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Abstract

Reliable and decentralised deep learning
for physiological data

Tong Xia

Physiological data encompass measurements from various bodily functions and processes. By
employing machine learning to model these data, especially with the advancement of mobile
sensing technologies, it becomes feasible to automatically and continually monitor and diagnose
one’s health status. This holds considerable promise for easing the burden on clinical resources
and ensuring timely treatment for the wider population. Nonetheless, significant challenges
related to the data and the modelling methods are yet to be resolved, obstructing the deployment
of machine learning, especially deep learning, in real-world healthcare contexts.

One challenge is that labelled physiological data for model development are usually insuffi-
cient and imbalanced, leading to models occasionally exhibiting bias and overconfidence in
their predictions. This can result in unreliable diagnoses which yield expensive clinical costs.
Moreover, deep learning research generally requires massive data on a centralised server, while
privacy concerns hinder the aggregation of physiological data from individuals or hospitals.

In order to tackle these challenges and pave the way for reliable deep learning-driven health
diagnostics, this thesis proposes several novel solutions and makes the following contributions:

Chapter 4 introduces an ensemble learning approach designed to handle data imbalance and
model overconfidence for binary health screening. This method utilises balanced training sets
derived from imbalanced physiological data, training multiple ensemble models. The predic-
tions from these models are fused to reduce bias and calibrate confidence from a signal model,
with model uncertainty measured by the inconsistency among multiple models. This approach
effectively mitigates model overconfidence, thereby facilitating reliable automated diagnoses.

In Chapter 5, an efficient uncertainty quantification approach is presented to improve the re-
liability of multi-class mobile health diagnostics. This approach incorporates the cutting-edge



technique of evidential deep learning and introduces two novel mechanisms specifically de-
signed to handle class imbalance. The quantified uncertainty enables accurate and efficient
detection of misdiagnoses and out-of-training distributed inputs.

Chapter 6 introduces a cross-device federated learning method to address privacy concerns aris-
ing from gathering physiological data for model development. This method allows physiolog-
ical data to remain on personal mobile devices, with only locally trained models aggregated
into a global health diagnostic model. To mitigate bias caused by data imbalance, a novel
loss-weighted model aggregation method is proposed to enhance the performance of the global
model.

Chapter 7 illustrates a cross-silo federated learning method that enables multiple data holders
such as hospitals to collaboratively train a model without exchanging raw data. The distribu-
tional heterogeneity of these physiological data silos poses a challenge to federated learning. To
address this, a novel method based on feature sharing and augmentation is proposed to balance
privacy protection and model performance.

All proposed methods have been validated using real-world physiological datasets and com-
monly used machine learning benchmark data. Specific attention is given to clinical tasks, in-
cluding the modelling of respiratory audio for respiratory health screening, ECG signals for pre-
dicting cardiovascular diseases, and dermoscopic images for detecting skin cancer. Extensive
experiments demonstrate that these methods effectively address challenges posed by limited,
imbalanced, and decentralised physiological data, thereby enabling reliable health diagnoses.
These contributions have significant potential to advance the deployment of deep learning in
real-world healthcare scenarios.
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Chapter 1

Introduction

AI will revolutionise the way we live, including our healthcare system.

- Michelle Donelan

U.K. secretary of state for science

1.1 Motivation

The shortage ofmedical resources poses a significant global challenge. According to reports, ap-
proximately 47% of the global population lacks access to adequate diagnostic services (Fleming
et al., 2021). This deficiency not only complicates the provision of timely and essential medical
care but also adversely impacts the quality of life and well-being of the general population.

In the 21st century, the healthcare industry is undergoing a digital transformation, marked by
a shift toward intelligent healthcare (Mathews et al., 2019; Turner et al., 2019). Fuelled by
advancements in artificial intelligence (AI), including machine learning (ML) and, especially,
deep learning (DL), the automation of medical diagnostics and healthcare delivery demonstrates
tremendous potential. This offers a concrete solution to alleviate the strain on clinical resources
and manpower (Reddy et al., 2020; Rajpurkar et al., 2022; Wang and Preininger, 2019).

Physiological data consist of measurements or recordings of various bodily functions and pro-
cesses (Inbamani et al., 2022). Such data include information about vital signs, activities, and
bodily responses, primarily collected in clinical settings. They play a crucial role in health mon-
itoring and diagnostics. One typical example of physiological data is electrocardiogram (ECG)
signals. These signals record the electrical activity of the heart, including its rate and rhythm,
which are used for monitoring heart rhythm and identifying cardiovascular abnormalities (Yang
et al., 2020). Training doctors capable of analysing physiological data takes years, while the
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use of AI and ML can significantly enhance the accuracy and efficiency of analysing these
data, reducing the reliance on manual processes. For example, research has demonstrated that
AI-enhanced ECGs, acquired during normal sinus rhythm, can identify individuals with atrial
fibrillation at the point of care (Hygrell et al., 2023). Furthermore, advancements in mobile
sensing technologies mark a significant development, enabling the collection of various physi-
ological data via mobile devices and wearables (Steinhubl et al., 2015). This progress paves the
way for delivering healthcare services anytime and anywhere.

In light of this, this thesis is dedicated to exploring machine learning, with a particular focus on
deep learning, for the analysis and modelling of physiological data. Specifically, it delves into
the modelling of respiratory audio for respiratory health screening, ECG signals for predicting
cardiovascular diseases, and dermoscopic images for detecting skin cancer, as detailed in Chap-
ter 2. This research utilises data collected both in clinical settings and through mobile devices.
The ultimate aim is to develop cost-effective and efficient health diagnostics that are accessible
to a broad population.

Nevertheless, the development of high-performing ML models for physiological data is a non-
trivial task. Similar to many other applications, the performance of these models heavily de-
pends on the quality and quantity of available physiological data for model parameter learn-
ing, as well as the effectiveness of learning strategies, ultimately determining the reliability
of the models (Jordan and Mitchell, 2015; LeCun et al., 2015; Litjens et al., 2017). The data
challenges impeding our goal are limited access to comprehensive and diverse physiological
datasets, data biases arising from underrepresented demographics and specific healthcare set-
tings, and constraints in data collection methods. Moreover, ethical considerations and privacy
concerns further complicate the data collection process. Consequently, available physiological
datasets associated with various specific diseases are often small in size, noisy, skewed towards
certain health conditions, and distributed across multiple sources. These factors may lead to
under-performing machine learning models and overconfident diagnoses. A detailed discussion
of how these factors present substantial obstacles to our goal is elaborated in Chapter 1.2.

To overcome these challenges, this thesis endeavours to develop novel and cutting-edge ML
and DL solutions for physiological data. By providing insights into healthcare applications,
these studies aim to pave the way for practical, reliable, and cost-effective AI-empowered health
diagnostics.

1.2 Challenges and research questions

Developing high-performing machine learning models for health diagnostics in real-world sce-
narios poses numerous challenges. This thesis specifically targets challenges arising from the
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limited availability of data and the paradigms of model training. Our objective is to offer mean-
ingful solutions that enhance the reliability and effectiveness of automated health diagnostics
through the use of physiological data.

i) Insufficient and imbalanced physiological data for model development. The effectiveness of
a deep learning model largely depends on its complexity, which in turn is determined by the
number of parameters it contains. Supervised learning becomes a critical approach in this con-
text, because it directly leverages the relationship between input data and corresponding labels to
effectively train these complex models, although it does not preclude the use of alternative meth-
ods, such as self-supervised or semi-supervised learning (Cho et al., 2015). Gathering exten-
sive physiological data across diverse health conditions for machine learning research presents
challenges. These challenges can stem either from the low prevalence of certain diseases, lim-
iting the pool of volunteers who can contribute data, or from the need for clinical verification
of these health conditions, which is often time-consuming and financially burdensome. More-
over, available labelled physiological data for research frequently exhibit significant class imbal-
ance (Goldberger et al., 2000). For instance, the ICBHI 2017 respiratory audio database consists
of a total of 5.5 hours of recordings containing 6,898 respiratory cycles, of which 1,864 contain
crackles (27.0%), 886 contain wheezes (12.9%), and 506 contain both crackles and wheezes
(7.3%) (Rocha et al., 2019). Training on such insufficient and class-imbalanced data can cause
the deep learning model to disproportionately prioritise the majority class, resulting in subpar
performance on the minority class and, consequently, sub-optimal disease detection outcomes.

ii) Deep learning models can produce overconfident predictions. Despite the remarkable perfor-
mance on testing sets with distributions identical to the training data, these models often strug-
gle to capture the inherent uncertainty arising from environmental factors, data variability, and
training methodologies. As a result, these models may exhibit overconfidence when deployed
in the real physical world (Gal and Ghahramani, 2015; Louizos andWelling, 2017; Ovadia et al.,
2019). In certain situations, such as when input data are of low quality, deviate from the training
set, or involve input categories not encountered during training, these models may generate pre-
dictions with unwarranted confidence. For instance, a model trained to recognise cats and dogs
might confidently misclassify rabbits as cats. Similarly, a model designed to distinguish asthma
patients from healthy individuals might erroneously categorise individuals with lung cancer as
asthma patients, as lung cancer falls outside the model’s training categories. This issue becomes
particularly severe when deep learning is optimised with limited and imbalanced physiologi-
cal data for health diagnostics, leading to overly confident yet incorrect diagnoses (Park et al.,
2021). Such overconfidence in healthcare poses a significant risk and could result in severe con-
sequences. For example, when a model confidently classifies a cancer patient into a non-cancer
category, the high confidence level may lead clinicians to assign a lower priority to checking
and correcting the model’s prediction. Consequently, the patient may miss the opportunity for
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timely treatment. Hence, it is imperative to devise suitable training methods and tackle the issue
of overconfident diagnoses to effectively mitigate these risks.

iii) Health data can be privacy-sensitive, and thus problematic for sharing with model develop-
ers. Typically, machine learning research in terms of developing models for health diagnostics
requires gathering physiological data and health conditions from individuals. These data are
then transmitted to a central server where the model parameters can be optimised. However,
this approach raises privacy concerns since personal health information is highly sensitive and
should be protected from unauthorised access. A traditional solution is anonymously sharing
data and the usage of the shared data is subject to certain restrictions. However, such a process
can slow down data collection and model development (Crow et al., 2006; Kreuter et al., 2020),
and does not eliminate the risk of malicious attacks occurring during data transmission to or
storage on the server (Li and Liu, 2021). To enhance privacy protection, it is essential to design
model training methods that allow the data to remain at their original location, instead of trans-
ferring them to a central server. Although many decentralised learning approaches have been
proposed, their performance is hindered by the class imbalance and heterogeneous distributions
of physiological data residing across personal mobile devices or health institutions. Effective
solutions are needed to address these problems.

Given the above discussion, the central research questions (RQs) guiding the thesis are sum-
marised below:

• RQ 1: How can we mitigate the bias and calibrate the confidence of predictions when
training models for health screening with limited and imbalanced physiological data?

• RQ 2: How can we develop high-performing models with efficient uncertainty estimation
for health diagnostics, given multi-class imbalanced physiological data?

• RQ 3: How can we train deep learning-driven health screening models using only decen-
tralised and imbalanced physiological data stored on mobile devices?

• RQ 4: How can we develop high-performing models for health diagnostics using physio-
logical data distributed in multiple places and with heterogeneous distributions?

Aligned with addressing these research questions, this thesis introduces several innovative tech-
niques for physiological data. These solutions are designed to improve the reliability of auto-
mated health diagnostics andmitigate the privacy risk ofmodel development, thereby facilitating
the practical deployment of deep learning in real-world scenarios.

In summary, the primary objective of this thesis is to harness limited and imbalanced physio-
logical data to develop deep learning models capable of providing reliable automated health
diagnostics while minimising privacy risks in model training.
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Figure 1.1: Outline of the remaining chapters of this thesis.

1.3 Contributions and chapter outline

The structure of this thesis is depicted in Figure 1.1. In terms of methods, we tailor deep learning
models to suit the unique properties of physiological data. In terms of applications, we explore
complex challenges in health diagnostics. We begin with an introduction to the physiological
data and clinical tasks addressed in this thesis, presented in Chapter 2. Following a review of
related work in Chapter 3, we detail our four primary contributions. Chapter 8 provides the
conclusion of the thesis. The main contributions include:

Contribution 1: A calibrated and uncertainty-aware deep learning method DB-EL using
limited and imbalanced physiological data for binary health screening.

To address the challenges posed by model overconfidence and bias resulting from limited and
imbalanced physiological data, in Chapter 4, we propose an innovative data-balanced ensemble
learning framework (DB-EL) for binary health screening. This framework tackles the issue
of class imbalance by re-sampling from the healthy class, creating balanced data subsets for
training multiple deep learning models. The outputs of these models are then fused to provide
the final calibrated health diagnoses. The inconsistency of the predictions made by those models
is utilised as a measurement of model uncertainty to indicate the correctness of each diagnosis.
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We evaluate this approach using a case study involving a physiological audio-driven COVID-
19 screening application. In this scenario, the development of the model is challenged by a
limited number of available audio samples, along with a significant imbalance in the count of
COVID-19 positive and negative samples.

Our experimental findings reveal that our method outperforms baseline methods in terms of
screening accuracy and confidence calibration. Moreover, we find that highly uncertain model
predictions tend to correspond to incorrect diagnoses. This suggests that our quantified uncer-
tainty can enhance the reliability of automated health screening by recognising the uncertain
diagnoses.

Contribution 2: An accurate and efficient uncertainty quantification method CB-EDL for
deep learning with multi-class imbalanced physiological data.

Recognising the significance of model calibration in Chapter 4, we further investigate the prac-
tical use of uncertainty estimation for mobile health applications. The ensemble learning ap-
proach proposed in Chapter 4 is confined to binary health screening and proves inefficient,
requiring multiple models and multiple forward passes. In contrast, evidential deep learning
(EDL) leverages distribution-based rather than deterministic outputs, enabling both model and
data uncertainty quantification through a single model, thereby enhancing efficiency. However,
it is susceptible to data bias in the presence of class imbalance.

To render this efficient EDL method effective on multi-class imbalanced physiological data,
Chapter 5 introduces a class-balanced EDL (CB-EDL) approach with two novel mechanisms
tailored for handling class imbalance. EDL transforms the learned classification evidence into
a Dirichlet distribution, from which the uncertainty can be efficiently estimated. Our proposed
class-balanced EDL enhances the vanilla EDL by i) a class-level pooling loss to mitigate the bias
in classification evidence; and ii) a learnable prior that is regularised by the class distribution to
facilitate learning for minority classes. This approach can overcome the unsuitable assumption
that data is uniformly distributed across classes in the original EDL theory.

The superiority of our method is validated through clinical tasks using three real-world physi-
ological datasets and a general classification task using machine learning benchmark data. In
comparison with long-tailed learning baselines designed for class imbalance, our method ex-
hibits more calibrated predictions. When compared to other uncertainty quantification counter-
parts, our method proves to be more efficient while maintaining superior performance. More-
over, we highlight the utility of quantified predictive uncertainty in healthcare applications: it
facilitates the detection of misclassification and out-of-training distributed instances, thereby
substantially reducing the risk of misdiagnoses.



1.3. Contributions and chapter outline 25

Contribution 3: A federated learning approach FedLoss to develop health screening mod-
els using imbalanced physiological data distributed across mobile devices.

Chapter 6 explores the feasibility of training deep learning models for health screening without
the need to aggregate physiological data from mobile devices. The chapter delves into the realm
of Federated Learning (FL), wheremobile devices independently trainmodels using their private
data, and only the model parameters are synchronised and aggregated into a global model on
the server.

A practical challenge in this scenario is data imbalance: each participant, i.e., a mobile device
holder, represents only a single health status, and globally, there are usually more healthy partic-
ipants than unhealthy ones. Such data distribution could lead to biased federated model aggre-
gation. To improve the model effectiveness while ensuring data privacy, this chapter proposes
a weighted model parameter aggregation method, named FedLoss.

The proposed method is validated based on the physiological audio-driven COVID-19 detection
task by simulating the real-world cross-device setting. Experimental results indicate that the
model’s performance is comparable to that of a model trained on centralised data. This work
opens the door to privacy-preserving mobile health research by turning data aggregation into
model aggregation.

Contribution 4: A federated learning approach FLea to develop deep learning models for
health diagnostics using distributed and heterogeneous physiological data.

Building upon the study presented in Chapter 6, Chapter 7 explores another cross-silo federated
learning setting. In this scenario, multiple health institutes, such as hospitals, possess physiolog-
ical data from various health conditions. Functioning as independent data silos, these institutes
collaborate on the development of a deep learningmodel for health diagnostics without exchang-
ing raw data. However, the diverse prevalence rates of diseases in these institutes result in data
heterogeneity, posing a distinctive challenge to the performance of federated learning.

To address this challenge, Chapter 7 introduces FLea, a novel feature sharing and augmentation
method to model heterogeneous physiological data distributed in multiple sites. Health institutes
utilising FLea not only share model parameters but also exchange privacy-protected features,
specifically intermediate layer activations from the model, to enhance local training. The utili-
sation of these features alleviates the local model drift caused by data heterogeneity, ultimately
enhancing the global model’s performance upon aggregation.

To evaluate FLea, our experiments leverage multi-centre ECG data where each data silo con-
tains only a subset of identified cardiac arrhythmia cases. Notably, FLea achieves competitive
accuracy compared to a model trained with centralised data. Furthermore, we evaluate FLea
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by distributing machine learning benchmark data into multiple silos with varying levels of label
skewness. The results demonstrate its generally superior performance over other FL counter-
parts.

1.4 List of publications

The research outcomes presented in this thesis have resulted in several publications and submis-
sions at renownedmachine learning and signal processing conferences, as well as health-focused
journals. Throughout the peer review and presentation process, the valuable feedback received
greatly contributed to the development of solid research ideas and the formulation of this thesis.

In collaboration with other researchers in the Mobile Systems group, a physiological audio
database for respiratory health researchwas published at NeurIPS dataset and benchmark track [1].
Additionally, a deep learning model tailored for this physiological audio database was proposed,
as detailed in NPJ Digital Medicine [2]. Both this dataset and model serve as consistent evalu-
ation tools for the proposed methods in Chapters 4 and 6. Furthermore, the methodology pre-
sented in Chapter 4 is derived from a paper presented at INTERSPEECH [3]. Chapter 5 is based
on a paper presented at the Workshop at NeurIPS [4], which has been extended and published
in JBHI [5]. Chapter 6 builds upon a recently published paper at ICASSP [6], while Chapter 7
is a work that has been submitted to KDD [7].

In addition, I have collaborated on publications in the broader field of deep learning and data
science for public health. While these works are not directly related to this thesis, they have
significantly influenced my ideas and contributed to the enhancement of my research skills.

Works related to and covered by this thesis (* equal contribution):

1. Xia, T.*, Spathis, D.*, Ch, J., Grammenos, A., Han, J., Hasthanasombat, A., ... & Mas-
colo, C. (2021). COVID-19 sounds: A large-scale audio dataset for digital respiratory
screening. In Proceedings of the Thirty-fifth Conference on Neural Information Pro-
cessing Systems Datasets and Benchmarks Track, NeurIPS 2021 (Xia et al., 2021d) (2nd
Poster Award in Precision Health Initiative Launch Symposium, Cambridge, 2022).

2. Han, J.*, Xia, T.*, Spathis, D., Bondareva, E., Brown, C., Chauhan, J., ... & Mascolo,
C. (2022). Sounds of COVID-19: Exploring realistic performance of audio-based digital
testing. NPJ Digital Medicine (Han et al., 2022).

3. Xia, T., Han, J., Qendro, L., Dang, T., &Mascolo, C. (2021). Uncertainty-aware COVID-
19 detection from imbalanced sound data. In Proceedings of the 22nd Annual Conference
of the International Speech Communication Association, INTERSPEECH 2021 (Xia et al.,
2021a).
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Chapter 2

Physiological data for health diagnostics

Biology can be divided into the study of proximate causes, the study of the physiological
sciences, and into the study of ultimate causes, the subject of natural history.

- Ernst Mayr

German-American evolutionary biologist

2.1 Introduction to physiological data

2.1.1 Overview

Physiological data refers to measurements or recordings of various bodily functions and pro-
cesses (Inbamani et al., 2022). These data encompass information about the body’s vital signs,
activities, and responses. Common examples of physiological data include: electrocardiogram
signals (ECGs), whichmeasure the electrical activity of the heart; electroencephalogram signals
(EEGs), which record electrical activity in the brain; electromyogram signals (EMGs), which
monitor electrical activity produced by skeletal muscles; blood pressure signals, which reflect
the force of blood as it moves through the arteries; and respiration signals, which indicate the
rate and depth of breathing Bhatt et al. (2021). The wealth of such data can provide health-
care professionals with valuable information for making informed diagnostics and preventive
decisions (Orphanidou, 2019; Rim et al., 2020).

Traditionally, the collection of physiological data has required clinical devices operated by med-
ical professionals. However, with advancements in mobile sensing and wearable technology,
it is now possible to gather some physiological data using mobile devices, facilitating ambula-
tory monitoring. Examples of such data include: photoplethysmogram signals (PPGs), which
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Figure 2.1: An example of physiological data. Sensors can be attached to different parts of the
human body to collect various physiological data.

measure blood volume changes in the microvascular bed of tissue; respiratory audio, compris-
ing recordings of sounds produced by the respiratory system during breathing, captured using
microphones; dermoscopic images, a type of photograph taken using mobile dermoscopy in
dermatology; and movements, gestures, and overall motion patterns, recorded by inertial mea-
surement units (IMUs), which offer insights into physical activity and step counts. The emer-
gence of mobile health devices has significantly expanded the availability of physiological data
collection.

An example of different physiological data is illustrated in Figure 2.1. Physiological data are
characterised by their dynamic nature, capturing changes over time and providing real-time in-
sights into health parameters. However, this type of data is usually susceptible to noise and
interference from external factors, necessitating pre-processing to enhance accuracy. Privacy
considerations are crucial due to the sensitive nature of health information, requiring secure
storage and transmission. Additionally, integration with other health metrics, such as symp-
toms and medical histories, is common, providing a holistic understanding of an individual’s
well-being. Managing these characteristics ensures effective interpretation and utilisation of the
wealth of physiological data for health monitoring and diagnostics.

The aim of this thesis is to use machine learning for modelling physiological data to diagnose
health conditions. Machine learning is a paradigm that employs functions and sets of parame-
ters to model data and predict future outcomes Jordan and Mitchell (2015). To adjust the model
parameters accurately, physiological data along with corresponding health condition labels are
required. Further details on model training are introduced in Chapter 3.1. Chapter 2.1.2 dis-
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cusses the process of data collection and annotation.

2.1.2 Data collection and pre-processing

Physiological data can be collected and annotated either simultaneously or consecutively. In
the former approach, physiological signals are gathered from a specific group of individuals
whose health conditions have been previously examined. For instance, when investigating the
decline in mobility and language ability caused by dementia, researchers study both dementia
patients and healthy controls. They gather IMU data and speech samples from each group,
respectively (Syed et al., 2020; Carissimo et al., 2023). In some studies, physiological data
are collected from the population to a central location and then annotated by clinicians. An
example of this approach is the SAFER study, where ECG signals are collected from a large
population and then screened and labelled by cardiologists to identify conditions such as Atrial
Fibrillation (Akande et al., 2023; Hygrell et al., 2023). These annotations play a crucial role in
supervising the model learning process, as further discussed in Chapter 3.1.2.

Pre-processing physiological data samples before inputting them into a machine learning model
is also necessary, which typically involves several steps (Nabian et al., 2017; Sajno et al., 2023;
Xia et al., 2022b). The initial step usually includes data cleaning, which encompasses removing
any noise, artifacts, or outliers from the data. This process may involve filtering out noise,
correcting signal abnormalities, or eliminating data points considered erroneous. Additionally,
normalising the data can be beneficial to the modelling by scaling them to a standardised range.
This ensures that all features are on a similar scale, facilitating faster convergence of the model
during training (Koh, 2019). Furthermore, additional pre-processing steps, such as dimensional
reduction, data augmentation (generating additional training samples through transformations
or perturbations), and temporal alignment, are specific to the application at hand. Determining
the most suitable pre-processing steps often requires experimentation and domain expertise.

2.2 Medical tasks and physiological datasets

In this thesis, we consider a variety of physiological datasets encompassing different data modal-
ities for conducting experiments. The following sections offer a concise overview of the specific
medical tasks and datasets utilised.

2.2.1 Physiological audio data for respiratory health screening

Digital audio is an informative and easy-to-collect modality for health status monitoring (Mas-
colo, 2020). Recently, researchers have started to explore whether respiratory sounds could be
used for the diagnosis of COVID-19 (Deshpande and Schuller, 2020). Stethoscope data from
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Figure 2.2: Screens of the COVID-19 Sounds data collection app. The users are asked to
input their symptoms along with medical history, as well as to record breathing, cough, and
voice sounds every couple of days.

lung auscultation (Huang et al., 2020), coughs collected by phones (Imran et al., 2020), and
speech recordings (Han et al., 2020) have been analysed to distinguish COVID-19 patients from
healthy participants. To explore the power of sounds in mobile health applications, two audio
datasets are leveraged for experiments in this thesis.

COVID-19 Sounds data. This data was collected through the COVID-19 Sounds App1, and
it received approval from the Ethics Committee of the Department of Computer Science and
Technology at the University of Cambridge. Participants in the data collection were asked to
provide information about their demographics, medical history, and smoking status. Addition-
ally, they were required to disclose their COVID-19 test results, hospitalisation status, and any
symptoms they experienced. To capture respiratory sounds, participants were instructed to: i)
Cough three times; ii) Breathe deeply through their mouth three to five times; and iii) Read a
short sentence on-screen and repeat it three times. Figure 2.2 displays some screenshots of the
App (Android version).

After a year of collecting data via the app, a total of 36,116 participants worldwide contributed
to the database, resulting in 53,449 audio samples (totalling over 552 hours) (Xia et al., 2021d).
Despite the substantial number of samples, the majority remain unlabelled, meaning they lack
confirmed COVID-19 status. Specifically, only 1,139 samples reported a positive COVID-19
test result (within or before the last 14 days), while 5,251 samples reported a negative result.
This database is employed for various purposes in this thesis, with subsets utilised for the studies

1https://www.covid-19-sounds.org/en/

https://www.covid-19-sounds.org/en/
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Figure 2.3: Examples of ICBHI challenge data. These audio samples are of different lengths
(from 20ms to 100ms) and are associated with different respiratory abnormalities.

outlined in Chapters 4.3 and 6.3, respectively.

It is noteworthy to highlight my contribution to the management of this dataset during my PhD.
ThisCOVID-19 Sounds data represents the most extensive multi-modal collection of respiratory
sounds, covering three modalities: breathing, cough, and voice recordings. We presented the
characteristics of the data and established a benchmark for modelling it at NeurIPS 2021 (Xia
et al., 2021d). Importantly, we have made the data accessible to more than 400 research insti-
tutes. Throughout my PhD, I consistently utilised this database as a crucial resource to validate
my work.

ICBHI challenge data. ICBHI 2017 Respiratory Challenge2 published a dataset collected from
multiple microphones and stethoscopes (Rocha et al., 2019). This respiratory sound database
contains audio samples, collected independently by two research teams in two different coun-
tries, over several years. Most of the database consists of audio samples recorded by the School
of Health Sciences, University of Aveiro (ESSUA) research team at the Respiratory Research
and Rehabilitation Laboratory (Lab3R), ESSUA, and at Hospital Infante D. Pedro, Aveiro, Por-
tugal. The second research team, from the Aristotle University of Thessaloniki (AUTH) and the
University of Coimbra (UC), acquired respiratory sounds at the Papanikolaou General Hospital,
Thessaloniki and at the General Hospital of Imathia (Health Unit of Naousa), Greece.

The database consists of a total of 5.5 hours of recordings containing 6,898 respiratory cycles,
of which 1,864 contain crackles (27.0%), 886 contain wheezes (12.9%), and 506 contain both
crackles and wheezes (7.3%), in 920 annotated audio samples from 126 subjects. The frequency
range of healthy vesicular breathing lung sounds extends up to 1,000Hz, where the majority of
the spectrum power falls within the range from 60 to 600Hz. The dataset is utilised to evaluate
the performance of multi-class respiratory abnormality detection, as presented in Chapter 5.3.
An example is given in Figure 2.3.

Spectrograms. Audio data are usually collected with a high sampling rate (above kHz), making
the direct analysis of waveform challenging. Signal processing techniques are important in this

2https://bhichallenge.med.auth.gr/

https://bhichallenge.med.auth.gr/
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(a) Breathing recording. (b) Cough recording. (c) Voice recording.

Figure 2.4: Examples of COVID-19 Sounds data. An example of recordings’ waveforms and
the associated spectrograms from a participant who tested COVID-19 positive within 14 days of
the recording. The participant is a male aged over 30, with a smoking history, speaks English,
and had symptoms including a wet cough, headache, and sore throat on the recording day.

context to transform the data into a more representative format for subsequent analysis. One typ-
ical technique is the Short-Time Fourier Transformation (STFT), which generates spectrograms,
i.e., two-dimensional representations of a one-dimensional time series sample.

As a variation of the Fourier Transform, the STFT provides a time-dependent representation of
the frequency components of an audio signal (Oppenheim, 1999). Given a mono-channel audio
sample x, the STFT is defined by the energy coefficient at any time t and frequency f . Since
audio samples are discrete digital signals, it is common to use the discrete STFT. Specifically, x
obtained by sampling frequency fs will be segmented into overlapped short segments through
window sliding, i.e., each segment has a duration T containing N data points with N = T · fs.
The frequencies are considered by frequency bins, which are evenly spaced between 0 Hz and
the Nyquist frequency (i.e., half of fs). Mathematically, the discrete STFT matrix is,

X[n, k] =
N−1∑
m=0

x[n+m] · w[m] · e−j2πkm/N , (2.1)

where w[m] is the value of the window function at pointm, and e−j2πkm/N represents the com-
plex sinusoidal basis function at frequency bin k for pointm in this segment.

The commonly used window function in signal processing, and specifically in the context of
STFT for audio, is the Hann window (Harris, 1978). It is a type of tapering window that gradu-
ally decreases towards the edges. It is defined mathematically as,

w[m] = 0.5− 0.5 cos
(

2πm

N − 1

)
. (2.2)
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The Hann window is popular because it offers a good compromise between the main lobe width
and the side lobe attenuation, resulting in reduced spectral leakage and improved frequency
resolution compared to other window functions. It is often used in applications such as spectral
analysis, audio processing, and speech recognition.

The widely used spectrograms are the power spectrograms, which represent the magnitude of
the complex STFT coefficient (Hatamian et al., 2020). This choice is made due to its ability
to convey information regarding the power (or energy) distribution across various frequency
components and time intervals within a given signal. A power spectrogram for x can be derived
by:

P [n, k] = |X[n, k]|2. (2.3)

Examples of power spectrograms of respiratory audio samples are shown in Figure 2.4. For this
example, we slide the window by every 1024 data points to segment the audio, with a segment
length N = 2048 given the sampling rate of 22.05 kHz. Hann window is used. The obtained
spectrograms reflect good temporal-frequency dynamics for subsequent feature extraction. In
this thesis, we will consistently use spectrograms as the representation for audio.

2.2.2 Electrocardiogram data for cardiovascular disease prediction

Cardiovascular disease is the leading cause of death worldwide (Tsao et al., 2023). Early treat-
ment can prevent serious cardiac events, and the most important tool for screening and diag-
nosing cardiac electrical abnormalities is through electrocardiograms (ECG) (Kligfield et al.,
2007). The ECG is a noninvasive representation of the electrical activity of the heart that is
measured using electrodes placed on the torso. An ECG signal of a heartbeat is illustrated in
Figure 2.5(a)), showing the length of time it takes for the initial impulse to fire and then ends in
the contracting of depolarisation, a process in which the electrical charge of heart cells is reset
to allow for the next heartbeat. Figure 2.5(b) presents a single-channel ECG recording, allow-
ing observation of the regularity or irregularity of the heart’s rhythm. Normal sinus rhythm is
regular, while irregularities can indicate various conditions, such as arrhythmia.

ECG5000 data. We first introduce a pro-processed single-channel ECG database ECG5000 for
experiments. This is an ECG database that includes long-term ECG recordings from 15 sub-
jects (11 men, aged 22 to 71, and 4 women, aged 54 to 63) with severe congestive heart failure
(NYHA class 3–4)3. This group of subjects was part of a larger study group receiving con-
ventional medical therapy before receiving the oral inotropic agent, milrinone. The individual
recordings are each about 20 hours in duration and contain two ECG signals each sampled at 250
samples per second with 12-bit resolution over a range of ±10 millivolts. The original analogue

3https://www.physionet.org/content/chfdb/1.0.0/

https://www.physionet.org/content/chfdb/1.0.0/
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(a) Hearbeat. (b) ECG.

Figure 2.5: ECG data samples. (a) presents a schematic diagram of normal sinus rhythm
for a human heart as seen on ECG. (b) shows a single-channel ECG recording from a normal
individual.

recordings were made at Boston’s Beth Israel Hospital (now the Beth Israel Deaconess Medical
Center) using ambulatory ECG recorders with a typical recording bandwidth of approximately
0.1 Hz to 40 Hz. To ease model learning, this database has been further split and interpolated
into 5000 equal-length (140) heartbeats4. It consists of five classes: 58.4% are normal, 35.3%
have heat failure typed R-on-T premature ventricular contraction, 3.9% premature ventricular
contraction, 2.0% supraventricular premature or ectopic beat, and 0.5% unclassified beats (Chen
et al., 2015). This dataset is leveraged for heart failure prediction. Also because of its severe
imbalance character, this data is included in the study in Chapter 5.3.

CIC2020 data. The standard 12-lead ECG is widely used for diagnosing various cardiac ar-
rhythmias, such as atrial fibrillation, and other cardiac anatomy abnormalities, like ventricular
hypertrophy (Kligfield et al., 2007). The PhysioNet/Computing in Cardiology Challenge 2020
released a comprehensive 12-lead ECG dataset by aggregating multiple databases from around
the world (Alday et al., 2020). The sources of ECG data included in this dataset are as follows:

• CPSC: This dataset was collected and published by the China Physiological Signal Chal-
lenge 2018 (CPSC 2018). It comprises 6,877 recordings sampled at 500 Hz, with varying
lengths and an average duration of 16 seconds.

• CPSC-Extra: This dataset supplements CPSC 2018 with 3,450 additional recordings. It
also has a sampling rate of 500 Hz and an average duration of 16 seconds but covers more
types of cardiovascular diagnostics than CPSC.

• St.Petersburg: The third source is the public dataset from the St. Petersburg Institute of
Cardiological Technics 12-lead Arrhythmia Database, Russia. It consists of 74 recordings
collected at a high sampling rate of 257 Hz, with the longest average duration of 1,800

4https://timeseriesclassification.com/description.php?Dataset=ECG5000

https://timeseriesclassification.com/description.php?Dataset=ECG5000
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seconds.

• PTB: The fourth source is the Physikalisch-Technische Bundesanstalt (PTB) Database
in Brunswick, Germany. It includes 490 recordings collected at a high sampling rate of
1,000 Hz, with an average duration of 110.8 seconds.

• PTB-XL: This data was also collected by Physikalisch-Technische Bundesanstalt, but the
sampling rate is 500 Hz. It contains 21,837 recordings, each with a length extract of 10
seconds.

• G12ECG: The last source is the Georgia 12-lead ECGChallenge (G12EC) Database from
Emory University, Atlanta, Georgia, USA. It comprises 10,344 recordings, representing
a large population from the Southeastern United States.

The aggregated data encompasses a total of 27 common diagnoses that are of clinical interest
and are more likely to be recognisable from ECG recordings. Additionally, it is essential to
highlight that each recordingmay be associatedwithmultiple abnormalities, making this amulti-
label classification task (Tsoumakas and Katakis, 2007; Yang et al., 2020). For the decentralised
nature of this dataset, i.e., it consists of six subsets collected from different areas, we leverage
this data to validate the superiority of our proposed federated learning method, as presented in
Chapter 7.3.

2.2.3 Dermoscopic images for skin lesion detection

With the continuous improvement in smartphone camera resolution, dermoscopy, a widely used
tool in the field of dermatology, has evolved into mobile dermoscopy, a viable imaging method
for dermatological practices (Kittler et al., 2002). Mobile dermoscopy involves using a dermo-
scope attached to a smartphone or tablet. This design offers enhanced portability while lever-
aging the advanced imaging capabilities of smartphones in conjunction with the magnification
power provided by dermoscopy. For instance, mobile dermoscopes like MoleScope II are com-
patible with a wide range of smartphones and tablets, including but not limited to iPhone, iPad,
and various Android models (Plüddemann et al., 2011).

Despite skin images being generally considered physiological time series data, they represent a
crucial component of mobile health data within the field of dermatology and play a significant
role in comprehending and assessing skin conditions. The International Skin Imaging Collab-
oration (ISIC)5 is an academia and industry partnership designed to use digital skin imaging to
help reduce skin cancer mortality. ISIC works to achieve its goals through the development
and promotion of standards for digital skin imaging, and through engaging the dermatology and

5https://challenge.isic-archive.com/data/

https://challenge.isic-archive.com/data/
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Figure 2.6: Examples of HAM10000 skin image data. The three displayed pathologies are
visually distinguishable.

computer vision communities toward improved diagnostics. Some dermoscopic images with
associated skin conditions are illustrated in Figure 2.6.

HAM10000 skin image data. Melanoma is the deadliest form of skin cancer. Among the
precious challenges, HAM100006 is the dataset containing 10,015 dermoscopic skin tumour
images taken from multiple devices and demographics (Tschandl et al., 2018). The image size
is 600×450. The skin condition is labelled as one of the following classes: melanocytic nevi
(67.1%), melanoma (11.1%), benign keratosis-like lesion (11.0%), basal cell carcinoma (5.1%),
actinic keratoses (3.3%), vascular lesion (1.4%), or dermatofibroma (1.1%). For its severe im-
balance character, we leverage this data to evaluate our work in quantifying the uncertainty with
class imbalanced health data, as presented in Chapter 5.3.

In addition to the aforementioned physiological datasets, this thesis also includes a commonly
used machine learning benchmark data for experiments. This benchmark data is the CIFAR10
image dataset (Krizhevsky et al., 2009). It is known for its large-scale nature, enabling us to
manipulate it manually and simulate various data distributions for evaluation purposes.

CIFAR10 image data. CIFAR10 is widely used in the field of computer vision and machine
learning. It stands for the Canadian Institute for Advanced Research 10-class dataset. CIFAR10
consists of 60,000 colour images, each measuring 32×32 pixels, and is divided into 10 classes.
Each class contains 6,000 images. The dataset is split into a training set of 50,000 images and
a test set of 10,000 images. The 10 classes in CIFAR10 represent different objects or animals,
including airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks. In our
studies, we down-sample this data, meaning we reduce the number of instances, to simulate var-
ious class distributions (see Chapter 5.3) and divide it into several subsets to mimic isolated data
silos (see Chapter 7.3). The use of this benchmark data enables us to validate the generalisation
of our proposed method in the broader field of machine learning.

6https://api.isic-archive.com/collections/212/

https://api.isic-archive.com/collections/212/


Chapter 3

Background and literature review

Machine intelligence is the last invention that humanity will ever need to make.

- Prof. Nick Bostrom

Director of Future of Humanity Institute, University of Oxford

3.1 Machine learning tomodel health fromphysiological data

To develop machine learning models for health diagnostics, pre-processed physiological data
and health conditions are fed into a selected model to fit the optimal model parameters. This
process is generally referred to as model training. Once the model is trained, it can be deployed
to diagnose future physiological data, a process known as model inference. In the following
section, we present the basics of developing a health diagnostic model.

3.1.1 Problem formulation

Formally, we refer to the physiological signals accompanied by health condition labels that are
used to train the model as the training set. Sometimes, a fraction of the training set will be held
out to identify the training-related hyper-parameters. This set is referred to as validation set1.
The data that has not been employed to adjust model parameters is referred to as the testing set,
which can be leveraged for evaluating model performance. To facilitate clarity in this thesis’s

1Note that we adhere to the commonly accepted use of the term ‘validation set’ from the machine learning
literature. In contrast, in a medical context, a ‘validation set’ often refers to a subset of data or cases used to assess
the reliability and accuracy of a diagnostic test, treatment plan, or predictive model. This differs from its application
in this thesis.



42 Chapter 3. Background and literature review

presentation, we consistently employ the following notations to denote both the data and the
model:

Problem formulation and notations. Assuming the availability of a training dataset compris-
ing pre-processed physiological data denoted as D = {(x(i), y(i))}Ni=1. Here, x(i) represents the
input physiological sample, y(i) corresponds to the health condition, i.e., the label of the sample,
among a total of C categories and N training samples. The number of training samples for the
c-th class is termed as Nc in this thesis. Due to the difficulty of annotations and inherent class
imbalance nature in health-related datasets (refer to Challenge (i) in Chapter 1.2), the training
set is usually limited and tends to be skewed, resulting in varying values of Nc across classes.
In this context, a class is referred to as a majority class if Nc ≫ N/C, while it is considered
a minority class otherwise. Both binary and multi-class diagnostics are considered. For binary
diagnostics, C = 2 with one class for healthy controls and the other for the unhealthy group.
For multi-class diagnostics, C > 2 with each class associated with a specific health condition.
D will be employed to train a model parameterised by θ that can predict y(i) for any given sam-
ple x(i) from a testing set. Also because of privacy concerns, the training dataset D could be
distributed in K places, i.e., D1, ...,DK , rather than being centrally available (as specified by
Challenge (iii) in Chapter 1.2). Additionally, the model will provide a predictive confidence
u(i) associated with the prediction. The confidence measurement should reflect how reliable the
diagnostic result is for each input (i.e., addressing Challenge (ii) in Chapter 1.2).

In this thesis, particular emphasis is placed on deep learning due to its outstanding performance
in the literature. Deep learning primarily entails the utilisation of deep neural networks for data
modelling. Figure 3.1 offers an overview of the classical training process for a deep neural
network designed for disease diagnostics based on physiological data. The following section
provides a comprehensive explanation of each phase of this procedure.

3.1.2 Foundations of deep neural networks

There are several basic concepts in deep neural networks (DNNs), from model architectures to
model optimisation, that lay the foundation for deep learning applications. We introduce them
in the following sections.

Deep neural networks

The initial step in developing a deep learning-driven health diagnostic model is to choose an ap-
propriate model architecture based on the characteristics of the physiological data. The history
of neural networks can be traced back to the 1950s, with the invention of the perceptron (Rosen-
blatt, 1958), which laid the foundation for today’s modern Deep Neural Networks (DNNs) (Le-
Cun et al., 2015; Deng et al., 2014). In the present day, widely adopted deep neural network
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Figure 3.1: An illustration of model development. A physiological data sample is input into
a deep neural network, which derives logits for all classes. Through the Softmax operation, the
model produces corresponding probabilities. Based on the predicted probability and the ground-
truth label, the loss is calculated and then back-propagated to optimise the model’s parameters.

architectures include:

• Convolutional Neural Networks (CNNs): CNNs are primarily used for image and video-
related tasks. They consist of convolutional layers that extract local features from input
data, followed by pooling layers for spatial down-sampling. The crucial component within
the convolutional layer is the convolutional kernel, which is a small trainable matrix. The
convolution operation involves sliding the kernel over the input data and computing the
element-wise dot product at each position. This operation results in a feature map that
highlights specific patterns or features in the input data. The kernel is typically two-
dimensional for image-format data, but it can also be one-dimensional, allowing it to be
used for time series data to extract features. (O’Shea and Nash, 2015; Gu et al., 2018). In
this thesis, we employ the two-dimensional CNN to model the spectrograms of physio-
logical audio (refer to Chapter 4.3, and 6.3), and the one-dimensional CNN to model the
ECG signals (refer to Chapter 5.3 and 7.3).

• Recurrent Neural Networks (RNNs): RNNs are suitable for time series data processing,
such as natural language processing and speech recognition. They have recurrent connec-
tions that allow information to persist over time, making them capable of handling sequen-
tial dependencies (Medsker and Jain, 2001). Long Short-Term Memory (LSTM) (Graves
and Graves, 2012) and Gated Recurrent Unit (GRU) (Chung et al., 2014) are popular
variations of RNNs that address the vanishing gradient problem and improve information
retention. GRUs use a gating mechanism to control the flow of information through the
network for each time step, and also maintain a memory cell that captures information
from previous time steps.

• Transformers: Transformers have gained significant attention for natural language pro-
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cessing tasks. They employ self-attention mechanisms to capture contextual relation-
ships between words or tokens in a sequence (Vaswani et al., 2017). Transformers have
achieved state-of-the-art performance in tasks such as machine translation, text genera-
tion, and sentiment analysis. The Transformer architecture is commonly used in models
like BERT (Bidirectional Encoder Representations from Transformers) (Sun et al., 2019)
and GPT (Generative Pre-trained Transformer) (Luo et al., 2022).

In summary, the above are a few examples of typical deep neural network architectures, and the
choice of architecture depends on the specific task, dataset, and domain. Researchers continue to
explore and develop new architectures to address various challenges and improve performance
in different domains.

In deep neural networks, besides the aforementioned fully connected layers, convolutional lay-
ers, and self-attention layers, non-parametric activation functions play a crucial role. An acti-
vation function is a mathematical operation applied to a node (or ‘neuron’) in a neural network,
transforming the input signal into an output signal for that node. It is a vital component in neural
networks, determining whether a neuron should be activated or not based on the weighted sum
of its inputs.

Activation functions are important because of: i) Non-linearity. Activation functions introduce
non-linear properties to the network. Without non-linearity, a neural network, regardless of the
number of layers it has, would behave just like a single-layer network because linear operations
are closed under composition. Non-linear functions enable neural networks to learn complex
mappings from inputs to outputs, allowing them to perform tasks such as image recognition,
language translation, and playing complex games. ii) Control of activation. They determine
whether a neuron should be activated by calculating the weighted sum and further adding bias
to it. They are used to introduce non-linearity into the model so that it can learn more complex
decision boundaries.

There are several types of activation functions used in deep learning, each with its own char-
acteristics and applications. The two commonly used ones for classification tasks are ReLU
(Rectified Linear Unit) and Softmax, which are introduced below.

ReLU function

It is one of the most widely used activation functions in deep learning models, especially in
CNNs. The function is defined as follows:

ReLU(x) = max(0, x) (3.1)
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This means that for each input x, the ReLU function outputs x if x is greater than zero, and
outputs zero otherwise. Graphically, the ReLU function is a straight line that passes through the
origin (0, 0) with a slope of 1 for all positive values of x, and a slope of 0 for all negative values
of x.

ReLU helps in mitigating the vanishing gradient problem, which is a situation where the gradi-
ents become too small for the network to learn effectively. Since the gradient for positive inputs
is always 1, this ensures that the network continues to learn as long as there are positive inputs.

Softmax function

As depicted in Figure 3.1, DNNs produce a set of raw scores, often referred to as logits. On the
output side, the Softmax function is typically employed to transform these logits into a proba-
bility distribution across multiple classes. This mathematical function has trainable parameters
but plays a crucial role in classification tasks.

Specifically, for health diagnostics, the deep neural network generates logits for each disease
class based on the input physiological data. These logits represent the non-normalised scores
assigned to each class, and they might not be directly interpretable as probabilities. The Softmax
function transforms these raw scores into a probability distribution by exponentiating the scores
and normalising them. Mathematically, for a given input x(i), the logit vector z(i) is transferred
into the categorical probability vector p(i) by,

z(i) = fθ(x
(i)),

p(i)[c] =
exp(z(i)[c])∑C
j=1 exp(z(i)[j])

,
(3.2)

where [c] presets the score for class c, fθ denotes the model function parameterised by θ, and∑C
c=1 p

(i)
c = 1. Correspondingly, the final prediction ŷ(i) is the class with the maximum proba-

bility,
ŷ(i) = arg max

c
p(i)[c]. (3.3)

Parameter optimisation

As show in Figure 3.1, to train the neural network and learn its parameters θ from the training
set, a differentiable loss function J(θ) is introduced as the objective function for an optimisation
algorithm. The parameters which minimise J(θ), are considered to best fit the model. A very
common guiding principle for training is to reduce the empirical error, which refers to the dif-
ference between the predicted output of a model and the actual target output for a set of training
data points (Jordan and Mitchell, 2015).
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For health diagnostics, which is fundamentally a classification problem, the commonly used loss
function is the cross-entropy loss (Rubinstein and Kroese, 2004). It measures the dissimilarity
between predicted class probabilities and the true one-hot encoded class labels2. Specifically,
J(θ) can be written as an average over the training set as follows,

J(θ) = E(x,y)∼D[L(fθ(x), y)], (3.4)

whereD is training set that presents the empirical data distribution, andL(fθ(x), y) = − logp[y]
is the per-example cross-entropy value (p[y] denotes the probability for the ground-truth class
in Eq. (3.2)).

To minimise J(θ), gradient descent is employed as a fundamental optimisation algorithm by
iteratively adjusting the parameters in the direction of J(θ)’s gradient, termed by ∇θJ(θ), that
leads to a minimum of the function. There are variations of gradient descent, but the most
common implementation is Stochastic Gradient Descent (SGD). In SGD, the expectation of the
gradient (refer to Eq. (3.4)) is computed by randomly sampling a small number of examples
from the training set, i.e., a batch B, then taking the average over only those examples. The
updating the parameters over one batch is formulated as,

θ = θ − λ 1

|B|
∇θ

∑
(x,y)∼B

L(fθ(x), y), (3.5)

where λ is a coefficient that controls the learning rate of the parameters. Since SGD only uses a
subset of the data in each iteration, the algorithm can make updates more frequently, which can
help escape local minima and converge faster. ∇θJ(θ) is calculated using back-propagation
by applying the chain rule for partial derivatives, starting from the output layer towards the
input (Jordan and Mitchell, 2015; Hecht-Nielsen, 1992).

Adam is an another very popular optimiser in deep learning (Kingma and Ba, 2014). Unlike
SDG using a fixed learning rate λ, Adam adjusts the learning rate for each parameter individ-
ually based on estimates of the first (mean) and second (uncentered variance) moments of the
gradients. This allows it to handle sparse gradients on noisy problems and is more efficient
compared to SDG.

Beyond the typical optimisation method known as fully supervised learning, there are many
other learning paradigms such as transfer learning, semi-supervised learning, and self-supervised
learning, which prove particularly useful when the labelled training set is limited. Transfer learn-
ing is a technique where a model developed for a specific task is repurposed as the starting point

2An one-hot encoded class label is a C-dimensional vector. For a given data point, the corresponding one-hot
encoded vector is all zeros except for the index that corresponds to the class label, which is set to 1. For example,
suppose we have three classes: A, B, and C. The one-hot encoding for each class would look like this: Class A: [1,
0, 0]; Class B: [0, 1, 0]; Class C: [0, 0, 1].
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for a model on a second task, thus enhancing performance and reducing the training time and
resources required (Weiss et al., 2016; Zhuang et al., 2020). Semi-supervised learning utilises a
small amount of labelled data in conjunction with a large amount of unlabelled data during the
training process (Van Engelen and Hoos, 2020; Yang et al., 2022b). This approach is especially
beneficial when acquiring a comprehensive set of labelled data is costly or time-consuming,
but unlabelled data is plentiful. Self-supervised learning, on the other hand, generates its own
supervision from the input data, making full use of the data to learn valuable representations or
features directly from the data itself (Liu et al., 2021b). These techniques are also widely used
in physiological data modelling (Eldele, 2023).

In addition to learning the model parameters, training a deep learning model also involves mak-
ing decisions about the values of hyper-parameters, such as the depth of the network or the size
of the architecture. Usually, a small proportion of the training set (as the mentioned valida-
tion set) will be used to determine the optimal hyper-parameters. Specifically, a grid search is
performed over a range of hyper-parameters, during which the model is trained with various
hyper-parameter settings, and its performance on the validation set is recorded. Finally, the
hyper-parameter configuration that yields the best performance is selected, and the correspond-
ing model is evaluated on the testing set.

3.2 Machine learning-driven health diagnostics using physi-
ological data

Chapter 2 introduced the three physiological data modalities analysed in this thesis: respira-
tory audio, ECG, and dermoscopic images. The following section presents an overview of the
machine learning techniques designed for these data types for health diagnostics purposes.

3.2.1 Acoustic machine learning for respiratory health

For centuries, medical professionals have utilised audio as a diagnostic technique in assessing
the respiratory system (Mascolo, 2020; Bohadana et al., 2014; Hanna and Silverman, 2002),
primarily through the use of stethoscopes. Acquiring auscultation skills often entails several
years of training for medical practitioners. However, the widespread availability of mobile de-
vices equipped with high-fidelity built-in microphones has recently presented an unprecedented
opportunity to collect acoustic signals from the population. This development has sparked our
enthusiasm for leveraging the power of AI to automatically analyse this audio data, with the
aim of respiratory health screening (Hadjitodorov and Mitev, 2002; Mukherjee et al., 2021; Sri-
vastava et al., 2021; Pramono et al., 2016; Hao et al., 2013; Schuller, 2013; Yu and Li, 2017).
Existing studies have primarily developed two types of methods: hand-crafted feature-based
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models and end-to-end deep learning models.

In feature-based models, temporal features, particularly prosodic features like pitch, duration,
intensity, harmonics-to-noise ratio, jitter, and shimmer, are extensively used for detecting ab-
normal sounds (Hadjitodorov and Mitev, 2002). Additionally, spectral features derived from
the spectrogram have been created and have shown promising performance across various re-
lated applications (Mukherjee et al., 2021; Srivastava et al., 2021; Pramono et al., 2016; Hao
et al., 2013). These features serve as inputs for subsequent classifiers in the diagnostic process.
Feature-based models tend to be interpretable, but their effectiveness is limited by the expertise
and knowledge embedded in their development.

End-to-end deep learning methods use audio waves (Sharan, 2023) or their corresponding spec-
trograms (Ren et al., 2020) as inputs for classification. These models consist of multiple layers
that can automatically capture the complex relationship between the input and the output la-
bels (Schuller, 2013; Yu and Li, 2017). While lacking in interpretability, these models usually
outperform the aforementioned feature-based methods. For example, Shi et al. designed CNN
models to classify various lung sounds, including wheeze, squawk, stridor, and crackle, achiev-
ing an accuracy of over 95% (Shi et al., 2019; Bardou et al., 2018). Altan et al. proposed a deep
belief network derived from the Hilbert Transform via multi-channel lung sounds to diagnose
COPD (chronic obstructive pulmonary disease), with a sensitivity of 91% and a specificity of
96.33% (Altan et al., 2019).

These existing studies have paved the way for the development of audio-based respiratory health
screening models. While existing work focuses on identifying useful acoustic features, our
research pays more attention to the problems of class imbalance, model overconfidence, and
data privacy, which remain unexplored.

3.2.2 Classification of electrocardiogram signals

The classification of ECG signals is crucial in the clinical diagnosis of heart disease. A signif-
icant challenge in diagnosing heart disease using ECG is the variability among individuals; a
normal ECG can differ from person to person, and a single disease may not exhibit consistent
signs across different patients’ ECG signals. Additionally, two distinct diseases may present
similar effects on normal ECG signals. These issues complicate the diagnosis of heart disease.
Consequently, employing pattern classification techniques can enhance the diagnosis of ECG
arrhythmias in new patients (Jambukia et al., 2015).

Similar to the acoustic machine learning approaches discussed in the previous section, the clas-
sification of ECG signals can also be categorised into traditional feature-based and end-to-end
deep learning-based approaches. As depicted in Figure 2.5(a), an ECG signal comprises several
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beats, and each beat contains a P wave, QRS complex, and T wave. Each peak (P, Q, R, S,
T, and U), interval (PR, RR, QRS, ST, and QT), and segment (PR and ST) of the ECG signals
possesses standard amplitude or duration values. These peaks, intervals, and segments are re-
ferred to as ECG features (Mar et al., 2011). These features act as inputs for classifiers in the
diagnostic process. The literature indicates that these features can achieve satisfactory accuracy
in detecting many heart diseases, such as Atrial Fibrillation (a common and serious condition
characterised by an irregular and often rapid heart rate that can lead to blood clots in the heart),
when the quality of ECG signals is high (Orphanidou et al., 2015).

While the feature-based model provides better explainability, end-to-end deep learning models
tend to achieve better generalisation and are more robust to signal noise (Jambukia et al., 2015).
One-dimensional CNNs are the most commonly used architecture for ECG signal classifica-
tion (Hygrell et al., 2023; Attia et al., 2019). Although other architectures, such as RNNs, are
also applicable, they do not show a significant advantage for ECG classification. This is pri-
marily due to the efficient learning capabilities of CNNs with limited training data (Xiong et al.,
2017).

Although numerous studies have demonstrated the effectiveness of machine learning and deep
learning in detecting cardiovascular diseases using ECG data, most of these studies have relied
on well-curated, centralised datasets. This approach often overlooks crucial aspects such as the
model’s reliability in the wild and data privacy protection issues. This thesis aims to address
these gaps.

3.2.3 Classification of dermoscopic images

Classifying dermoscopic images using machine learning and deep learning techniques has be-
come a significant area of research in dermatology, aiming to improve the diagnosis and screen-
ing of skin diseases, including skin cancer (Grignaffini et al., 2022).

Early efforts in classifying dermoscopic images relied on traditional machine learning algo-
rithms. These approaches typically involve handcrafted feature extraction, where specific char-
acteristics like colour, texture, shape, and border are identified and used as inputs for classi-
fiers (Barata et al., 2018; Talavera-Martinez et al., 2019). Commonly used machine learning
classifiers include Support Vector Machines (SVM), k-Nearest Neighbors (k-NN), and Random
Forests. While effective to a degree, the performance of these methods heavily depends on the
quality and relevance of the extracted features (Javed et al., 2020).

The advent of deep learning has dramatically enhanced the ability to classify dermoscopic im-
ages automatically. Deep learning models, particularly CNNs, have shown exceptional per-
formance in image recognition tasks, including dermoscopic image classification (Iqbal et al.,
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2021). Unlike traditional machine learning, CNNs automatically learn hierarchical feature rep-
resentations from the images, eliminating the need for manual feature extraction. Several CNN
architectures have been explored for dermoscopic image classification, includingAlexNet (Pom-
poniu et al., 2016; Iyatomi et al., 2011), VGGNet (Alfed et al., 2015), ResNet (Mikołajczyk et al.,
2017), and Inception models (Saez et al., 2014). These models have been pre-trained on large
general image datasets and fine-tuned on dermoscopic images to achieve high levels of accu-
racy in identifying various skin conditions, such as melanoma, basal cell carcinoma, and benign
lesions (Lopez et al., 2017).

Classifying dermoscopic images through machine learning and deep learning presents a promis-
ing avenue for automating the diagnosis of skin diseases. Current research efforts are directed
not only towards enhancing the accuracy and efficiency of these classificationmodels but also to-
wards overcoming practical challenges associated with model reliability. Our study specifically
explores the effects of class imbalance and model overconfidence, offering effective solutions
to these issues.

3.3 Advanced deep learning paradigms

In the preceding section, we presented the typical machine learning and deep learning methods
for respiratory audio, ECG signals, and skin images. However, as detailed in Chapter 1.2, train-
ing robust and high-performing deep neural networks for healthcare faces numerous challenges
arising from the complexities of data collection and the safety-critical nature of diagnostic ap-
plications. This section introduces several advanced training paradigms that lay the groundwork
for our proposed solutions aimed at addressing these challenges.

3.3.1 Long-tailed learning for class imbalanced data

The first challenge we identified in Chapter 1.2 is the prevalence of insufficient and imbalanced
physiological data for machine learning research. Such a character can pose challenges for sev-
eral reasons: (i) biased model performance. Deep learning models are trained to optimise a
loss function by minimising errors. In the case of class imbalance, a model can achieve high
accuracy by simply predicting the majority class most of the time, even though it fails to capture
the patterns and characteristics of minority classes. As a result, the model’s performance may
be biased towards the majority class, leading to poor predictions for the minority class; and (ii)
insufficient learning from minority classes. Deep learning models typically require a sufficient
number of samples to learn robust representations and patterns. With class imbalance, the lim-
ited number of samples from minority classes can hinder the model’s ability to adequately learn
their distinctive features. Consequently, the model may struggle to generalise well to unseen
data or make accurate predictions for minority class instances.
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In healthcare applications, it is crucial to accurately detect infrequent yet significant health
events within predominantly healthy data (Mazurowski et al., 2008; Saini and Susan, 2019;
Afzal et al., 2019). Therefore, addressing and mitigating the adverse effects of class imbalance
is essential to ensure reliable and effective health-related analyses and predictions.

Long-tailed learning is the main technique that allows trainingmodels from the class imbalanced
data (Zhang et al., 2023c), which covers two categories: Data-levelmethods and algorithm-level
methods. The simplest data-level methods are random under-sampling (RUS) which discards
samples from the majority classes and random over-sampling (ROS) which re-samples from
the minority classes during training (Van Hulse et al., 2007). For example, the up-sampling-
based data augmentation method SMOTE (synthetic minority over-sampling technique) has
been widely adopted for the minority classes in health applications (Chawla et al., 2002; Rah-
man and Davis, 2013; Han et al., 2021a). Those are infeasible when the data imbalance is
extreme (Johnson and Khoshgoftaar, 2019). Synthetic generation (He et al., 2008; Jacsó, 2005)
or interpolation (Chawla et al., 2002) to increase the minority samples are also explored. How-
ever, they are sensitive to imperfections in the generated data and hard to generalise. Algorithm-
level methods modify the training procedure by introducing cost-sensitive losses or scaling the
classification thresholds. Well-known implementations include Class-balanced loss (Cui et al.,
2019), and focal loss (Lin et al., 2017). This type of method usually involves hyper-parameters
that need to be searched during training.

Relating to our work. Addressing class imbalance is crucial in health applications, and it is
observed that class imbalance frequently coexists with other challenges in physiological data,
including model overconfidence and data privacy. This thesis endeavours to comprehensively
tackle these challenges within unified frameworks. Chapters 4 and 5 delve into methods de-
signed to calibrate deep learning training when confronted with imbalanced data. In Chapter 6,
we introduce methodologies specifically tailored for handling decentralised imbalanced physi-
ological data.

3.3.2 Uncertainty quantification for model calibration

Another challenge, as identified in Chapter 1.2, pertains to model overconfidence, a situation
where the model yields unreliable confidence to the extent of its unknowns. In a prior study, it
has been empirically demonstrated that deep neural networks although achieving better categor-
ical predictions, are poorly calibrated compared to shallow neural networks (Guo et al., 2017).
This is visualised in Figure 3.2: The top row shows the distribution of prediction confidence
(i.e., probabilities associated with the predicted label) as histograms. The average confidence of
LeNet closely matches its accuracy, while the average confidence of the ResNet is substantially
higher than its accuracy (it is so-called model overconfidence). This is further illustrated in the
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Figure 3.2: A comparison of confidence histograms (top) and reliability diagrams (bottom)
between shallow and deep neural networks. The task involves image classification using the
CIFAR100 dataset. LeNet (left) is a 5-layer CNNmodel (LeCun et al., 1998) and ResNet (right)
is a 110-layer CNN model (He et al., 2016).

bottom row reliability diagrams (Niculescu-Mizil and Caruana, 2005), which show accuracy as
a function of confidence. It can be observed that LeNet is well-calibrated, as confidence closely
approximates the expected accuracy (i.e., the bars align roughly along the diagonal). On the
other hand, the ResNet’s accuracy is better but does not match its confidence.

A poorly calibrated model can produce incorrect predictions with unwarranted overconfidence,
which is particularly concerning in the context of health diagnostics. To address this problem,
uncertainty estimation serves the crucial purpose of quantitatively measuring the reliability of
a model’s predictions. It plays a pivotal role in facilitating the deployment of deep learning for
real-world healthcare applications (Abdar et al., 2021).

There are mainly two types of uncertainty in deep learning: The uncertainty that encompasses
the noise inherited from data is referred to aleatoric uncertainty, and the uncertainty due to the
insufficient knowledge of a model is known as epistemic uncertainty (Gawlikowski et al., 2021).
An illustration of the two types of uncertainty is given in Figure 3.3. Unlike aleatoric uncertainty
(also referred to as data uncertainty), which is inherent and irreducible, epistemic uncertainty
(as termed as model uncertainty) can be reduced by gathering more data, improving data qual-
ity, or developing more sophisticated models that better capture the underlying processes. The
overall uncertainty encompassing these two types is known as predictive uncertainty. Many
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(a) Aleatoric uncertainty. (b) Epistemic uncertainty.

Figure 3.3: An illustration of uncertainty. Consider the development of a machine learning
model aimed at categorising data as example. The presence of noise, perturbations, and biases
within the data introduces a layer of data uncertainty, stemming from inherent randomness and
noise, which complicates the task of making precise predictions. This phenomenon is depicted
through the use of green markers in panel (a). Additionally, model uncertainty arises from either
insufficient knowledge regarding the optimal model or the absence of sufficient training data.
This aspect is symbolised by the shadow observed in panel (b).

uncertainty-driven applications like misclassification identification and out-of-distribution de-
tection require the model to capture both aleatoric uncertainty and epistemic uncertainty (Shen
et al., 2023).

In the following section, we first examine the limitations of the commonly used Softmax-based
neural network for uncertainty quantification, and then we introduce four advanced approaches
for more accurate uncertainty estimation. These methodologies are further explored in Chap-
ters 4 and 5.

Standard neural network with Softmax

Chapter 3.1 introduces a standard way of building deep neural networks with Softmax function
for classification probabilities. Yet, the parameters are deterministic, and thus this approach is
limited in providing the variance of the prediction. Therefore, such probability cannot reflect
epistemic uncertainty as shown in Figure 3.3(b).

Furthermore, the Softmax function is known for its tendency to overestimate probabilities. In
Eq. (3.2), the Softmax operation involves exponentiating the logits and normalising them into a
probability distribution, but this process often results in over-estimations, especially for unseen
classes. As a consequence, this can lead to unreliable estimations of aleatoric uncertainty.

Numerous studies, including those by (Gal and Ghahramani, 2015; Louizos andWelling, 2017),
as well as the research presented in this thesis, have shown that neural networks tend to provide
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Figure 3.4: An illustration of uncertainty quantification models. Standard neural networks
and Bayesian neural networks with their approximations are compared.

overconfident classifications and probabilities for inputs that fall outside the training distribu-
tion. Additionally, even within the training distribution, misclassified samples often yield high
classification probabilities when computed using the Softmax function. This suggests that Soft-
max is insufficient for effectively incorporating uncertainty into predictions.

Bayesian neural networks

Bayesian inference allows the learning of a probability distribution over possible neural net-
works, and such a type of neural network is known as a Bayesian neural network (Blundell
et al., 2015). Compared to standard deterministic neural networks, Bayesian methods learn a
posterior distribution of the model parameters based on a learnable prior distribution that is
estimated from the observed data (see Figure 3.4). Specifically, given the observed data set
D = {(x, y)}, a conditional likelihood p(y|x, θ) tells how each model θ explains the relation
of input x and target y. With the posterior distribution p(θ|D), for a new test data point x′, the
predictive distribution can be derived as,

p(y|x′) =
∫
p(y|x′, θ)p(θ|D)dθ, (3.6)

p(θ|D) =
p(y|x, θ)p(θ)∫
p(y|x, θ)p(θ)dθ

. (3.7)

p(y|x′) captures both epistemic and aleatory uncertainty.However, deep neural networks typi-
cally involve millions of parameters, rendering it impractical to compute the exact posterior dis-
tributions, such as p(θ|D) and p(y|x′). Consequently, various approaches for posterior distribu-
tion approximation have been proposed, including Markov chain Monte Carlo (MCMC) (Neal,
2012; Chen et al., 2014; Welling and Teh, 2011) and variational inference (Blei et al., 2017;
Graves, 2011; Lopez et al., 2018). Despite their utility, these methods often face challenges of
slow and inefficient posterior estimation.
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Monte Carlo Dropout (MCDropout)

In modern deep learning, Dropout is widely used to mitigate overfitting (Baldi and Sadowski,
2013; Srivastava et al., 2014). However, more recently, Gal et al. introduced a new perspective
by leveraging variational distributions to interpret dropout in the forward phase as approximate
Bayesian inference (Gal and Ghahramani, 2016a,b). Typically, Dropout is applied during train-
ing to preserve the model’s capacity. Nevertheless, if Dropout is kept active during inference,
the predictive probability can be calibrated using randomly sampled model weights, making it
an estimation of uncertainty. This approach significantly reduces the computational cost during
training.

Take the fully connected neural network layer l for an example. The normal operation is,

x(l+1) = σ(x(l)W (l) + b(l)), (3.8)

where x(l) and x(l+1) are the input and output of layer l parameterised by weight matrix W (l)

and bias vector b(l), and σ is the non-linear activation function. With Dropout, the operation is
instead,

z(l) ∼ Bernoulli(·|p(l)),

W̃ (l) = diag(z(l))W (l),

x(l+1) = σ(x(l)W̃ (l) + b(l)).

(3.9)

Using dropout at the layer l is mathematically equivalent to setting the rows of the weight matrix
W (l) for that layer to zero. This is controlled by variable z(l) from the Bernoulli distributed
random variables with some probabilities p(l). The diag(·) maps vectors to diagonal matrices.
The above operation can be generalised to other types of layers as well (Gal and Ghahramani,
2016a,b).

Overall, the described dropout operations convert a deterministic neural network parameterised
by θ into a random Bayesian neural network with random variables θ̃, which equates to a neural
network with a statistical model without using the Bayesian approach explicitly. Finally, to
approximate the predictive distribution p(y|x, θ), Monte Carlo (MC) sampling of the random
variables θ̃ is performed,

p(y|x′) = 1

T

T∑
i=1

p(y|x′, θ̃i), (3.10)

where T is the number of MC samples. It is equivalent to performing T stochastic passes.
This method is commonly known as variational dropout, and in this thesis, we refer to it as
MCDropout.

Figure 3.4 provides an example of one forward pass, where the activation of an intermediary
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layer is randomly set to zero. As such, MCDropout can be easily implemented in any neural
network that has been trained with dropout, utilising Monte Carlo sampling and requiring multi-
ple runs of the entire network. Despite its simplicity, several studies have criticised MCDropout
as a sub-optimal Bayesian approximation (Osband, 2016; Hron et al., 2017). Furthermore, using
a fixed dropout rate instead of optimising the variational parameter can result in an arbitrarily
poor approximation. The actual performance of MCDropout may vary depending on the task
difficulty, the quality of the training data, and the quantity of available data.

Ensemble learning

The ensemble, also known as a frequentist method, represents another type of approximation
for Bayesian neural networks. Instead of learning a closed-form distribution for model param-
eters, ensemble approaches only require a limited number of models, which is computationally
tractable (Ganaie et al., 2022). Herein, uncertainty stems from how the prediction is expected
to change with different network structures or training data. An ensemble consists of multiple
models with the same network structure but trained from different instances re-sampled from
the dataset (Dietterich, 2000; Zhou, 2012). One of the popular strategies is bagging (known
as bootstrapping), where ensemble members are trained on different bootstrap samples of the
original training set. Ensemble methods can capture both aleatoric and epistemic uncertainty,
with the predictive probability formulated by a uniformly weighted combination of the outputs
from Nm models, denoted as,

p(y|x′) = 1

Nm

Nm∑
i=1

p(y|x′, θi). (3.11)

Through extensive experiments on synthetic and real-world data, Lakshminarayanan et al. proved
that a simple ensemble can produce well-calibrated uncertainty estimates which are as good or
better than approximate Bayesian neural networks (Lakshminarayanan et al., 2017). In addition,
with the estimated uncertainty, the model is able to detect out-of-training distribution for more
reliable prediction (Lee et al., 2018). Overall, the ensemble is a comprehensive, robust, and
accurate method for posterior inference, although obtaining a bootstrap ensemble of size Nm is
computationally intense as Nm times as training a single model.

Evidential deep learning

Compared to deep ensembles and Bayesian neural networks (Gawlikowski et al., 2021), eviden-
tial deep learning (EDL), a recently emergent method, has demonstrated notable efficiency and
effectiveness (Malinin and Gales, 2018; Sensoy et al., 2018; Charpentier et al., 2020; Kopetzki
et al., 2021). EDL also offers the advantage of leveraging pre-trained models for uncertainty
quantification, particularly in scenarios with limited data availability. The core principle of
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Figure 3.5: Three-class Dirichlet distribution. (a) and (b) point to the same predicted class,
but (a) is sharper so it is more confident while (b) is more uncertain. (c) shows an example that
is certain to none of the classes.

EDL is to learn the evidence for classification and establish a distribution over predictive prob-
abilities. This allows for the quantification of the inherent uncertainty present in the output
distribution. Typically, a Dirichlet distribution is employed as the posterior distribution, as it
serves as the natural conjugate posterior for the categorical distribution. This characteristic has
led to EDL being referred to as the Dirichlet-based uncertainty quantification method (Ulmer,
2021). The integration of EDL into existing health diagnostic models is straightforward, as it
simply requires replacing the output layer of the model with a Dirichlet distribution output.

Formally, different from the Softmax-based model, EDL leverages Dirichlet distribution q(i),
i.e., the distribution over the categorical probability p(i), to achieve prediction and uncertainty
quantification simultaneously (Hastie et al., 2009; Murphy, 2012). The Dirichlet distribution is
used because it is the natural conjugate posterior of multinomial distribution (i.e., the probability
p(i) can be regarded as a multinomial distribution). Underpinned by the Bayesian rule, EDL
aims to capture the classification evidence l(i) by the deep model and then transform a uniform
prior Dir(1) into the posterior q(i) = Dir(α(i)), with α(i) = 1 + l(i) (Murphy, 2012). More
specifically, the posterior q(i) = Dir(α(i)) is parameterised by α(i) = [α

(i)
1 , α

(i)
2 , ..., α

(i)
C ] for C

classes, where α(i)
c = 1 + l

(i)
c .

The posterior Dirichlet distribution can be viewed as an infinite ensemble of point estima-
tions p(i). Therefore, EDL enables a better-calibrated way of quantifying epistemic uncertainty
compared to traditional Softmax-based deep learning (Malinin and Gales, 2018; Sensoy et al.,
2018). Additionally, the expectation of probability p̂(i) presents the average predictive confi-
dence which reflects the aleatoric uncertainty. EDL is also able to capture the distributional
shift. If no remarkable evidence can be modelled for a given input, the posterior αc, ∀c ∈ C will
approach 1, i.e., the prior. Some illustrative examples of the posterior Dirichlet distributions are
given in Figure 3.5.
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Relating to our work. DL-enabled health applications are designed for real-world deploy-
ment. They will have a positive impact on the health outcomes of the general population if they
are properly used. Failures of those models may cause fatal consequences, therefore building
trustworthy systems tends to be critical. Recently, studies have been attempting to incorporate
uncertainty for human-in-the-loop medical diagnostics (Bhatt et al., 2021). For example, uncer-
tainty estimation was applied to the task of diagnosing diabetic retinopathy from fundus images
of the eye (Leibig et al., 2017; Van Amersfoort et al., 2020; Raghu et al., 2019). The quantified
uncertainty can be used for selective prediction: keeping low-uncertain outputs but referring
high-uncertain predictions to doctors, which includes clinicians in the loop and improves the
system’s robustness. Similarly, uncertainty-aware emotion recognition from video (Han et al.,
2017), lung disease prediction from X-rays (Ghoshal and Tucker, 2020), and out-of-distribution
detection for skin lesion diagnostic systems (Maron et al., 2021; Pacheco et al., 2020) are also
studied. Beyond image models, Park et al. (Park et al., 2021; Xia et al., 2022a; Qendro et al.,
2021a) benchmarked several uncertainty estimations and out-of-distribution detection methods
on other data modalities including respiratory sounds, heart activity, brain waves, etc.

However, there is still a lack of comprehensive research dedicated to addressing the combined
challenge posed by limited labelled data, class imbalance, and model overconfidence. In Chap-
ter 4 and 5, we delve into ensemble learning and evidential deep learning, proposing innovative
mechanisms to enhance their performance for reliable health diagnostics.

3.3.3 Federated learning for decentralised data

In the previous two sections, various techniques for enhancing the performance and reliability of
deep neural networks were discussed. However, these training paradigms assume the existence
of a centralised dataset D, which is collected from multiple individuals or data collectors (see
Figure 3.6(a)). Unfortunately, as identified as the third challenge in Chapter 1.2, privacy con-
cerns arise when aggregating health data in a central place. This section provides an overview
of a recently emerging technique known as federated learning (FL), which facilitates model
training using decentralised data sources.

As illustrated in Figure 3.6(b), FL extracts knowledge from segregated data silos into a global
model, avoiding the need to centralise the data in a single repository. Formally, starting with
random initialisation, i) the global model is sent to clients, allowing them to optimise it using
their local private data, denoted as Dk, and then ii) the server gathers the updated parameters
from clients and aggregates them into a new global model; Those two steps are repeated un-
til the global model converges. The most representative and popular aggregation method is
FedAvg (McMahan et al., 2017; Li et al., 2020b; Gao et al., 2022; Feng et al., 2022a), which av-
erages the model parameters weighted by the fraction of local data sizes. Specifically, at round
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(a) Model training using centralised data.

(b) Model training using distributed data.

Figure 3.6: A comparison can be made between general model training using centralised
data and federated learning using decentralised data. In the centralised setting, data from
multiple clients or users can be collected and used to train the model. In the decentralised setting,
data remains locally with each client, and only model parameters are shared.

t, the global model θ(t) is aggregated by,

θ(t) =
∑

k∈K(t)

|Dk|∑
k∈K(t) |Dk|

θ
(t)
k , (3.12)

where θ(t)k is the local model trained from private data Dk, and K(t) denotes the clients partici-
pated in this round.

This FedAvg method has demonstrated its ability to converge toward the optimal model, which
is a model trained on the union ofD and local datasets Dk. This convergence is particularly ev-
ident when the local datasetsDk are sampled from the same distribution asD, as shown in prior
work (Li et al., 2019). However, in cases where Dk is drawn from different distributions, a sce-
nario known as the data distribution heterogeneity (Zhao et al., 2018; Zhu et al., 2021; Li et al.,
2020b; Luo et al., 2021), FedAvg tends to yield lower-performing models. Typically, Dk con-
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tains different subsets of the globally available classes C, each with varying numbers of samples,
resulting in label distribution heterogeneity (Zhang et al., 2022; Luo et al., 2021). Notably, real-
world physiological data distributed in different places often exhibit such heterogeneous distri-
bution. For instance, in mobile health applications, individuals could exhibit different health
conditions, rendering the local disease distribution unrepresentative of the global disease distri-
bution at the population level. Effectively addressing the challenges posed by data heterogeneity
is essential to enable the deployment of federated learning for privacy-aware health diagnostic
models.

Relating to our work. While FL has shown significant promise in addressing privacy concerns
when developing diagnostic models from personal data, it encounters substantial challenges,
primarily attributed to the heterogeneous characterises of physiological data. We will delve
into innovative mechanisms designed to tackle the challenges presented by class imbalance in
Chapter 6 and label distribution skew in Chapter 7. Through these efforts, our study paves the
way for the implementation of high-performing FL approaches in the healthcare domain.

3.4 Performance evaluation metrics

Throughout the studies in this thesis, we employ several evaluation metrics to demonstrate the
performance of our approaches in terms of accuracy and uncertainty quantification. For diag-
nostics performance, we report key metrics, including AUC-ROC, ACC, Sensitivity, and Speci-
ficity. A larger value indicates better performance for these metrics. Regarding the quality of un-
certainty estimates, we utilise metrics such as Brier and ECE. Conversely, for both uncertainty
metrics, a smaller value indicates better-calibrated uncertainty. By utilising this comprehensive
set of evaluation metrics, we aim to provide a thorough analysis of our approaches, emphasising
their accuracy in diagnostics tasks and the quality of uncertainty estimation.

In this thesis, for all clinical tasks, a data point is considered a positive case if a specific disease is
present; otherwise, it is deemed negative. To facilitate the formulation of metrics for evaluating
disease detection performance, we define the following terms to simplify the presentation,

• TP (True Positives): The number of cases having the disease, identified as having the
disease.

• FP (False Positives): The number of cases not having the disease, identified as having the
disease.

• TN (True Negatives): The number of cases not having the disease, identified as not having
the disease.

• FN (False Negatives): The number of cases having the disease, identified as not having
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the disease.

The true positive rate (TPR) is the number of cases having the disease and are identified as having
the disease, divided by the total number of cases having the disease, i.e., TPR = TP/(TP+FN).
The false positive rate (FPR) is the number of cases not having the disease but are identified as
having the disease, divided by the total number of cases which do not have the disease, i.e., FPR
= FP/(FP+TN).

Based on the above definitions, the metrics used for evaluations are introduced below.

ROC-AUC. As introduced in Chapter 3.1.2, the output of a classification ML model is a proba-
bility for a specific health condition. A threshold is needed to determine whether the prediction
corresponds to having the disease or not. A receiver operating characteristic curve, commonly
known as an ROC curve, is a graphical representation that depicts the classification performance
of a binary classifier system as the discrimination threshold is adjusted. Simply speaking, the
ROC curve illustrates the relationship between TPR and FPR at different thresholds. The TPR
is the proportion of actual positive cases correctly identified as positive by the classifier, while
FPR is the proportion of negative cases incorrectly classified as positive. The area under the
ROC curve, denoted as ROC-AUC, quantifies the degree or measure of separability provided
by the classifier, indicating how well the model can distinguish between different classes. A
higher AUC value suggests that the model has a stronger ability to correctly predict instances of
the positive class as positive and instances of the negative class as negative, signifying a more
effective differentiation between positive and negative classes.

This metric is used to evaluate the overall performance for binary diagnostics, as in the studies
presented in Chapter 4.3 and 6.3. It will also be employed to evaluate out-of-training-distribution
detection in the study presented in Chapter 5.3.

ACC. ACC, short for Accuracy, presents the overall diagnostic performance at the categorical
level. It measures the proportion of correct predictions made by a classification model out of all
predictions made, and mathematically, it can be defined as ACC=(TN+TP)/(TN+TP+FN+FP).
This metric is used for multi-class diagnostics experiments, as presented in Chapter 5.3 and 7.3.

Sensitivity. Sensitivity, also known as recall or TPR, is the proportion of actual positive cases
correctly identified as positive by the classifier.

Specificity. Specificity, also known as the true negative rate (TNR), is the proportion of actual
negative cases (the healthy control group) correctly identified as negative by the classifier, i.e.,
TNR = TN/(TN+FP).

Sensitivity and Specificity are commonly used metrics in healthcare studies, and in our experi-
ments, they consistently serve to showcase the performance of the proposedmethods for accurate
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health diagnostics. In binary diagnostics, such as those explored in Chapter 4.3 and 6.3, healthy
controls are grouped into the negative class, while the unhealthy participants are considered the
positive class. In the case of multi-class diagnostics, as examined in Chapter 7.3, we calculate
these two metrics for each target class and then report their average. Unlike ACC, Sensitivity
and Specificity are independent of the class distribution in the testing set, making them more
reliable in most scenarios. While ROC-AUC considers all discrimination thresholds, when re-
porting Sensitivity and Specificity of a model, a single threshold is usually used. A commonly
used threshold is 0.5, as the predictive probability ranges from 0 to 1. However, 0.5 may not be
the best choice when the predicted probabilities are not calibrated and the distribution of classes
is skewed. The threshold that aligns with the upper-left corner of the ROC curve, which max-
imises the difference between TPR and FPR (i.e., balancing Sensitivity and Specificity), is often
the optimal threshold for most cases. We will specify how the threshold is selected when we use
these metrics in experiments.

Brier score. Following (Postels et al., 2022), the Brier score is used to measure the accuracy of
predicted probabilities. Specifically, Brier score for a sample is computed as the squared error
of a predicted probability vector, p(i), and the one-hot encoded true response, ỹ(i), derived by
B(i) = 1

C

∑C
c=1(p

(i)[c]− ỹ(i)[c])2, for each sample. We report the average Brier score across the
whole testing set, denoted by,

B =
1

C

C∑
c=1

1

N t
c

∑
y(i)=c

B(i), (3.13)

where N t
c denotes the number of samples from the c-th class in the testing set.

ECE. ECE, short for Expected Calibration Error, is defined to measure the correspondence
between predicted probabilities and empirical accuracy (Ovadia et al., 2019). ECE quantifies
the gap in the reliability diagram as shown in Figure 3.2. We used M = 10 universal bins to
calculate ECE as follows:

M∑
m

|Bm|
Ntest

|ACC(Bm)− conf(Bm)|, (3.14)

where binBm covers the confidence interval (m−1
M
, m
M
]. ACC(Bm) and conf(Bm) are the ACC

and the average predictive confidence for the samples having the predictive confidence within
Bm.

Brier and ECE are used to validate the performance of model calibration and the quality of
uncertainty estimates in the study present in Chapter 5.3.



Chapter 4

DB-EL: Uncertainty-aware deep learning
for binary physiological data

Knowledge is an unending adventure at the edge of uncertainty.

- Jacob Bronowski

Polish-British mathematician and philosopher

4.1 Introduction

Employing deep learning to model health shows great promise in the literature; however, con-
cerns remain regarding its reliability in real-world health diagnostic settings (Park et al., 2021).
These concerns primarily arise from the observations that deep learning models can often ex-
hibit poor calibration, leading to overconfident probabilities that do not accurately reflect true
confidence levels (Guo et al., 2017). As introduced in Chapter 1.2, overconfident yet incorrect
model predictions can result in unacceptable costs in healthcare. Therefore, calibrating deep
learning models for health diagnostics is an essential task.

As discussed in Chapter 3.3.2, ensemble learning serves as an approach to quantify model un-
certainty by employing a finite number of models (Ganaie et al., 2022; Dietterich, 2000; Zhou,
2012). Ensemble deep learning, which integrates multiple deep neural networks, usually leads to
a better-calibratedmodel when compared to the traditional single Softmax-based neural network.
In this chapter, we explore ensemble deep learning for health screening based on physiological
data, which is often characterised by small-scale and severe class imbalance (as introduced in
Chapter 1.2).
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Such data characteristics not only exacerbate the model’s overconfidence but also introduce
bias into the model. Since the model may prioritise optimisation for the majority class (i.e., the
healthy control group), both the classification boundary and the confidence can be biased, be-
coming inaccurate for the minority class (i.e., the unhealthy group). To address this challenge,
this chapter proposes a novel data-balanced deep ensemble learning approach (DB-EL) for reli-
able binary health screening. In this approach, we generate multiple balanced raining sets from
imbalanced physiological data through a re-sampling strategy. Those sets are then leveraged to
train multiple model ensemble units. Predictions from these units are fused to calibrate the con-
fidence from a single model. In addition, the inconsistency among the predictions of the learned
units is used as a measure of model uncertainty. This uncertainty quantification can enhance the
reliability of the model when deployed to the real world.

This chapter makes the following contributions,

• We introduce a novel ensemble learning method designed to construct a well-calibrated
binary health screening model using limited and class-imbalanced physiological data.

• We conduct a study utilising physiological audio to predict respiratory health conditions,
specifically, whether an individual is COVID-19 positive or not. The results demonstrate
the superior accuracy of our method compared to baselines, showing an improvement
of 7.2% in ROC-AUC. Additionally, our method exhibits better calibration than a single
deep-learning model.

• In this respiratory health screening task, we show that the quantified uncertainty can effec-
tively indicate the correctness of model predictions. Therefore, by leveraging uncertainty
measurements for selective prediction, we achieve an additional screening accuracy boost
of 17.6%.

The remainder of this chapter is organised as follows. We first review the related studies in
Chapter 4.2. Then, we introduce our method in Chapter 4.3. The experimental setup and re-
sults are presented in Chapter 4.4 and 4.5, respectively. We finally conclude our findings in
Chapter 4.6.

4.2 Related work

As discussed in Chapter 3.3.2, conventional Softmax-based deep classifiers are limited in uncer-
tainty quantification as they only generate deterministic point estimations. Ensemble learning,
a frequentist method for uncertainty estimation, involves training multiple models using differ-
ent subsets of the data, model initialisation, or model architectures (Ganaie et al., 2022). This
chapter explores deep ensemble learning in audio-based respiratory health screening. The most
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related studies are reviewed as follows.

Ensemble learning for health applications. Ensemble learning has found widespread applica-
tion in health diagnostics to enhance model accuracy (Sarmadi et al., 2021; Raza, 2019; Nguyen
et al., 2021b; Cao et al., 2020). For example, Raza et al. proposed the utilisation of ensemble
learning to enhance classification accuracy in heart disease detection (Raza, 2019). This study
incorporated risk factors such as age, gender, heart rate variability, blood pressure, cholesterol,
and blood sugar, among others, into multiple machine learning models, including decision trees,
support vector machines, and k-nearest neighbours. The integration of different models can im-
prove performance by capturing heterogeneous patterns from the data. In the realm of deep
learning for health diagnostics, ensemble learning is also commonly used via probability-wise
fusion to calibrate diagnostic confidence and quantify model uncertainty (Nguyen et al., 2021b;
Leibig et al., 2017; Raghu et al., 2019; Zheng et al., 2023). In respiratory health, due to the
limited availability of audio data for model training, ensemble learning is also widely used to
boost model performance. Nguyen et al. proposed a snapshot ensemble learning method, which
combines deep neural networks trained in several epochs (Nguyen and Pernkopf, 2020). This
method reduces the cost of training different models and mitigates the error of a single model
snapshot.

Combination methods. Since ensemble learning involves a number of models, determining
how to combine those base models to produce the final prediction has been a long-standing
problem. Unweighted averaging of the outputs of the base models in an ensemble is the most
commonly followed approach for fusing decisions in the literature (Ganaie et al., 2022). Here,
the outcomes of the base models are averaged to obtain the final prediction of the ensemble
model. Deep learning architectures exhibit high variance and low bias; thus, simple averaging
of the ensemble models improves generalisation performance by reducing variance among the
models. Unweighted averaging is a reasonable choice when the performance of the base models
is comparable, as suggested in (He et al., 2016). However, it has also been recognised that when
the ensemble contains heterogeneous base models, naive unweighted averaging may result in
sub-optimal performance, as it is affected by the performance of the weak base models and the
overconfident base models (Ju et al., 2018).

To overcome the limitation of unweighted averaging, other voting methods have been inves-
tigated. Similar to unweighted averaging, majority voting combines the outputs of the base
models. However, instead of taking the average of the probability outcomes, majority voting
counts the votes of the base models and predicts the final labels as the label with the major-
ity of votes. The majority voting technique was employed to improve diagnostic accuracy for
the ensemble method compared to individual classifiers (Raza, 2019). The predictions of base
models can also be integrated by the Bayes optimal classifier, where the prediction of each base
model is regarded as the conditional distribution of the target label. Choosing prior probabili-
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ties in the Bayes optimal classifier is difficult and hence is usually set to a uniform distribution
for simplicity. With a large sample size, one hypothesis tends to give larger posterior proba-
bilities than others, and hence the weight vector is dominated by a single base model, causing
the Bayes optimal classifier to behave as the discrete super learner with a negative likelihood
loss function (Ganaie et al., 2022). More recently, Bayesian non-parametric methods have been
studied in ensemble learning for better voting: a deep neural network is used to map inputs into
a latent feature space, where a Gaussian process with a base kernel acts; the resulting model
is then trained in an end-to-end fashion (Liu et al., 2018; Ober et al., 2021). This approach
can outperform the common ensemble where base models are randomly initialised and trained
independently, as the base models tend to be more diverse (i.e., less correlated with one another).

Uncertainty-aware diagnostics. The uncertainty quantification capability inherent in ensem-
ble learning not only enhances the accuracy of disease detection but also fosters the integra-
tion of a collaborative approach between humans and machines. By leveraging this capability,
medical professionals gain valuable insights into cases where deep learning models encounter
uncertainty (i.e., models do not know the case), indicating potential instances of misdiagnosis.
This collaboration between human expertise and machine intelligence enables timely interven-
tion and ensures that critical cases receive the attention they require. Additionally, the ability
to quantify uncertainty empowers healthcare practitioners to make informed decisions, particu-
larly in complex or ambiguous situations where the model’s confidence may be compromised.
As a result, the collaborative synergy between human expertise and ensemble learning models
not only enhances diagnostic accuracy but also augments the overall efficacy and reliability of
healthcare systems (Bhatt et al., 2021; Pacheco et al., 2020; Kang et al., 2021). For example,
deep ensemble learning has been applied to diagnose diabetic retinopathy from fundus images
of the eye (Leibig et al., 2017; Raghu et al., 2019). Quantified uncertainty can guide selective
predictions by retaining low-uncertainty outputs and referring high-uncertainty predictions to
clinicians, thereby involving clinicians in the decision-making process and enhancing the sys-
tem’s robustness.

Ensemble Learning for Class Imbalance. Although ensemble learning has been extensively
studied, as pointed out in a review (Cao et al., 2020), leveraging ensemble learning to address the
common challenge of class imbalance is largely under-explored. In contrast to existing studies,
our work uniquely focuses on the prevalent issue of data imbalance, a concern often overlooked
in uncertainty quantification research. Van et al.’s study identified the adverse impact of class
imbalance, specifically noting that the quality of uncertainty is compromised, particularly when
distinguishing incorrect predictions for the minority class (down-sampled to 5∼10% of the orig-
inal data size) (Van Molle et al., 2021). In light of this, our method is designed to mitigate the
model bias and overconfidence stemming from the constraints of limited and imbalanced phys-
iological data. We address this challenge within a unified framework, seeking to enhance the
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robustness and reliability of uncertainty quantification in the face of class imbalance.

4.3 Methodology

4.3.1 Problem formulation

In this section, we focus on model calibration and uncertainty quantification for binary health
screening applications and propose a novel solution to address the imbalance issue in physio-
logical data. For the sake of clarity, we first formulate the problem below. Following that, we
introduce our proposed method.

Uncertainty-aware deep learning for binary health screening: Consider a physiological dataset
with two classes denoted asD = {(x(i), y(i))}Ni=1, where x(i) is a physiological data sample, and
y(i) represents the health condition. That is, if the associated disease is identified in the sample,
y(i) = 1 (unhealthy); otherwise, y(i) = 2 (healthy). Here, N is the number of training samples,
and y is extremely imbalanced, with y = 1 being the minority class. The task is to train a deep
learning model parameterised by θ that can predict y for any given x to achieve population
health screening. We aim for calibrated predictions, and for each prediction, an uncertainty
measurement is provided.

4.3.2 Data-balanced ensemble learning

Highlight: Ensemble learning can integrate predictions from multiple models to mitigate
the issue of overconfident predictions made by a single model. Training eachmodel within
the ensemble using a balanced subset of the entire training set is supposed to not only
enhance the utility of the data but also reduce model bias, thereby leading to reliable
uncertainty quantification for imbalanced data.

To tackle the above-defined problem, we propose a data re-sampling strategy to optimise the
utilisation of such physiological data. We hypothesise that ensemble learning can alleviate the
overconfidence inherent in individual models. Concurrently, our data re-sampling strategy is
designed to tackle the challenge of class imbalance. An overview of our method is depicted in
Figure 4.1, with each component introduced as follows.

Model training. Firstly, we re-sample the heavily imbalanced training set to create Nm bal-
anced subsets, denoted as (X1, Y1), (X2, Y2), ..., (XNm , YNm). Each subset (Xn, Yn) comprises
the data from an equal number of healthy and unhealthy participants, where Xn is a collection
of physiological samples x(i), and Yn is the collection of the corresponding health conditions
y(i). Notably, the unhealthy group typically constitutes the minority class. To ensure the com-
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Figure 4.1: Data-balanced ensemble deep learning for health screening. Balanced training
sets are generated to train multiple models, and probabilities for a testing sample are fused to
form the final decision. Simultaneously, the disagreement level across thesemodels as ameasure
of uncertainty is obtained and used to indicate the reliability of digital diagnoses.

prehensive utilisation of these samples, we incorporate them into each subset (indicated by the
blue box in Figure 4.1), while randomly selecting healthy samples (as depicted by the yellow
box in Figure 4.1). Consequently, we independently train Nm models using the Nm subsets.

These balanced subsets are employed for training deep learning models independently for health
screening. In this study, we adapt the same architecture for each model. The training process
follows the back-propagation optimisation method introduced in Chapter 3.1.2. The models
within this ensemble framework may have similar or different architectures, depending on the
specific health condition tasks.

Model fusing. Once all the models are trained, any testing sample x(i) can be fed into the
ensemble for predictions. For the final output, we use the probability-wise prediction averaging,
formulated as follows,

p(i) =
1

Nm

Nm∑
n=1

p(i)
n , (4.1)

where p(i)
n is the predicted Softmax probability from the n-th model. The expectation p(i) is more

calibrated than any p(i)
n as the occasional model overconfidence can be smoothed. For the final

prediction, if p(i)[1] is greater than p(i)[2], the testing sample i will be predicted as belonging to
the unhealthy class; otherwise, it will be predicted as healthy.

This model fusion technique known as unweighted averaging is commonly employed. Addi-
tionally, various other methods for model fusion, as discussed in Chapter 4.2, can be seamlessly
integrated into our framework.

Uncertainty estimation. In a clinical context, when multiple clinicians provide a diagnosis
for a patient if their conclusions are consistent, it indicates a low level of uncertainty in the
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diagnosis. Conversely, when there is disagreement among clinicians, it suggests that the case is
more challenging, and the confidence in the diagnosis decreases (Schumacher et al., 2013; Raghu
et al., 2019). Similarly, we use the inconsistency among predictions from multiple models as an
indicator of the model’s uncertainty. Formally, we use the standard deviation σ of the predicted
likelihood for the positive class across the Nm models as the measurement of uncertainty as
follows,

µ(i) =
1

Nm

Nm∑
n=1

(p(i)
n [1]),

σ(i) =

√√√√ 1

Nm

Nm∑
n=1

(p
(i)
n [1]− µ(i))2.

(4.2)

If the uncertainty σ(i) is higher than a predefined threshold, it implies that the model is unsure
of its prediction during digital screening. Under this circumstance, the system can first request a
second or even more repeated audio testing on smartphones. If the uncertainty is still high, this
particular sample could be then referred for further clinical or other testing. As a consequence,
both system performance and patient safety can be improved.

Overall, the probability-wise fusion (Eq. (4.1)), based on the learned multiple models, can mit-
igate the overconfident predictions of a single model. Furthermore, the variance (Eq. (4.2))
among the predictions made by the model ensembles provides explainable measures of model
uncertainty.

4.4 Experimental setup

4.4.1 Dataset

To evaluate the proposed framework, we utilise the COVID-19 Sounds database (as introduced
in Chapter 2.2.1) for experiments. In this study, we include participants who tested positive
and exhibited at least one symptom, as well as participants who tested negative and declared no
symptoms. To eliminate language confounders in the voice recordings, only English speakers
are retained. Ultimately, we include 330 positive participants with 469 samples and 919 negative
participants with 2,021 samples. Consequently, the dataset is small and heavily imbalanced,
which is suitable for our evaluation. Overall, 58% of the participants are male, and more than
60% are aged between 20 and 49. Demographics and medical history distributions are similar
in the two classes.

The task involves predicting the COVID-19 status of a given sample. To accomplish this, we de-
velop a deep learning model, as detailed in Chapter 4.4.2. For training and evaluation, we divide
the data into three sets. Specifically, for the positive group, we set aside 10% and 20% of partic-
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Table 4.1: Basic statistics of COVID-19 Sounds data used in this study. The data presents
class imbalance at both participant and sample levels.

Positive Negative

#Participants #Samples #Participants #Samples

Training set 231 327 820 1, 871
Validation set 33 44 33 56
Testing set 66 98 66 94

ipants for validation and testing, respectively, using the remaining data for training. This results
in 231 positive participants for model training. Correspondingly, we select the same number of
negative participants for validation and testing, leading to 820 negative participants for training.
The statistics of the three sets are summarised in Table 4.1. To generate balanced subsets for
training model ensembles, 231 participants are randomly selected from the 820 negative tested
participants for each subset.

Regarding data pre-processing, we re-sample all the recordings to 16 kHz mono audios, remov-
ing the silence period at the beginning and end of each recording. Finally, audio normalisation,
achieved by calibrating the peak amplitude to 1, is applied to eliminate discrepancies across
recording devices. We set N = 10 so that 10 models are learned. During training, our batch
size is 1, the learning rate is 0.0001 with a decay factor of 0.99, and we use cross-entropy loss
and the Adam optimiser. Early stopping is applied to the validation set to obtain the best model
for reporting performance.

4.4.2 Backbone model and training strategy

As introduced in Chapter 2.2.1, the spectrogram is the commonly used representation for audio
waves since it can effectively capture both temporal and frequency features. Herein, we apply
the STFT to derive spectrograms for the respiratory audio samples in our experiments. Since
a spectrogram is a two-dimensional input, we adopt a CNN-based model architecture for this
COVID-19 screening task (Ren et al., 2020). The overall framework, as illustrated in Figure 4.2,
comprises the following components:

Spectrogram input. As introduced in Chapter 2.2.1, audio samples, before being fed into deep
learning models, are usually transformed into spectrograms via STFT. In this task, each single
audio recording is initially divided into non-overlapping segments of 960ms each. STFT is then
applied to each segment using a window length of 25ms with 10ms overlap, and a periodic
Hann window is used. This process results in the creation of a spectrogram. Furthermore, the
spectrogram is integrated into 64 Mel-spaced frequency bins, and the magnitude of each bin is
log-transformed after adding a small offset to avoid numerical issues (Ali et al., 2021). As a
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Figure 4.2: Architecture of our CNN model. The model consists of the feature extractor and
the classifier parts. VGGish is employed to extract acoustic features from cough, breathing, and
voice recordings. These features are then concatenated into a single embedding vector. These
features are subsequently concatenated into a single embedding vector for classification. In this
VGGish model, the blue, light blue, and green blocks represent convolutional, pooling, and fully
connected layers, respectively.

result, the final spectrogram for each segment has dimensions of 96× 64.

Feature extractor. Each spectrogram is subsequently processed with the VGGish module to
extract deep features (Simonyan and Zisserman, 2014; Hershey et al., 2017). VGGish is a con-
volutional neural network-based architecture comprising cascaded convolutional layers, max-
pooling, and fully connected layers. For each 960ms audio segment, VGGish can transform
its spectrogram into a 128-dimensional embedding vector (known as features in deep learning).
The architecture of VGGish is illustrated in Figure 4.2, and the components are summarised
below:

• Convolutional Layers: VGGish contains several convolutional layers with 3 × 3 filters.
These layers learn to extract hierarchical features from the inputMel spectrogram patches.
As shown in Figure 4.2, the number of filters in each convolutional layer gradually in-
creases as going deeper into the network.

• Max Pooling Layers: After each convolutional layer, VGGish applies max pooling with
a 2 × 2 window and stride of 2. This reduces the spatial dimensions of the feature maps



72 Chapter 4. DB-EL: Uncertainty-aware deep learning for binary physiological data

while preserving important features.

• Fully Connected Layers: Following the convolutional and max pooling layers, VGGish
has two fully connected layers with ReLU activation functions (as introduced in Chap-
ter 3.1.2). These layers perform non-linear transformations on the extracted features to
capture higher-level representations.

• Embedding Layer: The final layer of VGGish is an embedding layer that produces a 128-
dimensional embedding vector for each input Mel-spectrogram patch. This embedding
vector represents the learned features of the input audio segment and serves as the output
of the network.

The embedding vectors of segments from the same audio sample are aggregated to form the
feature for that sample. Following the VGGish model, an average pooling layer is employed to
combine the embedding vectors derived from all segments within a particular audio recording.
This results in the creation of a fixed-length latent feature vector, regardless of the individual
recording’s duration. Finally, the resulting embedding vectors for the three modalities (cough,
breathing, and voice) are concatenated to form a multi-modal embedding vector. This embed-
ding vector is then used to classify each audio sample.

Considering the small scale of the available training data, we explore transfer learning tech-
niques as introduced in Chapter 3.1.2. We leverage the VGGish model, which was pre-trained
on a public benchmark dataset. This benchmark dataset comprises 100 million YouTube audio
recordings totalling 5.4 million hours (Hershey et al., 2017). Therefore, the pre-trained VGGish
exhibits good acoustic feature extraction capabilities. Since the VGGish was not specifically
pre-trained for respiratory sounds, we also update its parameters when training the other com-
ponents of the model, as introduced below.

Classifier. The extracted embedding vector from the sample is inputted into a binary classifier
as depicted in Figure 4.2. This classifier comprises two fully connected layers (abbreviated as
fc) with non-linear ReLU and a Softmax layer (as introduced in Chapter 3.1.2). The number of
hidden states in these fully connected layers is 96 and 2, respectively. Before the two fc layers,
Dropout with a probability of 0.5 is applied to avoid overfitting. The model’s output is a two-
dimensional probability vector p(i), indicating the probabilities of being positive or negative.
Unless otherwise specified, we consider the categorical prediction as the class with the higher
probability.

To fit the model parameters, including the parameters for VGGish and the binary classifier, the
following binary cross-entropy loss for each sampling in the training set is utilised,

L(i) = logp(i)[y(i)], (4.3)
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where the label y(i) = 1 when sample x(i) is a COVID-19 positive case, otherwise y(i) = 2.
As previously explained in Chapter 3.1.2, the optimisation of model parameters, which encom-
passes both the feature extractor and the classifier, can be achieved through the utilisation of
Stochastic Gradient Descent (SGD). This involves the back-propagation of the averaged loss
over a small batch of the training samples.

4.4.3 Baselines and metrics

In addition to deep models, acoustic feature-driven classifiers are reported to achieve state-of-
the-art performance in sound-based COVID-19 detection, due to their effectiveness and robust-
ness in small data learning (Brown et al., 2020a; Han et al., 2020, 2021a). Therefore, we use
the method in (Han et al., 2020), named SVM, as our baseline. This method leverages the
openSMILE toolkit to extract acoustic features (Eyben et al., 2010), and SVM as the classifier.
OpenSMILE (open-source Speech and Music Interpretation by Large Space Extraction) is a
widely used software package for extracting acoustic features from audio signals. It is com-
monly employed in various applications such as speech processing, emotion recognition, and
speaker identification. It provides a comprehensive set of low-level and high-level acoustic
features that capture different aspects of the audio signal. These features include:

1. Low-level features: These features are derived directly from the audio waveform and
include parameters such as pitch, loudness, and spectral shape.

2. High-level features: These features are derived from the low-level features and represent
more abstract characteristics of the audio signal, such as speech prosody, voice quality,
and emotion content.

As a result, a total of 384 acoustic features are fed into the SVMmodel. PCA (Principal Compo-
nent Analysis) is used to reduce the dimensionality of the features. We finally retain the features
that explain 90% of the covariance in the data.

For both SVM and deep models, we compare training a single model with training Nm = 10

models for the ensemble. Using all samples and also exploring balanced datasets created through
down-sampling or up-sampling. In the case of down-sampling, we randomly discard some neg-
ative samples, while for up-sampling, we employ the Synthetic Minority Over-sampling Tech-
nique (SMOTE) (Chawla et al., 2002) to generate synthetic recordings for the positive class.

To demonstrate that our ensemble learning method can yield good model confidence estima-
tion, we compare DB-EL with MCDropout, the uncertainty quantification method as detailed
in Chapter 3.3.2. Since our CNN model is trained with dropout layers, to test this baseline, we
keep the dropout enabled and pass each sample into the model 10 times to obtain the variance as
defined in Eq.(4.2). We are unable to compare our DE-EL approach with Bayesian neural net-
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works as introduced in Chapter 3.3.2, since the VGGish has been pre-trained as a deterministic
model.

To validate the performance of the proposed framework for COVID-19 screening, we report the
following metrics: ROC-AUC, Sensitivity, and Specificity (as detailed in Chapter 3.4). Fur-
thermore, for both the baseline and our proposed methods, we report the mean and standard
deviation of these metrics across 10 runs by using different random seeds.

The model parameters are optimised using the training set, and the hyper-parameters are deter-
mined through the validation set, as summarised in Table 4.1. For the SVM, we explore different
kernels (options include ‘linear’, ‘poly’, ‘rbf’, and ‘sigmoid’) and the regularisation parameter
C (choosing from 0.01, 0.1, 1.0, 10, 100)1. For our CNN model, we investigate the size of the
classifier (selecting the number of neurons from 32, 64, 128, 256) and the learning rate (op-
tions are 0.0001, 0.001, 0.01, 0.1). We ultimately select the hyper-parameters that yield the best
ROC-AUC score on the validation set. As a result of this search, for the SVM model, we use
a linear kernel and set the regularisation constant C to 0.01. For the CNN model, we use 96
neurons for the fc3 layer and a learning rate of 0.001. The operating point on the ROC curve, to
report sensitivity and specificity, involves choosing a specific threshold value that determines
how the model’s predictions are classified into positive and negative outcomes. This threshold
for each method is also identified by the validation set: we choose the threshold that minimises
the distance to the top-left corner of the ROC plot on the validation set (Attia et al., 2019).

4.5 Results

4.5.1 Classification performance

The results for COVID-19 screening based on the insufficient and imbalanced training data are
presented in Table 4.2. From the results, we have the following observations:

• Deep learning is not superior to traditional machine learning with imbalanced train-
ing data. From the first row of Table 4.2 (SM imbalanced data), we observe that although
the CNN model achieves a ROC-AUC of 0.69, surpassing the SVM’s 0.602, the sensitiv-
ity and specificity do not exhibit significant improvement.

• Re-sampling can enhance performance, particularly in sensitivity, for both SVM and
deep learning models, as it ensures a balanced training set. A comparison of the second
and third rows of the table with the first row reveals that, in contrast to down-sampling, up-
sampling yields superior performance compared to both down-sampling and no-sampling.

1We adapt the implementation from https://scikit-learn.org/stable/modules/generated/
sklearn.svm.SVC.html#sklearn.svm.SVC

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html##sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html##sklearn.svm.SVC
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Table 4.2: Performance comparison. We report Mean±Std for ROC-AUC, Sensitivity, and
Specificity reported for the Single model (SM) and the Ensemble model. Optimal threshold is
used to balance the sensitivity and specificity.

ROC-AUC Sensitivity Specificity

SM imbalanced data SVM 0.602 0.562 0.563
CNN 0.690 0.571 0.572

SM down-sampling SVM 0.601± 0.030 0.565± 0.052 0.565± 0.050
CNN 0.682± 0.041 0.638± 0.043 0.643± 0.062

SM up-sampling SVM 0.622± 0.021 0.585± 0.022 0.592± 0.021
CNN 0.701± 0.039 0.675± 0.025 0.677± 0.051

Ensemble model re-sampling SVM 0.660± 0.042 0.632± 0.053 0.624± 0.042
CNN 0.740± 0.029 0.686± 0.051 0.689± 0.059

This is reasonable due to the increased availability of data samples for parameter learning.

• Ensembles can enhance the performance of both SVM and deep model. As shown in
the last row of the table, ensemble models consistently improve the ROC-AUC compared
to a single model, regardless of the data re-balancing strategy.

• Our ensemble method outperforms all the baselines. Our CNN model with ensembles
yields a ROC-AUC of 0.740 with a sensitivity and a specificity close to 0.7. Compared
to the highest ROC-AUC of 0.70 from the baselines, our method achieves a relative im-
provement of 5.7%. This demonstrates the superior accuracy of deep ensemble learning
for COVID-19 screening from imbalanced data.

To further demonstrate the superiority of ensemble deep learning, we visualise the ROC curves
for each model in Figure 6.3 for comparison. All ROC curves are above the chance level, but the
model variance is not negligible. A plausible explanation is that we only have a small training
dataset for each model, and it is reasonable to quantify the model uncertainty from the variance
of these units. Additionally, it can be observed that after probability-based fusion, the ROC
curve is generally higher than the other curves, yielding the highest ROC-AUC of 0.740.

We observe that the fusion not only enhances the accuracy of COVID-19 screening but also mit-
igates the model’s overconfidence. Figure 6.3 illustrates the confidence distribution for the best
single model unit and the model fusion. For a well-calibrated deep learning model, its predic-
tive confidence typically aligns with its classification accuracy Guo et al. (2017). In Figure 6.3,
the best single model (Ensemble 1) achieves a comparable ROC-AUC score to the fusion, but
its average confidence of 0.83 is significantly higher than that of the fusion (0.79). Our model
fusion generates a more uniform distribution across various confidence levels (for binary clas-
sification, confidence ranges from 0.5 to 1), while the confidence for the Ensemble is skewed
toward the high-confidence range (over 0.75). From these findings, we can conclude that our
data-balancing ensemble learning approach achieves a more calibrated COVID-19 screening
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(a) ROC curves. (b) Confidence histogram.

Figure 4.3: Comparing the ensemble learning model to individual models. (a) shows the
ROC curves for each ensemble and the fusion, respectively. (b) shows the confidence distribu-
tion for the best ensemble unit and the fused model.

model compared to an individual model.

4.5.2 Uncertainty quantification performance

Now, let us examine the quality of our model uncertainty measurements and provide insights
into how the ensemble learning approach can bolster the reliability of health diagnostics through
uncertainty quantification.

To gain an initial understanding of the quality of our uncertainty measurements, we present the
uncertainty distribution in Figure 4.4(a). Notably, the density of high uncertainty values for
incorrect predictions (indicated by the False group) exceeds that of correct predictions (True
group). This implies that our approach excels in discerning less confident predictions, particu-
larly when an erroneous diagnosis is made.

Motivated by these findings, we examine the performance of selective prediction by establish-
ing thresholds to exclude certain testing cases where the uncertainty exceeds a specified value.
The outcomes of our DB-EL method compared to the MCDropout baseline are depicted in Fig-
ure 4.4(b). By retaining only testing samples with uncertainty below 0.2, the ROC-AUC of our
method improves significantly from 0.74 to 0.79, marking a 6.8% enhancement. Furthermore,
at a threshold of 0.1, the highest ROC-AUC value of 0.87 is achieved, reflecting a substantial
17.6% improvement. Although the performance of MCDropout also increases with selective
prediction (from 0.74 to 0.81), our method demonstrates a more notable boost in performance
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(a) Uncertainty distribution.

(b) ROU-AUC. (c) ROU-AUC.

Figure 4.4: Performance for uncertainty quantification. (a) shows the distribution of uncer-
tainty for correct and incorrect prediction, respectively. (b) and (c) present the ROC-AUC for
selective prediction with different uncertainty thresholds and percentage of rejection.

as shown in Figure 4.4(b). This indicates that our uncertainty estimates are more informative
and useful.

These results suggest the significance of studying predictive uncertainty and identifying optimal
thresholds. While referral for further clinical testing can enhance diagnostic accuracy, it also
imposes an additional burden on doctors. To strike a balance, we examined the ROC-AUC
across different fractions of rejected data (excluded from model predictions) with uncertainty
above specific thresholds (assuming samples with uncertainty above these thresholds should be
referred to doctors). Figure 4.4(c) shows that by excluding the 40% of samples with the highest
uncertainty (threshold set at 0.28), the ROC-AUC increases from 0.74 to 0.77. These findings
indicate that selectively directing an acceptable proportion of screening cases to doctors can
achieve a balance between effectiveness and efficiency. Moreover, limiting the analysis to the
remaining 20% of data with the lowest uncertainty (threshold set at 0.08) results in an increase
in ROC-AUC to 0.89. Despite the great performance, we acknowledge that passing 80% of the
samples to doctors would yield a heavy workload and is not practical.
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Figure 4.5: Case study for uncertainty estimation. This participant exhibited a progression
toward recovery. The cough audio sample used and the model predictions are shown below the
time axis.

4.5.3 Case study

To further demonstrate that introducing uncertainty quantification provides additional informa-
tion for clinical decision-making beyond categorical model predictions, we present a case study
of a participant in our testing set who provided multiple audio samples on different days. This
participant is a male in his 20s, an English speaker, with no significant medical history. He
tested positive for COVID-19 on January 2nd, presenting with severe symptoms. By January
5th, his headache had dissipated, and by January 7th, all symptoms had resolved. This partici-
pant contributed four samples, which were analysed using our model to predict his COVID-19
status. The results are presented in Figure 4.5.

For the first two audio samples, the model yielded a positive prediction with moderate con-
fidence (the uncertainty measurement σ = 0.22). For the third sample, corresponding to the
period when his headache had disappeared, the model continued to predict a positive outcome,
but the uncertainty increased from 0.22 to 0.38. For the fourth sample, the model’s prediction
shifted to negative, yet the uncertainty level was high at 0.43, indicating the model’s hesitance
about the prediction. Considering the typical infectious period of 7 to 10 days during the first
wave of the pandemic in the UK in 2021, this participant’s recovery trend (possibly due to med-
ical intervention) suggests it is reasonable for the model to become uncertain in its predictions
based on audio data alone. If the COVID-19 prediction outcome is used to determine whether
this participant can end self-quarantine, the level of uncertainty suggests the necessity for a
confirmatory medical test.

In summary, these results demonstrate that our model’s uncertainty measurement is an infor-
mative indicator of the correctness of model predictions, thereby playing an instrumental role
in enhancing the reliability of an automated health screening system.
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4.6 Discussion and conclusions

In this chapter, we showcased the effectiveness of deep ensemble learning in calibrating model
predictions and providing high-quality uncertainty estimates, achieved through a data-balancing
strategy. Notably, our study represented a novel exploration into uncertainty quantification on
imbalanced physiological data. When applied to real-world physiological audio data, charac-
terised by substantial class imbalance, our experiments demonstrated the superiority of our en-
semble method over a single model without uncertainty quantification.

However, it is crucial to acknowledge the limitations associated with this ensemble approach.
One limitation of our study lies in its focus on binary healthy diagnostics. While our data-
balancing strategy could be extended to multi-class physiological data, we did not systemati-
cally evaluate this aspect, leaving it as a subject for future exploration. This ensemble learning
approach also necessitates significant training resources and results in inference inefficiency,
since multiple models need to be stored. This potentially poses a bottleneck for mobile health
applications, given that many mobile devices may lack the capacity to accommodate multiple
models.





Chapter 5

CB-EDL: Uncertainty-aware deep
learning for multi-class physiological data

Information is the resolution of uncertainty.

- Claude Shannon

Father of information theory

5.1 Introduction

Accurate and efficient uncertainty estimation is of paramount importance in safety-critical ap-
plications such as mobile health diagnostics, where reliable uncertainty estimates are essential
and computational resources are constrained (Qendro et al., 2021a; Rock et al., 2021; Qendro
et al., 2021b; Steinhubl et al., 2015). As illustrated in Figure 3.4 in Chapter 3.3.2, prevalent
uncertainty-aware deep learning methods, including Bayesian neural networks, ensemble deep
learning, and MCDropout, either require the storage of additional model parameters or demand
multiple forward passes for uncertainty estimation, falling short of meeting the efficiency re-
quirements. In contrast, the evidential deep learning (EDL) technique, as detailed in Chap-
ter 3.3.2, can efficiently quantify uncertainty using a single deep neural network and a single
forward pass, by employing a Dirichlet distribution in the output layer (Malinin and Gales, 2018;
Sensoy et al., 2018). This efficiency advantage motivates us to explore EDL for mobile health
diagnostics.

While EDL has shown great promise, most investigations and evaluations rely on well-curated
datasets and balancedmachine learning benchmarks such as CIFAR10 and CIFAR100 (Kopetzki
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et al., 2021; Shen et al., 2023; Postels et al., 2022). However, we find that EDL can be ineffective
due to the challenges posed by class imbalance, which is common in physiological data (as
introduced in Chapter 1.2). The problem primarily stems from the uniform empirical loss across
all samples and the assumption of a uniform distribution across all classes, as explained in detail
in Chapter 5.3.3.

To make the efficient uncertainty quantification provided by EDL effective on multi-class im-
balanced physiological data, this chapter proposes a novel class-balanced EDL approach. It
introduces two mechanisms to enhance vanilla EDL: i) a class-level pooling loss to mitigate the
bias in classification evidence and ii) a learnable prior that is regularised by the class distribution
to facilitate learning for minority classes.

We demonstrate the superiority of our class-balanced EDL approach through comprehensive ex-
periments conducted on a variety of physiological datasets and artificially imbalanced machine
learning benchmark data. Our method not only reduces classification bias but also improves
model calibration. Furthermore, we show that our uncertainty quantification is accurate, as it
can be used to identify mistakes in model predictions and detect data that lie beyond the scope
of the model’s training, and also efficient, incurring no additional memory and computational
costs compared to a single deep learning model. This accurate and efficient uncertainty quan-
tification capability strengthens risk management and facilitates timely clinician involvement,
thereby minimising the potential for misdiagnoses in automated mobile health applications.

The main contributions of this chapter are summarised below,

• We explore EDL for health diagnostics and introduce a novel class-balanced EDL ap-
proach to tackle the class imbalance challenge. This renders the efficient uncertainty-
aware deep learning method effective even in the presence of class imbalance.

• We conduct extensive experiments using various data. The results reveal that our method
not only improves diagnostic accuracy but also reduces overconfident predictions by up
to 43% compared to the state-of-the-art baselines, without requiring additional costs to
estimate the uncertainty.

• We introduce the use of uncertainty measurements for misdiagnosis identification and
out-of-training-distribution detection. As a result, our method outperforms the compared
baselines in these applications by up to 16.1% in terms of ROC-AUC.

The remainder of this chapter is organised as follows. We first review the related studies in
Chapter 5.2. Then, we introduce our class-imbalanced EDL approach in Chapter 5.3. The
experimental setup and results are presented from 5.4 to 5.6. We finally conclude our findings
in Chapter 5.7.
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5.2 Related work

Chapter 3.3.2 introduced the most representative uncertainty quantification methods and Chap-
ter 4.2 discussed the application of model uncertainty for healthcare applications. In this section,
we elaborate on the recent studies for EDL. Moreover, we extend the introduction to long-tailed
learning in Chapter 3.3.1 to provide further justification for why existing methods are not appli-
cable for EDL.

The concept of evidential deep learning was initially introduced in (Sensoy et al., 2018), where
the Dirichlet distribution was proposed to address the issue of overconfidence stemming from
the Softmax activation. Since then, various improvements have been proposed (Charpentier
et al., 2020; Kopetzki et al., 2021; Ulmer, 2021). Notably, Charpentier et al. introduced a
second-order uncertainty-aware loss function to enhance the learning of the Dirichlet distribu-
tion (Charpentier et al., 2020). This method is also the foundation of our study. In empirical
demonstrations, Kopetzki et al. established that EDL stands as the new state-of-the-art uncer-
tainty quantification method, proving competitive with supervised methods in terms of out-of-
distribution detection (Kopetzki et al., 2021).

Regarding healthcare applications, the exploration of EDL has been limited. A literature re-
view revealed that Li et al. proposed a region-based EDL segmentation framework capable of
generating reliable uncertainty maps and accurate segmentation results. The results showcased
the superior performance of the proposed method in quantifying segmentation uncertainty and
robustly segmenting brain tumors (Li et al., 2023). To the best of our knowledge, we are the
first to introduce EDL to applications in health diagnostics based on physiological data.

We also observe that a significant portion of EDL studies relies on meticulously curated datasets
and balanced machine learning benchmarks, such as CIFAR10 and CIFAR100 (Kopetzki et al.,
2021; Shen et al., 2023; Postels et al., 2022), leaving the implications of class-imbalanced data
unclear. Despite the existence of various long-tailed learning approaches, encompassing both
data-level and algorithm-level methods aimed at mitigating the adverse effects of class imbal-
ance (as introduced in Chapter 3.3.1), these approaches are tailored for standard Softmax-based
neural networks. As a result, most of them either cannot quantify model uncertainty or can-
not be seamlessly integrated into the EDL framework, as EDL employs a different optimisation
objective. For instance, focal loss is known for its effectiveness in addressing class imbalance
by introducing a modulating factor called the focusing parameter, which reduces the loss for
well-classified examples (Lin et al., 2017). However, this factor was designed for cross-entropy
loss and thus cannot be applied to the Dirichlet distribution-based loss of EDL. In this chapter,
we introduce novel components and learning strategies specifically designed to enhance EDL
performance in the context of class-imbalanced data.
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5.3 Methodology

5.3.1 Problem formulation

In this section, we introduce our class-balanced EDL approach to develop reliable health diag-
nostics models using imbalanced physiological data. For the sake of clarity, we first formulate
the problem below.

Uncertainty-aware deep learning for multi-class health diagnostics: Consider a physiological
dataset D with C categories (as defined in Chapter 3.1.1). Let Nc represent the number of
samples for class c and Nc varies among classes. The task is to learn a deep neural network
parameterised by θ that predicts y for any given x with an uncertainty measurement.

Before delving into the details of our method, we review the fundamentals of EDL to provide
a comprehensive understanding. Subsequently, having identified the issues caused by class im-
balance in EDL, we present our specific solutions in this section.

5.3.2 A recap for evidential deep learning

As formulated in Chapter 3.3.2, EDL leverages Dirichlet distribution q(i) – the distribution over
the categorical probability p(i), to achieve prediction and uncertainty quantification simultane-
ously (Hastie et al., 2009; Murphy, 2012). As shown in Figure 3.5, the learnt posterior dis-
tribution q(i) = Dir(α(i)) is parameterised by α(i) = [α

(i)
1 , α

(i)
2 , ..., α

(i)
C ] for C classes, where

α
(i)
c = 1 + l

(i)
c . For ease of understanding, the posterior Dirichlet distribution can be viewed as

an infinite ensemble of point estimations p(i). Therefore, EDL enables a better-calibrated way
of quantifying epistemic uncertainty (as introduced in Chapter 3.3.2) compared to traditional
Softmax-based deep learning (Malinin and Gales, 2018; Sensoy et al., 2018).

Additionally, for input x(i), the expectation of probability p̂(i) presents the average predictive
confidence which reflects the aleatoric uncertainty (refer to Chapter 3.3.2). EDL is also able
to capture the distributional shift: if no remarkable evidence can be modelled for a given input,
the posterior αc, ∀c ∈ C will approach 1, i,e., the prior. Overall, given an input X(i), an EDL
model fθ outputs distribution q(i) = Dir(α(i)) with the predictive probability p̂(i), categorical
prediction ŷ(i) inferred as below,

α(i) = 1+ l(i),

p̂(i)[c] = E[p(i)[c]] =
α
(i)
c

α
(i)
0

,

ŷ(i) = arg max
c

E[p(i)[c]],

(5.1)

where α(i)
0 =

∑C
c=1 α

(i)
c .
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A few examples of Dirichlet distribution are illustrated in Figure 3.5 in Chapter 3.3.2. We hope to
quantify both epistemic and aleatoric uncertainty and thus we adapted the followingDifferential
Entropy (DE(i)) as the measurement for predictive uncertainty,

DE(i) = Ep(i)∼q(i) [Entropy(p(i))], (5.2)

where Entropy(p(i)) captures the energy distributed across different classes (i.e., aleatoric un-
certainty) and the expectation reflect the “peakedness” in the Dirichlet distribution (i.e., epis-
temic uncertainty). A larger DE corresponds to an overall higher uncertainty of a prediction.

LearningObjective. EDL can be adapted to any neural network architecture by simply replacing
the Softmax layer with a plunge-in Dirichlet distribution estimation layer on the output side. Let
L(i) denote the loss for the i-th sample, to optimise themodel parameters θ by feeding the training
data set D with N samples, the following objective has been used for EDL (Charpentier et al.,
2020; Bengs et al., 2022),

min
θ
L =

1

N

N∑
i=1

L(i),

L(i) = Ep(i)∼q(i) [C(p(i), y(i))] + λ · L(i)
r ,

(5.3)

where C denotes the cross-entropy, i.e., C(p(i), y(i)) = − logp(i)[y(i)], L(i)
r denotes a regular-

isation for each posterior q(i). L(i) is derived from variational inference: the optimisation of
the posterior can be achieved by minimising the classification error and reducing the Kullback-
Leibler divergence (KL divergence) between the posterior and prior (Cover, 1999). Specifically,
the first term in L(i) enforces the expected classification probability from the posterior Dirichlet
distributions to be a good proxy of the ground-truth label. KL divergence is a measure from
information theory that quantifies how much one probability distribution diverges from a sec-
ond, expected probability distribution. Thus, the second term L(i)

r = KL[(Dir(α(i))||Dir(1)]
enforces the the posterior to be similar with the prior distribution. λ represents the weight used
to trade-off between the two terms. Finally, the total loss L is an empirical loss giving uniform
importance to all training samples.

5.3.3 Impact of class imbalance on evidential deep learning

Now, we offer empirical and theoretical analyses of EDL to uncover its limitations in handling
class-imbalanced data.

Empirical Observation. To demonstrate the degradation in performance of EDL when deal-
ing with class imbalance, we conducted experiments using an artificially imbalanced dataset.
Specifically, we implemented an image classification task using the EDL loss (Eq. (5.3)) and
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(a) Balanced data yields reliable uncertainty estimates for all
classes.

(b) Imbalanced training data leads to poor uncertainty esti-
mates for the minority classes.

Figure 5.1: Uncertainty quantified by EDL for CIFAR10 classification. The top sub-figures
present the training data distribution, and the bottoms show the uncertainty for correct and in-
correct predictions within each class (a larger value indicates that the prediction is less certain).
The red line represents an uncertainty threshold that leads to the highest accuracy in misclassi-
fication identification.

compared the results obtained with both balanced and down-sampled training data. After down-
sampling, the data exhibited a skewed step distribution, mimicking class imbalance. For the ex-
periments, the CIFAR-10 dataset, introduced in Chapter 2.2.3, is utilised. The model comprises
VGG as the feature extractor and a classifier consisting of two fully connected layers (Tammina,
2019). The results of the experiments are presented in Figure 5.1, showcasing the distribution
of the training data and the quality of the estimated uncertainty for each class.

As it can be observed in Figure 5.1(a), with balanced training data, for all 10 classes, the EDL
quantifies higher uncertainty for incorrect predictions than correct predictions within each class.
This suggests that quantified uncertainty can reliably reflect the confidence of the model, which
is derived. However, this no longer holds with a skewed distribution as displayed in Fig-
ure 5.1(b): incorrect predictions from minority classes like class 0 and 1 manifest very low
uncertainty. This evidence verifies our concern that the EDL is vulnerable in the class imbalance
scenario, and modifications are necessary to improve its performance in healthcare applications.

Theoretical Analysis. In addition to empirical analysis, we also draw on theoretical insights to
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systematically explain the reasons behind the failure of EDL in the presence of class imbalance.

Lemma I. The across-sample empirical loss Eq. (5.3) induces the bias in EDL.

Analysis. Given C classes, the objective in Eq. (5.3) can be rewritten as,

min
θ
L =

1

N

C∑
c=1

∑
y(i)∈c

L(i)

=
C∑
c=1

Nc

N
· 1

Nc

∑
y(i)∈c

L(i) =
C∑
c=1

Nc

N
· Lc,

(5.4)

where Lc presents the average loss for class c. It can be noted that class-averaged loss Lc is
weighted by the proportion of the samples in the training set. Herein, the object tends to priori-
tise optimising Lc for the majority classes. Because of the relatively smallNc, misclassification
or over-confident posteriors from minority classes could be under-looked, leading to imprecise
estimation of classification evidence l (see Eq. (5.1)). Particularly, whenNc for minority classes
is extremely small, which is common for many realistic applications where rare classes exist,
the learned evidence can be more biased. As a consequence, the quantified uncertainty param-
eterised by α could be less reliable for the minority classes due to the lack of training data.

Lemma II. The uniform prior is not feasible for EDL in the presence of imbalanced data.

Analysis. As EDL assumes a uniform Dir(1) as a prior, it assumes an equal likelihood for all
classes if the same amount of evidence has been observed. The regularisation of the posterior,
i.e., L(i)

r in Eq. (5.3), also imposes a uniform smoothing across all classes, ignoring the varied
learning difficulty among classes. This may not be optimal in the presence of imbalanced data,
particularly when the minority classes are underrepresented with a few samples. In traditional
Softmax-based deep learning, classification thresholds can be adjusted (i.e., not the same thresh-
old for every class) to allow some marginal samples to be classified into minority classes (Zou
et al., 2016; Wang et al., 2019). Similarly, finding a suitable prior that can better regularise the
posterior can be helpful in EDL.

5.3.4 Class-balanced evidential deep learning

Highlight: Our method supposes that an adaptive prior and a loss function independent
of class distribution can mitigate the bias introduced by the imbalanced physiological
data in EDL, resulting in fairer and more reliable classification and uncertainty quantifi-
cation for all classes.
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To address the challenges brought by class imbalance, we propose to optimise EDL by using a
new objective to enable EDL for imbalanced physiological data.

New objective. Our efforts include two aspects: (1) learning less biased evidence and (2) seek-
ing a better prior, which are introduced as follows,

Mechanism I. Class pooling loss. As discussed in Lemma I, the imbalanced distribution of
samples among different classes acts as a significant source of bias in the model, resulting in
varying learning rates across the classes. To overcome this issue, we propose to give equal
attention to all classes no matter the number of training samples. To achieve this, we leverage a
class-level pooling loss that is first calculated within each class and then averaged across classes.
Specifically, L′ in Eq. (5.3) will be replaced by,

L′ =
1

C

C∑
c=1

1

Nc

∑
y(i)∈c

L(i), (5.5)

where Nc is the cardinality of class c. Thereby, in contrast to Eq. (5.4), L′ is class distribution
agnostic. In other words, we mitigate the bias by ensuring that the factorNc/N approaches 1/C
uniformly for all classes.

Mechanism II. Adaptive prior. Since the uniform prior assumption has limited capacity as dis-
cussed in Lemma II., we propose to replace the uniform prior with a trainable prior parameterised
by β = [β1, β2, ..., βC ]. Learning the classification evidence through the neural network usu-
ally needs more data and could be biased, but optimising the posterior from the prior (i.e., via
L(i)

r ) could be more helpful, particularly when the training data is limited. A good prior should
consider the class distribution of the training data, and compensate for the class skew to ease
the learning of the posterior. Herein, we propose that β can mimic the reversed class propor-
tion, termed by η = [N/N1, N/N2, ...N/NC ] with ηc = N/Nc. Furthermore, although it is
meaningful to use η as β, we do not fix the value but use a trainable prior: this allows the prior
with more optimisation space considering the varying learning difficulty for different classes.
To achieve this, another term that measures the KL-divergence between the two categorical
distributions parameterised by β and η, formulated by,

L′
p = KL[Cat(β)||Cat(η)]

=
C∑
c=1

βc log βc
ηc
,

(5.6)

will be added to the objective. Correspondingly, the regularisation term in Eq. 5.3 becomes the
KL divergence between the posterior and the trainable prior to ensure “fidelity-to-prior” (Bengs
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et al., 2022). We term the new posterior parameterised by α′. Following the definition of KL
divergence in (Cover, 1999), we now provide the new regularisation for the posterior denoted
by L′(i)

r as follows,

L′(i)
r = KL[Dir(α

′(i))||Dir(β)]

=

∫
Dir(p|α′(i)) log Dir(p|α

′(i))

Dir(p|β)
dp

=

∫
Dir(p|α′(i))

(
logDir(p|α′(i))− logDir(p|β)

)
dp.

(5.7)

Since the integration can be derived by digamma function ψ and gamma function Γ, as,∫
Dir(p|α) logDir(p|α)dp

=

∫
Dir(p|α)

[
logΓ(α0)−

C∑
c=1

logΓ(αc) +
C∑
c=1

(αc − 1) logp
]
dp

= logΓ(α0)−
C∑
c=1

logΓ(αc) +
C∑
c=1

αc(ψ(αc)− ψ(α0)).

(5.8)

The closed form of L′(i)
r is written as,

L′(i)
r = logΓ(α′(i)

0 )−
C∑
c=1

logΓ(α′(i)
c )− logΓ(β0)+

C∑
c=1

logΓ(βc) +
C∑
c=1

(α′(i)
c − βc)(ψ(α′(i)

c )− ψ(α′(i)
0 ))],

(5.9)

where β0 =
∑C

c=1 βc.

Overall objective. Given the above, our proposed new optimisation loss for class-balanced
EDL can be summarised as,

min
θ,β
L′ =

1

C

C∑
c=1

1

Nc

∑
y(i)∈c

L′(i) + µ · L′
p,

α′(i) = β + l(i),

L′(i) = Ep(i)∼Dir(α′(i))[C(p(i), y(i))] + λ · L′
r
(i),

L′(i)
r = KL[Dir(α′(i))||Dir(β)],

L′
p = KL[Cat(β)||Cat(η)],

(5.10)

where hyper-parameters λ and µ trade off the classification, the regularisation of posterior L′
r,
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and the regularisation of prior L′
p.

Now, we give the closed form of the loss function and show that the model can be optimised
without sampling from the Dirichlet distribution. Specifically, the closed form of the expected
cross-entropy can be derived as,

Ep(i)∼Dir(α′(i))[C(p(i), y(i))]

=EDir(p|α′(i))[− log py(i) ]

=−
∫

log py(i) ·Dir(p|α′(i))dp

=−
∫ 1

0

log py(i) · Beta(α
′(i)
y(i)
, α

′(i)
0 − α

′(i)
y(i)

)dpy(i)

=−

∫ 1

0

dp
α
′(i)
y(i)

−1

y(i)

dα
′(i)
y(i)

(1− py(i))
α
′(i)
0 −α

′(i)
y(i)

−1
dpy(i)

Beta(α
′(i)
y(i)
, α

′(i)
0 − α

′(i)
y(i)

)

=− 1

Beta(α
′(i)
y(i)
, α

′(i)
0 − α

′(i)
y(i)

)

dBeta(α
′(i)
y(i)
, α

′(i)
0 − α

′(i)
y(i)

)

dα
′(i)
y(i)

=−
d logBeta(α′(i)

y(i)
, α

′(i)
0 − α

′(i)
y(i)

)

dα
′(i)
y(i)

=−
d(logΓ(α′(i)

y(i)
) + logΓ(α′(i)

0 − α
′(i)
y(i)

)− logΓ(α′(i)
0 ))

dα
′(i)
y(i)

=
d logΓ(α′(i)

0 )

dα
′(i)
0

−
d logΓ(α′(i)

y(i)
)

dα
′(i)
y(i)

=ψ(α
′(i)
0 )− ψ(α′(i)

y(i)
),

(5.11)

where Γ denotes the gamma function, ψ is the digamma function, and α′(i)
0 =

∑K
c=1 α

′(i)
c .

Integrating Eq. (5.6), (5.9), (5.11) into Eq. (5.10), we give the overall loss function as,

L′ =
1

C

C∑
c=1

1

Nc

∑
y(i)∈c

{Ep(i)∼q(i) [C(p(i), y(i))] + λ · L(i)
r }+ µ ·

C∑
c=1

βc log βc
ηc
, (5.12)

where Ep(i)∼q(i) [C(p(i), y(i))] = ψ(α
′(i)
0 ) − ψ(α′(i)

y(i)
), L′(i)

r = logΓ(α′(i)
0 ) −

∑C
c=1 logΓ(α′(i)

c ) −
logΓ(β0) +

∑C
c=1 logΓ(βc) +

∑C
c=1(α

′(i)
c − βc)(ψ(α′(i)

c ) − ψ(α′(i)
0 ))], α′(i)

0 =
∑C

c=1 α
′(i)
c , β0 =∑C

c=1 βc, ψ is the digamma function andΓ denotes the gamma function. Now, we can effectively
optimise the model via gradient descent and backpropagation, as introduced in Chapter 3.1.2.
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Figure 5.2: Data examples. In and out-of-distribution testing samples are given for the three
tasks.

5.4 Experimental setup

To validate the effectiveness of our class-balanced EDL for real-world multi-class health diag-
nostics, we employ three clinical tasks for experiments. The datasets used encompass various
physiological data modalities, and all of them exhibit severe class imbalance, making them ideal
test beds for evaluation.

5.4.1 Datasets and task setup

Weconduct extensive experiments on three clinical taskswith different physiological datamodal-
ities. We split each dataset into a training and a testing set. The training set including a part for
validation is used for model parameter learning, while the testing set is leveraged to report the
performance. For each task, we also include two OOD (out-of-training-distribution) testing sets,
i.e., near OOD and far OOD. The near OOD set has the same classes as the training data but
was collected with a different protocol, thus presenting a semantic shift, while the far OOD
set contains similar inputs to unseen classes. An overview of the used datasets and models are
summarised in Table 5.1. These models comprise a feature extractor and a classifier consisting
of two fully connected layers. Examples of the in and out-of-distribution samples are given in
Figure 5.2. The details of those datasets are elaborated below.

Task 1: Respiratory abnormality detection. We explore the potential of lung sounds for de-
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tecting respiratory abnormalities by distinguishing abnormal lung sounds from healthy sounds,
leveraging the state-of-the-art ResNet34-based acoustic model (Gairola et al., 2021). The model
used for this task is similar to the audio-driven COVID-19 screening model introduced in Chap-
ter 4. The lung sound samples are converted into spectrograms, from which deep neural net-
works extract features for classification.

• (ID)Weuse the ICBHI 2017Respiratory Challenge data for training and the in-distribution
(ID) testing set (Rocha et al., 2019) (details can be found in Chapter 2.2.1). The total 6,898
samples from 126 patients cover four classes: normal lung sounds (52.8%), crackle only
(27.0%), wheeze only (12.9%), and both crackle and wheeze (7.3%).

• (Near OOD) A similar audio dataset named Stethoscope consists of 336 normal, crackle,
and wheeze audio samples (Fraiwan et al., 2021). we use it as ICBHI’s co-variate shift
counterpart, as although this dataset covers the same pathology, it is collected from a 3M
Littemann electronic Stethoscope, differing from ICBHI.

• (Far OOD) ARCA23K is a dataset of labelled sound events originating from Freesound,
and each clip belongs to one of 70 typically audio classes including music, human sounds,
animal sounds, etc.1. We used the validation set containing 2,264 clips.

Setting. For the ID data, we follow the official patient-independent training and testing splits of
the Challenge. Samples from 47 patients are used for testing, while for the rest of the patients,
we randomly divide them into five folds and hold out one fold per run to conduct five-fold cross-
validation. For all ID and OOD datasets, audio recordings are re-sampled to 4KHz and divided
into 8s clips. The clips are then transformed into Mel-spectrograms as the inputs of the model.

Task 2: Heart failure prediction. The detection of cardiovascular diseases is investigated
using electrocardiogram (ECG) data with the one-dimensional convolutional neural network
FCNet (Avanzato and Beritelli, 2020).

• (ID) ECG5000 is a 20-hour long one-channel ECG dataset, which has been split and
interpolated into equal-length (140) heartbeats. We use this database as the ID set (refer
to Chapter 2.2.2). It consists of five classes: 58.4% are normal, 35.3% have heat failure
typed R-on-T, 3.9% PVC, 2.0% SP, and 0.5% UB.

• (Near OOD) Another dataset consisting of 200 ECG recordings with a length of 178 is
used as the nearOOD2, because the data acquisitionmethod is different fromECG5000 (Ol-
szewski, 2001).

• (Far OOD) A non-invasive fetal ECG dataset consists of 1,965 heartbeats with a length

1https://zenodo.org/record/5117901#.YkCsRk3MJPY
2https://timeseriesclassification.com/description.php?Dataset=ECG200

https://zenodo.org/record/5117901#.YkCsRk3MJPY
https://timeseriesclassification.com/description.php?Dataset=ECG200
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Table 5.1: A summary of the used physiological datasets. #Train is the original training data
size, which is split into training and validation folds with different seeds. #Test is the testing
size. C is the number of classes.

Task ID Dataset OOD Dataset

Name Extractor Modality Name #Train #Test C Ratio (%) Near OOD Size Far OOD Size

Task 1 ResNet34 Audio ICBHI2017 4,274 2,641 4 52.8/27.0/12.9/7.3 Stethoscope 336 ARCA23K 2,264
Task 2 FCNet ECG ECG5000 4,500 500 5 58.4/35.3/3.9/2.0/0.5 ECG200 200 FetalECG 1,965
Task 3 DenseNet121 Image HAM10000 7,206 2,809 7 67.1/11.1/11.0/5.1/3.3/1.4/1.1 ISIC2017 1,824 CIFAR-10 10,000

of 7503. As electrodes were placed on the mother’s abdomen, the ECG is usually of lower
amplitude than the maternal’s, and thus we use it as the far ODD dataset.

Setting. We utilise a subset of 500 samples in the ID ECG5000 datasets for testing and split the
rest into five folds uniformly for cross-validation.

Task 3: Skin lesion screening. The classification of skin lesions is examined using an image
classification model based on DenseNet121 (Pacheco et al., 2020).

• (ID) We leverage the HAM10000 (Tschandl et al., 2018) for training and the ID testing
set (refer to Chapter 2.2.3). The skin condition is labelled as one of the following classes:
melanocytic nevi (67.1%), melanoma (11.1%), benign keratosis-like lesion (11.0%), basal
cell carcinoma (5.1%), actinic keratoses (3.3%), vascular lesion (1.4%), or dermatofi-
broma (1.1%).

• (Near OOD) Another skin lesion dataset with 2,000 high-resolution varied-size images
published by ISIC 2017 is used (Codella et al., 2018). It was collected by another institute
with a varied device from HAM10000, therefore we regard it as the near OOD.

• (Far OOD) The image classification benchmark CIFAR10 (refer to Chapter 2.2.3) with
10 non-skin classes is utilised as the far OOD.

Setting. For ID data, 30% is held out as the testing set, and five-fold cross-validation is imple-
mented: four-fifths of the remaining 70% of the data for training and one-fifth for validation per
running. Image augmentation is conducted by slightly modifying the brightness of the images
in the minority classes for training.

Machine learning benchmark data study. In addition to the above physiological datasets,
we also include the machine learning benchmark data to evaluate the general capability of our
method. Specifically, we use CIFAR10 as introduced in Chapter 2.2.3 for the training and in-
distributional testing set. We employ the Street View House Numbers (SVHN) dataset4 (con-

3https://timeseriesclassification.com/description.php?Dataset=
NonInvasiveFetalECGThorax1

4http://ufldl.stanford.edu/housenumbers/

https://timeseriesclassification.com/description.php?Dataset=NonInvasiveFetalECGThorax1
https://timeseriesclassification.com/description.php?Dataset=NonInvasiveFetalECGThorax1
http://ufldl.stanford.edu/housenumbers/
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taining different image classes from CIFAR10) as an out-of-distribution testing set.

Setting. Being consistent with the empirical study in Chapter 5.3.3, VGG is used as the fea-
ture extractor. To provide a more quantitative analysis, we generate different levels of class
imbalance: we down-sample the original CIFAR10 training set while preserving a uniform dis-
tribution among classes. We term the imbalance ratio as the ratio between the size of the largest
category and the smallest class (Huang et al., 2022b). We create light (ratio=10), mild (ratio=50),
and heavy (ratio=100) imbalances for training.

5.4.2 Baselines and metrics

The model with Softmax probability, termed as Vanilla, is implemented for each task as a basic
baseline. Besides, we compare our method to the state-of-the-art long-tailed learning methods
and uncertainty estimation methods, respectively.

For the former group, we include typical re-balancing approaches: weighted cross-entropy loss
(WL) (Aurelio et al., 2019) and random-over-sampling (ROS) (Shelke et al., 2017). We also em-
ploy a recently proposed supervised deep clustering method (SDC) (Öztürk and Çukur, 2022).
SDC first learns the class embeddings by maximising cluster separation and then uses a novel
triplet loss to discriminate the learned embeddings. This two-stage learning protocol improves
the reliability against imbalanced training data.

For the latter group, we first report the performance of EDL optimised by Eq. (5.3), which is
termed asVanilla EDLwithout re-balancing the class. We also compare EDLwith the other two
uncertainty quantification approaches. The first approach is the Monte Carlo Dropout method
(referred to as MCDrop) (Gal and Ghahramani, 2016a; Lemay et al., 2022), which captures
model uncertainty by keeping dropout activated during testing. The other approach is deep en-
semble learning (referred to as Ensemble), which quantifies uncertainty based on the outputs
of multiple models (Lakshminarayanan et al., 2017; Xia et al., 2021a). Although these methods
have shown promise in well-curated data, they were not specifically designed for imbalanced
data. To ensure a fair comparison, we implemented them using the same data augmentation
techniques as EDL, namelyMCDrop+ROS and Ensemble+ROS. It can be noted that Ensem-
ble+ROS is an extension of the method we developed in Chapter 4. For MCDrop, during
inference, we use a Dropout rate of 50% and run the model five times. For Ensemble, we train
five model units using different random seeds for data augmentation. For these two methods,
the final prediction of each instance is derived through probability-wise fusion, as introduced
in Chapter 4.3.2. Instead of using the DE metric, the uncertainty measurement for non-EDL
methods was the entropy of the predictive probabilities (Qendro et al., 2021a).

For all the methods in this section, we use a learning rate of 10−4, the Adam optimiser, a batch
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size of 64 (unless specifically mentioned), and a maximum epoch of 200. The best model based
on the highest accuracy on the validation set is saved. ResNet-34 and DenseNet-121 are pre-
trained by image data benchmark, while other parameters are randomly initialised.

For evaluation purpose, we report accuracy-centric metric Rec and uncertainty-centric metrics
Brier, ECE. Rec is the macro-recall (macro-sensitivity) on the testing set, denoted by, Rec =
1
C

∑C
c=1ACC(ŷ

(i)|y(i) = c) (ŷ(i) is the prediction and y(i) is the ground truth). Rec evaluates
the overall accuracy of categorical predictions, while Brier and ECE assess the calibration of
predicted probabilities (Postels et al., 2022). A detailed formulation of them can be found in
Chapter 3.4. For ECE, we partition the estimated confidence into M = 10 equal bins on the
testing set. For a calibrated model, it is desired to minimise the values of Brier and ECE, while
maintaining the same or higher values for Rec.

Additional, we present two uncertaintymeasurement-driven applications: misclassification iden-
tification and out-of-distribution (OOD) detection (Shen et al., 2023). We evaluate the perfor-
mance by AUCm and AUCo for the two tasks, respectively. AUC, short for ROC-AUC (refer to
Chapter 3.4), is used to measure the accuracy of classification. We treat the evaluation as a bi-
nary classification task: misclassified/OOD data belongs to the positive class while correctly
predicted/ID data is the negative class. We conduct min-max normalisation for uncertainty
measurements on the testing set (for EDL methods, we use DE, and for other baselines, we
use Entropy), resulting in the normalised values ranging [0, 1]. Those normalised uncertainty
measurements are the probabilities to calculate AUC. To distinguish between near and far out-
of-distribution (OOD) detection, AUCn

o and AUCf
o are reported, respectively. A higher value

for AUCm and AUCo indicates better utilisation of the quantified uncertainty measurements to
ensure the safety of health diagnostics provided by the model.

5.5 Results on various imbalanced physiological data

5.5.1 Overall performance comparison

For the three clinical tasks involving imbalanced physiological data in model development, the
results are summarised in Table 5.2 and will be discussed below.

Task 1. The task involves a 4-class classification problem with mildly imbalanced data (refer to
Table 5.1). The first observation is that both Vanilla and Vanilla EDL struggle to perform well,
while the re-balancing strategy WL and ROS significantly improve the Vanilla and Vanilla EDL
across all the metrics. SDC is a strong baseline for class imbalanced data by ensuring the class
margin, but it is still a deterministic model using Softmax to generate the final prediction, which
indicates that the model could be over-confident for out-of-distribution data. As proven by the
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Table 5.2: Performance comparison. The average results of five runs are shown. The best
results are highlighted and the second best are underlined for each metric.

Rec↑ Brier↓ ECE↓ AUCm↑ AUCn
o↑ AUCf

o↑

Task 1: Respiratory abnormality detection

Vanilla 0.256 0.999 0.310 0.587 0.650 0.728
WL 0.401 0.949 0.292 0.594 0.661 0.698
ROS 0.407 0.941 0.301 0.605 0.673 0.742
SDC 0.422 0.902 0.288 0.617 0.664 0.747
Vanilla EDL 0.268 0.983 0.304 0.603 0.655 0.734
EDL+WL 0.389 0.908 0.290 0.621 0.687 0.759
EDL+ROS 0.434 0.878 0.297 0.620 0.700 0.768
MCDrop+ROS 0.412 0.933 0.289 0.625 0.690 0.764
Ensemble+ROS 0.431 0.929 0.286 0.628 0.699 0.769

Ours 0.422 0.797 0.163 0.640 0.727 0.785

Task 2: Heart failure prediction

Vanilla 0.389 0.690 0.179 0.850 0.782 0.885
WL 0.715 0.480 0.073 0.608 0.690 0.766
ROS 0.717 0.482 0.071 0.597 0.681 0.758
SDC 0.732 0.476 0.073 0.600 0.692 0.770
Vanilla EDL 0.388 0.685 0.175 0.843 0.786 0.887
EDL+WL 0.585 0.521 0.123 0.622 0.788 0.893
EDL+ROS 0.690 0.478 0.062 0.848 0.790 0.920
MCDrop+ROS 0.721 0.471 0.067 0.602 0.707 0.772
Ensemble+ROS 0.728 0.452 0.068 0.598 0.708 0.798

Ours 0.778 0.319 0.062 0.911 0.917 0.973

Task 3: Skin lesion screening

Vanilla 0.610 0.538 0.217 0.740 0.695 0.789
WL 0.689 0.457 0.159 0.784 0.665 0.891
ROS 0.727 0.441 0.110 0.801 0.693 0.927
SDC 0.730 0.439 0.112 0.813 0.705 0.927
Vanilla EDL 0.601 0.534 0.214 0.747 0.688 0.803
EDL+WL 0.678 0.511 0.153 0.798 0.694 0.882
EDL+ROS 0.735 0.428 0.105 0.830 0.701 0.896
MCDrop+ROS 0.734 0.429 0.103 0.835 0.735 0.949
Ensemble+ROS 0.739 0.420 0.102 0.840 0.735 0.950

Ours 0.763 0.396 0.095 0.854 0.747 0.968

results, the uncertainty-aware baselines, i.e., EDL+WL, EDL+ROS, MCDrop+ROS, and En-
semble+ROS, generally perform better for uncertainty-centric metrics. However, within those
methods, none of them consistently outperforms the others across all metrics, highlighting the
challenge of achieving accurate diagnosis accuracy and high-quality uncertainty measurements
simultaneously in real-world applications. We recognise that this difficulty primarily stems
from the heterogeneity of the data, as the audio recordings were collected using different stetho-
scopes. Thus, an effective uncertainty estimation method is necessary to accurately quantify the
uncertainty from both the data and the model.

In comparison to the baselines, our class-balanced EDL approach achieves competitive results
in terms of Rec. Although a Rec of 0.422 is not the best, it is very close to the best of 0.434.
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Yet, our method demonstrates significantly superior uncertainty measurements. Notably, we
have successfully reduced ECE by 43% (from 0.286 to 0.163), indicating that our model can ef-
fectively avoid overconfident detection of respiratory abnormalities. The accuracy of detecting
misclassification and OOD is also improved by 2.4%, 3.9% and 2.1% compared to the second
best as underlined in Table 5.2, respectively.

Task 2. In this task, the physiological data is highly imbalanced, with the three minority classes
accounting for less than 10% of the data. From Table 5.2, it can be observed that with such
severe class imbalance, SDC achieves the highest Rec of 0.732 among the compared methods.
Baselines including EDL+WL, EDL+ROS, MCDrop+ROS, and Ensemble+ROS significantly
improve the classification performance as measured by Rec, and reduce overconfident predic-
tions as reducing Brier and ECE. However, they fail to improve the utilisation of uncertainty
measurements, i.e., no better AUCs. It is plausible that the baselines with weighted loss or data
augmentation mechanisms can effectively reduce bias in classification, but they are unable to
mitigate bias in uncertainty quantification.

Obtaining accurate uncertainty estimation for this task is particularly challenging compared to
the other two tasks. Task 2 presents several difficulties due to its smaller training dataset and the
close semantic similarity between the OOD data and the ID ECG data. This challenge becomes
evident when we observe that none of the baseline methods consistently outperforms the others
across all metrics. Notably, it leads to a remarkable increase of 6.9% in Rec, a substantial reduc-
tion of 29.4% in Brier, and a significant enhancement in the AUC of detecting misclassification
and OOD samples, with improvements ranging from 5.8% to 16.1%, respectively.

Task 3. In Task 3, the training data consists of 67.1% images from healthy subjects, while the
remaining data comprises six other types of lesions, exhibiting a long-tailed distribution. On this
type of data, vanilla methods (Vanilla and Vanilla EDL) are vulnerable and all other methods
outperform them in terms of classification and uncertainty quantification.

Among the baselines, Ensemble+ROS achieves the best performance. However, our class-
balanced EDL still exhibits performance gains compared to Ensemble+ROS for all of the met-
rics. Specifically, we can observe the improvements of 3.2% in balanced Rec, 5.7% in Brier,
5.7% in ECE, and about 2% in AUCm, AUCn

o , and AUCf
o . It is also worth mentioning that the

Ensemble baseline requires multiple passes during inference, making it less efficient compared
to our method. These observations empirically validate the superiority of our methods over the
compared baselines.

To summarise the above results, our method, which encompasses the joint optimisation of EDL
posterior and prior, not only enhances classification performance but also concurrently improves
the quality of uncertainty estimation for health diagnostics. This suggests the effectiveness of
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Table 5.3: Results for memory and computational costs. Size: number of model parameters.
FLOPS: number of floating point operation per instance during inference.

Task 1: ResNet34 Task 2: FCNet Task 3: DenseNet121

Size (×1e6) FLOPs (×1e9) Size (×1e6) FLOPs (×1e6) Size (×1e6) FLOPs (×1e9)
Vanilla 21.39 10.75 0.19 17.26 7.13 45.43
MCDrop 21.39 53.70 0.19 86.24 7.13 227.14
Ensemble 106.95 53.75 0.98 86.24 35.65 227.15
Ours 21.39 10.75 0.19 17.26 7.13 45.43

our mechanisms in addressing challenges arising from imbalanced physiological data.

5.5.2 Efficiency Analysis

Results in Table 5.2 provide compelling evidence that our class-balanced EDL method outper-
forms the compared methods in both classification accuracy and the quality of uncertainty esti-
mates. In addition to these achievements, we delve into an analysis of our method’s superiority
in terms of efficiency.

To this end, we compare the memory and computational costs during inference required by our
method against other baselines: Vanilla, MCDrop, and Ensemble. The results are succinctly
summarised in Table 5.3. Memory cost is measured by the model size, equivalent to the number
of parameters stored in memory, while the count of floating-point operations (FLOPs) is used
to assess computational cost.

Table 5.3 reveals that our EDL method incurs the same memory and computational costs as the
Vanilla method, i.e., a single model with Softmax output. However, our model’s performance
significantly surpasses that of Vanilla, as demonstrated in Table 5.2. Notably, our approach saves
five times the FLOPs compared to MCDrop, as MCDrop requires running the model five times
to estimate uncertainty. While the Ensemble approach, with data augmentation for training,
performs well for the three tasks summarised in Table 5.2, its memory and computation costs
are five times higher than our method. This validates our motivation that despite the ensemble
learning approach’s excellent performance in most cases, its inefficiency makes it challeng-
ing to deploy it for resource-constrained uncertainty quantification. These results collectively
demonstrate the superior efficiency of our method which does not incur additional memory and
computation costs compared to traditional Softmax-based deep learning.

5.5.3 Implications of uncertainty quantification

To gain a deeper understanding, we visualise the uncertainty distribution for the training, vali-
dation, and testing sets of Task 2 in Figure 5.3(a). It is evident that the near and far OOD sets
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(a) DE for all testing sets (Vad is the val-
idation set).

(b) ID testing set.

Figure 5.3: Uncertainty distribution. The uncertainty is measured by DE for heart failure
prediction (Task 2).

exhibit larger uncertainty measurements compared to the validation and ID testing sets, with the
far OOD set displaying even greater uncertainty. This observation implies that an uncertainty
threshold can be identified from the validation set and utilised to reject certain automated diag-
noses made by the system. This approach effectively reduces the risk of misdiagnosis caused
by shifts in the data distribution.

Within the ID testing set, we further divide the predictions into correct and incorrect predic-
tion groups, and their corresponding uncertainties are displayed in Figure 5.3(b). It is clearly
observed that correct predictions tend to have lower uncertainty compared to incorrect predic-
tions. This suggests that, even for in-distributional data, the model may fail to diagnose certain
challenging cases. However, our method is able to generate high uncertainty for those misdiag-
noses, thereby improving the reliability of the system.

In conclusion, our proposed class-balanced EDL method proves highly accurate for diagnos-
tics and uncertainty quantification in various imbalanced physiological data scenarios. It not
only demonstrates significant improvements over vanilla EDL but also outperforms the com-
pared baseline methods, especially in cases of extreme data imbalance. Notably, our method
can generate high-quality uncertainty estimates without incurring additional computing costs
compared to the traditional Softmax-based deep learning approach. Therefore, it can meet the
efficiency requirements of mobile health applications. These results pave the way for deploy-
ing reliable deep learning-driven health diagnostics using the physiological data collected from
mobile devices in real-world settings.
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Table 5.4: Performance by vanilla EDL and our class-balanced EDL onCIFAR10with var-
ious imbalance levels. The arrows after the metrics indicate the optimal direction. Mean±std
across five runs is reported. The best results are highlighted.

Rec↑ Brier↓ ECE↓ AUCm↑ AUCo↑

Balanced Vanilla 0.871±0.003 0.219±0.016 0.100±0.008 0.815±0.015 0.801±0.008

Lightly Vanilla 0.830±0.008 0.348±0.032 0.134±0.014 0.723±0.018 0.780±0.010
Imbalanced Ours 0.833±0.005 0.325±0.024 0.120±0.009 0.796±0.017 0.786±0.010

Mildly Vanilla 0.764±0.009 0.434±0.016 0.166±0.014 0.688±0.033 0.650±0.057
Imbalanced Ours 0.781±0.008 0.389±0.014 0.136±0.013 0.753±0.034 0.737±0.048

Heavily Vanilla 0.700±0.025 0.550±0.047 0.213±0.022 0.643±0.075 0.627±0.084
Imbalanced Ours 0.734±0.025 0.402±0.039 0.157±0.021 0.728±0.078 0.697±0.082

(a) For misclassification. (b) For OOD detection.

Figure 5.4: Result comparison for ablation study. Absolute improvement of AUC from
vanilla EDL on two uncertainty-driven applications are visualised.

5.6 Results on machine learning benchmark data

In the previous section, we showcased the effectiveness of our proposed method on three real-
world physiological datasets. To reinforce the breadth of our evaluation, in this section, we
present extended experimental results on CIFAR10.

Overall comparison. The performance comparison is summarised in Table 5.4. The balanced
group shows the results of EDL on the original class-balanced CIFAR10 training data, outper-
forming all other groups and serving as an upper bound. Across lightly to heavily imbalanced
scenarios, both vanilla EDL and our proposed mechanism exhibit a decline in performance, with
vanilla EDL experiencing a decrease ranging from 2.6% to 151.1%, and our mechanism show-
ing a decrease from 1.9% to 83.6% across all metrics. This suggests that class imbalance poses
a great challenge to EDL yet our proposed mechanism performs better compared to vanilla EDL
in varying degrees of class imbalance.
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Figure 5.5: Optimising the parameters of the prior. The plot presents the updates of the prior
βc in a heavily imbalanced example, where class 10 has the largest training set and class 1 has
the smallest data proportion (refer to Figure 5.1(b)).

Notably, the performance improvement over vanilla EDL is particularly prominent in heavily
imbalanced cases. Our mechanism achieves a 4.9% increase in Rec, over a 26.1% reduction in
Brier and ECE, and an improvement of more than 10% in AUCm as well as AUCo. These results
confirm the effectiveness of our modifications to EDL in mitigating the bias caused by imbal-
anced training data, resulting in more accurate classification and reliable uncertainty estimation,
especially for heavily imbalanced datasets.

Ablation study. We also investigate the individual contributions of each mechanism in our
method. To do so, we conduct experiments on CIFAR10 using only a trainable prior with the
loss specified in Eq. (5.10), or a pooling loss with a uniform prior. Independent improvements
in each group can be observed, but the combination of the two mechanisms results in the most
significant performance gain compared to vanilla EDL. Figure 5.4 illustrates the results. For
the two uncertainty-driven applications, applying the trainable prior led to an improvement of
0.01 to 0.02 in AUC, while the deployment of the pooling loss increased AUC by 0.03 to 0.06.
Interestingly, in most cases, the combined use of the two mechanisms yielded a greater improve-
ment in performance compared to the sum of the improvements achieved separately. This can
be attributed to the fact that the joint learning of the prior and posterior, regularised by the data
distribution, creates a larger optimisation space for the model. Consequently, when the model
converges, it achieves better performance due to this expanded optimisation space.

Additionally, we visualise the learning of the prior in Figure 5.5. The prior β for each class
dynamically changes as the training progresses, initially increasing and then reaching a stable
value. Notably, β1 consistently remains larger than other βc values, as the training data for class
1 is the smallest compared to the others. While learning the classification evidence through the
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Figure 5.6: Uncertainty performance in the application of misclassification detection. For
a heavily imbalanced case, our method significantly improves the quality of uncertainty. The
results can also be compared with Figure 5.1.

neural network typically requiresmore data, directly learning the prior from the class distribution
is less data-intensive. Through this approach, we effectively mitigate the bias in the posterior
by leveraging an easily calibrated prior to compensate for the challenging-to-learn evidence. It
is also interesting to observe that in this example, the best model is achieved when β1 reaches
its peak. This further validates our assumption that a well-regularised prior, guided by the class
distribution, facilitates the learning of the posterior.

Implications of uncertainty quantification. To show that the quantified uncertainty measure-
ments can benefit misclassification and OOD detection, we present the following case studies.
Considering a heavily imbalanced scenario (ratio=100), we visualise the uncertainty measure-
ments (DE) of our method compared to vanilla EDL in Figure 5.6 (which can also be compared
with Figure 5.1 as they share the same setup). Our method significantly improves the uncertainty
quantification for minority classes such as class 1, 2 and 3, with larger uncertainty observed for
incorrect predictions. In this case, the ROC-AUC for detecting incorrect predictions is 0.730. By
setting a threshold of DE = −60.0, we can identify 75% of the incorrect predictions, greatly
enhancing the robustness of the classifier by recognising what is unknown. Additionally, we
display the uncertainty measurements for the in-distribution (ID) and out-of-distribution (OOD)
testing sets in Figure 5.7. Similar to incorrect predictions, the uncertainty of the OOD set also
increases as the distribution shifts from the left to the right. The ROC-AUIn this chapter, we
delved into uncertainty-aware deep learning for multi-class health diagnostics. To enhance the
effectiveness of the efficient uncertainty quantification method EDL, even in the presence of
class-imbalanced physiological data, we introduced a class-balanced EDL approach with two



5.7. Discussion and conclusions 103

(a) Vanilla EDL. (b) Ours.

Figure 5.7: Uncertainty distribution for CIFAR10. Histograms of uncertainty measurements
are presented for the application of OOD detection for a heavily imbalanced case.

innovative mechanisms. This results in fair and robust uncertainty estimates across all classes.C
for detecting OOD in this example is 0.695 for our method and 0.625 for vanilla EDL.

In summary, the extended experimental results on the CIFAR10 benchmark validate the effec-
tiveness of our proposed method in handling varying levels of imbalanced data, demonstrating
improved performance and enhanced uncertainty quantification compared to vanilla EDL.

5.7 Discussion and conclusions

In this chapter, we delved into uncertainty-aware deep learning for multi-class health diagnos-
tics. To enhance the effectiveness of the efficient uncertainty quantification method EDL in the
presence of class-imbalanced physiological data, we introduced a class-balanced EDL approach
with two innovative mechanisms for class imbalance.

Extensive evaluations using various real-world imbalanced physiological datasets substanti-
ated the superiority of our method in achieving fair and robust uncertainty estimates across
all classes. While we showed that our method achieved improved classification performance
through uncertainty-aware learning, we also demonstrated the three key advantages of uncer-
tainty quantification for health diagnostics in general: (i) Our method, designed to quantify
model uncertainty, held significance in calibrating predictive probabilities for the in-distributional
testing set. Even if the classification performance remained unchanged, the capability to reduce
ECE enhanced the reliability of predicted confidence. (ii) Furthermore, such uncertainty infor-
mation facilitated the identification of erroneous predictions, enabling their flagging for human
review, especially by medical professionals. This ensured a proactive approach to preventing
potential misdiagnoses for patients. This ability of our method was validated by the superior
performance in AUCm. (iii) Moreover, our method captured data uncertainty, effectively sig-
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nalling instances of being out-of-training distribution. Therefore it substantially improved the
reliability of deep learning models in real-world applications where data is often noisy and orig-
inates from diverse distributions. This was evidenced by the outstandingAUCo achieved by our
method.

Our evaluation may be subject to potential limitations arising from restricted data availability.
Specifically, due to the small number of testing samples per class in the examined clinical tasks,
we failed to assess class-level calibration results for the ECE. We intend to address this when
more data becomes accessible. In the meantime, we suggest that future work consider using the
class-agnostics ECE as the metric.

To conclude, our studies in Chapter 3 and Chapter 4 collectively contribute to a clearer under-
standing of a reliable automated system for health diagnostics. Such a system should be able
to accurately detect changes in physiological status from sensory data. In addition to predicting
individuals’ health conditions, the system should provide accurate uncertainty estimations. If
the prediction indicates high model uncertainty, the instance should be referred to doctors for
timely diagnoses. In the event of high data uncertainty, the system should alert the individual
to pay careful attention to the mobile device to minimise data noise and artifacts. Such capa-
bilities can enhance the trustworthiness of automated health screening and promote better risk
management without significantly increasing the burden on clinicians.



Chapter 6

FedLoss: Cross-device federated learning
for distributed physiological data

Privacy is not an option, and it shouldn’t be the price we accept for just getting on the Internet.

- Gary Kovacs

CEO at Accela Inc.

6.1 Introduction

As discussed in Chapter 1.2, privacy concerns surrounding health data pose a significant obstacle
to the widespread sharing and centralised storage of large-scale physiological data for machine
learning research. The recently emerged federated learning (FL) paradigm offers a promising
solution for striking a balance between privacy protection and model development (Rieke et al.,
2020; Li et al., 2020a; Nguyen et al., 2021a).

As detailed in Chapter 3.3.3, in contrast to traditional machine learning approaches, FL allows
data to remain decentralised, residing where it was originally gathered. It facilitates global
model training by aggregating model parameters instead of raw data. Specifically, starting with
random initialisation, the global model is sent to clients (data holders), enabling them to opti-
mise it using their local private data. After that, the server gathers the updated parameters from
clients and aggregates them into a new global model. These two steps are repeated until the
global model converges. This approach ensures that private individual data remains shielded
from direct exposure, making federated learning exceptionally suitable for applications involv-
ing sensitive health-related data.
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In this chapter, we aim to explore the possibility of developing models for health diagnostics
using physiological data residing on mobile devices (Karimireddy et al., 2021). Under such a
cross-device FL scenario, physiological data are distributed on individuals’ mobile devices, such
as smart wearables and smartphones, without sharing with any model developers. Each individ-
ual serves as a client, and they only exchange model parameters with the FL server to protect
data privacy. However, this is a challenging task due to the following reasons: i)An individual’s
health status generally changes very slowly. Therefore, most personal devices will only present
a single class, i.e., the current health status of the device owner. It is infeasible to balance the
data distribution on the device, and thus, learning from such data, the local model is likely to
overfit and be biased. ii)Due to the generally low disease prevalence, the physiological data are
also globally imbalanced, with a large proportion of healthy individuals. Without accessing the
label distribution, global aggregation could introduce unwanted bias in the classification. Yet,
failing to detect the disease may come at a heavy price in healthcare applications.

To address the local and global class imbalance problem, this chapter proposes an efficient feder-
ated training algorithm, FedLoss. The novelty of FedLoss lies in its adaptive model aggregation:
only a small number of clients are required to participate in each round, and their models are
aggregated according to adaptive weights proportional to the predictive loss on their local data.
Such an adaptive aggregation strategy alleviates the impact of data imbalance and speeds up
global model convergence. We validate the performance of FedLoss through the physiological
audio-driven COVID-19 screening task (as introduced in Chapter 4.4). In this study, rather than
using aggregated data, each participant is treated as an independent federated client, communi-
cating only model parameters. Our experiments demonstrate that FedLoss achieves competitive
performance compared to the centralised setting, indicating its effectiveness in handling data
imbalance in the cross-device federated learning setting.

There are two main contributions made in this chapter.

• We propose a novel federated training algorithm to enable cross-device FL for mobile
health diagnostics and tackle the challenge resulting from physiological data imbalance.

• We conduct extensive experiments in a real-world audio-driven COVID-19 detection task.
Results demonstrate the superiority of our method over the start-of-the-art baselines.

The remainder of this chapter is organised as follows. We first review the related studies in
Chapter 6.2. Then, we introduce our proposed method FedLoss in Chapter 6.3. Experimental
setup and results are presented in Chapter 6.4 and 6.5, respectively. Finally, we conclude this
chapter with a summary of our findings and a discussion of the limitations in Chapter 6.6.
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6.2 Related work

Cross-device FL. Cross-device FL is a burgeoning field that addresses the challenges of de-
centralised data processing across multiple devices. In cross-device FL, a multitude of devices,
often with varying capabilities and data profiles, collaborate to train machine learning models
while keeping data localised, thus enhancing privacy and security (Karimireddy et al., 2021).
Presently, there are billions of interconnected edge devices, including smartphones, tablets, and
wearables, generating a continuous stream of data such as photos, videos, and audio (Lim et al.,
2020). Such data presents numerous opportunities for meaningful research and applications.
However, the conventional approach of aggregating this data in a central server is no longer
sustainable, as the data can be sensitive to share and the communication cost associated with
transferring such vast amounts of information can be prohibitive. Thanks to the advent of FL,
developing models with data remaining at edge devices becomes feasible (Liu et al., 2021a).

Since one of the most compelling aspects of cross-device FL is its ability to leverage diverse
data sources without requiring them to be aggregated in a central location, this approach is par-
ticularly beneficial in environments where data privacy is paramount, such as in healthcare and
finance (ur Rehman et al., 2021). By allowing data to remain on users’ devices, cross-device
FL minimises the risk of data breaches and ensures compliance with stringent data protection
regulations. However, cross-device FL is not without its challenges. The heterogeneity of de-
vices can lead to issues such as imbalanced data contributions and computational disparities,
which may affect the overall model performance and fairness (Karimireddy et al., 2021; Chen
et al., 2023a). The data residing on personal devices can also be limited and non-representative,
leading to biased local models. Additionally, managing communication efficiency in such a
distributed setting is not trivial, as many devices are used for their functions and may not always
be available for model training. (Yang et al., 2022a).

FedAvg, as introduced in Chapter 3.3.3, is the most commonly used algorithm for cross-device
FL. It aggregates locally trained model parameters based on weights proportional to the frac-
tion of data samples at clients compared to the total samples available in the system. However,
FedAvg is susceptible to data distribution heterogeneity (Ma et al., 2022; Li et al., 2019; Zhao
et al., 2018), a common issue in cross-device FL. To enhance real-world applications, several
algorithms have been proposed. An extension of FedAvg, FedProx, adds a proximal term to the
loss function used in training on local devices. This term helps address issues related to system
heterogeneity, such as varying amounts of local data and different computational capabilities
across devices. It generally yields better stability and convergence behaviour in heterogeneous
environments, however, the choice of the proximal term’s tuning parameter can significantly
affect performance, requiring careful calibration (Li et al., 2020b). SCAFFOLD addresses the
issue of client drift in federated learning, where updates from different devices diverge due to
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having data that are not identically distributed (Karimireddy et al., 2020). It introduces control
varieties that help correct the direction of the local updates towards the true gradient. SCAF-
FOLD improves learning efficiency and accuracy, particularly in non-IID data settings. Yet, it
requires additional computation and communication overhead due to the control varieties. Some
other efforts focus on client clustering (Lin et al., 2022a; Sattler et al., 2020), adapting the global
model based on auxiliary data (Wang et al., 2021), and adaptive client training by monitoring
loss from a global perspective (Zhang et al., 2021; Shen et al., 2021). However, these approaches
are either inefficient with a large number of clients or require additional centralised data.

Cross-device FL for health diagnostics. In this chapter, we delve into the feasibility of devel-
oping a health diagnostics model using physiological data decentralised across mobile devices.
Skewed label distribution across edge devices is a common occurrence in real-world applica-
tions, and some FL algorithms have been proposed as introduced above. However, for health
diagnostics, the skewness can be even more severe (Rahman and Davis, 2013). As introduced
at the beginning of this chapter, the health data residing on personal devices can be both locally
and globally imbalanced. There are plenty of methods to address the class imbalance problem
in a decentralised setting, as discussed in Chapter 3.3.1; however, they are not feasible for FL.
Due to privacy constraints, handling class distribution cannot rely on explicitly identifying the
minority class (Shen et al., 2021), rendering solutions explored in classical centralised settings
invalid.

Currently, cross-device FL for health diagnostics remains largely under-explored in the litera-
ture. In a related study (Lin et al., 2022a) (FedCluster), a cross-device FL setting was considered
for diagnosing arrhythmia from electrocardiograms. To enhance performance for the rare phe-
notype, FedCluster clusters clients based on a global shared dataset. Local models are then
merged within clusters, and cluster models are aggregated into the global model. In contrast,
we aim to address the imbalance problem without relying on any global data, and we make the
first effort by proposing a novel solution.

There also have been a few studies on federated learning for COVID-19 detection, but cross-silo
settings predominate with data distributed across multiple hospitals (Feki et al., 2021; Qayyum
et al., 2022; Dou et al., 2021; Yang et al., 2021). For instance, Feki et al. proposed FL frame-
works allowing multiple medical institutions to screen COVID-19 from Chest X-ray images
without sharing patient data (Feki et al., 2021). Vaid et al. explored electronic medical records
to improve mortality prediction across hospitals via FL (Vaid et al., 2021; Dayan et al., 2021). In
these settings, the number of clients is small, and the size of local data is relatively large. To the
best of our knowledge, we are the first to propose a cross-device federated learning framework
for detecting COVID-19 from personal sounds and symptoms. This is more challenging than
cross-silo FL due to the extreme data heterogeneity from thousands of clients.



6.3. Methodology 109

6.3 Methodology

6.3.1 Problem formulation

In this section, we focus on the cross-device FL scenario and introduce our solution to address the
physiological data imbalance challenge. For the sake of clarity, we first formulate the problem
below. Following that, we introduce our proposed method, FedLoss.

Cross-device federated learning for health diagnostics. Consider a FL system comprising K
federated clients with each device, k, owning a private local dataset Dk = {(x(1)k , y

(1)
k ), ...},

where x(i)k is a physiological data sample and y(i)k denotes the health status, i.e., if the associ-
ated disease is identified in the sample, y(i)k = 1, otherwise y(i)k = 2. yk is locally extremely
imbalanced with most clients presenting a single class, and it is also globally imbalanced with
yk = 2 (healthy) being the majority class. In the end, we aim to train a federated model param-
eterised by θ that can predict y for any given x to achieve population health screening.

6.3.2 FedLoss

Highlight: In cross-device FL, model aggregation should take into account the local data
distribution. The training loss serves as a valuablemetric for determining the aggregation
weights, enhancing the effectiveness of the aggregation process.

As introduced in Chapter 3.3.3, FedAvg is the prominent FL algorithm (McMahan et al., 2017).
It averages the model parameters, weighted by the fraction of local data sizes on the clients.
However, this aggregation method fails to address the model bias present in physiological data,
as it ignores imbalanced distribution. To address the limitation of FedAvg, we introduce an
improvedweightingmechanism to reduce the bias caused by imbalanced data distribution across
clients (as detailed in the above hypothesis). Our proposed method, FedLoss, is summarised in
Algorithm 1 and outlined as follows.

Sampling. Similar to FedAvg, the training of FedLoss proceeds iteratively. Before the iteration
starts, the server randomly initialises a global model, termed by θ(0) (r.f. line 2 in Algorithm 1).
Starting from the initial model, clients will iteratively update the model parameters using local
data (line 3-11 in Algorithm 1). In each round t, to make the learning scalable, we supposeM
available clients are randomly selected to participate in the training process. The server will
broadcast the parameters of the global model, θ(t−1), to those selected clients.

Local training. As described in line 5-8 in Algorithm 1, each selected client, denoted as k, after
receiving the global model, will optimises parameters for E epochs using its local data Dk, and
return the new models back the server. The details of local training are provided in line 12-22
in Algorithm 1. One significant difference between our method and FedAvg is that we propose
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Algorithm 1: FedLoss Algorithm
Data: Global model update rate η, global training rounds T , local update rate λ, local

training epochs E, the number of clients each roundM .
Result: Global model θ(T ).

1 Server executes:
2 Initialise θ(0)
3 for each round t = 1,2,...,T do
4 K(t)← A random set of M clients
5 for each client k ∈ K(t) in parallel do
6 Send θ(t−1) to client k
7 l

(t)
k , θ

(t)
k ← k-th client executes

8 end
9 Normalise weights: w(t)

1 , ..., w
(t)
M = softmax(l

(t)
1 , ..., l

(t)
M )

10 Model aggregation: θ(t)←
∑M

k=1w
(t)
k θ

(t)
k

11 end
12 Client k executes:
13 Received a global model θ(t−1)

14 Initialise loss l = 0
15 for sample j = 1, 2, ..., |Dk| do
16 l ← l + L(θ(t−1); j) # Returning loss
17 end
18 Synchronise local model with the received parameters θk = θ(t−1)

19 for local epoch e = 1, 2, ..., E do
20 θk ← θk − λ∇θL(θk;Dk)
21 end
22 Return l, θk

a new weight for model aggregation. We consider using the training loss which can reflect the
dispensary between the model prediction and the ground truth. Thus, we calculate the predictive
loss for the local data, as illustrated in line 15-17 in Algorithm 1. It is important to note that l
is computed before the local training step, ensuring that it does not suffer from overfitting on
a client with limited data. After deriving the predictive loss, then the model is optimised via
back-propagation as introduced in Chapter 3.1.2 (line 18-21 in Algorithm 1). Local client k
finally sends the predictive loss l and the updated model θk to the server.

Global aggregation. After local training, the server receives both the loss l(t)k and the updated
model parameters θ(t)k . Since unhealthy clients are under-represented (globally minority class),
intuitively they are more likely to yield relatively higher losses. To mitigate the bias, FedLoss
will assign a higher weight to their model updates, rendering the data on such clients more
predictable by the global model. Formally, the server normalises the received losses using a
Softmax function to get the client-wise weights for aggregation (line 9-10 in Algorithm 1). The
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adaptive aggregation in t-th round is denoted as,

w
(t)
1 , ..., w

(t)
M = Softmax(l

(t)
1 , ..., l

(t)
M ),

θ(t) =
M∑
k=1

w
(t)
k θ

(t)
k ,

(6.1)

wherew(t)
k denotes theweight for the participating client k, andmathematicallyw(t)

k =
exp(l

(t)
k )

1/M
∑

k exp(l
(t)
k )

.

After T rounds of iterations until the global model converges, we obtain the final model θ(T ),
This model, abstracting the knowledge from all the clients’ local data, now can be deployed to
the population for health screening.

6.4 Experiments

Now we systematically evaluate FedLoss using the distributed physiological audio data. The
following sections start with an illustration of our experimental setup and continue with a dis-
cussion of the results under two different settings.

6.4.1 Dataset and backbone model

For evaluation purposes, we again leverage the COVID-19 Sounds database as we used in Chap-
ter 4 for the experiments. Similarly, with the setup in Chapter 4.4, we select English speakers
and their samples with COVID-19 test results. But different from the study in Chapter 4.4, we
include both symptomatic and asymptomatic positive participants, and we leverage the reported
symptoms as input for the screening. Besides, for positive samples, we exclusively include those
confirmed within the past 14 days. This decision is based on the consideration that a COVID-19
test conducted beyond 14 days may not accurately reflect the current infection at the time when
the sounds were recorded.

As a result, there are 482 positive participants and 2,478 negative participants with a total of
4,612 samples. An overview of the statistics of the data is in Figure 6.1: (a) The data represents
a representative demographic distribution in a population. (b) There are more negative than
positive participants, with many asymptomatic positive participants while a great proportion of
the negative participants report respiratory disease-related symptoms. (c) Individuals’ data are
sparse with over 70% of participants only recording one sample. (d) The data accumulation
procession spanned one year. This dataset illustrates a typical decentralised physiological data
distribution, characterised by global imbalance (more negative participants than positive partic-
ipants) and local imbalance (the majority of participants recorded only one sample with a single
COVID-19 status). Hence, this dataset is appropriate for evaluating FedLoss.
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(a) Demographics. (b) Symptoms distribution.

(c) Individual data amount. (d) Monthly Data amount.

Figure 6.1: Statistics of the data used for experiments. All samples are from 482 COVID-19
positive participants and 2,478 negative participants.

Similar to the previously used model (refer to Figure 4.2 in Chapter 4.4), we utilise the pre-
trained VGGish as the feature extractor for audio samples. Moreover, this model is a multi-
modal one, taking both audio spectrograms and symptoms as inputs. The architecture of this
multi-modal model is illustrated in Figure 6.2. Symptoms as illustrated in Figure 6.1(b) are
represented by a 12-dimensional binary vector: the value for each dimension is set to 1 if the
corresponding symptom is reported otherwise it equals 0. This symptom embedding is concate-
nated with the dense feature from VGGish outputs. The concatenated feature vector is then fed
to a multi-layer fully connected network for classification. The final layer outputs a Softmax
based binary class probabilities.

6.4.2 Federated learning setup

Out of 2,960 involved participants in the dataset we randomly hold out 20% participants for
testing and use the rest 80% of the participant for federated training. We consider each partic-
ipant as a federated client to examine FedLoss. We experiment with two training settings with
different client training availability:
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Figure 6.2: COVID-19 screening backbone model. The main architecture is adapted from
Figure 4.2. The embeddings of spectrograms and the embedding for symptoms are concatenated
to make more precise predictions for COVID-19 screening.

• Randomly: The recorded data is assumed to be kept on the client device during the whole
training period. We run T = 2000 federated rounds and M = 30 clients are randomly
selected at each round.

• Chronologically: The recorded data is assumed to be cleared monthly by the app user,
which is practical. Regarding this, we design a multi-period training strategy: every
month, only the clients with data recorded in this period can be selected and we run 100

rounds with each round samplingM = 30 clients for training (100 rounds can guarantee
the convergence of the model on the incremental data).

Besides, for local training, the epoch is set to E = 1, and the fine-tuning learning rate is 0.008
for VGGish and 0.015 for the rest parameters.

6.4.3 Baselines and metrics

For this audio-based COVID-19 detection application, we first report the performance of cen-
tralised learning using the same training and testing sets. Centralised training yields the optimal
performance that the FL methods can achieve, and thus serves as an upper bound. In addition
to FedAvg, we also compare with FedProx (Li et al., 2020b). FedProx handles non-identically
distributed data across federated clients by regularising the local training loss at the clients so
that the local models incur limited divergence from the global model. As discussed in Chap-
ter 6.2, there are limited FL approaches for cross-device FL using health data. Thus, we mainly
compared to FedAvg and FedProx.

For performance comparison, we report the following metrics: ROC-AUC, Sensitivity, and
Specificity (as detailed in Chapter 3.4). Besides, we present the Youden’s index (calculated as
Sensitivity + Specificity - 1) to quantify the equilibrium between the rates of true positives and
true negatives (Youden, 1950). The threshold for determining whether a sample is predicted to
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Table 6.1: Performance comparison under randomly shuffle setting. 95% CIs are reported
in brackets.

ROC-AUC Sensitivity Specificity Youden’s index SE@80%SP

Centralised 0.79 0.72 0.73 0.45 0.62
(0.74-0.84) (0.66-0.76) (0.68-0.76) (0.40-0.50) (0.54-0.69)

FedAvg 0.80 0.70 0.71 0.41 0.59
(0.75-0.85) (0.65-0.74) (0.65-0.75) (0.36-0.44) (0.45-0.73)

FedProx 0.78 0.70 0.70 0.40 0.48
(0.72-0.83) (0.65-0.75) (0.64-0.74) (0.37-0.43) (0.31-0.63)

FedLoss 0.79 0.72 0.72 0.44 0.62
(Proposed) (0.73-0.83) (0.67-.76) (0.68-0.7) (0.40-0.47) (0.50-0.70)

Figure 6.3: ROC curves for FedAvg and FedLoss. The threshold for determining whether a
sample is predicted to be positive is identified on the ROC curve by balancing sensitivity and
specificity, as shown by the red dots.

be positive is identified on the ROC curve of the testing set by balancing Sensitivity and Speci-
ficity. Additionally, we report SE@80%SP, which is the sensitivity when using the decision
threshold to ensure a specificity of 0.8. Furthermore, for both the baseline and our proposed
methods, we report the 95% Confidence Interval (CI) for all metrics by using bootstrap (DiCi-
ccio and Efron, 1996).

6.5 Results

Simulating the physiological audio data distributed locally on the original devices where they
were collected, we now present the results for the two evaluated FL setups respectively.
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Figure 6.4: Convergence analysis. ROC-AUC of the testing set for every 10 rounds during
training is displayed.

Figure 6.5: Averageweight forCOVID-19 positive and negative clients per communication
round. Note that the negative clients do not have negative weights, but the weights are just
shown in a negative direction for visualisation convenience.

6.5.1 Results under randomly shuffle setting

COVID-19 detection performance. The overall performance comparison is summarised in
Table 6.1. All federated learning-based approaches achieve competitive ROC-AUC scores com-
pared to centralised training. However, FedLoss achieves higher sensitivity and specificity than
the federated baselines. When balancing sensitivity and specificity, FedLoss improves sensi-
tivity by 2.9%. Specifically, the ROC curves of FedAvg and FedLoss are shown in Figure 6.3,
where FedLoss yields a sensitivity of 0.72, compared to 0.7 for FedAvg. Furthermore, when
optimising the sum of sensitivity and specificity, the Youden’s index of FedLoss is 6.8% higher
than that of the baselines. When specificity is fixed, the improvement increases to 5.1%. This
validates the superiority of our weighted aggregation strategy in handling data imbalance.

Convergence comparison. System efficiency is another important metric for cross-device FL.
To compare the convergence speed of FedAvg, FedProx and FedLoss, we show the testing ROC-
AUC during the training process in Figure 6.4. It can be observed that the ROC-AUC of Fed-
Loss converges significantly faster than the baselines: FedLoss needs about 250 rounds while
FedAvg and FedProx requires about 1000 rounds. Therefore, FedLoss is 4×more efficient than
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Figure 6.6: Performance of the global model trained chronologically. Sensitivity when the
specificity achieves 0.8 of the last round model in each month is displayed.

Table 6.2: Overall performance under chronologically shuffle setting. 95% CIs are reported
in brackets.

ROC-AUC Sensitivity Specificity Youden’s index SE@80%SP

FedAvg 0.79 0.70 0.70 0.40 0.56
(0.73-0.82) (0.65-0.73) (0.65-0.75) (0.35-0.44) (0.49-0.63)

FedProx 0.78 0.69 0.69 0.39 0.53
(0.75-0.81) (0.64-0.73) (0.64-0.73) (0.34-0.43) (0.44-0.60)

FedLoss 0.79 0.71 0.72 0.43 0.61
(Proposed) (0.74-0.84) (0.66-0.76) (0.67-0.76) (0.39-0.47) (0.55-0.64)

the baselines. Note that fewer communication rounds to converge save both computation and
communication costs at the resource constraint edge clients (Wu et al., 2022).

Analysis of weights. We conducted additional analysis on the adaptive weights during the
training process. Given that FedLoss exhibits superior sensitivity, we specifically examined
how theweights changed for COVID-19 positive and negative clients for comparison. Figure 6.5
illustrates the average weight for positive and negative clients in each round.

It is noteworthy that in the first 100 rounds, the weight of positive clients is approximately 4 to
6 times that of negative clients. This implies that the system can effectively identify the under-
represented class, as these clients are more challenging to predict. In the subsequent rounds, the
weights for positive and negative clients gradually balance out, indicating that the global model
has already assimilated COVID-19 features to a significant extent.

However, it is essential to note that this trend does not necessarily imply that positive participants
consistently have higher weights than negative participants. As illustrated in Figure 6.5, it is
evident that many positive participants have weights as small as those of negative participants.
This observation indicates that the weight distribution does not disclose class information.
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6.5.2 Results under chronologically training setting

The second setting aims to evaluate the performance of long-term FL with limited client partic-
ipation in batches. As illustrated by SE@80%SP in different periods in Figure 6.6, all methods
are inaccurate and unusable at the early stage with an index lower than 50%. The poor per-
formance is mainly attributed to the limited number of clients (i.e., the limited data), which
leads to poor generalisation. Gradually, with more training rounds, from November 2020 Fed-
Loss starts to show a convergence trend with SE@80%SP reaching 60%. Finally, our model
achieves a ROC-AUC of 0.79, a sensitivity of 0.71 and a specificity of 0.72, as summarised in
Table 6.2. On the contrary, SE@80%SP of FedAvg and FedProx have a slower convergence
rate, converging two months later than FedLoss. We also note that from November 2020, all
three approaches present a remarkable performance gain, which is mainly because the quantity
of data reaches a peak in that month (refer to Figure 6.1(d)). Overall, our final Youden’s index
(0.43) surpasses that of FedAvg (0.40) and FedProx (0.39), and our sensitivity (0.71) is quite
competitive compared with the centralised model (0.72). The above comparison further verifies
that our proposed FedLoss can achieve a more generalisable global model with fewer clients
involved.

Overall, experimental results demonstrate the effectiveness of FedLoss with different levels of
training data availability. FedLoss shows a higher sensitivity in handling the data imbalance
issue in the cross-device FL scenario, a challenge that FedAvg and FedProx fail to address. Our
work paves the way for transitioning from traditional crowd-sourcing of data to crowd-sourcing
of model parameters on a large scale, enabling privacy-preserving mobile health research.

6.6 Discussion and conclusions

This chapter explored the potential of utilising decentralised physiological data for deep learn-
ing model development through federated learning. To tackle challenges arising from locally
and globally imbalanced physiological data across mobile devices, we introduced a novel cross-
device federated learning method called FedLoss, enhancing the accuracy and fairness of fed-
erated learning in mobile health applications. Experimental results on a real-world COVID-19
screening task demonstrated the superiority of our approach in terms of both effectiveness and
efficiency.

One limitation of our work is that FedLoss specifically targets a binary diagnostic application.
Its general applicability for multi-class health diagnostics remains a subject for future inves-
tigation. While we evaluated our method using the physiological audio database, FedLoss is
agnostic to data modality and model architecture. We envision its potential deployment across
various mobile health applications, such as arrhythmia prediction based on heart sounds and
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monitoring sleep quality through smartwatches. These areas represent opportunities for future
exploration. Beyond the immediate impact of our work, we see our contribution fostering a shift
from traditional data crowd-sourcing to large-scale crowd-sourcing of models in the domain of
privacy-preserving mobile health research.

Another assumption in this chapter is that mobile devices can train a deep-learning model using
their local data. Our experiments involve simulating communication between clients and the FL
server; however, real-world mobile devices may face constraints in computation, making it im-
practical to train the model. Recent research on device learning has been addressing challenges
related to energy consumption, memory constraints, and latency issues (Dhar et al., 2021; Lin
et al., 2022b; Cai et al., 2020). We are optimistic that cross-device federated learning will soon
transition from theory to reality.



Chapter 7

FLea: Cross-silo federated learning for
distributed physiological data

Alone we can do so little; together we can do so much.

- Helen Keller

- An author, activist, and lecturer

7.1 Introduction

Physiological data, such as ECG and EEG signals, are extensively collected and annotated in
health institutions like hospitals. However, relying solely on data from a single resource may
prove insufficient for developing high-performance health screening models due to limitations
in data scale and the ability to encompass a comprehensive range of health conditions, espe-
cially for rare diseases. The conventional approach involves aggregating anonymous data from
multiple resources to a central server, with restricted access granted only to a few stakeholders,
as introduced in Chapter 1.2. Unfortunately, this process could hinder both data collection and
model development, as indicated by previous studies (Crow et al., 2006; Kreuter et al., 2020).
Furthermore, the risk of malicious attacks during data transmission or storage on the server
remains a significant concern (Li and Liu, 2021).

As elucidated in Chapter 3.3.3, the advent of federated learning (FL) presents a promising solu-
tion, enabling multiple institutions to collaboratively train a model without sharing their data—
referred to as cross-silo FL (Huang et al., 2022a). However, the inherent data heterogeneity
across these multiple resources poses a significant challenge to the performance of FL. Specifi-
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cally, discrepancies in demographics, disease prevalence, and other data collection-specific fac-
tors result in heterogeneous data distributions across these institutions. This data heterogeneity
also implies that local datasets are insufficient for accurately representing the health data dis-
tribution at the population level. As introduced in Chapter 3.3.3, when trained solely on such
local data, the local model may deviate from the optimal model, potentially diminishing the
performance of the aggregated global model.

To address the issue arising from heterogeneous local data distributions, in this chapter, we in-
troduce a novel method called FLea. In addition to sharing model parameters (i.e., the typical
FL approach), FLea encourages clients to exchange privacy-protected features alongside model
parameters to assist in local training. These features are derived from activations in an inter-
mediate layer of the model, which are obfuscated before sharing with other clients to protect
sensitive information in the data. We propose a new approach to combine local and shared fea-
tures as augmentations for local model training. This can alleviate model drift caused by local
data discrepancies and enhance the performance of the global model.

In our experiments, we first verify the superiority of our method using multi-centre ECG data:
FLea achieves competitive accuracy compared to the model trained with centralised data. We
further evaluate FLea via distributing a general machine learning benchmark dataset into multi-
ple data silos with various levels of heterogeneity. Results show that FLea outperforms state-of-
the-art FL counterparts, which share only model parameters, by up to 17.2%, and FL methods
that share data augmentations by up to 6.2%, while also mitigating the privacy vulnerabilities
in shared data augmentations.

Overall, this chapter makes the following contributions:

• We propose a novel cross-silo FL approach, FLea, to address the client data heterogeneity
problem. To the best of our knowledge, FLea is the first FLmethod that leverages globally
shared and privacy-preserving features as data augmentations.

• We evaluate the performance of FLea using real-world multi-centre ECG data, showcas-
ing its effectiveness in developing a deep learning model for health diagnostics without
aggregating physiological data from multiple resources.

• We also conduct extensive experiments on machine learning benchmark data. The results
not only suggest the superior performance of FLea compared to state-of-the-art FL base-
lines but also highlight its privacy-serving advantages over existing data-sharing-based
FL counterparts.

The remainder of this chapter is organised as follows. We first review related studies in Chap-
ter 7.2. Then, we introduce our proposed method, FLea, in Chapter 7.3. The experimental setup
is presented in Chapter 7.4. We discuss the results on the multi-centre ECG data in Chapter 7.5
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and the machine learning benchmark in Chapter 7.6, respectively. Finally, we conclude this
chapter with a summary of our findings and a discussion of the limitations in Chapter 7.7.

7.2 Related work

We have introduced the most widely adapted FL method FedAvg in Chapter 3.3.3. It aggregates
locally trained model parameters based on weights proportional to the fraction of data samples
at clients compared to the total samples available in the system. However, FedAvg is susceptible
to data distribution heterogeneity (Ma et al., 2022; Li et al., 2019; Zhao et al., 2018). To promote
the real-world application of cross-silo FL, manymore advanced algorithms have been proposed
in the broader field of machine learning, which can be mainly categorised into three types: data-
based, loss-based, and aggregation-based methods as follows.

Data-based methods. These methods rely on the assumption and use of a global shared dataset,
which can be either collected or generated, to align local models. Zhao et al. proposed a method
calledFedData. This method demonstrates that sharing a small proportion of local data globally,
alongside the model parameters, can effectively enhanceFedAvg (Zhao et al., 2018). Despite the
desirable performance gains brought by FedData, collecting private data would compromise the
privacy-preservation benefits of FL. Other global proxies less privacy-sensitive than raw data
have been proposed to augment the local data. FedMix (Yoon et al., 2020) andFedBR (Guo et al.,
2023) average data over mini-batches and share this aggregated data globally. Data generation
methods are also explored in FL, such as learning a data generator at the server (Liu et al.,
2022) or locally at the client (Jeong et al., 2018). However, the quality of such generated data
is typically insufficient to enhance the final performance. In response to this challenge, a post-
hoc approach called CCVR was proposed, which fine-tunes the classification layer of the global
model using global deep features (Luo et al., 2021). Nonetheless, we have two concerns: (i) the
accumulation of local model drift over time, resulting in only marginal performance gains from
post-hoc calibration, and (ii) the limitation of potential performance gain by only tuning the
classification layer. Despite these limitations, this method served as inspiration for the design
of FLea as a feature-sharing method for cross-soil federated learning. FLea introduces novel
strategies to address the limitations of CCVR.

Loss-based methods. These methods regularise local training to force that the locally trained
model remains close to the globally shared model. For example, FedProx uses a penalty quan-
tified by the difference between the global and local model parameters along with the local data
learning loss to prevent local model drift (Li et al., 2020b). Further, Yu et al. proposed to learn
the representations merely from private data while keeping the classification layer frozen (Yu
et al., 2020) SCAFFOLD leverages the similarity between clients to reduce the variance of model
updates (Karimireddy et al., 2020). FedRS (Li and Zhan, 2021) and FedLC (Zhang et al., 2022)



122 Chapter 7. FLea: Cross-silo federated learning for distributed physiological data

calibrate the logits for the local absent classes during local training and thus prevent local models
from drifting away. Recently conducted studies have shed light on the impact of heterogeneous
data on local forgetting (Liu et al., 2022; Shoham et al., 2019; Lee et al., 2022). Along this
way, FedNTD (Lee et al., 2022) aims to leverage global knowledge from the global model to
prevent local forgetting.

Aggregation-based methods. Aiming to directly enhance FedAvg, aggregation-based methods
are proposed to effectively aggregate local models, avoiding a sole reliance on fixed weights.
Yeganeh et al. introduced inverse distance aggregation to improve FedAvg (Yeganeh et al.,
2020). The essence of this method lies in the computation of weights, based on the inverse
distance of each client’s parameters to the average model of all clients. This approach allows
the server to reject or assign lower weights to models that may potentially poison the system,
such as out-of-distribution models. While this type of aggregation enhances the robustness of
FL, it is limited to addressing the inner data distribution heterogeneity. FedLoss, introduced in
Chapter 6, is also an aggregation-based FL approach. However, it is specifically applicable to
binary classification tasks, whereas cross-silo FL typically deals with multi-class data.

In this chapter, our objective is to devise a method that integrates both data-based and loss-based
approaches to address the challenge of data heterogeneity in cross-silo federated learning. In
contrast to the data-based approaches mentioned earlier, our method seeks to minimise privacy
exposure linked to shared data augmentations. Additionally, we introduce a novel training loss
to efficiently leverage globally shared data augmentations for local training.

7.3 Methodology

7.3.1 Problem formulation

Our studied cross-silo FL problem is formulated as follows:

Cross-silo federated learning for health diagnostics. K health institutes having physiological
datasets aspire to collaboratively develop a health diagnostic model without sharing their data.
However, each local dataset Dk contains varying amounts of different subsets of the globally
available classes C (label distribution heterogeneity) and the size of Dk varies across the insti-
tutes (data quantity heterogeneity). Under such data distribution, the goal is to develop a global
model θ that can accurately diagnose all health conditions that presents in theK datasets.

To tackle the above-defined problem, we introduce a novel method, FLea. Before delving into
our proposed method to address the challenges in cross-silo FL, we present some insights that
inspired our work as follows.
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(a) Overall accuracy. (b) Feature extraction.

Figure 7.1: Results for CIFAR10 classification under label distribution heterogeneity. In
(a), the performance of FedAvg and the performance with globally sharing 5% of the data and
5% of the features are compared. (b) illustrates amodel and the features extracted from its middle
layers. When Feature 1 is shared globally, it achieves similar performance with sharing the same
amount of raw data, as can be observed in (a).

7.3.2 Motivation

As discussed earlier, the presence of local data heterogeneity poses significant challenges to
the effectiveness of FL. To delve into this problem, the heterogeneous local distribution hinders
high-performing FL for the following reasons: 1) Local models exhibit bias due to the absence
of certain classes in the local dataset Dk, rendering them ineffective for the global distribution;
2) Local models differ from each other, and simply aggregating them cannot retain useful knowl-
edge. Addressing these problems is crucial for enhancing FL in the presence of label distribution
heterogeneity in decentralised physiological data (Zhao et al., 2018; Zhu et al., 2021; Guo et al.,
2023).

Existing works have demonstrated that globally sharing a small portion of the data can be highly
effective in addressing label distribution heterogeneity. Training local models with a global
proxy containing all classes helps mitigate local biases and align local models simultaneously.
We use a CIFAR10 classification example to illustrate this. In this example, the CIFAR10 data
(introduced in Chapter 2.2.3) is distributed among 10 clients, each having three out of the overall
ten classes. As shown in Figure 7.1(a), in the presence of data heterogeneity, by globally sharing
just 5% of the data, the FL model’s accuracy improved by over 20% compared to FedAvg which
does not share any data. In this case, FedAvg achieves an accuracy on the testing set with ten
classes of about 40%, while globally sharing 5% of local data can boost the performance to 60%.

Despite the desirable performance gains offered by this data-sharing method in healthcare appli-
cations, sharing private physiological data with health condition labels to others would compro-
mise the privacy-preservation target. Therefore, a natural question arises: Can we share some
information that can yield similar performance gains as sharing a subset of raw data, but with
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reduced privacy risks?

To this end, in this section, we propose to exchange deep features to aid local training. Those
features correspond to the outputs of an intermediate layer in the deep neural network, which
receives local data as input, as depicted in Figure 7.1(b). Deep models are typically composed
of multiple layers of interconnected artificial neurons that learn to extract increasingly abstract
features from input data. Thus, features not only are meaningful for classification but also pro-
vide an opportunity to protect the privacy associated with raw data (Vepakomma et al., 2020).
Given this, we introduce a novel privacy-preserving feature sharing and augmentation method,
namely FLea, for cross-silo federated learning.

7.3.3 FLea

Highlight: In cross-silo FL, a global proxy has the potential to prevent the local model
from drifting when dealing with heterogeneous local data distributions. We hypothesise
that features extracted from the intermediate layers of the model can serve as a robust
proxy to enhance learning while maintaining privacy protection.

To address local data heterogeneity, the main idea behind FLea is achieved by exchanging fea-
tures among clients along with the model parameters. As illustrated in Figure 7.2, there is a
global feature buffer that aggregates feature-label pairs frommultiple clients, serving as a global
proxy to assist local training. To make full utilisation of the feature buffer, FLea introduces
a novel feature augmentation approach to combine local and global features. Additionally, a
knowledge distillation strategy is applied to the combined features to further prevent local model
drift. To protect data privacy, features are shared by clients after applying a certain level of “ob-
fuscation”: we reduce the correlation between the features and the data while maintaining their
classification characteristics through a customised loss function.

Concretely, FLea works in a iterative manner, similarly to FedAvg (refer to Chapter 3.3.3) and
FedLoss (the method we proposed in Chapter 6). In FLea, the server will maintain a global
model and a feature buffer which contains feature-target pairs from multiple clients. In the
beginning, the global model is randomly initialised and the buffer is empty. Then as illustrated
in Figure 7.2, FLea works iteratively to update the global model and the buffer. Each round of
FLea starts with synchronising the global model parameters θ(t) and feature buffer F (t) to the
K clients. Once local training using Dk and F (t) finishes (in the first round, only local data
Dk is used for training since the feature buffer is empty), those clients send the updated model
parameters θk to the server, to be aggregated into a new global model parameterised by θ(t+1).
FLea uses the same aggregation strategy as FedAvg (Eq. (3.12)). Followed by that, FLea needs
another step to update the global feature buffer to F (t+1). A detailed training procedure can be
found in Algorithm 2. We elaborate on the main components of the procedure as follows.
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Figure 7.2: An overview of FLea. The training process for t-th communication round is shown.

Feature buffer: Let us consider the global model parameters θ(t) to be divided into two parts at
layer l: θ(t)[: l] and θ(t)[l :]. For client k, the feature vector extracted from a data point xi ∈ Dk

is θ(t)[: l](xi) = fF
i . The feature buffer from this client is the set of pairs including target labels

and feature vectors (fF
i , y

F
i ). Each client randomly selects a α fraction of its local data to create

its feature buffer to share with others. The server gathers those local feature buffers and merges
them into the global one F (t). Note that a client only extracts and contributes to the global
feature buffer at the round when it participates in training and the global buffer resets at every
round.

Client k’s local training: Now let us look at the local training for client k in round t. As shown
in Figure 7.2, k receives the global model θk = θ(t) and the feature bufferF (t). The local dataDk

and the feature buffer F (t) are divided into equal-sized batches for model optimisation, termed
byB = {(xi, yi) ∈ Dk} andBf = {(fF

i , y
F
i ) ∈ F (t)}, respectively (|B| = |Bf |). The traditional

method will feed B into the model directly to optimise the model but we propose to augment
the input in the feature space. We feed B into the model, extracting the intermediate output for
each data point: fi, ∀xi ∈ B, and generate the augmentation as,

f̃i = λifi + (1− λi)fF
i ,

ỹi = λiyi + (1− λi)yFi ,
(7.1)

where (fi, yi) and (fF
i , y

F
i ) are two feature-target pairs from B and Bf , respectively. Inspired
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Algorithm 2: Federated Learning with Feature Sharing (FLea)
Input : Total rounds T , local learning rate η, local training epochs E, clients wit local

data Dk, a given layer l, parameter a for Beta distribution.
Output: Global model θ(T ).

1 Initialise θ(0) for the global model
2 for each round t = 1,2,...,T do
3 Server broadcasts the feature buffer {F (t), ..,F (t−τ)} to clients // Skip if t = 1.
4 for each client k in parallel do
5 Server broadcasts θk ← θ(t−1)

6 for local step e = 1, 2, .., E do
7 for local batch b = 1, 2, ... do
8 sample λ ∼ Beta(a, a)
9 θk ← θk − η∇L(θk) // if t = 1, only use local data for training. Otherwise,

use one batch of local data Dk and one batch of global feature F (t)

according to Eq. (7.5).
10 end
11 end
12 Client k sends θk to server
13 end
14 Server aggregates θk to a new global model θ(t) refer to Eq. (3.12)
15 for each client k in parallel do
16 Client k receives model θ(t)

17 Client k extracts (without gradients) and sends F (t)
k to server

18 end
19 end

by the data augmentation method in the centralised setting (Zhang et al., 2018), we sample the
weight λi for each data point from a symmetrical Beta distribution (Gupta and Nadarajah, 2004):
λi ∼ Beta(a, a). λi ∈ [0, 1] controls the strength of interpolation between the local and global
feature pairs: A smaller λi makes the generated sample closer to the local feature while a larger
one pushes that to the global feature.

One might question the advantage of employing such augmentation in comparison to directly
combining local and global feature-target pairs for local model training. We posit that the aug-
mentation outlined in Eq. (7.1) can contribute to performance enhancement in the following
ways: (1) It transforms hard-label optimisation into soft-label optimisation, where yi and yFi
represent hard-labels while ỹi signifies soft-labels. This transformation has the potential to mit-
igate local overfitting, enhancing the generalisability of local models, and thereby facilitating
a better global model. (2) The utilisation of random sampling and mixup augmentation intro-
duces diversity by generating additional training data points. To elaborate, each training batch
becomes unique as the weighting rate λ is randomly sampled.

Following the augmentation, the training loss for each batch is designed to contain two parts:
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one for classification (Lclf ) and one for knowledge distillation from the global model (Ldis).
The classification loss Lclf is formulated as,

Lclf (B,Bf ) =
1

|B|
∑
i

∑
c

−ỹi[c] log pli[c], (7.2)

where for f̃i, the logit is zli = Γθk,l:(f̃i) and the probability for class c is pli[c] =
exp(zli[c])∑
c exp(z

l
i[c])

.
The distillation loss (Hinton et al., 2015) is derived by the KL-divergence between the global
probabilities and local probabilities as,

Ldis(B,Bf ) =
1

|B|
∑
i

∑
c

−pli[c] log p
g
i [c]

pli[c]
, (7.3)

where for f̃i the global logit is zgi = Γ
θ
(t)
l:
(f̃i) and the global probability is pgi [c] =

exp(zgi [c])∑
c exp(z

g
i [c])

.
Meanwhile, we aim to obfuscate the features to protect data privacy before they are shared with
the clients. As such, we learn the l layers while reducing the correlation between the features
and the source data. This is achieved by minimising the loss (Vepakomma et al., 2020) below,

Ldec(B) =
Tr(XTFF TX)√

Tr(XTX)2
√
Tr(F TF )2

, (7.4)

whereX ∈ R|B|×d and F ∈ R|B|×df are the data and feature matrix. Note that eachXi ∈ Rd and
Fi ∈ Rdf are the flattening vector for data xi and feature f l

j . The numerator of Ldec measures
the covariance between the data and the features, while its denominator measures the averaged
pairwise distance within the data batch and feature batch, respectively. When updating the local
model, the features change correspondingly. It is desired that the distance covariance decreases
faster than the feature inner distance for each batch. Since when reducing the correlation, we
hope the features can maintain classification ability, and thus we optimise all the loss functions
jointly, as follows,

L = Lclf (B,Bf ) + λ1Ldis(B,Bf ) + λ2Ldec(B), (7.5)

where λ1 and λ2 are the weights to trade-off classification and privacy preserving. The local
update is then achieved by θk ← θk − η ∂L

∂θk
, where η controls the learning rate.

Feature buffer updating: After the global model aggregation and broadcasting, client k ex-
tracts the features from the new model parameterised by θ(t+1) from layer l to formulate the
feature set. Those sets will be sent to the server to replace the old ones, updating the feature
buffer to F(t+ 1). The iterations continue until the global model converges.
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Figure 7.3: Numbers of recordings with each scored diagnosis across data silos. Colours
indicate the fraction of recordings with each scored diagnosis in each data silo, i.e., the total
number of each scored diagnosis in a silo normalised by the number of recordings in each data
set. Parentheses indicate the total number of records with a given label (Alday et al., 2020).

7.4 Experimental setup

To evaluate our method, extensive experiments are conducted on a real-world ECG database
and a machine learning benchmark. The setups as introduced below.

7.4.1 Setup for ECG data

Dataset. We leverage the multi-centre ECG database CIC2020 for the federated learning ex-
periments. Detailed information about the data can be found in Chapter 2.2.2. The data was
collected from 6 different institutes and were annotated with a total of 27 cardiovascular abnor-
malities, the distribution of which is provided in Figure 7.3. Notably, the data exhibit significant
heterogeneity in both the amount of data, ranging from 74 to 21,837 recordings, and the num-
ber of classes, varying from 5 to 23 for each silo. Therefore, this database is well-suited for
evaluating our method.

ECG classification model. We employ a ResNet-based architecture for the classification of
ECG recordings (He et al., 2016). The effectiveness of this architecture has been previously
demonstrated via a centralised 12-lead ECG data (Yang et al., 2020). ResNet was originally
proposed for feature extraction from image data. For ECG classification, Yang et al. replaced
the previous 2-dimensional convolutional kernel with a 1-dimensional convolutional kernel con-
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Figure 7.4: ECG classification model based on the modified residual convolutional net-
work. The proposed model is mainly composed of multiple basic blocks and four modified
residual convolutional network stages, as shown on the right side. The split attention block
(SplAtBlock) in Res-Block divides the feature into several feature-map groups and the combined
representation of each cardinal group can be obtained by fusing via an element-wise summation
across multiple splits.

sidering the time series characters of ECG. The overall model is illustrated in Figure 7.4. Yang
et al. introduced modifications to the network architecture for residual learning, creating better
paths for information to propagate through the network layers (Yang et al., 2020). Finally, the
learned features are passed through fully connected layers with Sigmoid activation to achieve
multi-class classification.

The ECG data from six different resources were collected at varying sampling rates and pre-
sented in different lengths. To ensure a uniform input for the model, we perform data pre-
processing. First, the data from four different sources were sampled at frequencies of 257Hz,
500Hz, and 1000Hz. To maintain data consistency as much as possible, we re-sample the ECG
records with frequencies of 257Hz and 1000Hz to 500Hz. Second, the length of the recordings
differs, with most records being 10 seconds in length. To standardise the data length fed into the
network, we apply recursive padding and data truncation, which may have a certain impact on
the ECG information. Specifically, records less than 10 seconds are padded by reusing the prior
segment to achieve a length of 10 seconds, while records longer than 10 seconds are truncated
to include only the first 10 seconds of data as the current data.

Federated learning setup. To simulate the real-world cross-silo FL setting, we treat each data
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Table 7.1: Architecture ofMobileNet_V2 for CIAFR10 classification. Features used in FLea
are underlined with l = 5.

Block(CNN layers) #Input Operator #Output Channel #Kernel #Stride #Output

0(1) 3× 32× 32(image) conv2d 32 3 1 32× 32× 32
1(2− 5) 32× 32× 32 conv2d×4 32, 32, 16, 16 1, 3, 1, 1, 1, 1, 1, 1 16× 32× 32
2(6− 9) 16× 32× 32 conv2d×4 96, 96, 24, 24 1, 3, 1, 1 1, 1, 1, 1 32× 32× 32
3(10− 12) 32× 32× 32 conv2d×3 144, 144, 24 1, 3, 1 1, 1, 1 24× 32× 32
4(13− 14) 24× 32× 32 conv2d×3 144, 144, 32 1, 3, 1 1, 2, 1 32× 16× 16

5&6(15− 20) 32× 16× 16 conv2d×3 192, 192, 32 1, 3, 1 1, 1, 1 32× 16× 16
7(21− 23) 32× 16× 16 conv2d×3 192, 192, 64 1, 3, 1 1, 2, 1 64× 8× 8

8, 9,&10(24− 32) 64× 8× 8 conv2d×3 384, 384, 64 1, 3, 1 1, 1, 1 64× 8× 8
11(33− 36) 64× 8× 8 conv2d×4 384, 384, 96, 96 1, 3, , 11 1, 1, 1, 1 9× 8× 8

12&13(37− 42) 96× 8× 8 conv2d×3 576, 576, 96 1, 3, 1 1, 1, 1 96× 8× 8
14(43− 45) 96× 8× 8 conv2d×3 576, 576, 160 1, 3, 1 1, 2, 1 160× 4× 4

15&16(46− 51) 160× 4× 4 conv2d×3 960, 960, 160 1, 3, 1 1, 1, 1 160× 4× 4
17(52− 54) 160× 4× 4 conv2d×3 960, 960, 320 1, 3, 1 1, 1, 1 320× 4× 4

18(55) 320× 4× 4 conv2d 1280 1 1 1280× 4× 4

source from the above-mentioned CIC2020 database as a data silo, and those institutions cannot
exchange data. To evaluate the performance of the FL algorithms, we initially reserve 20%
of the data from each resource to create a global testing set, ensuring it covers all 27 classes.
Subsequently, we distribute the remaining data to six clients, keeping the original independence.

For FLea, we assume that the features from the basic blocks can be shared globally, as illustrated
in Figure 7.4. Since the amount of data varies significantly across the six clients, we consider
sharing a fixed amount of feature-target pairs for FLea: 50, 200, 500, and 1000, respectively
(for St. Petersburg, we always share 30 features as it only owns 74 samples in total, and for PTB
we sharing up to 300 features). We use the Adam optimiser for local training with an initial
learning rate of 10−3 and decay it by 2% per communication round until 10−5. The size of the
local batch is 64, and we run 1 local epoch per round and 100 communications in total. The best
global model during training will be reported for comparison.

7.4.2 Setup for CIFAR10

Data and model. To gain a deeper understanding of our proposed method and to verify its
generality across various data distributions, we further evaluate FLea via the machine learn-
ing benchmark CIFAR10 (Krizhevsky et al., 2009) (introduced in Chapter 2.2.3). We classify
images in CIFAR10 using the MobileNet_V2 model that has 18 blocks consisting of multiple
convolutional and pooling layers (Sandler et al., 2018). The images are cropped to a size of
32 × 32, for both training and testing. The architecture of MobileNet_V2 is summarised in
Table 7.1.

Federated learning setup. To simulate the decentralised setting, we distribute the training
set (comprising 50,000 samples for 10 classes) to 100 and 500 clients for model development
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and utilise the testing set (containing 1,000 samples per class) to report the accuracy of the
global model. Following strategies from (Zhang et al., 2022), we employ quantity-based het-
erogeneity (Quantity(q)) and distribution-based heterogeneity (Dirichlet(µ)) for data splits.
Quantity(q) suggests each client has q classes of data, with the number of samples in each class
being the same. ForDirichlet(µ) split, µ controls the heterogeneity of all classes on each client,
whereas a smaller µ suggests a more uneven distribution of data across clients.

We use the Adam optimiser for local training with an initial learning rate of 10−3 and decay it by
2% per communication round until 10−5. The size of the local batch is 64, and we run 10 local
epochs for 100 clients setting and 5 local epochs for 500 clients setting. Considering the scale
of clients, 10% of clients are randomly sampled at each round to participate in local training and
model aggregation. We run 100 communications and take the best accuracy as the final result.

7.4.3 Baselines and metrics

We compare FLea against FedAvg, and then the state-of-the-art loss-based methods: i) Fed-
Prox (Li et al., 2020b), and ii) FedNTD (Lee et al., 2022); as well as data-based methods:
iii) FedData (Zhao et al., 2018) and iv) FedMix (Yoon et al., 2020). v) CCVR (Luo et al.,
2021). These methods have been introduced in Chapter 7.2. We adapt their official imple-
mentation to our used datasets. All baselines are hyper-parameter optimised to report their best
performances. For FedMix, we use the augmentation of the average over every 10 data samples.
Besides, regarding the data-based methods, for the ECG data, we experiment with each client
sharing up to 50 samples or features with others, while for the CIFAR10, each client shares 10%
of the local data or features from 10% of the local data. Additionally, for the ECG task, we
report the performance of the model trained by the centralised data (merged from the six data
silos) as a reference.

For the ECG classification task, to measure the performance, we employ the metrics of Sensi-
tivity and Specificity, and Youden’s index (the same metrics used in the experiment from Chap-
ter 6.4). Here, we report Sensitivity and Specificity using an operating threshold of 0.5, as the
output probability ranges from 0 to 1. For Youden’s index, we search the threshold on the ROC
curve to report the maximum value for comparison. Acknowledging the non-uniform distri-
bution of the 27 classes within the testing set, we opt to present the macro-averaged metrics
across these classes, thereby furnishing a more comprehensive evaluation of the FL algorithms
regarding health diagnostics accuracy. Specifically, we report Macro-Sensitivity and Macro-
Specificity, andMacro-Youden. Mathematically,Macro-Sensitivity= 1

C

∑27
c=1Sensitivityc, where

Sensitivityc is the Sensitivity for class c. The same applies to Macro-Specificity and Macro-
Youden. Furthermore, for both the baseline and our proposed methods, we report the 95% Con-
fidence Interval (CI) for all metrics by using bootstrap, as consistently used in the previous
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Table 7.2: Performance comparison for ECGclassification. 95%CIs are reported in brackets.
We report the performance for Method(x) with (x) denoting up to x samples or features from
each client are shared globally.

Macro-Sensitivity Macro-Specificity Macro-Youden

Centralised 0.553(0.542-0.567) 0.985(0.979-0.998) 0.558(0.530-0.585)

FedAvg 0.308(0.277-0.325) 0.965(0.954-0.976) 0.293(0.251-0.318)
FedProx 0.314(0.279-0.328) 0.970(0.959-0.982) 0.298(0.256-0.326)
FedNTD 0.367(0.360-0.375) 0.926(0.919-0.934) 0.313(0.279-0.326)
FedData (50) 0.420(0.411-0.432) 0.971(0.968-0.990) 0.411(0.379-0.442)
FedMix (50) 0.361(0.346-0.390) 0.946(0.921-0.973) 0.315(0.307-0.338)
CCVR (50) 0.335(0.319-0.348) 0.953(0.939-0.970) 0.305(0.290-0.318)

FLea (50) 0.383(0.376-0.395) 0.974(0.965-0.987) 0.370(0.361-0.387)
FLea (200) 0.424(0.415-0.437) 0.980(0.971-0.993) 0.415(0.423-0.445)
FLea (500) 0.441(0.436-0.458) 0.980(0.972-0.994) 0.422(0.428-0.461)
FLea (1000) 0.450(0.439-0.460) 0.981(0.974-0.995) 0.440(0.430-0.463)

chapter.

For the CIFAR10 benchmark, since the testing set is balanced across classes, we report the
overall Accuracy for comparison (as formulated in Chapter 3.4). We run all experiments five
times with different random seeds to derive the mean and standard deviation for the metrics as
well.

7.5 Results on multi-centre ECG data

Now, let us look at the experimental results based on the multi-centre ECG data.

7.5.1 Comparison to baselines

The results are summarised in Table 7.2, which deliveries the following observations:

• Given the notably disparate class distribution across the six data silos, the perfor-
mance of FedAvg performance degrades markedly compared to the centralised set-
ting. In particular, Sensitivity experiences a relative reduction of 44.3% (from 0.553 to
0.308), suggesting a substantial number of missed cardiovascular diagnoses. This also
confirms our motivation that the heterogeneous physiological data distribution across dif-
ferent data centres poses a great challenge to federated learning.

• The cutting-edge loss-based baseline, FedNTD, factors in the local data distribution
while retaining the global model’s knowledge during local training. This adaptation
effectively enhances Sensitivity compared to FedAvg, albeit at the expense of a decrease
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in Specificity. Consequently, its Youdex’s index exhibits a marginal difference from that
of FedAvg, i.e., 0.313 versus 0.293. This further indicates that a merely loss-based FL
approach is still insufficient to handle the data heterogeneity of real-world physiological
data.

• Compared to the loss-based baselines, the data-based baselines, including FedData,
FedMix, and CCVR, are more effective. They enclose the gap between FedAvg and
centralised training, confirming our hypothesis that a global proxy can effectivelymitigate
the local bias caused by the absence of certain classes. Among the threemethods, FedData
performs the best. However, it is important to note that this method requires clients to
share raw data and labels, making it infeasible for healthcare applications.

• FLea is superior to data-based baselines. By sharing the same amount of augmentations
(i.e., up to 50 samples or features per client), FLea outperforms FedMix and CCVR with
notable performance gain. Specifically, its Youdex’s index improves FedMix relatively by
17.4% (from 0.315 to 0.370) and CCVR by 21.3% (from 0.305 to 0.370), respectively.
In comparison to FedData, FLea yields competitive Sensitivity and Specificity with the
privacy of the data better preserved. It is worth noting that feature exposure is not equiv-
alent to privacy leakage, as the features of FLea do not leak source data. We will further
provide a more comprehensive comparison to FedData and FedMix in terms of privacy
leakage in Chapter 7.6.2.

• Upon sharing more features (from 50 to 1000) within each training round, the per-
formance enhancement of FLea becomes more pronounced: Sensitivity climbs from
0.383 to 0.447, significantly mitigating the performance gap between decentralised train-
ing and centralised training. Additionally, it is noteworthy that when more than 500 fea-
tures are shared from each client, the improvements in both Sensitivity and Specificity
stabilise. This observation implies that sharing 500 features strikes the optimal balance
between diagnostic accuracy and training efficiency.

7.5.2 Case study

Let us further explore the performance of FLea when sharing up to 500 features. While the
500 features are a small amount in comparison to the vast local dataset residing in the CPSC
(6877 samples), CPSC-Extra (3453 samples), PTB-XL (21837 samples), and G12ECG (10344
samples), the brought performance gain in terms of Sensitivity is remarkable (Specificity for
those methods are similar and consistently high so we don’t particularly compare): we observe
an impressive 43.2% improvement over FedAvg and a noteworthy 20.2% enhancement over
FedNTD.
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Figure 7.5: Performance comparison between FedAvg and FLea. Sensitivity values are com-
pared, and diagnoses are ranked based on the Sensitivity of FedAvg using the testing set. The
x-axis presents the diagnosis abbreviations alongside the total number of samples for each di-
agnosis enclosed in brackets. The distribution of each diagnosis across clients is illustrated in
Figure 7.3.

To further understand how FLea improves the Sensitivity, we visualise the Sensitivity for each
class in Figure 7.7. It can be first observed that FedAvg struggles to accurately diagnose a
majority of abnormalities, yielding a sensitivity lower than 0.5 even for two-thirds of the classes.
More interestingly, the model developed by FedAvg failed to diagnose those abnormalities not
because they are under-represented in the global data distribution. On the contrary, some of
them are certain predominant classes such as NSIVCB (1093 samples), RBBB (3051 samples),
and LQT (2253 samples). When we look at the data distribution in Figure 7.3, it is easy to
figure out that NSIVCB, RBBB, and LQT exhibit pronounced distribution heterogeneity, with
the majority of samples concentrated in one or two silos. It is evidently that the data distribution
disparity poses a challenge to FedAvg. In this regard, FLea(500), through leveraging globally
shared features to augment the local training set, proves to be remarkably effective in mitigating
the performance degradation caused by data disparity. Consequently, it consistently enhances
Sensitivity across all classes compared to FedAvg.

7.5.3 Impact of hyper-parameters

Table 7.2 presents the results for sharing different numbers for features forFLea. Following that,
Figure 7.6(a) further shows the comparison for FLea and FedMix. It is evident that a number
of 50 can significantly boost the performance while when sharing more, the advantage over
FedMix still remains. FedMix uses the average of data samples over mini-batch to protect data
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(a) Impact of number. (b) Impact of λ1.

(c) Impact of λ2. (d) Probability density function for Beta(a, a).

Figure 7.6: Hyper-parameter tuning for ECG classification. In (a), the performance of shar-
ing different numbers of augmentations by FLea and FedMix are compared. (a) and (b) present
the impact of λ1 and λ1 in Eq. (7.5), where c̄ denotes the averaged correlation between the fea-
ture and the original data (refer to Eq. (7.4)) for all rounds. (d) illustrates the Beta distribution
with varying a, where the yieldedMacro-Youden is annotated (shorted as Y ).

privacy, while FLea leverage the features. These results demonstrate the superiority of FLea in
boosting the performance.

We then illustrate howwe identify the hyper-parametersλ1 andλ2 for the loss function (Eq. (7.5))
and a in theBeta distribution for the augmentation (Eq. (7.1)) in Figure 7.6. We first set λ2 = 0

(without obfuscating the features) and search the value for λ2. As shown in Figure 7.6(b), we
found that λ1 > 1 can improve the performance compared to that without the distilling loss
(λ1 = 0), but if the weight is too large (λ1 > 4) it harms the performance. The pattern is similar
with other λ2, and thus we informally use λ1 = 1 for all experiments. With λ1 = 1, we further
study how λ2 impacts the trade-off between privacy preservation (reflected by the reduced cor-
relation c) and the feature utility (reflected by the Macro-Youden), as shown in Figure 7.6(c).
Enlarging λ2 can significantly enhance privacy protection (referring to the increasing 1 − c̄)
but decreases the final performance. We finally use λ2 = 3 when the c̄ reduces to about 0.72
while maintaining a strong Macro-Youden of about 0.42. We also suggest future applications
using 2 ∼ 6 for the trade-off. In Figure 7.6(b), we demonstrate that the final performance is not
sensitive to the parameter of the Beta distribution since we always have an expectation of 0.5
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Table 7.3: Overall performance comparison for CIFAR10. Accuracy is reported asmean±
std across five runs. The best baseline (excluding FedData) under each column is highlighted.

#Clients: 100 (500 samples per client on average) #Clients: 500 (100 samples per client on average)

% Quantity(3) Dirichlet(0.5) Dirichlet(0.1) Quantity(3) Dirichlet(0.5) Dirichlet(0.1)

FedAvg 43.55±0.82 50.36±0.89 28.21±1.20 30.25±1.33 32.58±1.09 20.46±2.15
FedProx 44.37±0.89 49.30±1.00 34.66±1.11 31.92±1.45 32.01±1.25 20.86±1.97
FedNTD 53.01±1.23 56.06±0.97 41.48±0.90 39.98±0.97 39.82±0.86 26.78±2.34

FedData 67.60±1.33 72.17±1.34 70.34±1.68 54.64±1.02 56.47±1.22 55.35±1.46
FedMix 52.78±1.99 57.97±1.24 40.68±1.50 44.04±1.53 45.50±1.88 38.13±2.06
CCVR 49.11±0.67 51.21±0.98 34.47±1.35 35.95±1.63 35.02±1.43 24.21±2.67

FLea (l = 5) 58.27±0.95 59.63±1.28 43.65±1.47 47.03±1.01 48.86±1.43 44.40±1.23

Figure 7.7: Accuracy of the model in each communication round. Two examples are given:
(a) shows the results for 100 clients with each client having 3 classes of data; (b) shows the
results for 500 clients with heavily heterogeneous local data.

for λ.

In summary, in this multi-centre ECG classification task, FLea significantly outperforms exist-
ing FL methods in terms of diagnostic accuracy. Additionally, FLea demonstrates competitive
performance compared to centralised training methods and FL approaches involving raw data
sharing, all while mitigating the risk of privacy leakage through feature sharing.

7.6 Results on distributed machine learning benchmark data

To assess the generality of our proposed method, FLea, in handling data heterogeneity in fed-
erated learning, we also conduct extensive experiments using the CIFAR10 data with varying
distributions. The results are summarised and discussed below.
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7.6.1 Performance comparison

We summarise the overall comparison to baselines for the benchmark data in Table 7.3. From
the table, we can observe that FLea consistently outperforms the baselines and closes the gap
to FedData across different data splits. Quantitatively, FLea outperforms the start-of-the-art
FL method (FedNTD) that sharing only model parameters, by up to 17.22% (from 26.78% to
44.40%), and FLmethods that share data augmentations (FedMix) by up to 6.24% (from 38.13%
to 44.04%), while reducing the privacy vulnerability associated with shared data augmentations.
Moreover, FLea presentsmore stable performance compared toFedNTD andFedMix. As shown
in Figure 7.7, FLea converges after 40 communication rounds, with notably higher averaged
accuracy and smaller variance compared to the other two best baselines.

It is noteworthy that FLea exhibits even greater superiority when dealing with smaller local data
sizes. Specifically, as the number of clients decreases from 100 to 500, resulting in significantly
smaller local data sizes (approximately 100 samples) for model training, the performance ad-
vantage of FLea over FedNTD becomes more pronounced. This observation suggests that FLea
can not only mitigate local drift caused by label distribution heterogeneity across clients but
also alleviate local overfitting resulting from limited training data. This is achieved through our
novel feature-sharing and augmentation mechanisms.

7.6.2 Privacy protection analysis

In addition to boosting the performance, FLea aims to mitigate the privacy leakage associated
with feature sharing from two aspects: i) defending from data reconstruction attack, and ii)
preventing the sensitive context information from being identified. We now demonstrate FLea
is more privacy-preserving than FedMix and FedData as follows.

First of all, we visualise the comparison among a raw data sample, the augmentation used by
FedMix and the feature used by FLea in Figure 7.8. It is worth noting that feature exposure is
not equivalent to privacy leakage, as the features of FLea do not leak source data. To quantify
the privacy exposure risk, we set two privacy attacks, i.e., data reconstruction and context iden-
tification, by using Quantity(3) data splits and K = 100 as an example for studying. Since in
other settings either the label is more skewed or the local data is more scarce, a privacy attack
can hardly be more effective than in this setting. This is to present the attack defending for the
most vulnerable case. As the correlation between the features and the data is continuously re-
duced by our de-correlation loss during the entire training procedure, we report the results for the
c = 0.65 (the 1st round) and c = 0.40 (the 10th round) for reference (c presents the correlation
between the feature and the data in a certain round).

Data reconstruction. We first implemented a data reconstruction attacker to test whether the
original data can be recovered from the shared features. Following the approach described
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Figure 7.8: Visualisation for data and data augmentations. (b) is the average of a batch
of samples like (a), but if the local data contains individual context information (e.g., (a*)),
averaging over those samples cannot protect such information (e.g., (b*)). (c) shows a feature
of (a*) and (c*) shows its reconstruction. (b) is used by FedMix and (c) is used by FLea. From
(a) to (c), the privacy vulnerability is reduced.

(a) Reconstruction training error. (b) Context detection accuracy.

Figure 7.9: The effectiveness privacy protection. c is short for the correlation as defined in
Eq. 7.4. We show the reconstruction and context detection performance for c = 0.65 (the 1st
round) and c = 0.40 (the 10th round).

.

in (Dosovitskiy and Brox, 2016), the attacker builds a decoder model for the purpose of re-
construction. Specifically, the decoder architecture, designed to match the MobileNet_V2 ar-
chitecture, comprises four conv2d layers (refer to Table 7.4) to reconstruct the original data
from the provided features. For visualisation purposes, the CIFAR10 images are cropped to a
size of 32× 32 pixels without any normalisation. The decoder takes the features extracted from
the global model as input and generates a reconstructed image, which serves as the basis for
calculating the mean squared error (MSE).

To train the decoder, we utilise the entire CIFAR10 training set, conducting training for 20
epochs and employing a learning rate of 0.001. This approach allowed us to evaluate the fidelity
of the reconstructed data and compare it with the original input, providing insights into the
effectiveness of our proposed feature interpolation method.

We use the testing set and the target global model (c = 0.65 and c = 0.40 ) to extract features
for reconstruction. Figure 7.9(a) shows the training process for the decoder model, while the
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Table 7.4: Architecture of decoder of MobileNet_V2. The input feature with a dimension of
16× 32× 32 is fed into this model to generate an image with a dimension of 3× 32× 32.

Layer Index #Input Operator #Output Channel #Kernel #Stride #Output

1 16× 32× 32 (Feature) conv2d 32 1 1 32× 32× 32
2 32× 32× 32 ConvTranspose2d 32 3 2 32× 64× 64
3 32× 64× 64 conv2d 32 3 2 32× 32× 32
4 32× 32× 32 conv2d 3 1 1 3× 32× 32 (Data)

training MSE is presented in the curves while the exampled images are from the testing set.
Firstly, it is clear that without obfuscating the features, as shown in the Ldec group, the training
MSE can be progressively reduced to about 0.0. However, with the Ldec (c = 0.4 or c = 0.65),
the training loss stops to further reduce after several iterations. This suggests that the training
data can not be well recovered from the features. More straightforwardly, let us look at the
recovered image for the feature extracted in Figure 7.8(a). As displayed by the two images in
Figure 7.9(a): i) for c = 0.65 the sensitive attributes are removed (e.g., the colour of the dog),
and ii) for c = 0.4, only some textures are recovered, while other information is not. Overall,
withLdec, the correlation between data and features is reduced, preventing the image from being
reconstructed from the feature. This demonstrates the effectiveness of FLea in mitigating the
privacy exposure associated with feature sharing.

Context information identification. In the second attack, we aim to test whether privacy-related
context information can be released from the shared features. Privacy-related context refers to
some personal information embedded in the data. Considering an application where the client’s
phone has a camera sensor problem so that each photo has a spot (see Figure 7.8(a*))), or the
client lives in a busy neighbourhood and thus all audio clips have a constant background score.
Releasing such context information may lead to personal identity leakage. Averaging over a
batch of samples will not protect such context information, as shown in Figure 7.8(b*).

We assume that the attacker explicitly knows the context information and thus can generate large
amounts of negative (clear data) and positive (clear data with context marker) pairs to train a
context classifier (which is very challenging and unrealistic but this is for the sake of testing).
Real-world attacks will be far more challenging than our simulations. The context identification
attacker is interested in finding out if a given feature f , is from the source data with a specific
context or not. We simulate the context information by adding a colour square to the image (to
mimic the camera broken), as illustrated in Figure 7.8. We use a binary classifier consisting of
four linear layers to classify the flattened features or images. To train the classifier, we add the
context marker to half of the training set to simulate the contexts, while the rest is clear data.
Similar to the training data, we add the context marker to half of the testing set to evaluate the
context identification performance.
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We present the identification accuracy achieved with varying amounts of training data in Fig-
ure 7.9(b), comparingFedMix andFLea. From the results in Figure 7.9(b), it is initially observed
that, with an equal number of available training samples, the identification accuracy for FLea
is consistently 20∼40% lower than that for FedMix. Conversely, to achieve a comparable level
of accuracy, FLea requires a larger number of training samples than FedMix. This underscores
FLea’s ability to better safeguard contextual privacy. These findings collectively indicate that
FLea enhances the complexity of potential attacks, thereby providing improved protection for
contextual privacy compared to FedMix.

All the above results lead to the conclusion that by reducing and mitigating the correlation
between the features and source data, FLea safely protect the privacy associated with feature
sharing while achieving favourable performance gain in addressing various data distribution
disparities in FL.

In summary, the extensive experimental results presented above showcase the superiority of
FLea from various perspectives. FLea is an effective framework for health institutes to col-
laboratively develop health diagnostic models without exchanging their collected physiological
datasets. Our work holds significant promise in effectively addressing the challenging dilemma
that isolated data is insufficient while aggregating data poses a privacy risk, and thus paves the
way for trustworthy machine learning in healthcare applications.

7.7 Discussion and conclusions

This chapter explored an orthogonal dimension from the study presented in Chapter 6: the cross-
silo FL applied to distributed physiological data. In contrast to cross-device FL, the cross-silo
approach involves each silo containing a larger volume of data, albeit with data spanning mul-
tiple disease categories. Consequently, a pronounced heterogeneity emerges in both data vol-
ume and class distribution across these silos. To address this intricate challenge and facilitate
collaboration among health institutions without data exchange, we introduced FLea. This inno-
vative algorithm, based on feature sharing, enables high-performing FL for such decentralised
physiological data. Our approach was thoroughly validated through a combination of empirical
assessments using both real-world and benchmark datasets.

We recognise a limitation within this work: the local label distribution may be disclosed to the
server during feature sharing. This could raise concerns, particularly when the client-owned
classes are sensitive, such as individual disease diagnoses. This drawback renders FLea unfea-
sible for cross-device scenarios wherein label distribution cannot be enclosed. While it is worth
noting that many existing FL methods also explicitly reveal label distribution to the server (Luo
et al., 2021; Tan et al., 2022), and for other methods, label distribution can potentially be in-
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ferred from the gradients (Dang et al., 2021; Wei et al., 2020; Wainakh et al., 2022), we are
committed to enhancing FLea by sharing label-agnostic features in the future. This strategic
modification will render the algorithm adaptable to a broader array of scenarios while retaining
a robust privacy protection capability.

In both Chapter 6 and 7, our primary focus was on addressing the heterogeneity in local data
distribution, specifically concerning label distribution. While this represents a key challenge in
real-world federated learning applications, there are instances where semantic shifts can occur
alongside label skew. Semantic shifts occurwhen data collected bymobile devices or institutions
exhibit domain-specific differences due to variations in devices and protocols (Li et al., 2020c;
Chen et al., 2023b). This has inspired us to delve further into this issue as an extension of our
work.





Chapter 8

Conclusions and future directions

The future of work lies in the collaboration between humans and AI.

- Demis Hassabis

co-founder and CEO of DeepMind

8.1 Summary of contributions

In the introduction of this thesis, we highlighted the challenges arising from limited and im-
balanced physiological data, overconfidence in deep learning, and the privacy protection re-
quirements for health-related machine learning research. Despite numerous efforts, including
those within the broader machine learning literature, these challenges remained inadequately
addressed. The primary objective of this thesis was to address these issues and make a mean-
ingful contribution to the development of reliable deep-learning methodologies for real-world
health diagnostic applications. We now delve into a specific reflection on the research questions
introduced in Chapter 1 and provide a concise summary of the major contributions made in this
thesis.

Research Question 1: How can we mitigate the bias and calibrate the confidence of
predictions when training models for health screening with limited and imbalanced phys-
iological data?

Contribution 1: The accuracy and the reliability of automated diagnostics are equally crucial
for real-world medical applications. However, deep learning is susceptible to bias and overcon-
fidence when developing models using limited and imbalanced physiological data.

To enhance the reliability of deep learning in the health domain, Chapter 4 introduced a novel
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data-balanced ensemble learning method. This approach involves re-sampling imbalanced data
to create class-balanced subsets for training model ensembles. The effectiveness of this design
was validated in the context of a physiological audio-based COVID-19 screening task. Our
approach significantly improved screening accuracy by mitigating overconfident predictions of
a single deep-learning model. Furthermore, by utilising quantified model uncertainty from the
ensembles for selective prediction, our methods demonstrated an additional screening accuracy
boost of 17.6%.

Research Question 2: How can we develop high-performing models with efficient un-
certainty estimation for health diagnostics, given multi-class imbalanced physiological
data?

Contribution 2: Mobile health applications require not only effective uncertainty quantifica-
tion but also efficiency, given the limited computational resources of devices. Evidential deep
learning (EDL) represents the state-of-the-art in efficient uncertainty quantification, capable of
estimating predictive uncertainty through a single model and a single forward pass. However,
this approach is susceptible to class imbalance. In order to make EDL effective for health diag-
nostics applications, where physiological data often exhibit imbalance, Chapter 5 introduced a
class-balanced EDL method with two novel mechanisms: i) a class-level pooling loss to miti-
gate bias in classification evidence, and ii) a learnable prior, regulated by the class distribution,
to facilitate learning for minority classes.

The superiority of our method was demonstrated through extensive experiments using three
physiological datasets and one machine learning benchmark with varying degrees of class im-
balance. Results suggested that our method not only enhanced diagnostic accuracy but also re-
duced overconfident predictions by up to 43% compared to other uncertainty-aware baselines,
while keeping as efficient as the traditional Softmax-based method. We also introduced the use
of uncertainty measurements for misdiagnosis identification and out-of-training-distribution de-
tection. Consequently, our method outperforms state-of-the-art methods in these applications
by up to 16.1%. Our work paves the way for uncertainty-aware mobile health applications.

Research Question 3: How can we train deep learning-driven health screening models
using only decentralised and imbalanced physiological data stored on mobile devices?

Contribution 3: Privacy concerns pose a significant obstacle to health-related data collection
for machine learning research. In Chapter 6, we delved into the realm of cross-device federated
learning, aiming to facilitate model training using physiological data distributed across mobile
devices. Acknowledging the local and global class imbalances inherent in decentralised physio-
logical data, we proposed a weighted federated learning aggregation method. This aggregation
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of local models is guided by the model loss, addressing biases induced by imbalanced physio-
logical data.

The effectiveness of this method was validated through the physiological audio-based COVID-
19 screening task, assuming that physiological audio samples remain where they were collected.
Results demonstrated the superior performance of our method, comparable to centralised train-
ing outcomes. Our study opens the door to privacy-preserving mobile health research.

Research Question 4: How can we develop high-performing models for health diag-
nostics using physiological data distributed in multiple places and with heterogeneous
distributions?

Contribution 4: For distributed physiological data with heterogeneous health condition distri-
butions, Chapter 7 introduced a novel cross-silo federated learning approach. This approach
enables multiple data holders to collaboratively develop a health diagnostic model without ex-
changing their raw data. To address the issue of data heterogeneity, our method leveraged glob-
ally shared features as an augmentation to enhance local training, reducing the discrepancy be-
tween local and global models.

The effectiveness of our method was first validated using real-world multi-centre ECG data. The
results demonstrated its capability to develop a high-performing cardiac arrhythmia detection
model without centralising the ECG data. Additionally, extensive experiments were conducted
on machine learning benchmark data. The results not only indicated the superior performance
of our method compared to state-of-the-art federated learning baselines but also suggested its
privacy-preserving advantages over existing data-sharing-based federated learning counterparts.
Therefore, our work facilitates privacy-preserving machine learning research in the health do-
main.

Conclusions. Beyond the numerical improvements over the compared physiological data mod-
elling methods, my studies have led to two significant high-level breakthroughs in this field: i)
the transformation of overconfident deep learning predictions into calibrated health diagnoses;
and ii) the shift in deep learning research from reliance on centralised physiological data to
decentralised data. These advancements underscore the importance of accuracy and reliability
in health-related machine learning applications, emphasising the need for models that not only
perform well statistically but also align closely with the complexities and variability inherent in
real-world healthcare data.

The first breakthrough, the transformation of overconfident deep learning predictions into cali-
brated health diagnoses, addresses a critical challenge in healthcare applications of deep learn-
ing: the tendency of these models to make predictions with unwarranted certainty. By im-
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plementing mechanisms for uncertainty quantification, my researches provide a robust frame-
work for interpreting deep learning outputs in a manner that is both scientifically grounded and
clinically relevant. Firstly, it enhances patient safety by reducing the likelihood of erroneous
decisions based on overconfident predictions. When models convey uncertainty in their diag-
noses, clinicians can make more informed choices about when to rely on AI-supported insights
and when to seek additional information or alternative diagnostic paths. This is particularly
crucial in high-stakes medical scenarios where the cost of a mistake is substantial. Moreover,
incorporating uncertainty quantification into health diagnostics encourages a more collaborative
relationship between AI systems and healthcare professionals. Instead of viewing AI as a defini-
tive authority, clinicians can interpret AI-generated diagnoses as a consultative tool that offers
insights while acknowledging its limitations. This paradigm shift fosters a multidisciplinary
approach to patient care, where technology complements rather than replaces human expertise.

The significance of the second breakthrough, the shift from reliance on centralised physiological
data to decentralised data in deep learning research, marks a paradigm shift with profound impli-
cations for the future of healthcare. This breakthrough signifies several key advancements and
opportunities. Firstly, it will broaden data accessibility. Decentralising data sources democra-
tises the access to and availability of health-related data. It enables the collection of a wider array
of data types from diverse populations across different geographical locations, contributing to a
more inclusive understanding of health and disease. This broadening of data sources is critical
for developing models that are more representative of the global population, thus improving the
unreliability and applicability of deep learning models in healthcare. Secondly, it can enhance
research collaboration. The shift towards decentralised data encourages collaboration among
researchers, clinicians, and data scientists from around the world. By sharing and analysing
decentralised datasets, the research community can uncover novel insights, identify trends, and
validate findings across various populations and conditions, accelerating the pace of innovation
in medical research.

8.2 Discussion and implications

This thesis explores three directions in physiological data-driven personal health prediction, de-
voting significant effort to addressing the issues of class imbalance, model overconfidence, and
data privacy. We acknowledge that these problems are widely investigated within the broader
field of machine learning. However, addressing them specifically for physiological data remains
under-explored. This area requires careful experimental design, from data preparation to metric
utilisation. A few takeaways are summarised as follows.

1) Preparation of physiological data demands considerable effort, and transparent data shar-
ing is beneficial for the research community. As an example, we discuss the use of COVID-19
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Sounds data in Chapters 4 and 6. This dataset was crowd-sourced from mobile app users, mean-
ing the data was collected in uncontrolled environments. Consequently, data quality was vari-
able; for instance, background TV noise is sometimes audible in cough recordings. Cleaning this
data required significant effort before it could be used for research. Furthermore, when deploy-
ing machine learning algorithms, the division of data into training, validation, and testing sets
presents additional challenges. We consistently employed a user-independent split and carefully
balanced demographics to avoid bias. While such considerations are crucial for human-centric
studies and are a staple in clinical trials, they are often overlooked in much of machine learn-
ing research. For comparison, the machine learning community frequently uses well-curated
datasets like CIFAR10, which are randomly split. The ECG and skin lesion data utilised in
Chapters 5 and 7 had been cleaned and processed by previous researchers. We are grateful for
their open-source contributions. As a form of giving back to the community, we have made the
prepared COVID-19 Sounds data publicly available for research purposes.

2) Effective algorithms for physiological data typically require the integration of multiple tech-
niques, embodying a multidisciplinary approach. Given the complexity of various types of
physiological data, especially signals, a combination of signal processing and machine learning
methods is necessary. For physiological audio, such as respiratory and heart sounds, spectro-
grams play a crucial role in representing the model input. For other signals like PPG, ECG,
EEG, and IMU signals, signal processing techniques are essential for pre-processing the data
and reducing noise before feeding it into deep learning models. Techniques such as filtering,
normalisation, and signal enhancement can significantly improve the quality of input data, fa-
cilitating the learning process for deep learning models by highlighting underlying patterns and
minimising confusion caused by noise and irrelevant variations.

There is a longstanding debate over whether signal processing remains necessary in the era
of AI, and in my view, the two are not mutually exclusive. On one hand, signal processing can
enhance resource efficiency. Deep learning models, particularly those capable of processing raw
data directly, often require significant computational resources. Signal processing can simplify
the data or extract compact representations, thus reducing the computational demands on the
deep learning model. This aspect is particularly crucial for deploying models on devices with
limited processing power, such as smartphones and embedded systems. On the other hand,
signal processing techniques can provide insights into the nature of the data and the underlying
physical phenomena. By analysing signals across different domains (e.g., time, frequency, and
spatial), researchers and engineers can uncover insights not readily apparent from raw data or
the opaque layers of deep learning models, leading to improved interpretability, an area where
current deep learning models often fall short.

Even within the realm of machine learning algorithms themselves, it is essential to employ mul-
tiple techniques in tandem. For instance, in Chapter 4, we implemented a combination of data
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augmentation, transfer learning, and ensemble learning techniques within a single framework.
This approach enabled us to develop an uncertainty-aware COVID-19 detection model using
limited and imbalanced audio data. Similarly, in Chapter 5, we integrated transfer learning
with federated learning to create a COVID-19 detection model without the need to aggregate
audio data on a central server. While machine learning research often delves deeply into a sin-
gle dimension, modelling physiological data demands that researchers possess a comprehensive
understanding of a wide array of machine learning techniques.

3) Training models using decentralised physiological data still faces many real-world chal-
lenges. In this thesis, although we utilised various physiological data modalities, they were
modelled separately, meaning we modelled one variable at a time. In Chapters 6 and 7, we
discussed the feasibility of training a single health diagnostics model using decentralised phys-
iological data, which also presented single-variable-based problems. Specifically, for the audio
and ECG data we examined, we addressed the issue of label distribution heterogeneity rather
than input heterogeneity. In clinical trials, doctors typically make diagnostic decisions using
multiple examinations, involving multi-variables. When decentralised data are employed for
model training, it’s challenging to ensure that different mobile devices or hospitals can collect
the same set of physiological data. Under these circumstances, the effectiveness of federated
learning methods becomes questionable. This opens up many avenues for future work.

4) Evaluation metrics and comparison should be both clear and equitable. In much of the ma-
chine learning literature, Accuracy (the ratio of correctly predicted instances to total samples) is
often emphasised as the paramount metric. However, in the context of health diagnostics, the
significance of different metrics cannot be overstated, and the optimal choice heavily relies on
the specific application scenarios. The selection of appropriate evaluation metrics is crucial not
only for validating the effectiveness of models but also for securing trust from medical profes-
sionals. Accuracy falls short, especially in cases where the dataset is imbalanced, as it may not
accurately reflect the model’s performance in predicting less frequent outcomes. Medical prac-
titioners often show a preference for the AUC-ROC of a model, as it provides a comprehensive
overview of the model’s ability to distinguish between two classes. However, the interpretation
of AUC-ROC can be non-intuitive, necessitating the additional reporting of Sensitivity (true
positive rate) and Specificity (true negative rate) to provide clearer insights. Various strategies
exist for selecting an operating point on the ROC curve to report these metrics, including min-
imising false positives to enhance specificity, minimising false negatives to improve sensitivity,
or finding an equilibrium between the two. Whichever criterion is used for the proposed method
and for the baseline, it should be clearly defined. This nuanced approach ensures a more de-
tailed and transparent assessment of model performance, particularly in critical fields such as
healthcare diagnostics, where the stakes are inherently high.

5) Mobile health represents a promising avenue for ubiquitous health monitoring. Significantly,
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half of the datasets utilised in this thesis (namely, COVID-19 Sounds data, ECG5000 data,
and HAM1000 skin image data) were all collected using mobile devices. This underscores
the considerable potential and illustrates the burgeoning interest within the research commu-
nity: Mobile health is poised to shape the future. Reports indicate that nine in ten people in
the UK own a smartphone (Taylor, 2023), and a fifth of American adults regularly utilise a
smartwatch or wearable fitness tracker (VOGELS, 2020). Such widespread usage facilitates the
continuous collection of individual physiological data, encompassing vital signs, activities, and
responses (Inbamani et al., 2022). The expanding market for mobile health devices may soon
make healthcare accessible anytime and anywhere.

It could be argued that sensors in mobile devices may not provide the optimal means for health
diagnostics. For instance, clinical settings traditionally rely on ECGs and stethoscopes, whereas
wearables employ PPG and microphones as alternatives. While it’s not certain that mobile de-
vices can meet medical standards on an individual instance basis, the advancement in sensing
technologies is undeniable. More crucially, mobile devices offer the potential for long-term
health monitoring, leading to the accumulation of longitudinal data. Although individual mea-
surements may not always be optimal, analysing physiological dynamics over time can offer
insights into disease progression. This presents a unique advantage of mobile health over tradi-
tional clinical trials.

8.3 Future research directions

As a direct extension of the outcomes of the work that has been conducted in this thesis, the
following areas of future work are worth exploring.

8.3.1 Is the model fair? Unbiased deep learning for health diagnostics

If a deep learning model unintentionally introduces biases, it may fail to capture the proper re-
lationship between features and the target outcome. This is particularly concerning in sensitive
domains like healthcare: it is vital to ensure that these deep learning technologies do not reflect
or exacerbate any unwanted or discriminatory biases that may be present in the data (Yang et al.,
2023a). In this thesis, we paid considerable attention to class imbalance, a common factor in
physiological data that can lead to biased diagnoses. However, other factors, such as demograph-
ics, entities, and socio-economics, could also introduce bias into the model. For instance, in our
work where audio recordings were utilised to detect COVID-19, experimental results revealed
that language can introduce a shortcut from the input to the prediction because the prevalence of
COVID-19 varies with languages, despite language not being a relevant feature for COVID-19
detection (Han et al., 2021a). Mitigating algorithmic biases in healthcare is crucial to enhance
the robustness of the system when deployed across diverse populations.
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Various methods have emerged to address bias, or mitigate the spurious correlations within the
data, broadly categorised into two primary types. The first category entails distributionally ro-
bust optimisation, aiming to ensure consistent performance across predefined groups delineated
by demographics or geographical factors (Sagawa et al., 2019; Levy et al., 2020; Yang et al.,
2023a). For instance, the GroupDRO method was devised to minimise the worst-case training
loss, guaranteeing a performance floor for underrepresented groups (Sagawa et al., 2019). In a
recent study (Yang et al., 2023a), a reinforcement learning approach was introduced to counter
bias across various subgroups. The learning reward function in this case encourages a robust
classifier and uniform performance for sensitive attributes simultaneously. The second category
employs adversarial training, incorporating an additional adversary module to recognise and al-
leviate biases (Han et al., 2021b; Rajotte et al., 2021). For instance, Yang et al. employed clinical
features to diagnose COVID-19, employing an adversary module designed to identify and mit-
igate site-specific (hospital) and demographic (ethnicity) biases. This intervention resulted in
enhanced outcome fairness (Yang et al., 2023b).

While emerging research has emphasised the necessity of unbiased deep learning, existing solu-
tions often necessitate pre-defined groups that themselves could be associated with bias. Beyond
these predefined groups, recognising potential confounding factors remains challenging. Here,
Explainable AI (XAI) can play a crucial role in reducing bias in deep learning-driven health di-
agnostics by providing insights into the model’s decision making process (Saraswat et al., 2022;
Chaddad et al., 2023). XAI techniques allow us to analyse the model’s behaviour, identify in-
stances of biased patterns, and pinpoint specific features or data points contributing to biased
predictions. Understanding the root causes of bias enables targeted interventions to address
these issues effectively.

We would like to highlight a few representative XAI techniques tat can be applied to physiologi-
cal data. The first one is feature importance method, including SHAP (SHapley Additive exPla-
nations) and LIME (Local Interpretable Model-agnostic Explanations). SHAP values explain
the prediction of an instance by computing the contribution of each feature to the prediction.
SHAP is model-agnostic and provides detailed insights into model behaviour, making it highly
valuable for understanding how different physiological parameters influence health outcomes.
LIME explains predictions by approximating the local decision boundary around an instance. It
is particularly useful for explaining predictions of complex models in an interpretable manner
by highlighting which features were most influential for specific predictions. The second is the
attention mechanism, especially for deep learning. Attention Layers in Neural Networks: In
deep learning, attention mechanisms can highlight parts of the input data (e.g., segments of an
ECG signal or regions in audio spectrogram) that the model pays more attention to when mak-
ing a prediction. This method is model-specific and helps in understanding which aspects of the
physiological data are deemed important by the model. Another one is visualisation technique.
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For image-based physiological data (e.g., dermatological images or radiographs), saliency maps
can highlight regions of the image that significantly influence the model’s predictions. This ap-
proach helps in identifying visual patterns or anomalies that are predictive of certain conditions.
T-SNE (T-Distributed Stochastic Neighbor Embedding) can also be applied. It can reduce high-
dimensional data (like high-resolution time series or the activation from a deep neural network)
to lower-dimensional spaces for visualisation. This can help in understanding the data distribu-
tion and how different physiological states are separated in the model’s representation space.

Implementing these XAI methods requires careful consideration of the specific healthcare ap-
plication, the type of physiological data, and the needs of the end-users, typically healthcare
professionals or patients. The goal is to enhance transparency, trust, and actionable insights,
thereby facilitating better clinical decision-making and patient care.

8.3.2 Certain or not? Benefits of uncertainty for health applications

As the popularity of deep learning continues to rise, it becomes increasingly crucial to establish
the reliability of deep learning models for their effective utilisation in healthcare and well-being.
Uncertainty quantification is of ever increasing importance in this aspect. This significance is
evident in a recent publication in Nature Medicine (Dvijotham et al., 2023), where the proper
use of confidence scores from a deep learning model for breast cancer screening resulted in a
25% reduction in false positives at the same false-negative rate, significantly reducing clini-
cian workload by 66%. In Chapter 4.5.2, we also demonstrated how high-quality uncertainty
estimates can significantly enhance the system’s performance and reliability.

However, despite the numerous proposed uncertainty quantification methods, most of the exist-
ing work relies on the assumption that uncertainty-aware deep neural networks can effectively
model the underlying training data distribution, either explicitly or implicitly. However, a crit-
ical issue arises during training, where the focus remains primarily on utilising in-distribution
data while neglecting out-of-distribution data, particularly ‘uncertain samples’, which are not
defined and utilised for training. Consequently, this raises doubts about the reliability of current
uncertainty estimates.

Unlike machine learning models that merely learn patterns from given categorical data, clin-
icians often approach decision-making with varying degrees of confidence (in other words,
doubt). Difficult cases may elicit differing opinions among doctors, prompting the need for
consultations. In light of this, we propose that when training uncertainty quantification mod-
els, we should incorporate the diagnostic difficulty as assessed by multiple clinicians to guide
the model’s learning process. Recently, we have observed a trend of learning with soft labels,
wherein the distribution of labels from multiple annotators is considered (Sridhar et al., 2021;
Collins et al., 2022; Han et al., 2017; Raghu et al., 2019). This approach provides stronger
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supervision for uncertainty estimation. In the future, it is valuable to apply soft-label learning
techniques to physiological data to enhance the quality of uncertainty estimates. Nevertheless,
acquiring multiple annotations from clinicians can be costly, making it essential to address the
challenge of reducing clinicians’ workload while ensuring effective learning.

Other the other hand, in this thesis, we presented our contributions to uncertainty-aware health
diagnostics and health model learning with decentralised data, subsequently. These two direc-
tions of research aim to tackle safety and data privacy concerns associated with health applica-
tions. Empirically, the proposed uncertainty estimation method shows promise under the feder-
ated learning framework. However, it is important to acknowledge that various realistic factors,
such as data heterogeneity across different stakeholders, can harm the quality of uncertainty.

In a recent research (Zhang et al., 2023d), a preliminary studywas conducted, revealing a decline
in the quality of uncertainty estimates in the decentralised setting compared to the centralised
setting. This degradation can be attributed to the variations in data collected from different hos-
pitals or health monitoring devices, which encompass diverse technologies, patient demograph-
ics, and disease prevalence. The complexity of data heterogeneity poses a significant challenge
when attempting to develop a single global model that performs well on all clients. Personalised
federated learning, which involves training tailored models for each client, has shown promise
in enhancing uncertainty estimation. In the future, building end-to-end systems that integrate
uncertainty quantification into the federated learning framework and devising novel techniques
to address data heterogeneity will remain crucial for health applications.

As decentralised machine learning continues to evolve, developing robust, scalable, and in-
terpretable methods for uncertainty quantification will be key to its success, particularly in
healthcare applications. This endeavour requires not only methodological advancements but
also careful consideration of ethical issues, especially concerning privacy and data governance.
The dynamic and distributed nature of these systems presents a fertile ground for research and
innovation, promising significant impacts across various domains where machine learning is
applied. Despite its importance, numerous challenges remain. Firstly, data heterogeneity poses
a significant challenge, as decentralised systems often process data that is not uniformly dis-
tributed across nodes. It is crucial to quantify uncertainty accurately in these settings to en-
sure reliable predictions, despite variations in data quality and quantity. Secondly, communi-
cation constraints due to bandwidth or privacy concerns may limit constant interaction between
nodes (e.g., devices, servers), necessitating efficient methods to estimate and communicate un-
certainty. Lastly, model heterogeneity introduces additional complexity, as nodes may employ
different model architectures based on their computational capacities. Overall, the unique char-
acteristics of these systems offer extensive opportunities for groundbreaking research and sig-
nificant advancements in machine learning applications.
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8.3.3 Many or one? Foundation models for physiological data

In Chapter 4.4 and 6.4, we employed theVGGishmodel pre-trained on a public non-physiological
audio database to process physiological audio data. This decision was informed by previ-
ous findings demonstrating performance enhancements resulting from pre-training (Xia et al.,
2021d). However, considering the presence of other modalities such as ECG and EEG, finding
matched data for pre-training these models may not always be feasible. This indicates the need
to develop a general model capable of accommodating multiple physiological data modalities
and easily adapting to various downstream applications.

The recent rise of Large Language Models (LLMs) has garnered extensive attention due to their
outstanding performance across various tasks (Zhao et al., 2023; Brown et al., 2020b; Zhang
et al., 2023b). The inherent capacity of LLMs to capture knowledge and concepts has signifi-
cantly improved with the scaling of model size and the exponential increase in training samples.
As a result, these models present significant opportunities for diverse downstream tasks, espe-
cially in fields like healthcare, where labelled data is often scarce for model development. The
prospect of adapting pre-trained LLMs for processing physiological data holds great promise.
The feasibility of applying LLMs to physiological time series data arises from two aspects: 1)
LLMs are trained with medical knowledge and thus are capable of understanding physiological
dynamics from the signals; 2) LLMs, being pre-trained with an auto-regressive objective, can
capture sequential patterns, which are prevalent in physiological time series.

To date, a few preliminary studies have explored this direction. For instance, Liu et al. pointed
out that existing LLMs, while limited to language models alone, can function as effective few-
shot health learners (Liu et al., 2023b). They demonstrated that by fine-tuning the model with
physiological and behavioural time-series data, the model could make meaningful inferences on
numerous health tasks, encompassing clinical and wellness contexts. These tasks included car-
diac signal analysis, physical activity recognition, metabolic calculation (e.g., calories burned),
and estimation of stress reports and mental health screeners. Similarly, Zhang et al. pro-
posed a unified and versatile Biomedical Generative Pre-trained Transformer (BiomedGPT)
model (Zhang et al., 2023a). This model leverages self-supervision on large and diverse datasets
to accept multi-modal inputs and perform a range of downstream tasks. The experiments showed
that BiomedGPT delivered extensive and comprehensive representations of biomedical data.

The pre-trained LLMs can be fine-tuned for physiological data to enhance performance in health-
care applications (Liu et al., 2023a). Themain fine-tuningmethods include: i) Transfer learning.
This involves adjusting the pre-trained model on a new, but related, task. The model retains its
learned knowledge, which is then refined using a smaller dataset specific to the healthcare task
at hand, such as patient diagnosis or treatment recommendation based on physiological data. ii)
Few-shot learning. Leveraging the ability of LLMs to perform tasks with minimal examples,
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few-shot learning fine-tunes the model on a very small dataset. This is particularly useful in
healthcare settings where labelled data is scarce but high-quality. iii) Domain adaptation. This
method fine-tunes the model to adapt to the specific language and terminology used in health-
care and physiological data. It helps the model understand medical jargon and abbreviations,
improving its performance on healthcare-related tasks. v) Prompt engineering. By carefully
designing prompts or instructions, the model can be guided to better understand and process
physiological data. This method relies on the creativity of the prompts to elicit the desired re-
sponse from the model without extensive retraining. By employing these fine-tuning methods,
pre-trained LLMs can be effectively adapted to handle the nuances and complexities of physi-
ological data, thereby improving their performance in healthcare applications and contributing
to better patient outcomes.

In an article published in Nature, there is ongoing discussion about the capabilities future LLMs
for health should possess (Moor et al., 2023). Although numerous conceptual frameworks have
been proposed, there remains a need for rigorous experimental validation across various tasks,
robustness analysis, and a deeper understanding of why universal representations are effective.
This opens up ample opportunities for future research.

Operating independently from the utilisation of LLMs, another promising avenue of research
is the development of foundational approaches using large-scale, unlabelled physiological data
signals for health applications. This strategy entails harnessing the vast quantities of raw, un-
structured data produced by healthcare systems and wearable technologies. The goal is to create
models capable of understanding and interpreting complex physiological signals without rely-
ing extensively on labelled data. Key methodologies and focal areas for this research include
representation learning (Bengio et al., 2013) and self-supervised learning (Liu et al., 2021b;
Krishnan et al., 2022). Representation learning aims to discover universal data representations
that are applicable across various tasks, such as diagnosing different conditions or predicting
health outcomes. By extracting generalisable features from extensive datasets, models can be
adapted more easily to specific healthcare applications with minimal fine-tuning required. Self-
supervised learning, a branch of unsupervised learning, allows a model to generate its own su-
pervisory signals from the input data. In the context of physiological signals, this could involve
tasks like predicting subsequent sequences in a time series or identifying anomalies in heartbeat
patterns. Such capabilities enable models to derive meaningful representations of health-related
data.

Recently, we have observed the emergence of several foundation models for physiological sig-
nals, primarily developed by major tech companies such as Google and Apple Inc. These com-
panies have access to vast datasets and possess the necessary computational resources. For
instance, Apple has utilised millions of wearable PPG and ECG samples to pre-train a model
for representing physiological signals (Abbaspourazad et al., 2023). Similarly, Google has em-
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ployed thousands of hours of respiratory sound recordings to develop a foundation model for
respiratory audio analysis using constructive learning approaches (Baur et al., 2024). These
models serve as potent feature extractors for a variety of downstream tasks.

Training a foundation model demands extensive datasets and computational resources. A practi-
cal approach to realising this is through decentralised learning. Building directly upon the work
presented in this thesis, edge devices or hospitals possessing physiological data can collabo-
rate to develop foundational models without the need to exchange their private data, utilising
federated learning. This approach maximises data and resource utilisation.

Overall, developing a foundation model that can handle diverse physiological data and effec-
tively address multiple health-related tasks holds tremendous potential. It calls for further re-
search, experimentation, and analysis to achieve robust and reliable results that can revolutionise
health diagnostics and applications.

This marks the conclusion of my thesis, but not the end of my research journey. The intersec-
tion of machine learning and healthcare is a promising and socially significant direction. I am
committed to channelling my efforts towards making further contributions.
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