
NetworkX:
Network Analysis with Python

Salvatore Scellato

From a tutorial presented at the 30th SunBelt Conference
“NetworkX introduction: Hacking social networks using the Python programming language”
by Aric Hagberg & Drew Conway

1

Thursday, 1 March 2012

Outline

1. Introduction to NetworkX

2. Getting started with Python and NetworkX

3. Basic network analysis

4. Writing your own code

5. You are ready for your own analysis!

2

Thursday, 1 March 2012

1. Introduction to NetworkX.

3

Thursday, 1 March 2012

Introduction to NetworkX - network analysis

Vast amounts of network data are being generated and collected

• Sociology: web pages, mobile phones, social networks

• Technology: Internet routers, vehicular flows, power grids

How can we analyse these networks?

Python + NetworkX!

4

Thursday, 1 March 2012

Introduction to NetworkX - Python awesomeness

5

Thursday, 1 March 2012

Introduction to NetworkX - Python in one slide

 Python is an interpreted, general-purpose high-level programming language
whose design philosophy emphasises code readability.

“there should be one (and preferably only one) obvious way to do it”.

• Use of indentation for block delimiters (!!!!)

• Multiple programming paradigms: primarily object oriented and imperative
but also functional programming style.

• Dynamic type system, automatic memory management, late binding.

• Primitive types: int, float, complex, string, bool.

• Primitive structures: list, tuple, dictionary, set.

• Complex features: generators, lambda functions, list comprehension, list
slicing.

6

Thursday, 1 March 2012

http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Imperative_programming

Introduction to
NetworkX

“Python package for the creation,
manipulation and study of the
structure, dynamics and functions of
complex networks.”

• Data structures for representing many
types of networks, or graphs

• Nodes can be any (hashable) Python
object, edges can contain arbitrary data

• Flexibility ideal for representing
networks found in many different fields

• Easy to install on multiple platforms

• Online up-to-date documentation

• First public release in April 2005

7

Thursday, 1 March 2012

Introduction to NetworkX - design requirements

• Tool to study the structure and dynamics of social, biological, and
infrastructure networks

• Ease-of-use and rapid development

• Open-source tool base that can easily grow in a multidisciplinary
environment with non-expert users and developers

• An easy interface to existing code bases written in C, C++, and
FORTRAN

• To painlessly slurp in relatively large nonstandard data sets

8

Thursday, 1 March 2012

Introduction to NetworkX - object model

NetworkX defines no custom node objects or edge objects

• node-centric view of network

• nodes can be any hashable object, while edges are tuples with optional edge
data (stored in dictionary)

• any Python object is allowed as edge data and it is assigned and stored in a
Python dictionary (default empty)

NetworkX is all based on Python

• Instead, other projects use custom compiled code and Python: Boost Graph,
igraph, Graphviz

• Focus on computational network modelling not software tool development

• Move fast to design new algorithms or models

• Get immediate results

9

Thursday, 1 March 2012

Introduction to NetworkX - how to choose

When should I USE NetworkX to perform network analysis?

• Unlike many other tools, it is designed to handle data on a scale relevant to
modern problems.

• Most of the core algorithms rely on extremely fast legacy code

• Highly flexible graph implementations (a graph/node can be anything!)

• Extensive set of native readable and writable formats

• Takes advantage of Python’s ability to pull data from the Internet or databases

When should I AVOID NetworkX to perform network analysis?

• Large-scale problems that require faster approaches (i.e. massive networks
with 100M/1B edges)

• Better use of memory/threads than Python (large objects, parallel computation)

10

Thursday, 1 March 2012

Introduction to NetworkX - quick example

Use Dijkstra’s algorithm to find the shortest path in a weighted and
unweighted network:

>>> import networkx as nx
>>> g = nx.Graph()
>>> g.add_edge(’a’,’b’,weight=0.1)
>>> g.add_edge(’b’,’c’,weight=1.5)
>>> g.add_edge(’a’,’c’,weight=1.0)
>>> g.add_edge(’c’,’d’,weight=2.2)
>>> print nx.shortest_path(g,’b’,’d’)
 [’b’, ’c’, ’d’]
>>> print nx.shortest_path(g,’b’,’d’,weighted=True)
 [’b’, ’a’, ’c’, ’d’]

11

Thursday, 1 March 2012

Introduction to NetworkX - Python’s Holy Trinity

Python’s primary library
for mathematical and
statistical computing.
Containing sub-libs for

• Numeric optimisation

• Linear algebra

• ..and many others

The primary data type
in SciPy is an array, so
data manipulation is
similar to that of
MATLAB.

NumPy is an extension
of the SciPy data type
to include
multidimensional
arrays and matrices.

Provides many
functions for working
on arrays and matrices.

Both SciPy and NumPy
rely on the C library
LAPACK for very fast
implementation.

matplotlib is primary
plotting library in
Python

• Supports 2- and 3-D
plotting

• API allows embedding
in apps

All plots are highly
customisable and
ready for professional
publication.

12

Thursday, 1 March 2012

Introduction to NetworkX - drawing and plotting

• It is possible to draw small graphs within NetworkX and to export network
data and draw with other programs (i.e., GraphViz, matplotlib)

13

Thursday, 1 March 2012

Introduction to NetworkX - official website

http://networkx.lanl.gov/

14

Thursday, 1 March 2012

http://networkx.lanl.gov/
http://networkx.lanl.gov/

Introduction to NetworkX - online resources

Online documentation and active mailing list with helpful developers and
contributors (http://networkx.lanl.gov/reference/index.html)

15

Thursday, 1 March 2012

http://networkx.lanl.gov/reference/index.html
http://networkx.lanl.gov/reference/index.html

2. Getting started with Python and NetworkX.

16

Thursday, 1 March 2012

Getting started - import NetworkX

Start Python (interactive or script mode) and import NetworkX:

>>> import networkx as nx

There are different Graph classes for undirected and directed networks. Let’s
create a basic Graph class

>>> g = nx.Graph() # empty graph

The graph g can be grown in several ways. NetworkX includes many graph
generator functions and facilities to read and write graphs in many formats.

17

Thursday, 1 March 2012

Getting started - add nodes

One node at a time

>>> g.add_node(1) # method of nx.Graph

A list of nodes

>>> g.add_nodes_from([2 ,3])

A container of nodes

>>> h = nx.path_graph(10)

>>> g.add_nodes_from(h) # g now contains the nodes of h

In contrast, you can remove any node of the graph

>>> g.remove_node(2)

18

Thursday, 1 March 2012

Getting started - node entities

A node can be any hashable object such as strings, numbers, files,
functions, and more. This provides important flexibility to all your projects.

>>> import math
>>> g.add_node(math.cos) # cosine function
>>> fh=open(’tmp.txt’,’w’) # file handle
>>> g.add_node(fh)
>>> print g.nodes()
[<built-in function cos>, <open file ’tmp.txt’, mode ’w’
at 0x30dc38>]

19

Thursday, 1 March 2012

Getting started - add edges

Single edge

>>> g.add_edge(1,2)

>>> e=(2,3)

>>> g.add_edge(*e) # unpack edge tuple

List of edges

>>> g.add_edges_from([(1 ,2) ,(1 ,3)])

Container of edges

>>> g.add_edges_from(h.edges())

In contrast, you can remove any edge of the graph

>>> g.remove_edge(1,2)

20

Thursday, 1 March 2012

Getting started - access nodes and edges

>>> g.add_edges_from([(1 ,2) ,(1 ,3)])

>>> g.add_node(‘a’)

>>> g.number_of_nodes() # also g.order()

4

>>> g.number_of_edges() # also g.size()

2

>>> g.nodes()

[1, 2, 3, ‘a’]

>>> g.edges()

[(1, 2), (1, 3)]

>>> g.neighbors(1)

[2, 3]

>>> g.degree(1)

2

21

Thursday, 1 March 2012

Getting started - Python dictionaries

NetworkX takes advantage of Python dictionaries to store node and edge
measures. The dict type is a data structure that represents a key-value mapping.

Keys and values can be of any data type
>>> fruit_dict={"apple":1,"orange":[0.23,0.11],42:True}
Can retrieve the keys and values as Python lists (vector)
>>> fruit_dict.keys()
["orange" , "apple" , 42]
Or create a (key,value) tuple
>>> fruit_dict.items()
[("orange",[0.23,0.11]),("apple",1),(42,True)]
This becomes especially useful when you master Python list-
comprehension

22

Thursday, 1 March 2012

Getting started - access nodes and edges

Any NetworkX graph behaves like a Python dictionary with nodes as primary keys (only for
access!)

>>> g.add_node(1, time=’5pm’)
>>> g.node[1][’time’]

’5pm’
>>> g.node[1] # Python dictionary
{’time’: ’5pm’}

The special edge attribute ’weight’ should always be numeric and holds values used by
algorithms requiring weighted edges.

>>> g.add_edge(1, 2, weight=4.0)

>>> g[1][2][‘weight’] = 5.0 # edge already added
>>> g[1][2]
{‘weight’: 5.0}

23

Thursday, 1 March 2012

Getting started - node and edge iterators

Many applications require iteration over nodes or over edges: simple and easy in
NetworkX

>>> g.add_edge(1,2)

>>> for node in g.nodes():

 print node, g.degree(node)

1, 1

2, 1

>>> g.add_edge(1,3,weight=2.5)

>>> g.add_edge(1,2,weight=1.5)

>>> for n1,n2,attr in g.edges(data=True): # unpacking

 print n1,n2,attr[‘weight’]

1, 2, 1.5

1, 3, 2.5

24

Thursday, 1 March 2012

Getting started - directed graphs

>>> dg = nx.DiGraph()

>>> dg.add_weighted_edges_from([(1,4,0.5), (3,1,0.75)])

>>> dg.out_degree(1,weighted=True)

0.5

>>> dg.degree(1,weighted=True)

1.25

>>> dg.successors(1)

[4]

>>> dg.predecessors(1)

[3]

Some algorithms work only for undirected graphs and others are not well defined for
directed graphs. If you want to treat a directed graph as undirected for some
measurement you should probably convert it using Graph.to_undirected()

25

Thursday, 1 March 2012

Getting started - multigraphs

NetworkX provides classes for graphs which allow multiple edges between any pair
of nodes, MultiGraph and MultiDiGraph.

This can be powerful for some applications, but many algorithms are not well
defined on such graphs: shortest path is one example.

Where results are not well defined you should convert to a standard graph in a way
that makes the measurement well defined.

>>> mg = nx.MultiGraph()

>>> mg.add_weighted_edges_from([(1,2,.5), (1,2,.75),
(2,3,.5)])

>>> mg.degree(weighted=True)

{1: 1.25, 2: 1.75, 3: 0.5}

26

Thursday, 1 March 2012

Getting started - graph operators

Classic graph operations

subgraph(G, nbunch) - induce subgraph of G on nodes in nbunch

union(G1,G2) - graph union

disjoint_union(G1,G2) - graph union assuming all nodes are different

cartesian_product(G1,G2) - return Cartesian product graph

compose(G1,G2) - combine graphs identifying nodes common to both

complement(G) - graph complement

create_empty_copy(G) - return an empty copy of the same graph class

convert_to_undirected(G) - return an undirected representation of G

convert_to_directed(G) - return a directed representation of G

27

Thursday, 1 March 2012

Getting started - graph generators

small famous graphs
>>> petersen=nx.petersen_graph()
>>> tutte=nx.tutte_graph()
>>> maze=nx.sedgewick_maze_graph()
>>> tet=nx.tetrahedral_graph()

classic graphs
>>> K_5=nx.complete_graph(5)
>>> K_3_5=nx.complete_bipartite_graph(3,5)
>>> barbell=nx.barbell_graph(10,10)
>>> lollipop=nx.lollipop_graph(10,20)

random graphs

>>> er=nx.erdos_renyi_graph(100,0.15)
>>> ws=nx.watts_strogatz_graph(30,3,0.1)
>>> ba=nx.barabasi_albert_graph(100,5)
>>> red=nx.random_lobster(100,0.9,0.9)

28

Thursday, 1 March 2012

Getting started - graph I/O

NetworkX is able to read/write graphs from/to files using common graph formats:

• edge lists

• adjacency lists

• GML

• GEXF

• Python pickle

• GraphML

• Pajek

• LEDA

• YAML

We will see how to read/write edge lists.

29

Thursday, 1 March 2012

Getting started - read and write edge lists

General read/write format
>>> g = nx.read_format(“path/to/file.txt”,...options...)
>>> nx.write_format(g,“path/to/file.txt”,...options...)

Read and write edge lists
g = nx.read_edgelist(path,comments='#',create_using=None,
delimiter=' ',nodetype=None,data=True,edgetype=None,encoding='utf-8')

nx.write_edgelist(g,path,comments='#',

delimiter=' ',data=True,encoding='utf-8')

Formats

• Node pairs with no data:
1 2

• Python dictionary as data:
1 2 {'weight':7, 'color':'green'}

• Arbitrary data:
1 2 7 green

30

Thursday, 1 March 2012

Getting started - draw a graph

NetworkX is not primarily a graph drawing package but it provides basic drawing
capabilities by using matplotlib. For more complex visualization techniques it
provides an interface to use the open source GraphViz software package.

>>> import pylab as plt #import Matplotlib plotting interface
>>> g = nx.erdos_renyi_graph(100,0.15)
>>> nx.draw(g)
>>> nx.draw_random(g)
>>> nx.draw_circular(g)
>>> nx.draw_spectral(g)
>>> plt.savefig(‘graph.png’)

Note that the drawing package in NetworkX is not (yet!) compatible with Python
versions 3.0 and above.

31

Thursday, 1 March 2012

3. Basic network analysis.

32

Thursday, 1 March 2012

Basic network analysis - graph properties

Let’s load the Hartford drug users network: it’s a directed graph with integers as
nodes.

hartford = nx.read_edgelist('hartford.txt',
 create_using=nx.DiGraph(),nodetype=int)

N,K = hartford.order(), hartford.size()
avg_deg = float(K)/N
print "Nodes: ", N
print "Edges: ", K
print "Average degree: ", avg_deg

33

Thursday, 1 March 2012

Basic network analysis - degree distribution

Let’s compute in- and out-degree distribution of the graph and plot them. Don’t try this method
with massive graphs, it’s slow...!

in_degrees = hartford.in_degree() # dictionary node:degree
in_values = sorted(set(in_degrees.values()))
in_hist = [in_degrees.values().count(x) for x in in_values]

plt.figure()
plt.plot(in_values,in_hist,'ro-') # in-degree
plt.plot(out_values,out_hist,'bv-') # out-degree
plt.legend(['In-degree','Out-degree'])
plt.xlabel('Degree')
plt.ylabel('Number of nodes')
plt.title('Hartford drug users network')
plt.savefig('hartford_degree_distribution.pdf')
plt.close()

34

Thursday, 1 March 2012

Basic network analysis - degree distribution

35

Thursday, 1 March 2012

Basic network analysis - clustering coefficient

We can get the clustering coefficient of individual nodes or of all the nodes (but the first we convert
the graph to an undirected one):

hartford_ud = hartford.to_undirected()

Clustering coefficient of node 0
print nx.clustering(hartford_ud, 0)

Clustering coefficient of all nodes (in a dictionary)
clust_coefficients = nx.clustering(hartford_ud)

Average clustering coefficient
ccs = nx.clustering(hartford_ud)
avg_clust = sum(ccs.values()) / len(ccs)

36

Thursday, 1 March 2012

Basic network analysis - node centralities

Now, we will extract the main connected component; then we will compute node
centrality measures.

hartford_components =
nx.connected_component_subgraphs(hartford_ud)

hartford_mc = hartford_components[0]

Betweenness centrality
bet_cen = nx.betweenness_centrality(hartford_mc)
Closeness centrality
clo_cen = nx.closeness_centrality(hartford_mc)
Eigenvector centrality
eig_cen = nx.eigenvector_centrality(hartford_mc)

37

Thursday, 1 March 2012

Basic network analysis - most central nodes

To find the most central nodes we will learn Python’s list comprehension technique to do
basic data manipulation on our centrality dictionaries.

def highest_centrality(cent_dict):
 """Returns a tuple (node,value) with the node
with largest value from Networkx centrality dictionary."""
 # Create ordered tuple of centrality data
 cent_items=[(b,a) for (a,b) in cent_dict.iteritems()]

 # Sort in descending order
 cent_items.sort()
 cent_items.reverse()

 return tuple(reversed(cent_items[0]))

38

Thursday, 1 March 2012

Recall Python’s scientific computing trinity: NumPy, SciPy and matplotlib.

While NumPy and SciPy do most of the behind the scenes work, you will interact
with matplotlib frequently when doing network analysis.

Basic network analysis - plotting results

We will need to create a function that takes
two centrality dict and generates this plot:

1. Create a matplotlib figure

2. Plot each node label as a point

3. Add a linear best-fit trend

4. Add axis and title labels

5. Save figure on a file

39

Thursday, 1 March 2012

Basic network analysis - plotting results

def centrality_scatter(dict1,dict2,path="",
ylab="",xlab="",title="",line=False):

 # Create figure and drawing axis
 fig = plt.figure(figsize=(7,7))
 ax1 = fig.add_subplot(111)

 # Create items and extract centralities
 items1 = sorted(dict1.items())
 items2 = sorted(dict2.items())
 xdata=[b for a,b in items1]
 ydata=[b for a,b in items2]

 # Add each actor to the plot by ID
 for p in xrange(len(items1)):
 ax1.text(x=xdata[p], y=ydata[p],s=str(items1[p][0]), color="b")

40

Thursday, 1 March 2012

Basic network analysis - plotting results

...continuing....

 if line:
 # use NumPy to calculate the best fit
 slope, yint = plt.polyfit(xdata,ydata,1)
 xline = plt.xticks()[0]
 yline = map(lambda x: slope*x+yint,xline)
 ax1.plot(xline,yline,ls='--',color='b')

 # Set new x- and y-axis limits
 plt.xlim((0.0,max(xdata)+(.15*max(xdata))))
 plt.ylim((0.0,max(ydata)+(.15*max(ydata))))
 # Add labels and save
 ax1.set_title(title)
 ax1.set_xlabel(xlab)
 ax1.set_ylabel(ylab)
 plt.savefig(path)

41

Thursday, 1 March 2012

Basic network analysis - export results

Even though NetworkX and the complementing scientific computing packages in
Python are powerful, it may often be useful or necessary to output your data for
additional analysis because:

• suite of tools lacks your specific need

• you require alternative visualisation

• you want to store results for later analysis

In most cases this will entail either exporting the raw network data, or metrics from
some network analysis

1.NetworkX can write out network data in as many formats as it can read them,
and the process is equally straightforward

2.When you want to export metrics we can also use Python’s built-in XML and
CSV libraries, or simply write to a text file.

42

Thursday, 1 March 2012

Basic network analysis - write results to file

Let’s export a CSV file with node IDs and the related centrality values on each line:
this can be then used to plot without computing again all centrality measures.

results = [(k,bet_cen[k],clo_cen[k],eig_cen[k])
 for k in hartford_mc]
f = open('hartford_results.txt','w')
for item in results:
 f.write(','.join(map(str,item)))
 f.write('\n')
f.close()

43

Thursday, 1 March 2012

4. Writing your own code.

44

Thursday, 1 March 2012

Write your own code - BFS

With Python and NetworkX it’s easy to write any graph-based algorithm

from collections import deque

def breadth_first_search(g, source):
queue = deque([(None, source)])
enqueued = set([source])
while queue:

parent,n = queue.popleft()
yield parent,n
new = set(g[n]) − enqueued
enqueued |= new
queue.extend([(n, child) for child in new])

45

Thursday, 1 March 2012

Write your own code - network triads

Extract all unique triangles in a graph with integer node IDs

def get_triangles(g):
 for n1 in g.nodes:
 neighbors1 = set(g[n1])
 for n2 in filter(lambda x: x>n1, nodes):
 neighbors2 = set(g[n2])
 common = neighbors1 & neighbors2
 for n3 in filter(lambda x: x>n2, common):
 yield n1,n2,n3

46

Thursday, 1 March 2012

Write your own code - average neighbours’ degree

Compute the average degree of each node’s neighbours (long and one-liner version).

def avg_neigh_degree(g):
 data = {}
 for n in g.nodes():
 if g.degree(n):
 data[n] = float(sum(g.degree(i) for i in g[n]))/
g.degree(n)
 return data

def avg_neigh_degree(g):
 return dict((n,float(sum(g.degree(i) for i in g[n]))/
g.degree(n)) for n in g.nodes() if g.degree(n))

47

Thursday, 1 March 2012

5.You are ready for your own analysis!

48

Thursday, 1 March 2012

What you have learnt today about NetworkX

• How to create graphs from scratch, with generators and by loading local
data

• How to compute basic network measures, how they are stored in NetworkX
and how to manipulate them with list comprehension

• Getting data out of NetworkX as raw network data or analytics

• How to use matplotlib to visualize and plot results (useful for final report!)

• How to use and include NetworkX features to design your own algorithms/
analysis

49

Thursday, 1 March 2012

Useful links

• Code&data used in this lecture: http://www.cl.cam.ac.uk/~ss824/
stna-examples.tar.gz

• NodeXL: a graphical front-end that integrates network analysis into Microsoft Office and Excel.
(http://nodexl.codeplex.com/)

• Pajek: a program for network analysis for Windows (http://pajek.imfm.si/doku.php).

• Gephi: an interactive visualization and exploration platform (http://gephi.org/)

• Power-law Distributions in Empirical Data: tools for fitting heavy-tailed distributions to data
(http://www.santafe.edu/~aaronc/powerlaws/)

• GraphViz: graph visualization software (http://www.graphviz.org/)

• Matplotlib: full documentation for the plotting library (http://matplotlib.sourceforge.net/)

50

Thursday, 1 March 2012

http://www.cl.cam.ac.uk/~ss824/stna-example.tar.gz
http://www.cl.cam.ac.uk/~ss824/stna-example.tar.gz
http://www.cl.cam.ac.uk/~ss824/stna-example.tar.gz
http://www.cl.cam.ac.uk/~ss824/stna-example.tar.gz
http://nodexl.codeplex.com
http://nodexl.codeplex.com
http://pajek.imfm.si/doku.php
http://pajek.imfm.si/doku.php
http://gephi.org/
http://gephi.org/
http://www.santafe.edu/~aaronc/powerlaws/
http://www.santafe.edu/~aaronc/powerlaws/
http://www.graphviz.org
http://www.graphviz.org
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/

51

 Questions?

Salvatore Scellato

Email: salvatore.scellato@cl.cam.ac.uk
Web: www.cl.cam.ac.uk/~ss824/

Flickr: sean dreilinger
Thursday, 1 March 2012

mailto:salvatore.scellato@cl.cam.ac.uk
mailto:salvatore.scellato@cl.cam.ac.uk
http://www.cl.cam.ac.uk/~ss824/
http://www.cl.cam.ac.uk/~ss824/

