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1. Ischaemic heart disease

2. COVID-19

3. Stroke

4. Chronic obstructive pulmon@'

5. Lower respiratory infections
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6. Trachea, bronchus, lung cancers
7. Alzheimer disease and other dementias
8. Diabetes mellitus

9. Kidney diseases

10. Tuberculosis
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We need cheap early-warning systems

COPD

Asthma

Lung cancer

B

OSAS

Cystic fibrosis
Pneumonia/ALRI
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Robust Al that leaves no one behind

COVID-19:

Hospitalization, ICU Admission and Death (Feb. 12
— Mar. 16, 2020)
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Sanyaolu et al. “Comorbidity and its impact on patients with
COVID-19”, SN comprehensive clinical medicine 2020
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Largest
Gap

20.8%

33.8%

34.4%

Buolamwini and Gebru “Gender shades: Intersectional accuracy
disparities in commercial gender classification” Conference on
fairness, accountability and transparency 2018



A) Personalised respiratory progression B) Fair respiratory Al
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Individual disease progression forecasting

* Based on a few past observations
* Irregularly sampled time-series

Audio

Probability of positive
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* Data sparsity
e Personalised to individual
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Dang et al. “Conditional neural ODE processes for individual
disease progression forecasting: a case study on COVID-19”,

SIGKDD 2023
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CNDP: Conditional Neural ODE processes
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Dang et al. “Conditional neural ODE processes for individual

isease progression forecasting: a case study on COVID-19”,
SIGKDD 2023



CNDP: COVID-19 test case

* Mobile-sourced longitudinal dataset
e 212 participants -- F/M/U: 110/90/12

* Each participant submitted: 5-385 samples

Forecasting Systems
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COVID-19 Sounds App

Upload short recordings of cough and breathing and report symptoms to
help researchers from the University of Cambridge detect if a personis
suffering from COVID-19. Healthy and non-healthy participants welcome.

GETITON # Download on the
" Google Play | @ App Store

or use the online form

Positive test
Megative test
Positive prediction
MNegative prediction

0 2 6 11 13 15 17 19 23 25 29 31 41 49
Time of progression (Day)

Dang et al. “Conditional neural ODE processes for individual
disease progression forecasting: a case study on COVID-19”,
SIGKDD 2023



EPSRC RELOAD: Respiratory Tract Infections

Wait until your breathing feels
normal again.

Hold your phone as you would
when making a phone call.

Press and release the red circular
button below and cough three
times.

Back
Please describe each of the following symptoms

with a score of 0 (Normal / not affected), 1 (Very

little problem), 2 (Slight problem), 3 (Moderately

bad), 4 (Bad), 5 (Very bad), 6 (As bad as it could
be).

Cough

Phlegm

Shortness of breath

Wheeze

Blocked / runny nose

Fever (high temperature)

RELOAD Breath Tracker app

RELOAD: REspiratory disease progression through LOngitudinal Audio Data
machine learning.

& UNIVERSITY OF University of
CAMBRIDGE Southampton

[ON Android

By Evelyn Zhang
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CNDP: Respiratory Tract Infection test case

* Binary RTI detection
* Mobile-sourced longitudinal dataset
* 463 users (178 with at least 1 positive RTI)

Approach AU-ROC

PANN features + Gaussian Process .779
CNDP .850

WORK
IN
PROGRESS

With Evelyn Zhang and RELOAD consortium



A) Personalised respiratory progression
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disease progression forecasting: a case study on COVID-19”,

SIGKDD 2023

B) Fair respiratory Al
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Carey et al. “Fairness in Al for healthcare”, Future
Healthcare Journal, 2024
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Fairness definitions

Group fairness
Ground truth Model prediction « Minimise A AU-ROC, A ECE
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Q positive
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Ricci et al. “Addressing fairness in artificial intelligence for medical
imaging” Nature communications 2022
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Fair methods usually need sensitive info...

...to unlearn bias

* |s this a problem?
a. Confidential, or not shared
b. Whac-a-mole effect
c. Unknown bias dimensions a-priori

Li et al., “A whac-a-mole dilemma: Shortcuts come in multiples
where mitigating one amplifies others”, CVPR 2023
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Group-agnostic methods for audio

e Selected experiments setup:

 Wav2Vec 2.0 Base encoder
e UK COVID-19 data subset

* Revisiting robust methods:
* Weight averaging (SWAD)
* Flatness seeking (SAM)
* Model Ensembles

# | Train Devel  Test | F/M A/A2/A3

positive 366 204 314 532/352 378/419/87

negative | 634 296 686 909/707  449/697/470

by | LOD0 500 1,000 | 1.441/1,059 827/1,116/557

Binary COVID-19 detection

Method | UART?T worst-UART A-UAR| | ECE| worst-ECE | A-ECE |
W2V2B 640+ .047 616 £.048 114+ 013 | 075+ .036 157 4+.047 1154+ .045
W2V2B + SAM 640+ .057 611 +.053 103+ .017 | .060+ .056 .138+.052 .087 +.054
E-W2V2B ‘ 653 642 106 160 080
E-W2V2B + SAM 676 668 020 078 039

Rizos et al., “Group-Agnostic Fairness in Machine Audition”, Interspeech 2025
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Future pandemics?

Disease X

“as the COVID-19 pandemic demonstrated,
infectious diseases do not respect borders”

World Health
Organization
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Rare and deadly diseases?

BlBJC

What is hantavirus, disease that .

Tle20 7

killed Gene Hackman's wife? e

I 1.001-5,000
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“The CDC reported 864 cases of hantavirus in .
the US between 1993 and 2022 — R

I 101-1,000
I 1,001-5,000

“mortality rate is approximately 38%” o
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Rare and deadly diseases?
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Cheap early-warning systems

Robust Al to leave no one behind
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