract example can be modelled and
implemented as a finite state machine (FSM). The challenge
for the developer is to select a suitable architecture and
technology for implementation. As discussed in [18], there
are several approaches to smart contract implementations:

• Centralised: The smart contract is deployed on a Trusted
Third Party. This approach is also known as off-
blockchain implementation since there is no blockchain
involved.

• Decentralised: The smart contract is deployed on a
blockchain platform such as Ethereum. This approach is
also known as on-blockchain.

• Hybrid: The contract is split and deployed partly off-
and partly on-blockchain. Some clauses are enforced off-
blockchain; others are enforced on-blockchain. The parti-
tion is based on several criteria including blockchain cost,
performance, consensus latency, smart contract languages
and privacy. See [18] [20] and [21].

IV. HYBRID ARCHITECTURE

As explained in [18], the alternatives discussed in Section III
offer different QoS attributes (for example, scalability, privacy,
consensus latency, transaction fees) that render them suitable
for some applications but unsuitable for others. There exist
applications whose requirements are only met by the hybrid
approach. In this section, we demonstrate a hybrid implemen-
tation.

Complexity inevitably emerges from the interaction between
the off-blockchain and on-blockchain components. Several
architectures are possible, such as master–slave or peer–to–
peer. Alternatively, we can place them in a parallel-pipe
relationship where an off-blockchain smart contract is de-
ployed by one of the contractual parties to mirror the work

smart contract smart contract on blockchain
component of the
smart contract

buyer store
GetVou>Pay>BuyReq Conf

P
ay

Trusted Third Party

blockchain (ex. ethereum)

off blockchain
component of the

smart contract

Fig. 2. Smart contract split into on- and off-blockchain enforcement.

blockchain with n nodes

data repo

rp

SCd

SCd SCd

gateway

D1 D2

D3
TT

P
 n

od
e

SCc

op

rp

cc-op

cc | ncc eval op

cc | ncc eval op

Legend:
SC- smart contract.
op- contractual
 operation.
rp- response.
cc- contract compliant
ncc- non-contract
 compliant.

buyer store
client node

CCC

Fig. 3. A hybrid architecture for smart contracts: conceptual view.

of the on-blockchain smart contract, say to double-check its
outputs. Other deployment alternatives are discussed in [22].
As discussed below, interaction intricacies demand systematic
scrutiny to prevent buggy smart contracts.

The central idea of the hybrid approach is to divide the
contractual operations into off-blockchain operations and on-
blockchain operations. Off-blockchain operations are evalu-
ated for contract compliance by a centralised smart contract
deployed on a trusted third party. In contrast, on-blockchain
operations are evaluated by a decentralised smart contract
deployed on a blockchain.

Let us assume henceforth that Alice and Bob have agreed to
use a hybrid architecture where the operation Pay will be en-
forced on-blockchain and all other operations, off-blockchain.
An abstract view of the corresponding hybrid architecture is
shown in Fig. 2.

Fig. 3 applies the concepts of Fig. 2 to the contract example.
D1, D2 and D3 are pieces of personal data that Alice is willing
to sell, presumably under different conditions of price, privacy
and so on.

The hybrid architecture can be implemented using a range
of technologies. To realise the on-blockchain, decentralised
component, we use the Rinkeby testnet of the Ethereum

3

blockchain [6]. To realise the off-blockchain centralised com-
ponent, we use the latest version of the Contract Compliance
Checker (CCC) developed by University of Newcastle [23].
The integration follows a master–slave relationship between
the centralised and decentralised smart contract components
where the former is “in charge”. The on-blockchain smart
contract reads input events from the off-blockchain contract,
treating it as an oracle. The off-blockchain code is able to read
on-blockchain events—the chain itself.

A. Contract compliance checker

We use the contract compliance checker [17], [23] because
it offers several features that can ease integration with a
blockchain platform. The CCC is an open source tool designed
for the enforcing of smart contracts. It is a Java application
composed of several files, RESTful interfaces, and a database.
At its core lies a FSM that grants and removes rights,
obligations and prohibitions from the contracting parties
as the execution of the contract progresses. To enforce a
smart contract with the CCC, the developer (i) writes the
contract in the Drools language and stores it in a .drl file
(for example dataseller.drl), (ii) loads (copies) the drl file into
the configuration/drools/upload folder, and (iii) instantiates the
CCC as a web server (for example on a TTP node) that waits
for the arrival of events representing the contractual operation.
An event is a notification about the execution of a contractual
operation by a contractual partner. For example when the buyer
of Fig 1, executes the operation BuyReq the event BuyReq is
generated by the buyer’s application and sent to the CCC for
evaluation. Similarly, when the seller executes the operation
Conf, the seller’s application sends the event Conf to the CCC
for evaluation.

Drools is a declarative, Turing-complete language designed
for writing business rules [24]. The contract loaded to the
CCC is capable of evaluating contractual operations issued
by business partners as RESTful requests against its rules.
Rules give RESTful responses that can be the outcome of an
evaluation of an operation (contract compliant or non contract
compliant) or an arbitrary message such as a request to execute
an operation on a blockchain.

B. Client node

The client node is an ordinary node and not necessarily the
same as the TTP shown in the figure. It is responsible for
hosting the gateway. Contractual operations (op) are initiated
by the business parties, such as BuyReq, and Pay. The SCc

contract determines if a given operation is contract compliant
(cc) or non contract compliant (ncc). The SCc is in control of
the gateway which grants access to the seller’s data. For exam-
ple, when the buyer wishes to access the seller’s data: (i) the
buyer issues the corresponding operation against the gateway,
(ii) the gateway forwards the operation to the SCc, (iii) the
SCc evaluates the operation in accordance with its business
rules that encode the contract clauses and responds with either
cc or ncc to open or close the gateway, respectively, and (iv)
the opening of the gateway allows the buyer’s operation to

reach the data repository and retrieve the response (rp) that
travels to the buyer. Note that, to keep the figure simple, the
arrows show only the direction followed by operations initiated
by the buyer. Operations initiated by the seller follow a similar
procedure but right to left.

C. Ethereum

We chose the Ethereum platform [6] to implement the de-
centralised contract enforcer for the following reasons: It is
currently one of the most mature blockchains. It supports
Solidity—a Turing–complete language [25] that designers can
use for encoding stateful smart contracts of arbitrary com-
plexity. For complex contracts, Ethereum is more convenient
than Bitcoin which supports only an opcode stack-based script
language [26]. In addition, Ethereum offers developers on-
line compilers of Solidity code [27]. Equally importantly,
Ethereum provides, in addition to the main Ethereum network
(Mainnet), four experimental networks (Ropsten, Kovan, Sokol
and Rinkeby) that developers can use for experiments using
Ethereum tokens instead of “real” ether money [28], [29].
We run our experiments in Rinkeby as it is the most stable
testnet. To pay for the transaction to deploy the smart contract
on Rinkeby we could have created ERC20–compatible ether
tokens [30]. However, we opted for simplicity and used ethers
(tokens) requested from faucet [31]. These ethers are free and
can be requested by anybody with a wallet address and a third
party social network accounts such as Twitter and Face Book.

D. Execution sequences for testing the hybrid architecture

A feature of on-blockchain contracts is that because of their
decentralisation and openness, they are generally immutable
after deployment. Therefore, we suggest that smart contracts
should be thoroughly validated (for example, using conven-
tional model checking tools) to uncover potential logical
inconsistencies in their clauses (omissions, contradictions,
duplications, etc.) [32]. In addition, we suggest that the actual
implementation be systematically tested before deployment.
These tasks demand the assistance of software tools, such as
the contraval tool that we have developed [33], specifically
for model checking and testing contracts [33], [34]. It is
based on the standard Promela language and the Spin model
checker. It supports epromela (an extension of Promela) that
provides constructs for intuitively expressing and manipulating
contractual concepts such rights, obligations and role players.

In this work, we use contraval for model checking the
contract example and, more importantly, for generating the
execution sequences that we use for testing the hybrid archi-
tecture of Fig. 6. We define an execution sequence as a set of
one or more contractual operations that the contractual parties
need to execute to progress the smart contract from the start
to the end.

Our proof-of-concept proceeded as follows:
1) We converted the clauses of the contract example into

a formal model written in epromela. We called it
dataseller.pml.

4

dataseller.pmlExecSeq-xml

dataseller.pmlExecSeq1 dataseller.pmlExecSeq2

event1.xml event2.xml event1.xml event2.xml event3.xml

Fig. 4. Folder with execution sequences of the contract example.

2) We model-checked the contractual model with Spin to
verify conventional correctness requirements (deadlocks,
missing messages, etc.) and typical contractual problems
(clause duplications, omissions, etc.) [32]).

3) We augmented the contractual model with an LTL for-
mula and exposed it to Spin, and instructed Spin to pro-
duce counterexamples containing execution sequences
of interest.

4) We ran a Python parser (called parser-filtering.py) that
we have implemented, over the Spin counterexamples to
extract the execution sequences.

A close examination of Fig. 1 will reveal that it encodes six
alternative paths from contract start to contract end.
// Execution sequences encoded in Fig 1.

// RejConfTo=Rej or Conf timeout,

// PayCancTo=Pay or Canc timeout

seq1: {BuyReq, Rej}

seq2: {BuyReq, Conf, Canc}

seq3: {BuyReq, Conf, Pay}

seq4: {BuyReq, RejConfTo}

seq5: {BuyReq, Conf, PayCancTo}

seq6: {BuyReq, Conf, Pay, GetVou}

In Section IV-G we show how these sequences can be anal-
ysed systematically by the smart contracts of Fig. 6. However,
a visual analysis reveals that Seq1, Seq2 and Seq3 result in
normal contract completion. However, Seq4 and Seq5 result in
abnormal contract completion. In Seq4 the seller fails to meet
its obligation (to execute either Rej or Conf) before the 3 day
deadline. Similarly, in Seq5, the buyer fails to execute either
Pay or Canc before the 7 day deadline. Observe that although
the buyer has 5 days to claim a voucher, failure to execute
GetVou does not result in abnormal contract completion
because GetVou is a right, rather than an obligation. Seq6
is particularly problematic. It will be analysed separately in
Section IV-G.

To ease sequence manipulation, we programmed the Python
parser to store the execution sequences in N subfolders,
one for each sequence. In our experiments with the contract
example, we used the folders shown in Fig. 4.

Each subfolder dataseller.pmlExecSeqi (only two are shown
in the figure) contains M files, event1.xml, event2.xml, etc.,
one file for each event included in the sequence. In our
experiments, the subfolder dataseller.pmlExecSeq1 is related
to Seq1 and consequently, containes two files: event1.xml and
event2.xml that correspond, respectively, to the BuyReq and
Rej events.

We use XML-like tags to enrich the events with additional

information, The contents of files event1.xml and event2.xml
are shown in the following code, left and right, respectively.

<event>

<origin>buyer</origin>

<respond>store</respond>

<type>BuyReq</type>

<status>success</status>

</event>

<event>

<origin>store</origin>

<respond>buyer</respond>

<type>Rej</type>

<status>success</status>

</event>

The type tag indicates the type of the event. For example,
the execution of the contractual operation BuyReq produces
an event of type BuyReq, similarly, the execution of the
contractual operation Rej produces an event of type Rej. The
origin tag indicates the party that originated the event (the
buyer in the example of the left), similarly, respond indicates
the responding party—the store. status indicates the outcome
of the execution, since we are not accounting for exceptional
outcomes, the status is success.

E. On-Blockchain Deployment
The technology that we use in the integration is shown in
Fig. 6. We have split the contract example into two parts:
dataseller.drl and collectPay.sol.

dataseller.drl corresponds to the SCc and is encoded in
drools. We deploy it on a Mac computer (regarded as a TTP
node) as explained in Section IV-A. On the Mac we also
deploy an ethereum client connected to the Rinkeby Ethereum
network (see Fig. 6).

collectPayment.sol corresponds to the SCd and is encoded
in Solidity language [25]. There are several alternatives such
as the web3j library to deploy the collectPayment.sol
contract. For simplicity, we opted for metamask [35]: a
plugin that allows developers to perform operations against
Ethereum applications (including contract deployment) from
their browsers, without deploying a full geth Ethereum node.
We deployed metamask on Firefox and, before instantiating
the CCC, we executed the transaction shown in Fig. 5 to
deploy the collectPayment.sol contract on the Rinkeby
test network [36]. We used Ether tokens to pay for gas.

F. Smart contracts code
The following code contains two rules extracted from the
dataseller.drl contract.
#dataseller.drl contract in drools

rule "Payment Received"

Grants buyer the right to get a voucher when

the buyer’s obligation to pay is fulfilled.

when

$e: Event(type=="PAY", originator=="buyer",

responder=="store", status=="success")

eval(ropBuyer.matchesObligations(payment))

then // Remove buyer’s oblig to pay or cancel

ropBuyer.removeObligation(payment, seller);

ropBuyer.removeRight(cancelation, seller);

bcEvent.submitPayment();//forward pay to ether contr

ropBuyer.addRight(voucher,seller,0,0,120); //5 days

CCCLogger.logTrace("* Payment result received -

add right to GetVoucher ");

CCCLogger.logTrace("* Payment rule triggered");

responder.setContractCompliant(true);

end

rule "Get Voucher"

Grants a voucher to the buyer if the buyer has the right

(’cos it has fulfilled his payment oblig) to get it.

5

Fig. 5. Transaction that deployed the collectPayment.sol contract.

It removes the buyer’s right to get a voucher after given

it to him or 5 days expiry.

when

$e: Event(type=="GETVOU", originator=="buyer",

responder=="store", status=="success")

eval(ropBuyer.matchesRights(voucher))

then

ropBuyer.removeRight(voucher, seller);

bcEvent.getVoucher();

CCCLogger.logTrace("* Get Voucher rule triggered");

responder.setContractCompliant(true);

end

The following code is the collectPayment.sol contract.
///collectPayment.sol contract in Solidity

pragma solidity ˆ0.4.4;

contract collectPayment{

...

function submitPayment(uint pay) public constant

returns (string) {

/// func to submit payment. Returns:

/// "Payment received " + pay converted into str

var s=uint2str(pay);

var new_str=s.toSlice().concat("Received".toSlice());

return new_str;

}

function getReceipt(uint trasactionNum) public constant

returns (string) {

/// func to get a receipt of a given Tx.

/// returns: "Receipt 4 Tx " + transactionNum

/// converted into str

var s=uint2str(trasactionNum);

var new_str="Receipt 4 Tx".toSlice().concat(s.toSlice());

return new_str;

}

}

Since our focus here is to demonstrate the hybrid architecture,
the collectPayment.sol contract is simple: it only receives
string messages (not Ether tokens or actual Ethereum currency)
from the dataseller.drl contract and replies with another string
message.

The client corresponds to the client node of Fig. 3 and
acts as a web client to the CCC. We use it to test the
implementation of the contract example implemented by the

TTP node

CCC in Java

web3j collectPayment.sol
(SCd in solidity)

ethereum client

to rinkeby
ethereum
nodes

rinkeby ethereum network

json-rpc

account

cc | ncc eval op

read

subfolders with N exec sequences

dataseller.drl
(SCc in drools)

client dataseller.pmlExecSeq2 dataseller.pmlExecSeq1

Fig. 6. Hybrid architecture for smart contract: technology view.

combination of dataseller.drl and collectPayment.sol. In this
order, we provide the client with all the execution sequences
encoded in the contract example and previously stored in the
dataseller.pmlExecSeq-xml folder (see Fig. 4.

As shown in Fig. 6, the CCC relies on the web3j

library [37] to communicate with the Ethereum client.
Among other services, web3j includes a command line
application that mechanically generates wrapper code from
a smart contract specified in Solidity and compiled us-
ing the solc compiler. The CCC (a Java application) can
use the generated wrapper code to communicate with the
collectPayment.sol contract, through the json–rpc API
provided by ethereum. In addition, the web3j library provides
an API for the CCC to unlock an Ethereum client account by
providing the path to the keystore file and the password.

In our implementation, the communication
facilities provided by web3j are used by the
bcEvent.submitPayment() method of the
dataseller.drl contract to forward the Pay operation
to the collectPayment.sol contract. Intuitively,
the statement calls the submitPayment function of
the collectPayment.sol contract. The aim of this
example is to demonstrate how the dataseller.drl

and collectPayment.sol contracts can communicate
with each other. Another example of communication is
bcEvent.getVoucher() of the Get Voucher rule.
As it is, this statement calls the getReceipt function of
the collectPayment.sol contract to receive a string. In
production, it could be replaced by a function that returns
actual Ethers representing the voucher for the buyer, or by
any other function.

G. Determination of contract compliance

Let us examine the procedures followed by the dataseller.drl
and collectPay.sol contracts to process the operations included
in the contract example. We start with execution sequences
that do not include the Pay operation.

1) We assume that the set of the N execution sequences to
test the architecture are already available from a local
folder as explained above.

2) We load the CCC with the dataseller.drl contract and
instantiate it to listen for incoming events.

6

3) We instantiate the client. In response, it proceeds to
read the dataseller.pmlExeSeq1 folder to extract its
execution sequence: BuyReq, Rej. Next the client
sends the BuyReq event to the dataseller.drl contract
formatted as a RESTful message.

4) The BuyReq event triggers a rule of the dataseller.drl
contract that determines if the corresponding BuyReq

operation was contract compliant or non contract com-
pliant. The dataseller.drl contract sends its verdict back
to the client.

5) The above procedure is repeated with the next event
(Rej) of the execution sequence.

6) When the client sends the last event of the execution
sequence, it proceeds to the dataseller.pmlExeSeq2,
followed by the dataseller.pmlExeSeq3 and so on, till
dataseller.pmlExeSeqN . Since all the sequences are
legal, the dataseller.drl contract will declare each event
of each sequence to be contract compliant.
However, the procedure changes when the dataseller.drl
is presented with an event that is meant to be processed
by the ethereum collectPay.sol contract, such as the Pay
operation in the contract example. Let us discuss this
situation separately.

The execution sequence seq: BuyReq, Conf, Pay,

GetVou which includes the Pay operation is more prob-
lematic because it involves the collectPayment.sol

contract. BuyReq and Conf are processed by the client
and dataseller.drl contract as above. However, when the
dataseller.drl receives the Pay event, the rule Payment

Received (see the dataseller.drl code) does not evaluate it
immediately for contract compliance but performs the follow-
ing actions:

1) It creates a blockchain event object.
2) It uses the wrapper code (provided by the web3j

library) to call the submitPayment function of the
collectPayment.sol contract by means of a json–
rpc message. Basically, the message forwards the Pay

operation from the dataseller.drl contract to the
collectPayment.sol contract.

3) The result of the call to the submitPayment func-
tion is not necessarily notified immediately to the
dataseller.drl contract. Consequently, two situations can
develop:

• a) Pay confirmation precedes GetVou: The
dataseller.drl contract receives pay
confirmation and grants the buyer the right
to get a voucher. Consequently, when the
dataseller.drl eventually receives the
GetVou event from the buyer, the operation is
declared contract compliant and the voucher is
granted.

• b) GetVou precedes pay confirmation: This
situation might happen if we assume that the
pay confirmation might take arbitrarily long.
Because of this, the dataseller.drl con-

tract receives the GetVou event from the
buyer before receiving pay conformation from
the collectPayment.sol contract. Conse-
quently, the dataseller.drl contract declares
GetVou non–contract compliance— as far as the
dataseller.drl contract is aware of, the buyer
does not have the right to get a voucher.

The materialization of situation a) is shown in the out-
puts produced by the client when it presents the BuyReq,

Conf, Pay, GetVou sequence to the dataseller.drl
contract. The text has been slightly edited for readability.
As shown by the true output of the third last line, in
this execution the dataseller.drl contract declares the
GetVou operation contract compliant.
/* a) In this run of the execution sequence

* BuyReq, Conf, Pay, GetVou the dataseller.drl contract

* declares the GetVou operation contract compliant: true

*/

-------- Begin Request to CCC service ----------

BusinessEvent{originator=’buyer’, responder=’store’,

type=’BuyReq’, status=’success’}

-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------

<result>

<contractCompliant>true</contractCompliant>

</result>

-------- End Response from CCC service ----------

-------- Begin Request to CCC service ----------

BusinessEvent{originator=’store’, responder=’buyer’,

type=’Conf’, status=’success’}

-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------

<result>

<contractCompliant>true</contractCompliant>

</result>

-------- End Response from CCC service ----------

-------- Begin Request to CCC service ----------

BusinessEvent{originator=’buyer’, responder=’store’,

type=’Pay’, status=’success’}

-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------

<result>

<contractCompliant>true</contractCompliant>

</result>

-------- End Response from CCC service ----------

--------- Begin Request to CCC service ----------

BusinessEvent{originator=’buyer’, responder=’store’,

type=’GetVou’, status=’success’}

-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------

<result>

<contractCompliant>true</contractCompliant>

</result>

-------- End Response from CCC service ----------

The materialization of situation b) is shown in the out-
puts produced by the client when it presents the BuyReq,

Conf, Pay, GetVou sequence to the dataseller.drl
contract. As shown by the false output of the third last line,
in this execution the dataseller.drl contract declares the
GetVou operation non contract compliant.

7

/* b) In this run of the execution sequence

* BuyReq, Conf, Pay, GetVou the dataseller.drl contract

* declares the GetVou operation non contract compliant:

* false

*/

-------- Begin Request to CCC service ----------

BusinessEvent{originator=’buyer’, responder=’store’,

type=’BuyReq’, status=’success’}

-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------

<result>

<contractCompliant>true</contractCompliant>

</result>

-------- End Response from CCC service ----------

-------- Begin Request to CCC service ----------

BusinessEvent{originator=’store’, responder=’buyer’,

type=’Conf’, status=’success’}

-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------

<result>

<contractCompliant>true</contractCompliant>

</result>

-------- End Response from CCC service ----------

-------- Begin Request to CCC service ----------

BusinessEvent{originator=’buyer’, responder=’store’,

type=’Pay’, status=’success’}

-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------

<result>

<contractCompliant>true</contractCompliant>

</result>

-------- End Response from CCC service ----------

--------- Begin Request to CCC service ----------

BusinessEvent{originator=’buyer’, responder=’store’,

type=’GetVou’, status=’success’}

-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------

<result>

<contractCompliant>false</contractCompliant>

</result>

-------- End Response from CCC service ----------

We stress that the problematic situation emerges from a legal
sequence. The potential existence of illegal sequences such
as those that include GetVou not preceded by Pay can
be uncovered by model checking (for example, with the
contraval tool) and excluded from the model by the developer.
But model checking is not enough. The error that we are
analyzing materialises at run time because of the interaction
(about pay confirmation) between the dataseller.drl

and collectPayment.sol contracts. In this work, we
uncover it at testing time.

One can also argue that there are simple mechanisms to
prevent the occurrence of the problematic situation (for exam-
ple, queue the GetVou event) and to resolve it (for example
the buyer retries the GetVou operation until it is eventually
declared contract compliant by the dataseller.drl con-
tract. These are valid solutions to the problem; however, our
main observation is that this is only an example of a large
class of situations that might impact hybrid contracts unless
adequate measures are taken to uncover them at design and

OR
exec output

partyS

partyR

operationA

partyS

partyR

operationB

success

bizfail &&
Nbizfail=N

contract
end

bizfail &&
Nbizfail<N

timeout

Fig. 7. Execution model of contractual operations.

testing time. Such measures need not rely on human labour;
static analysis and formal methods should work.

H. Code and repeatability of experiments
The code used in the implementation of Fig. 6 is available
from the conch Git repository. The epromela model and
the ancillary code used to generate the execution sequences
are available from the contraval Git repository. Interested in
readers should be able to download both and replicate the
experiments discussed in this paper.

V. EXECUTIONS WITH ABNORMAL COMPLETIONS

For the sake of simplicity, the discussion in Section IV-D about
the contract example assumes that each contractual operation
always succeeds. This is the desirable outcome; however,
in practice an operation might fail for business or technical
reasons. This problem is discussed in [17].

To account for potential exceptional execution outcomes of
contractual operations, we use the execution model shown in
Fig. 7.

The OR exec indicates that there is either a right or obli-
gation to execute either operationA or operationB before a
deadline timeout). The timeout arrow leads to the execution of
another operation or to the end of the contract. In the simplest
case, operationB is absent.

Imagine that the operationA is initiated by partyS . The
output of the execution can be either success or bizfail
(business failure). An execution that completes in bizfail
is normally retried until it either succeeds or a number of
attempts (N) is exhausted. In our execution model, a bizfail
outcome that has not exceeded after N attempts leads to
the OR exec where execution of operationA, operationB or
timeout can take place. It is worth clarifying that the initiator
of operationA and operationB is not necessarily the same
contracting party.

We argue that realistic smart contracts need to account for
exceptional outcomes and follow execution models similar to
the one shown in Fig. 7. There are several alternatives. For
example, a different model results from placing the head of
the bizfail && Nbizfails <N to the right of the OR

exec diamond. We have build an epromela model of the
contract example following the execution model of Fig. 7.
The contraval tool helped us to reveal that the model encodes

8

246 execution sequences. We have extracted some of them to
illustrate our arguments.
// Execution sequences encoded in Fig 1 under the execution

// model of Fig. 4.

// (S)= execution completed in success

// (BF)= execution completed in business failure

// RejConfTo=Rej or Conf timeout: store failed to execute

// either rej or Conf by the 3day deadline.

// PayCancTo=Pay or Canc timeout: buyer failed to execute

// either Pay or Canc by the 7day deadline.

seq1: {BuyReq, Rej}

seq130: {BuyReq(S), Rej(BF), Conf(BF), Conf(S), Pay(BF),

Canc(BF), Pay(S), GetVou(S)}

seq150: {BuyReq(S), Rej(BF), Conf(BF), Conf(S), Pay(BF),

Canc(BF), PayCancTO}

Some sequences, like Seq1, are visible to the naked eye.
Some can be found only by software verification tools.
Within this category fall sequences (for example, seq130 and
seq150) that include business failures, retries and timeouts.
Seq130 allows the buyer to get his vouchers in spite of
the failure of some operations. However, in seq150 the
buyer fails to get his voucher due to the occurrence of the
PayCancTO timeout. All these sequences are available from
the examples/datasellercontract TOandBizFailures folder of
the Git Contraval repository [33]. Instructions and code to
repeat the experiment to generate them are also provided.

VI. FUTURE RESEARCH DIRECTIONS

We are only starting the exploration of hybrid implementa-
tions of smart contracts—our research is at proof of concept
stage. To consolidate our ideas, we are planning to con-
duct a performance evaluation of some QoS requirements to
demonstrate that the hybrid approach can meet them, and
equally importantly, to demonstrate in which situations the
hybrid approach is better than pure off- and on-blockchain
platforms. For example, we are planning to evaluate the
throughput of the channel that communicates the off- and
on-blockchain components. In pursuit of this aim, we are
planning a more demanding contract example that includes
several on-blockchain operations in addition to the single Pay
operation of the current example. Another pending challenge
is the exploration of different interaction models between the
off- and on-blockchain components. For example, the Pay

operation can be sent by the buyer directly to the Ethereum
smart contract instead of sending it indirectly through the off-
blockchain smart contract. There are also different deployment
alternatives for the off-blockchain smart contracts [22]. For
instance, it can be deployed within the buyer’s or store’s
premises instead of on a trusted third party.

Our testing does not account for potential failures of the
execution of contractual operations. For instance, it assumes
that the pay operation always succeeds and ignores the possi-
bility of technical failures (for example, the Ethereum network
is unreachable) and business failures (for example, delivery
address not found). We are planning to explore the behaviour
of the hybrid architectures under the exposure of the execution
sequences shown in Section V.

Another issue that deserves additional research is the anal-
ysis of the logics implicit in the English text of the contract

as the logics impacts the implementation complexity and
completness of its smart contract equivalent. The issue is that
there several ways of phrasing contractual clauses with subtle
implications. For instance, prohibitions can be expressed as
obligations. Also, the inclusion of a timeout default converts
and softens an obligation to respond, to a permission to
respond. Finally, in the contract example for instance, the
buyer’s right to obtain a voucher from the store could be
strengthened to an store’s obligation to deliver the voucher
if the buyer claims it. For the sake of readability the contract
example is written in what is known as denormalised form
which correspond to the popular intuitions about contract
deontics [38]. These are issues that we are currently exploring
within the context of our work on programmatic contract
drafting.

Programmatic contract drafting is another open research
area. In this regard, we are currently exploring the notion of the
Ricardian Contract, [39] where systems build and fill templates
both for formal-language contracts intended for digital execu-
tion (whether on- or off-blockchain), and for natural-language,
human-readable versions of the contracts. These contracts in
natural languages (like the contract example of this paper)
describe the same operational core but are intended to be
signed on paper and legally binding. The natural language
contracts also handle exceptions that cannot be handled within
the on-blockchain contracts; for example, scenarios involving
security holes in the on-blockchain contracts, or forks of
the blockchain platform itself. Natural language generation
systems offer the potential for efficient production and filling
of such dual contract templates. Together, formal verification
of programmatic smart contracts and natural language gen-
eration of human-readable contracts promise to create useful
synergies: one product of these ideas is a natural language
contract which has been mathematically proven to be bug-free.

VII. RELATED WORK

Research on smart contracts was pioneered by Minsky in the
mid 80s [10] and followed by Marshall [11]. Though some
of the contract tools exhibit some decentralised features [40],
those systems took mainly centralised approaches. Within this
category falls [41] and [14]. To the same category belongs
the model for enforcing contractual agreements suggested by
IBM [15] and the Heimdahl engine [42] aimed at monitoring
state obligations (for example, the store is obliged to maintain
the data repository accessible on business days). Directly
related to our work is the Contract Compliant Checker reported
in [17] [43] which also took a centralised approach to gain
simplicity at the expense of all the drawbacks that TTPs
inevitably introduce.

The publication of the Bitcoin white paper [2] in 2008
motivated the development of several platforms for supporting
the implementation of decentralised smart contracts. Platforms
in [4], [6] and [5] are some of the most representative. A
good summary of the features offered by these and other
platforms can be found in [44]. Though they differ in language

9

expressive power, fees and other features they are convenient
for implementing decentralised smart contracts.

An early example of a permissioned distributed ledger that
is similar in functionality to the Hyperledger [5] of current
blockchains is Business to Business Objects (B2Bobjs) [45].
B2Bobjs is a component middleware implemented at Newcas-
tle University in the early 2000s and used for the enforcement
of decentralised contracts [9]. As such, it offers consensus
services (based on voting initiated by a proposer of a state
change) and storage for recording non-repudiable and indelible
records of the operations executed by the contracting parties.
B2Bobjs is permissioned (as opposed to public) in the sense
that only authenticated parties are granted access to the object.

The logical correctness of smart contracts is discussed in
several papers [46]–[49]. In [50] the author use Petri Nets
for validating the correctness of business process expressed in
BPMN notation and executed in Ethereum. They mechanically
convert BPMN notation into Petri Nets, verify soundness
and safeness properties, optimise the resulting Petri Net and
convert it mechanically into Solidity. Formal systems for
reasoning about the evolution of contract executions have
also been suggested. Examples of questions of interest are
to determine the current obligation or state of a party at time
t and predicting weather a given contract will complete by
time t. To address these issues, the authors in [51] suggest the
use of timed calculus to reason about deontic modalities and
conditions with time constraints. A system for programmatic
analysis of contracts written in natural languages (normative
texts) to extract contractual commitments (what parties are and
are not expected to do) are discussed in [52].

The hybrid approach that we dicusss in this paper addresses
problems that neither the centralised nor decentralised ap-
proach can address separately. It was inspired by the arguments
presented in [18], though the original idea emerged by the
off-blockchain payment channel discussed in [4], [53]. The
concept of logic-based smart contracts discussed in [54] has
some similarities with our hybrid approach. They suggest
the use of logic-based languages in the implementation of
smart contracts capable of performing on-blockchain and off-
blockchain inference. The difficulty with this approach is lack
of support of logic-based languages in current blockchain
technologies. In our work, we rely on the native languages
offered by the blockchain platforms — here, Ethereum’s
Solidity. On- and off-blockchain enforcement of contractual
operations is also discussed in [55]. Though an architecture
is presented, no technical details about its implementation or
functionality are given. Another conceptual design directly
related to our work is private contracts executed in the
Enigma [21] architecture. As in our work, a private contract
is a conventional business contract with operations separated
into on- and off-blockchain categories. Similarly to our hybrid
design, they use a blockchain platform (namely Ethereum) to
execute on-blockchain operations. Unlike in our work, instead
of using a TTP to execute off-blockchain operations, they use
a set of distrusting Enigma nodes running a Secure Multi-
party Computation (SPC) protocol [56], [57] that guarantees

privacy. In that collaborative architecture, the blockchain is in
charge. It is responsible for guaranteeing that the contractual
operations are honoured and for delegating tasks to the Enigma
nodes as needed. The integration of the SPC protocol ensures
that the smart contract running in the Ethereum blockchain
never accesses raw data that might compromise privacy. Unlike
our TTP, the Enigma nodes charge computation and storage
fees, as Ethereum and Bitcoin do. The cost that the Enigma
architecture pays for privacy protection is complexity.

The idea of interconnecting smart contracts to enable them
to collaborate with each other is also discussed in [58]. These
authors draw a similarity between blockchains and the Internet.
They speculate that in the future, we will have islands of
blockchain systems interconnected by gateways.

VIII. CONCLUDING REMARKS

The aim of this paper has been to argue that there are
good reasons to consider hybrid architectures composed of
off- and on-blockchain components as alternatives for the im-
plementation of smart contracts with strict QoS requirements.
As a proof of concept, we have demonstrated that hybrid
architectures are implementable as long as the off-blockchain
component provides standard APIs to communicate with the
standard APIs that current blockchains offer.

We have presented the approach as a pragmatic solution
to the current problems that afflict off- and on-blockchain
platforms. However, we believe that these ideas will become
useful in the development of smart contract applications in the
near future. We envision cross-smart contract applications that
will involve several smart contracts running on independent
platforms. The architecture that we have implemented is in line
with this vision. Though the current implementation includes
only two components, it can be generalised to include an
arbitrary number of off-blockchain and on-blockchain compo-
nents. This generalisation should be implementable provided
that the components offer interfaces (gateways) to interact
with each other and the developer devises mechanisms for
coordinating their collaboration.

We have argued that the implementation of sound smart
contracts is not trivial and that the inclusion of off- and on-
blockchain components makes the task even harder. To ease
the task, we advise the use of software tools to mechanise the
verification and testing of smart contracts.

ACKNOWLEDGEMENTS

Carlos Molina-Jimenez is currently collaborating with
the HAT Community Foundation under the support of
Grant RG90413 NRAG/536. Ioannis Sfyrakis was partly
supported by the EU Horizon 2020 project PrismaCloud
(https://prismacloud.eu) under GA No. 644962. Meng Weng
Wong is a 2017–2018 Fellow at Stanford University’s CodeX
Center for Legal Informatics, and previously a 2016–2017 Fel-
low at Harvard University’s Berkman Klein Center for Internet
and Society, and a 2016 Fellow at Ca’Foscari University of
Venice.

10

REFERENCES

[1] N. Szabo, “Smart contracts: Formalizing and securing relationships on
public networks,” First Monday, vol. 2, no. 9, Sep. 1997.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” http:
//nakamotoinstitute.org/bitcoin/, Visited 13 Nov 2017 2008.

[3] T. v Shoe Lane Parking Ltd [1970] EWCA Civ 2, http://www.bailii.org/
ew/cases/EWCA/Civ/1970/2.html, 1970.

[4] A. Antonopoulos, Mastering Bitcoin, 2nd ed. O’Reilly, 2017.
[5] The Linux Foundation, “Hyperledger,” www.hyperledger.org, Visited

Nov 2017 2017.
[6] Ethereum, “A next-generation smart contract and decentralized ap-

plication platform,” https://github.com/ethereum/wiki/wiki/White-Paper,
Visited 23 Oct 2017 2017.

[7] T. McConaghy, R. Marques, A. Müller, D. D. Jonghe, T. T. Mc-
Conaghy, G. McMullen, R. Henderson, S. Bellemare, and A. Granzotto,
“Bigchaindb: A scalable blockchain database,” www.bigchaindb.com/
whitepaper/bigchaindb-whitepaper.pdf, Visited 1 Nov 2017 2017.

[8] K. Noyen, D. Volland, D. Worner, and E. Fleisch, “When money learns
to fly: Towards sensing as a service applications using bitcoin,” https:
//arxiv.org/pdf/1409.5841.pdf, Sep. 2014.

[9] S. Shrivastava, “An overview of the tapas architecture,” http://tapas.
sourceforge.net/deliverables/D5Extra.pdf, Jan 2005, supplement Deliv-
ery of the TAPAS (Trusted and QoS-Aware Provision of Application
Services) IST Project No: IST-2001-34069.

[10] N. H. Minsky and A. D. Lockman, “Ensuring integrity by adding obli-
gations to privileges,” in Proc. 8th Int’l Conf. on Software Engineering,
1985, pp. 92–102.

[11] L. F. Marshall, “Representing management policy using contract ob-
jects,” in Proc. IEEE First Int’l Workshop on Systems Management,
1993, pp. 27–30.

[12] Z. Milosevic, A. Josang, T. Dimitrakos, and M. Patton, “Discretionary
enforcement of electronic contracts,” in Proc. 6th IEEE Int’l Enterprise
Distributed Object Computing Conf.(EDOC’02). IEEE CS Press, 2002,
pp. 39–50.

[13] P. Gama and P. Ferreira, “Obligation policies: An enforcement platform,”
in Proc. 6th IEEE Int’l Workshop on Policies for Distributed Systems and
Networks (POLICY’05). IEEE Computer Society, 2005, pp. 203–212.

[14] O. Perrin and C. Godart, “An approach to implement contracts as
trusted intermediaries,” in Proc. 1st IEEE Int’l Workshop on Electronic
Contracting (WEC’04), 2004, pp. 71–78.

[15] H. Ludwig and M. Stolze, “Simple obligation and right model (SORM)-
for the runtime management of electronic service contracts,” in Proc.
2nd Int’l Workshop on Web Services, e–Business, and the Semantic
Web(WES’03), LNCS vol. 3095, 2003, pp. 62–76.

[16] L. Xu, “A multi-party contract model,” ACM SIGecom Exchanges, vol. 5,
no. 1, pp. 13–23, July 2004.

[17] C. Molina-Jimenez, S. Shrivastava, and M. Strano, “A model for
checking contractual compliance of business interactions,” IEEE Trans.
on Service Computing, vol. PP, no. 99, 2011.

[18] C. Molina-Jimenez, E. Solaiman, I. Sfyrakis, I. Ng, and J. Crowcroft,
“On and off-blockchain enforcement of smart contracts,” in Proc.
Int’l Workshop on Future Perspective of Decentralized Applications
(FPDAPP), 2018.

[19] “Hat: Hub-of-all-things,” http://hubofallthings.com/home/, visited: 10
Feb 2016.

[20] J. Eberhardt and S. Tai, “On or off the blockchain? insights on off-
chaining computation and data,” in Proc. i6th European Conference on
Service-Oriented and Cloud Computing (ESOCC’17), 2017.

[21] G. Zyskind, O. Nathan, and A. S. Pentland, “Enigma: Decentralized
computation platform with guaranteed privacy,” https://arxiv.org/abs/
1506.03471 (visitied in Mar 2018), Jan 2015, arXiv:1506.03471v1
[cs.CR].

[22] C. Molina-Jimenez, S. Shrivastava, and S. Wheater, “An architecture for
negotiation and enforcement of resource usage policies,” in Proc. IEEE
Int’l Conf. on Service Oriented Computing & Applications (SOCA 2011),
2011.

[23] C. Molina-Jimenez and I. Sfyrakis, “Deployment of the contract compli-
ant checker: (user’s guide),” https://github.com/carlos-molina/conch.git,
Visited in Feb 2016.

[24] The JBoss Drools team, “Drools expert user guide,” https://docs.
jboss.org/drools/release/5.3.0.Final/drools-expert-docs/html/index.html,
visited: 7 May 2018.

[25] Ethereum, “Solidity,” http://solidity.readthedocs.io/en/develop/index.
html, Visited 23 Oct 2017 2017.

[26] Bitcoin Wiki, “Scrypt,” https://en.bitcoin.it/wiki/Script, 2018.
[27] Remix, “Remix solidity ide,” https://remix.ethereum.org, Visited 17 Jun

2018 2017.
[28] Ethereum, “Ethereum: Comparison of the different test-

nets,” https://ethereum.stackexchange.com/questions/27048/
comparison-of-the-different-testnets, Visited 17 Jun 2018 2018.

[29] C. Svensson, “Transactions—webj 3.4.0 documentation,” https://web3j.
readthedocs.io/en/latest/transactions.html, Visited 17 Jul 2018 2018.

[30] Maxnachamkin, “How to create your own ethereum token in an hour
(erc20 + verified),” https://steemit.com/ethereum/@maxnachamkin/
how-to-create-your-own-ethereum-token-in-an-hour-erc20-verified,
Visited 17 Jul 2018 2018.

[31] Faucet, “Rinkeby authenticated faucet,” https://faucet.rinkeby.io, Visited
30 Jul 2018 2018.

[32] C. Molina-Jimenez and S. Shrivastava, “Model checking correctness
properties of a middleware service for contract compliance,” in Proc.
4th Int’l Workshop on Middleware for Service Oriented Computing
(MW4SOC’09), 2009, pp. 13–18.

[33] C. Molina-Jimenez, “Deployment of contraval—a contract validator :
(user’s guide),” https://github.com/carlos-molina/contraval.git, 2012.

[34] A. Abdelsadiq, C. Molina-Jimenez, and S. Shrivastava, “On model
checker based testing of electronic contracting systems,” in 12th IEEE
Int’l Conf. on Commerce and Enterprise Computing(CEC’10), 2010, pp.
88–95.

[35] Metamask support, “Metamask installation,” https://chrome.google.com/
webstore/detail/metamask/nkbihfbeogaeaoehlefnkodbefgpgknn, Visited
24 Jul 2018 2018.

[36] “Collectpay.sol smart contract deployment transaction.” https://rinkeby.
etherscan.io/address/0xab52675ea8464963fda7c0b610d931dd87ea4829,
Visited 24 July 2018 2018.

[37] C. Svensson, “web3j,” https://web3j.readthedocs.io/en/latest/, Visited 17
Jul 2018 2018.

[38] T. Hvitved, “Contract formalisation and modular implementation of
domain-specific languages,” Ph.D. dissertation, Faculty of Science Uni-
versity of Copenhagen, Mar 2012.

[39] I. Grigg, “The ricardian contract,” http://iang.org/papers/ricardian
contract.html, 2000, (Accessed on 07/26/2018).

[40] N. Minsky, “A model for the governance of federated healthcare infor-
mation systems,” in IEEE Int’l Symposium on Policies for Distributed
Systems and Networks (Policy’10), 2010, pp. 111–119.

[41] G. Governatori, Z. Milosevic, and S. Sadiq, “Compliance checking
between business processes and business contracts,” in Proc. 10th IEEE
Int’l Enterprise Distributed Object Computing Conf. (EDOC’06). IEEE
computer society, 2006, pp. 221–232.

[42] P. Gama, C. Ribeiro, and P. Ferreira, “Heimdhal: A history–based policy
engine for grids,” in Proc. 6th IEEE Int’l Symp. on Cluster Computing
and the Grid (CCGRID’06). IEEE CS, 2006, pp. 481–488.

[43] E. Solaiman, I. Sfyrakis, and C. Molina-Jimenez, “A state aware model
and architecture for the monitoring and enforcement of electronic
contracts,” in Proc. IEEE 18th Conference on Business Informatics
(CBI’2016), 2016.

[44] M. Bartoletti and L. Pompianu, “An empirical analysis of smart con-
tracts: platforms, applications, and design patterns,” https://arxiv.org/pdf/
1703.06322.pdf, visited in Nov 2012 2017.

[45] N. Cook, S. Shrivastava, and S. Wheater, “Distributed object middleware
to support dependable information sharing between organisations,” in
Proc. Int’l Conf. on Dependable Systems and Networks (DSN’02), 2002,
pp. 249–258.

[46] C. Prybila, S. Schulte, C. Hochreiner, and I. Weber, “Run-
time verification for business processes utilizing state machine
based apprddoach,” https://arxiv.org/pdf/1706.04404.pdf, Aug 2018,
arXiv:1706.04404 [cs.SE].

[47] I. Sergey, A. Kumar, and A. Hobor, “Scilla: A smart contract
intermediate-level language: Automata for smart contract implemen-
tation and verification,” https://arxiv.org/abs/1801.00687, Jan 2018,
arXiv:1801.00687 [cs.PL].

[48] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote, and
N. Swamy, “Formal verification of smart contracts (short paper),” in
PLAS16, 2018.

11

[49] A. Mavridou and A. Laszka, “Designing secure ethereum smart con-
tracts: A finite state machine based approach,” https://arxiv.org/pdf/1711.
09327.pdf, Nov 2018, arXiv:1711.09327 [cs.CR].

[50] L. Garcı́a-Bañuelos, A. Ponomarev, M. Dumas, and I. Weber, “Opti-
mized execution of business processes on blockchain,” https://arxiv.org/
pdf/1612.03152.pdf, Dec 2016, arXiv:1612.03152 [cs.SE].

[51] M. E. Cambronero, L. Llana, and G. J. Pace, “A timed contract–
calculus,” Department of Computer Science, University of Malta, Tech.
Rep. CS2017-02, Sep 2017.

[52] J. J. Camilleri, “Contracts and computation formal modelling and
analysis for normative natural language,” Ph.D. dissertation, Department
of Computer Science and Engineering, 2017.

[53] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain
instant payments,” https://lightning.network/lightning-network-paper.
pdf, Jan. 2016.

[54] F. Idelberger, G. Governatori, R. Riveret, and G. Sartor, “Evaluation

of logic–based smart contracts for blockchain systems,” in Proc. 10th
Int’l Symposium RuleML’16: Rule Technologies: Research, Tools, and
Applications, LNCS, Vol 9718, 2018, pp. 167183,.

[55] X. Xu, C. Pautasso, V. Gramoli, and A. Ponomarev, “The blockchain
as a software connector,” in Proc. 13th Working IEEE/IFIP Conf. on
Software Architecture (WICSA). IEEE, apr 2016, pp. 182191, 2016, pp.
182–191.

[56] A. C. Yao, “Protocols for secure computations (extended abstract),” in
Proc. 23rd Annual Symposium on Foundations of Computer Science,
(SFCS’08), 1982.

[57] M. Andrychowicz, S. Dziembowski, and Ł. M. Daniel Malinowski,
“Secure multiparty computations on bitcoin,” in Proc. IEEE Symposium
on Security and Privacy, 2014.

[58] T. Hardjono, A. Lipton, and A. Pentland, “Towards a design philosophy
for interoperable blockchain systems,” https://arxiv.org/pdf/1805.05934.

pdf, May 2018, arXiv:1805.05934 [cs.CR].

12

