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Abstract

Machine learning to model health with multimodal
mobile sensor data

Dimitrios Spathis

The widespread adoption of smartphones and wearables has led to the accumulation
of rich datasets, which could aid the understanding of behavior and health in un-
precedented detail. At the same time, machine learning and specifically deep learning
have reached impressive performance in a variety of prediction tasks, but their use
on time-series data appears challenging. Existing models struggle to learn from this
unique type of data due to noise, sparsity, long-tailed distributions of behaviors, lack of
labels, and multimodality. This dissertation addresses these challenges by developing
new models that leverage multi-task learning for accurate forecasting, multimodal fu-
sion for improved population subtyping, and self-supervision for learning generalized
representations. We apply our proposed methods to challenging real-world tasks of
predicting mental health and cardio-respiratory fitness through sensor data.

First, we study the relationship of passive data as collected from smartphones
(movement and background audio) to momentary mood levels. Our new training
pipeline, which combines different sensor data into a low-dimensional embedding and
clusters longitudinal user trajectories as outcome, outperforms traditional approaches
based solely on psychology questionnaires. Second, motivated by mood instability as
a predictor of poor mental health, we propose encoder-decoder models for time-series
forecasting which exploit the bi-modality of mood with multi-task learning.

Next, motivated by the success of general-purpose models in vision and language
tasks, we propose a self-supervised neural network ready-to-use as a feature extractor
for wearable data. To this end, we set the heart rate responses as the supervisory signal
for activity data, leveraging their underlying physiological relationship and show
that the resulting task-agnostic embeddings can generalize in predicting structurally
different downstream outcomes through transfer learning (e.g. BMI, age, energy
expenditure), outperforming unsupervised autoencoders and biomarkers. Finally,



acknowledging fitness as a strong predictor of overall health, which, however, can only
be measured with expensive instruments (e.g., a VO2max test), we develop models that
enable accurate prediction of fine-grained fitness levels with wearables in the present,
and more importantly, its direction and magnitude almost a decade later.

All proposed methods are evaluated on large longitudinal datasets with tens of
thousands of participants in the wild. The models developed and the insights drawn
in this dissertation provide evidence for a better understanding of high-dimensional
behavioral and physiological data with implications for large-scale health and lifestyle
monitoring.
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Chapter 1

Introduction

The purpose of computation is insight, not numbers
–Richard Hamming

1.1 Motivation

Computers and data have changed the way we organise information, the way we
communicate, and the way we think about science. The curation of large datasets has
revolutionized many areas, enabling advances on a scale unthinkable decades ago
(Aad et al., 2012). But data seen in isolation has no meaning; our efforts should be
targeted to extract actionable insights and knowledge that influence decisions and
ultimately improve lives.

Health data is the best candidate to directly transform lives. Advances in the ways
in which we process this data can transform our society. Although the overwhelming
majority of medical research studies clinical data (labs, imaging, vitals etc), the average
person visits a doctor only around 5 times a year (Kim et al., 2014). On the other
hand, recent advances in wearable sensing and mobile computing, along with their
wide adoption, have created new pathways for the collection of health and well-being
data outside of laboratory and hospital settings, in a longitudinal fashion. Apart from
”filling the gaps” of traditional clinical data, these devices open up new research and
commercial directions for large-scale lifestyle monitoring. For example, millions of
people worldwide use such devices to track their physical activity and sleep, with
increasingly more sophisticated predictive capabilities (Althoff et al., 2017).

At the same time, seemingly disparate forces like mature open-source scientific
software libraries, easier data crowdsourcing and labeling, and the repurposing of spe-
cialized hardware (graphics cards), have enabled dramatic improvements in predictive
modeling. Many machine learning (ML) tasks have achieved impressive performance,
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12 CHAPTER 1. INTRODUCTION

ranging from object recognition in images (He et al., 2016), to winning the best players
in the games of Go, Atari, and Chess (Schrittwieser et al., 2020), or outperforming
experts in breast cancer screening (McKinney et al., 2020). The common denominator
in all these cases has been the curation of high-quality large datasets that allow models
to exploit latent patterns and subsequently generalize in the real world (Hyland et al.,
2020). However, especially in health where erroneous predictions can have grave
consequences, the roll-out and adoption of such systems has been met with resistance
(Davenport and Kalakota, 2019). Instead, fields with low false-positive costs and high
digitization rates such as online services, social networks, or streaming services, have
not only embraced machine learning, but also actively drive the research community
in further developing the fields of computer vision and natural language processing.

Similar to how social networks learn our online behaviors, wearable and mobile
devices monitor our activities in the real world. By tracking our sleep, steps, eating and
working habits, they create a holistic understanding of the most important components
of our everyday health (World Health Organization, 2002), until now only possible
through surveys. Although we recognize the value of such datasets, advances in
machine learning for health and mobile sensing1 have not kept up with other areas.
For example, over the last decade devices such as Fitbit or the iPhone have been
collecting multimodal sensor data at an unprecedented temporal resolution. However,
effectively leveraging these datasets presents many challenges, leading to this data
being frequently overlooked for scientific and medical research. Further, obtaining
quality annotations and ground truth might be costly or even impossible at this
granularity. New computational methods are needed to address these challenges and
this thesis attempts to bridge some of these gaps.

1.2 Limitations of traditional mental and physical health
monitoring

Despite the importance of detecting and understanding fluctuations of mental and
physical health, physicians and researchers are hindered by a key limitation: the lack
of reliable and meaningful data. Most established research and clinical practice is
based on pen-and-paper self-reports and surveys which, whilst valuable in the absence
of alternatives, are subject to bias and often provide incomplete information (Brenner
and DeLamater, 2014).

1We define mobile sensing as data from connected sensors which is used to characterize behaviors
related to health. Other terms used in literature are personal sensing, digital phenotyping, and context
sensing, with different albeit overlapping connotations. We point the interested reader to this discussion
(Mohr et al., 2020).
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Individuals may inaccurately recall their behavior, report an idealised version
of their habits or some combination thereof. Previous studies have found that self-
reported physical activity suffers from reporting bias, which stems from social de-
sirability bias (reporting behavior seen as socially desirable), as well as the cognitive
complexity of reporting the intensity, duration, and frequency of physical activity
behaviors with precision (Sallis and Saelens, 2000). In addition, the understanding of a
behavior that is self-reported is limited to the specific set of questions given to study
participants. These may not be enough to reflect a complete view of complex behaviors.
Inaccuracies resulting from reporting errors may be randomly distributed across the
population being studied. The errors may also be systematic, with participants in
different population groups systematically under or over-reporting their activity levels.
This could lead to the identification of erroneous associations.

Similar to physical health, bias can impact mental health studies in more subtle
ways. Patients who are asked to report their mood levels or test for depression might
be triggered by the content of the questions in a self-reinforcing loop that can possibly
do more harm than good (Labott et al., 2013). In order to diminish concerns regarding
bias in studies using self-report measures of physical and mental health, questionnaires
should be validated against a gold-standard measure or objective measurements when
this is possible. Data from mobile devices can combine the best of both worlds:
self-reports are always time-stamped and contextual due to push notifications, while
passive sensors can unobtrusively and objectively monitor behaviors.

1.3 Challenges in multi-sensory machine learning

The typical workflow of a scientist in most fields involves devising comprehensive
variables2 that explain the variance of a dataset. Until recently, this process was
characterized by elaborate feature engineering in order to construct informative features
that would discriminate between some classes (in the case of classification). Now,
deep neural networks promise to automate this task by learning latent features as
the side-effect of the optimization process and besides achieving state-of-art results
(LeCun et al., 2015). This is even more crucial for mobile sensing data (Fig. 1.1 presents
a schematic of a typical machine learning workflow for mobile sensor data).

Data coming from common sensors such as accelerometers, electrocardiograms
(ECGs), gyroscopes, and microphones is commonly represented as high-dimensional
time-series (Lane et al., 2010). Unlike other data types, these sensor measurements are

2In this thesis, we use the terms variable, feature, and covariate interchangeably, when referring to
the input data of a statistical model. The ML community prefers the more liberal term feature which
tends to describe raw data (in 3D or higher dimensions), whereas in statistics the independent variables
are often the outcome of some initial processing.
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Data collection
from devices  

Feature extraction 
& data processing

Model development 
and tuning 

Deployment 
and serving 

Inference and 
new data collection

Figure 1.1: Lifecycle of machine learning workflows. The iterative steps followed
when processing data from personal devices. This thesis makes contributions to
methods applied across the entire lifecycle, with a particular focus on novel feature
extraction and representation methods, as well as generalizing to new data collected in a
longitudinal fashion.

noisy and although in small-scale studies manually engineered features have proved
to be effective (Wang et al., 2014), it is not straightforward to select robust features for
different noise levels of individual user behaviors. Noise in mobile measurements is
hard to model because it is correlated over time (Park, 2004) and presents a non-linear
structure (Ang et al., 2007). Apart from noise, challenges in modeling sensor data
extend to varying sparsity levels (Abedin et al., 2019; Ghassemi et al., 2015), the inability
to obtain quality annotations and labels (Bulling et al., 2014), and heterogeneous data
types (Radu et al., 2018), unlike those used in established benchmark tasks.

An illustrative scenario depicting these challenges may be an individual taking off
their smartwatch when having a shower. The light sensor of the watch might reflect
off a distant surface and hence record a faulty heart rate (noise); the non-wear period
produces irregularly sampled data which has to be imputed with the expected sensor
values (sparsity); it is unlikely that the user would annotate this or other events at
the minute level (label scarcity). Furthermore, when finally worn, motion and heart
sensors behave differently in response to external stimuli such as stress (multimodality)
(Bent et al., 2020).

Scale is also different. Large longitudinal studies like the UK Biobank (Doherty et al.,
2017), the Apple Study (Perez et al., 2019), the Fenland Study (O’Connor et al., 2015),
Utsureko (Suhara et al., 2017), and EmotionSense (Servia-Rodrı́guez et al., 2017) have
been monitoring the physical and mental health of tens of thousands of participants
with wearable sensors. For example, elevated resting heart rate from over 200, 000
Fitbit users was used to predict influenza-like illness in the US (Radin et al., 2020).
However, statistical methods like generalized linear mixed models which operate on
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longitudinal data with repeated measurements (e.g. a single user appears on multiple
days), cannot scale to that number of subjects (Zhang et al., 2016). Also, given that
previous studies in mobile health have been conducted through controlled experiments
and a limited number of participants (Sano, 2016; Jaques et al., 2017; LiKamWa et al.,
2013), it is not clear whether previous findings and methodologies could be transferred
to these large datasets. Furthermore, the absence of rigid control over participation
and the limited mechanisms to promote engagement, make the data collected more
difficult to interpret than in controlled setups.

Arguably, the underlying challenge here is about representation. Machine learning
attempts to find meaningful representations which will transform data to linearly
separable spaces and distinguish between semantic classes. It has come a long way
from the low-dimensional embeddings of convolutional networks that captured the
structure of image datasets (LeCun et al., 2015) to the recent self-supervised networks
which learn better features by predicting distorted samples of the input data (Devlin
et al., 2019). But understanding how multi-sensory measurements relate to each other
across time means constructing a representation of the health state of the individual.
This thesis argues that some of the fundamental building blocks of future machine
learning for health will be multi-tasking, transfer learning, and forecasting. We now know
that models that perform multiple tasks are not only more useful, but they also make
each individual task more robust (Kaiser et al., 2017). Also, models that are able to
reason about the future can transfer better across different environments (Chen et al.,
2021). Therefore, we need models to account for these challenges through improved
data representation that leverages cross-sensor relationships and relying as little as
possible on manual annotations.

1.4 Thesis and substantiation

We have reviewed some potential benefits from the improvement of machine learning
for mobile health, what limitations arise when traditional methods are employed,
and what challenges are involved when processing noisy sensor data. Formally,
the overarching objective can be stated as: to improve machine learning methods for
observational, retrospective, and longitudinal data as generated by consumer mobile and
wearable devices, both of dynamic and static nature, of multiple tasks, and of limited supervision,
for the ultimate aim of improving health and well-being with a focus on mental and physical
health. We substantiate this statement by first evaluating the potential of existing
approaches on large-scale physical and mental health datasets and then proposing
new models which outperform current methods or offer new insights. Our methods
leverage and expand on the paradigms of multimodal fusion, multi-task learning,
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time-series forecasting, transfer learning, and self-supervised learning. In particular,
this dissertation addresses the following four research questions:

• Research Question 1. How can we use machine learning to combine passive
sensor time-series with traditional user-level metadata to distinguish between
clustered user trajectories?

• Research Question 2. How effective is multi-task learning and encoder-decoder
models for multi-step time-series forecasting?

• Research Question 3. How can we train general-purpose neural networks with
self-supervision to leverage large amounts of unlabelled time-series data?

• Research Question 4. How can we use deep learning on free-living wearable
sensor data for long-term cardio-respiratory fitness prediction?

To address these questions we develop models which can fuse time-series and
tabular data, as well as sequence models which enable accurate forecasting of mental
health. Further, we design novel self-supervised tasks that leverage large unlabeled
time-series data and propose new models to predict lab-measured fitness levels with
free-living sensor data.

1.5 Contributions and chapter outline

In terms of methods, we customize deep learning models to unlabeled time-series. In
the application domain, we adapt machine-learning methods to challenging tasks from
the fields of physical and mental health. We shall start with an introduction to the
background of deep learning for sequence data in Chapter 2, before presenting the
four main contributions that extend to the later chapters in the rest of the thesis as
follows:

Contribution 1: Multimodal machine learning for large scale mood
prediction

In Chapter 3, we show that psychological traits combined with passively collected
sensing data (activity from the accelerometer and noise levels from the microphone),
can detect individuals whose general mood deviates from the common relaxed char-
acteristic. We validate our approach with data from the EmotionSense Study, a large
mobile application dataset collected in the wild with 17,251 participants, finding that
the combination of these modalities achieves the best classification performance, and
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that passive sensing yields a +5% boost in accuracy. The main motivation behind this
study was that experience sampling has been proposed as a mechanism to monitor
mental health, but it requires users’ attention and this therefore leads to considerable
retention issues. We study whether passive sensing and one-off surveys can be used
to identify relaxed and non-relaxed users and –by extension– unobtrusively monitor
mental health.

The proposed methodology involves two steps. First, clustering historical mood
trajectories (after feature extraction) using a standard algorithm such as k-means in
order to find groups of users with similar trajectories. Second, classifying users into the
found clusters. Our pipeline employs feature selection, dimensionality reduction and
classification algorithms such as Gradient Boosting Trees and Deep Neural Networks.

The experimental results show that by adding passive sensing to personality and
demographics surveys we can predict the mood group of individual users with higher
precision. Our models achieve a 75% AUC when using a combination of weekly sensors
(accelerometer and microphone) and one-off questionnaire data as inputs. We discuss
feature extraction techniques and appropriate classifiers for this kind of multimodal
data, as well as overfitting shortcomings deep neural networks when handling static
and dynamic features. These findings might have significant implications for mobile
health applications that can benefit from the correct modelling of passive sensing
alongside extra user metadata.

Contribution 2: Multi-task and sequence learning for mood time-
series forecasting

In Chapter 4, we propose an end-to-end encoder-decoder model to forecast sequences
of future mood from previous self-reported mood. Our results show that multi-
tasking learns both dimensions of mood simultaneously, which is more accurate
than individual models or baselines. Also, plotting the neural activations helps us
understand the latent trajectories of mood, as well as post-hoc error analysis identifies
significant differences in the model’s performance regarding the users’ personality,
mood variability or day of the week. The main motivation behind this study was that
psychologists use mostly pen-and-paper surveys to track mental health, which, unlike
mobile apps, are prone to recall bias. On a more technical side, we show that current
machine learning models for mental health do not provide long-term predictions and
cannot learn complex patterns from time-series.

The proposed methodology relies on an end-to-end Long Short-Term Memory
(LSTM) Encoder-Decoder model. The sequence passes through an LSTM, gets trans-
formed into a single vector, and is decoded through another LSTM that predicts future
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sequences. Moreover, model interpretability is always important when dealing with
health data, therefore we analyze the role of the layers of the trained models. As we
move into deeper layers, we see that the network lays out the continuum of positive
and negative mood, even though it has been trained to solely forecast the mood. Also,
by inspecting individual neurons of the Decoder we observe that some neurons fire
almost always with the same slope, while others are more conservative with almost
flat lines. This helps us identify different subtypes of mood evolution.

Here, we again use data from the EmotionSense Study, however, this time we only
use the sequences of self-reported mood. Our results show that 3 weeks is the best
window of mood reporting, verifying previous research on depression prediction.
Also, our models outperform machine learning regressors and simple baselines while
multi-task learning seems to help the prediction of the alertness (one of the two mood
dimensions). We believe this work provides psychologists and developers of future
mobile mental health applications with a ready-to-use and effective tool for early
diagnosis of mental health issues at scale.

Contribution 3: Self-supervised transfer learning of physiological
representations from free-living wearable data

In Chapter 5, we develop a novel self-supervised general-purpose neural network
which maps activity data to heart rate responses and can be used as a feature extractor
for wearable data. Its features can be used for a variety of practical downstream tasks
that are personalized to the users’ unique physiology as well as this model outperforms
a set of strong baselines in both upstream and downstream tasks evaluated with
ablation studies.

For pre-training, we introduce a joint loss function that acts as a regularizer to
traditional Mean Squared Error by using the quantiles of the predictive density of the
model in order to approximate the long-tails of HR data, an ubiquitous problem in
real-world (health) data. There, we show that including a single measure of Resting
Heart Rate had significant impact, and in combination with cyclical modeling of the
timestamps achieved the lowest error of ⇠9 BPM in free living conditions.

Downstream, we perform a set of downstream, transfer learning tasks by aggregat-
ing the window-level features to user-level ones and showcase the value captured by
the learned embeddings through strong performance at inferring physiologically mean-
ingful variables, outperforming autoencoders and common biomarkers. For example,
our models achieve an AUC of 0.70 for Body Mass Index (BMI) prediction and an AUC
of 0.80 for Physical Activity Energy Expenditure. By inspecting the embeddings we
also notice that most outcomes improve with higher latent dimensionality, while some
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are invariant to its size.
We evaluate this model with the Fenland Study, the largest multimodal wearable

ECG and wrist accelerometry dataset, including over 1,700 participants tracked for
a week, together with associated health outcomes measured with clinical lab equip-
ment. We perform ablation tests to show the performance of different modalities and
components to the architecture. Overall, we propose a multimodal self-supervised
method for behavioral and physiological data with implications for large-scale health
and lifestyle monitoring

Contribution 4: Adaptable cardio-respiratory fitness prediction from
free-living wearable devices using deep learning

In Chapter 6, we develop deep learning models utilising wearable data and common
biomarkers to predict the gold standard of fitness (VO2max) and achieve strong
performance compared to other traditional approaches.

Cardio-respiratory fitness is a well-established predictor of metabolic disease and
mortality. Fitness is directly measured as maximal oxygen consumption (VO2max),
or indirectly assessed using heart rate response to a standard exercise test. However,
such exercise testing is costly and burdensome, limiting its utility in healthcare and
large-scale population studies. Fitness can also be approximated using RHR and self-
reported exercise habits but accuracy is low compared to estimates based on dynamic
data. Modern wearables capture non-standardised dynamic data which could improve
fitness prediction.

Here, we use a bigger cohort of the Fenland Study and analyze movement and
heart rate signals from wearable sensors in free-living conditions from a population
study comprising 11,059 participants who also underwent a standard exercise test. We
develop a deep neural network model that leverages sensor information to predict
VO2max, yielding a Pearson correlation of r = 0.82 [CI 0.80-0.83], when compared to the
ground truth in a holdout sample. This model outperforms conventional non-exercise
fitness models and traditional biomarkers using measurements of normal daily living
without the need to undertake a specific exercise test. Additionally, we show the
adaptability and applicability of this approach for detecting fitness change over time
in a longitudinal subsample (n = 2,675) who repeated measurements after 7 years.
We evaluate the inference capabilities of the model in the difference (delta) between
the present and future fitness. For this last task, the model produced outcomes that
translated to a 0.57 correlation between the delta of predicted and delta of true VO2max.
Last, the latent representations that arise from this model pave the way for fitness -
aware monitoring and interventions at scale.
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The last chapter of this thesis (Chapter 7) reflects on the new insights and results
presented on the previous chapters and outlines limitations along with potential future
research directions.

1.6 List of publications

During my Ph.D. studies, I was fortunate to establish several fruitful collaborations
with computer scientists, engineers, psychologists, epidemiologists, and other domain-
experts, which have yielded publications both in machine learning methods and their
applications to mobile health. In particular, Chapter 3 draws from a study published
in PervasiveHealth 2019 (Spathis et al., 2019), Chapter 4 is based on a paper at KDD
2019 (Spathis et al., 2019), Chapter 5 builds on recently published papers at CHIL 2021
(Spathis et al., 2021) and NeurIPS 2020 ML4MH (Spathis et al., 2020), and last, Chapter
6 is based on to-be-submitted work. Beyond that, I co-authored some other works in
the wider area of machine learning and data science, which, while not directly related
to this dissertation, have nonetheless influenced my ideas.
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Chapter 2

Background

If I have seen further it is by standing on the shoulders of Giants
–Isaac Newton

In the previous chapter, we highlighted the importance of developing new models
for mobile and wearable health data. In this chapter, we delve into the data modalities,
tasks, and the fundamentals of relevant machine learning techniques used throughout
this thesis. We first provide an introduction to machine learning for mobile health
(Section 2.1), and we proceed with the building blocks of neural networks (2.2),
common training paradigms (2.3), as well as considerations specific to time-series
modeling (2.4).

2.1 Machine learning for mobile health

Mobile health is the application and use of mobile devices to healthcare. When
combined with predictive capabilities, it offers novel and scalable ways to track and
diagnose diseases, while reducing costs of the broader health system. Mobile health
applications have been successfully introduced to model a variety of health outcomes
such as infectious diseases (Wood et al., 2019), HIV medication adherence (Rana et al.,
2016), and asthma management (Chan et al., 2017). The first large-scale studies focused
on associations between control and experimental groups while making sure that they
address challenges such as reporting–selection bias and low retention rates. Only
recently machine learning has started to be used in an end-to-end way in mobile
health. For example, an image-based deep learning system was evaluated by Google
for automatic diagnosis of skin conditions (Liu et al., 2020), and was later rolled out in
a mobile app for end users (Peggy Bui, 2021).

However, a sentiment echoed by the –still nascent– health informatics research
community is that the development of such technologies has progressed at a faster

25
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Figure 2.1: Example of a hierarchical framework of wearable and mobile health. The
boxes at the top represent inputs to models. The boxes in between represent features
and high-level behavioral markers along with outcomes. (PPG: Photoplethysmography,
HRV: Heart rate variability). Figure inspired by (Mohr et al., 2017).

pace than the methods to evaluate and validate their efficacy. For example, commercial
smartwatches are able to capture heart rate data accurately but fail in more com-
plex metrics such as the energy expenditure, when compared to ground truth devices
(Shcherbina et al., 2017). Also, context matters, especially considering that such devices
can be used everywhere by everyone. For instance, skin tone or the type of activity
(e.g. running versus walking) might affect the heart rate estimation (Bent et al., 2020).
While most of these devices are increasingly using machine learning to estimate more
high-level outcomes such as fitness or mood swings, we should ensure that they are
being evaluated in diverse population cohorts.

Studies involving machine learning in mobile health usually fall into two categories;
either proving the feasibility of the respective modality (sensors, images etc) to predict
the respective outcomes (Wang et al., 2014), or, given a standardized dataset with
a clearly defined outcome, trying to devise more accurate models (Aggarwal et al.,
2019). As such, the level of sophistication in machine learning models has been usually
commensurate with the dataset size (see Section 2.4 for an in-depth discussion of this
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trade-off). Nevertheless, we argue for a third way; we collect large longitudinal datasets,
identify bottlenecks of existing models when dealing with such datasets, and then
propose bespoke models and pipelines that outperform other baselines.

Acknowledging that the term ”mobile health” is quite broad, the scope of this
Chapter (and this thesis) will be narrowed to devices with connected sensors and their
associated mobile applications, excluding non-internet sensors such as thermometers,
electronic health records, or large stationary equipment such as smart treadmills. We
point the interested reader to this excellent review which covers all device categories
(Marra et al., 2020). In all cases, we study data coming from smartphones and wearables
as well as models which extract information from sensors in order to transform them to
behavioral markers which eventually map to clinical states (see Fig. 2.1). To showcase
the impact of mobile technologies, we focus on two broad areas which concern most
people, that is, mental and physical health.

2.1.1 Mental health

Clinical outcomes and measurements. Mood and general mental wellbeing have been
associated with several clinical outcomes. Self-reported sadness was found to be an
indicator of depression (Cheng and Furnham, 2003), while self-reported happiness is
linked to longevity (Veenhoven, 2008), personality traits (Ching et al., 2014; Geukes
et al., 2017), and reduced mortality risk (Aichele et al., 2016). The experience sampling
method (ESM), or ecological momentary assessment (EMA), –which involves asking
participants to report their behaviors or environment on repeated occasions over
time– has long been used as a mechanism to longitudinally assess the mental health
of individuals by prompting them to report their mental state using questionnaires,
traditionally administered using pen and paper, and also via the web. Psychologists
have used different tools or scales to measure mood. These include the Positive and
Negative Affect Schedule (PANAS) (Watson et al., 1988), a self-report questionnaire
of two 10-item scales that measures both positive and negative affect; and the Affect
Grid scale (Russell et al., 1989), a 2-dimensional grid, where the x-axis indicates the
feeling in terms of its positiveness or negativeness and the y-axis indicates its intensity.
Independently of the scale used, timely and accurate mood reporting is important
to anticipate clinical outcomes. To this end, smartphones and wearable devices have
enabled timely delivery of experience sampling (Csikszent and Larson, 2014), allowing
a near real-time detection of clinical outcomes and relapses.

Mobile devices brought increased reach. The penetration of mobile devices has in-
troduced scale: many more individuals can now be reached and assessed. For example,
in a hospital environment, mobile experience-sampling enabled the collection of 11,381
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survey responses over a 12-month period from 304 physicians and nurses, completed
with minimal initial training (Tejani et al., 2010). Mobile sensors enable researchers to
collect not only the explicit reports of the participants, but also the context in which
these answers were provided. Indeed, a survey of 110 ESM papers concluded that a
total of 70 studies (63.6%) passively or actively collected sensor data from the partici-
pants’ study device (Van Berkel et al., 2018). For instance, StudentLife (Wang et al., 2014)
combined sensing and self-reports to assess the impact of student workload on stress,
whereas Snapshot (Taylor et al., 2017) tracked their mood and sleep. Others focused
on detecting depression by tracking medication, sleep patterns and actions (Suhara
et al., 2017), location (Canzian and Musolesi, 2015; Palmius et al., 2016) or keypress
acceleration (Cao et al., 2017). On a larger scale, Utsureko (Suhara et al., 2017) and
EmotionSense (Servia-Rodrı́guez et al., 2017), two independent smartphone applications
for mood monitoring through self-reports, were used by more than 24, 000 and 17, 000
users, respectively.

Towards larger datasets. However, most existing works suffer firstly from limited
sample size, both in terms of number and diversity, which hampered them from
drawing robust conclusions, and secondly from limited duration of the studies. For
instance, in the MoodScope study (LiKamWa et al., 2013) 32 people were monitored for
2 months; in StudentLife (Wang et al., 2014), 48 students were tracked for 10 weeks,
whereas in Snapshot (Taylor et al., 2017), probably the biggest general published study
about mood monitoring using mobile devices, 206 students were tracked for 1 month.
In contrast, this thesis employs the EmotionSense dataset (Servia-Rodrı́guez et al., 2017),
which tracked tens of thousands of participants in the wild for more than 3 years, by
collecting ground truth through self-reports as well as passive sensor data. Putting
aside the limitations of the sample size, perhaps the most closely related work to ours
is the Snapshot (Sano, 2016) study. This study investigated how daily behavior gathered
through passive sensing data influence sleep, stress, mood, and other wellbeing-related
factors. Multiple papers focused on different aspects of the collected dataset, such
as personalization with multi-task learning to predict tomorrow’s mood, stress, and
health (Taylor et al., 2017), and the prediction of happy/sad moods based on sleep
history (Sano et al., 2015).

The EmotionSense dataset. This thesis uses the EmotionSense dataset (Servia-
Rodrı́guez et al., 2017), a dataset that contains sensor and self-reported data collected
with a mobile phone application for Android designed to study subjective well-being
and behavior. From February 2013 until October 20161, this application collected
735,778 self-report datapoints from 17,251 users, through surveys presented on the

1We use a longer time-frame of collected data than that of (Servia-Rodrı́guez et al., 2017). Their
ending timestamp was in January 2016.
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phone via experience sampling, and behavioral data from physical and software
sensors in the phone (accelerometer, microphone, location, text messages, phone calls,
etc.). The participants signed a consent form that restricts the use of the data to the
University of Cambridge researchers, in accordance with Institutional Review Board
(IRB) protocol. For this analysis, we consider self-reported mood collected graphically
using the Affect Grid (Russell et al., 1989), profile-related surveys, as well as sensed
data collected with the accelerometer and microphone sensors. Twice per day, between
8am and 10pm after a time interval of at least 120 minutes, participants received a
notification asking them to report their mood in the affect grid. Meanwhile, sensed
data was collected passively in the background at different time-points during the day
depending on the different versions of the study. At different stages of the application,
participants were requested to complete profile-related questionnaires covering a broad
range of topics including: demographics, personality, gratitude, health, sociability, job
satisfaction, life aspirations and connectedness, where the questions were answered
using Likert scales.

Machine learning models. Regarding machine learning models, the majority of
related literature has applied some kind of supervised learning, such as Logistic
Regression or Support Vector Machines, which cannot capture non-linear combinations
of features. For a more extensive view of the field, we point the interested reader to
this comprehensive review on ML for mental health (Thieme et al., 2020). Some recent
works employ RNNs (Suhara et al., 2017), feedforward layers (Mikelsons et al., 2017),
multi-task learning (Taylor et al., 2017), and autoencoders to fill in missing sensor data
(Jaques et al., 2017), or to learn better representations (Li and Sano, 2020; Liu et al.,
2020). Further, binary prediction is quite common in the mood prediction literature,
where mood is simplified to a binary state (Taylor et al., 2017; Servia-Rodrı́guez et al.,
2017), so that for instance, extreme depression is binned in the same class as moderate
unhappiness. Since neutral mood might be uninformative and make the predictions
harder, authors often omit the middle-scoring 40-60% of reports. Instead, we explore
fine-grained mood prediction through regression and clustering, as well as novel
multi-dimensional formulations of the Affect Grid through multi-task learning.

2.1.2 Physical health

Measuring physical activity at scale. Large scale studies of physical activity and
well-being leveraging mobile devices’ built-in accelerometers have shown promise as
global physical activity surveillance tools, demonstrating, for example, inequalities
across different countries after analysing data from over 700, 000 people (Althoff et al.,
2017). Another analysis of exercise patterns in a global social network of 1,1 million



30 CHAPTER 2. BACKGROUND

runners, demonstrated that exercise is ”contagious”, whose effect depends on gender
and relative levels of activity (Aral and Nicolaides, 2017). 10 million users of a weight
monitoring app were used to show that people are more likely to lose weight when
they had more friends of the opposite sex (Wang et al., 2017). Weight loss was the
subject of other studies of over 1 million participants (Serrano et al., 2017), which
showed that power users demonstrated the greatest weight loss. The relationship
between physical activity and cardiovascular disease was studied for 50,000 people in
(McConnell et al., 2017), finding that lower overall activity but more frequent transitions
between active and inactive periods was associated with similar cardiovascular disease
to higher overall activity but with fewer transitions. Mobile and wearable sensors
allow for continuous and ubiquitous monitoring of an individual’s physical activity
profiles, which, when combined with cardio-respiratory information, provide valuable
insights into that individuals’ health and fitness status (Mandsager et al., 2018). Hence,
the possibility of measuring individuals’ physiological characteristics in free-living
conditions is of great interest for research, clinical and commercial applications. In
particular, physical activity is characterized by both movement and the associated
cardiovascular response to movement (e.g., heart rate increases after exercise and the
dynamics of this increase are dictated by fitness levels (Jones and Carter, 2000)), thus,
leveraging these two signals concurrently likely produces better representations than
either signal taken in isolation. For instance, heart rate (HR) responses to exercise have
been shown to be strongly predictive of cardiovascular disease (CVD), coronary heart
disease (CHD) and all-cause mortality (Savonen et al., 2006). In healthy individuals,
HR responses to activity are defined by an increase in HR that is concurrent to the
increasing intensity of the activity (Ellestad and Wan, 1975).

Challenges in modeling wearable data. The advent of wearable technologies has
given individuals the opportunity to unobtrusively track everyday behavior. Given
the rapid growth in adoption of internet-enabled wearable devices, sensor time-series
comprise a considerable amount of user-generated data (Blalock and Guttag, 2016).
However, extracting meaning from this data can be challenging, since sensors measure
low-level signals (e.g., acceleration) as opposed to the more high-level events that are
usually of interest (e.g., arrhythmia, infection or obesity onset). Most wearable devices,
particularly those that are wrist-worn, incorporate accelerometry sensors, which are
very affordable tools to objectively study physical activity patterns (Doherty et al.,
2017; Menai et al., 2017)2. However, since wearables are used in daily, unconstrained
environments, activities such as drinking coffee or alcohol, as well as stress, may
confound simple heuristics.

2Throughout this thesis, we refer to activity, movement and acceleration interchangeably as signals
obtained from wearable accelerometers.
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Fitness as a key predictor of well-being. A concept that is particularly central to
physical activity is that of cardio-respiratory fitness (CRF), an important modifiable
marker of cardiovascular health embodied by a strong inverse relationship with the
incidence of cardiovascular disease (CVD), type 2 diabetes, cancer, mortality and other
adverse health outcomes (Lynch et al., 1996; Lakka et al., 1994; Myers et al., 2002;
Ekelund et al., 1988; Schmid and Leitzmann, 2015; Schuch et al., 2016; Blair et al., 1989;
Laukkanen et al., 2004; Mandsager et al., 2018). Clinical clinical evidence shows that
CRF is not only potentially a stronger predictor of mortality than well-established risk
factors like hypertension, type 2 diabetes, high cholesterol or smoking, but that using
CRF to complement these traditional risk factors significantly improves the precision
of risk prediction models for adverse CVD health outcomes (Ross et al., 2016; Myers
et al., 2002; Kokkinos et al., 2013; Lloyd-Jones et al., 2010). Beyond its implications in
medicine, CRF is frequently used in sports as indicator of endurance capacity, having
strong predictive value for other sport-related performance traits (Ross et al., 2016).

Challenges in collecting fitness ground truth. The gold-standard measure of CRF
is the maximal oxygen uptake (VO2max), which measures the maximal rate at which
an individual can consume oxygen during exercise. VO2max is assessed through
an exercise test to exhaustion while respiratory gas exchange is measured, with the
assessment only deemed a true maximal result if several test criteria are met. These
criteria include leveling-off of oxygen uptake and heart rate (HR) and the surpassing
of thresholds for the respiratory exchange ratio. This type of assessment requires
trained staff and expensive laboratory settings with specialized equipment and often
test criteria for maximal effort are not met (Swain et al., 2014; Davis, 1995). Given these
logistical constraints and the inherent risk of maximal exercise testing, scalability of
fitness assessment in large populations has been limited, meaning relatively little is
known about population levels of fitness, or their possible changes over time.

Scaling fitness prediction. Despite some promising studies which attempt to
infer VO2max from data collected during free-living conditions, these mostly stem
from small-scale cohorts with less than 50 participants and use contextual data from
treadmill activity, which again limits their application in real-world contexts (Altini
et al., 2016). In this thesis, we employ data from the Fenland Study, the largest study of
its kind, following more than 10,000 participants for a week and almost a decade later
to assess the change of fitness. We use purely free-living data to predict VO2max.

The Fenland dataset. The Fenland study is a prospective cohort study that includes
12, 435 men and women who are between the ages of 35 and 65 (O’Connor et al.,
2015). After a baseline clinic visit, a subsample of 2, 100 participants were asked to
wear a combined heart rate and movement chest sensor and a wrist accelerometer on
their non-dominant wrist. All participants provided written informed consent and
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the study was approved by the National Research Ethics Service - Cambridge East
Research Ethics Committee (IRAS ID 138617). The chest ECG measured heart rate
and uniaxial acceleration in 15-second intervals while the wrist device recorded 60 Hz
triaxial acceleration. The chest device was attached to the chest at the base of the
sternum by two standard ECG electrodes. Participants were told to wear both monitors
continuously 24 hours per day for a week and were advised that both monitors were
waterproof and could be worn during showering, sleeping or exercising. During a lab
visit, all participants performed a treadmill test that was used to inform their VO2max
(maximum rate of oxygen consumption and a golden measure of fitness). Resting
Heart Rate (RHR) was measured with the participant in a supine position using chest
ECG. HR was recorded for 15 minutes and RHR was calculated as the mean heart rate
measured during the last 3 minutes. These measurements were then used to calculate
the Physical Activity Energy Expenditure (PAEE) (Brage et al., 2004). The Fenland study
has two distinct phases. Phase I, during which baseline data was collected from 12,435
participants, took place between 2005 and 2015. Phase II was launched in 2014 and
involved repeating the measurements collected during Phase I, alongside the collection
of new measures. All participants who had consented to being re-contacted after their
Phase I assessment were invited to participate in Phase II. At least four years must
have elapsed between visits. As a result of this stipulation, recruitment to Phase II is
ongoing. A subset of 2,675 of the study participants returned for the second phase of
the study, after a median (interquartile range) of 6 (5-8) years, and underwent a similar
set of tests and protocols, including wearing the combined heart rate and movement
sensing for 6 days.

Modeling wearable signals with machine learning. Machine learning models
have been only recently applied to this task. To approximate VO2max without the
need for a dynamic test, non-exercise models aim to provide a viable alternative to
CRF assessment for widespread use in many healthcare settings. These are usually
traditional regression models and incorporate variables like sex, age, body mass index
(BMI), resting heart rate (RHR) and self-reported physical activity to infer VO2max
(Cao et al., 2010; Jurca et al., 2005). However, the validity of such estimation is still
much lower than what can be achieved with dynamic exercise testing (Gonzales et al.,
2020; Nes et al., 2011). Wearable devices, such as activity trackers and smartwatches,
increasingly provide opportunities for non-intrusive objective monitoring of biological
signals such as heart rate and movement during free-living, potentially enabling
more precise prediction of VO2max without the need to conduct a specific exercise
test (Plasqui and Westerterp, 2005).

Deep learning for physical activity and vitals. Recent advances in deep learn-
ing architectures for sequential modeling based upon wearable and mobile sensing
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have been used for health predictions and recommendations (Ballinger et al., 2018;
Schwab and Karlen, 2019). For example, FitRec, an LSTM-based approach to modelling
HR and activity data for personalized fitness recommendations was able to learn
activity-specific contextual and personalized dynamics of individual user HR profiles
during exercise segments (Ni et al., 2019). This approach is helpful but requires prior
segmentation of activities, which can be a constraint when applying these techniques
in free-living, unconstrained conditions. Recent work using self-supervised learning
has shown promise in the same data modalities such as ECG data (Sarkar and Etemad,
2019; Hallgrı́msson et al., 2018; Kiyasseh et al., 2020). In the following sections we
expand on these new neural network training paradigms and discuss how we build
upon them towards more accurate fitness prediction as well as generalized models
which can predict multiple physiological outcomes.

2.2 Deep neural networks

The history of neural networks dates back to the 1950s with the invention of the
perceptron (Rosenblatt, 1958), which paved the way for today’s modern Deep Neural
Networks (DNNs) (LeCun et al., 2015). The goal of a neural network is to approximate
some function f , so that, for example, a classifier y = f (x; q) maps the input x to a
category or real value y, by learning the optimal parameters q that best approximate
this function. They are called networks due to the fact that they are composed of many
different functions. For example, four functions –or layers– f (1), f (2), f (3), and f (4), can
be connected in a chain to form a computational graph:

f (x) = f (4)( f (3)( f (2)( f (1)(x)))) (2.1)

where stacking several layers defines the depth of the model, hence the widely adopted
term deep learning.

More formally, considering a simplified case of a two-layer network and an output
unit, we define it as follows:

z1 = g(W>
1 x + b1)

z2 = g(W>
2 z1 + b2)

out = s(W>
3 z2 + b3)

(2.2)

where z are intermediate layers with trainable weights W and biases b, and out is the
output of the model. The result of each layer is further processed by an activation
function, which, like g, is usually a Rectified Linear Unit (ReLU(z) = max(0, z)). The
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intuition behind this function is that it allows the network to learn non-linear patterns
of the features. Last, the output layer activation s can be a softmax function

⇣
ezi

Âj=1 ezj

⌘
, to

transform the output to a probability distribution over predicted classes (classification).
In regression problems, the raw numerical output can be the final prediction, and
usually no further activations are applied.

To train the model, we use backpropagation (Linnainmaa, 1970), which defines the
error and in turn compares the expected output to the ground truth t:

E =
1
2

k(out � t)k2
2 (2.3)

This error is calculated in the forward pass of the neural network. Then, it is propagated
across all the intermediate layers, which allows the model to learn from its mistakes
and repeat the training process by adjusting the weights. Formally, given a single
weight Wi and the previous layer output zi, we define the backward pass as follows:

∂E
∂Wi

=
∂E
∂zi

∂zi
∂Wi

(2.4)

After computing the gradients, the network updates the weights according to the
following equation:

Wi = Wi � a
∂E

∂Wi
(2.5)

where a is a scalar called learning rate and its value is decided by the optimization al-
gorithm of choice. For an in-depth view of deep learning, we recommend the excellent
Deep Learning book (Goodfellow et al., 2016). Next, we discuss the shortcomings of
perceptron (feedforward) layers when processing data with dependencies (e.g. sensor
timeseries) and present modern approaches which handle these challenges.

2.2.1 Recurrent neural networks

While feedforward layers can easily handle two-dimensional inputs x = (x1,...,xN)
2 RN⇥F, where N are the samples and F the features, data from complex systems is
usually high-dimensional with internal dependencies. For example, sequential data is
commonly represented as three-dimensional tensors x = (x1,...,xN) 2 RN⇥T⇥F, where
T are the timesteps. In other words, every sample includes both a timeseries and
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Figure 2.2: Variants of recurrent neural networks. Conceptual illustration of the
various components and differences between RNNs, LSTMs, and GRUs. Illustration
inspired by (Olah, 2015).
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its associated features 3. In practical terms, a feedforward layer can still ingest such
tensors, however, it will not learn any sequence-aware patterns because the tensor
should be flattened (T ⇥ F) prior to the initial dot product with the weights.

As Christopher Olah put it so eloquently ”Humans don’t start their thinking from
scratch every second. You don’t throw everything away and start thinking from scratch
again. Your thoughts have persistence (Olah, 2015)”. Feedforward layers cannot do this.
Therefore, new layers have been proposed which share the same weights across several
time steps and, as a result, are able to explicitly leverage and process sequential
data. In this thesis, we mainly use variants of Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNNs).

An RNN (Rumelhart et al., 1986) is a specialized layer for processing a sequence
of values. In Eq. 2.1, a classical computational graph just passes through information
across layers, one after another. On the other hand, RNNs introduce extra feedback
loops which allow the models to learn different weights for steps of an input sequence.
More formally, the RNN has three main weights: the input to hidden connections
is parametrized by a weight matrix U, hidden-to-hidden recurrent connections are
parametrized by W, and hidden-to-output connections are parametrized by V. The
internal dynamics for each timestep t of the RNN are defined as follows:

a(t) = b + Wh(t�1) + Ux(t)

h(t) = tanh(a(t))

o(t) = c + Vh(t)

ŷ(t) = so f tmax(o(t))

(2.6)

where h is the hidden state, b and c are biases, and ŷ the output probabilities. While
RNNs have proved particularly effective in text prediction tasks (Nallapati et al., 2016),
scalable training is problematic because the gradients either explode or vanish at each
time step. As a result, although the main premise is to learn long-term dependencies,
evidence shows that it is difficult to learn patterns in long sequences (Bengio et al.,
1994).

To correct for that, an idea was to add explicit memory to RNNs. The first proposal
of this kind is the Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997).
These networks introduce special gates that filter the information as it flows across the
layer and allow the LSTM to keep or forget information. The core concept is the cell
state which acts as a conveyor belt, or the memory of the network. As the cell state is

3Sometimes, the third component of a 3D tensor which hosts multiple parallel timeseries is called a
channel.
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progressing, the gates, which are different neural networks, decide which information
is allowed on the cell state. In particular, the forget gate determines what information
should be stored by applying a sigmoid function. Then, the input gate updates the
cell state through a combination of sigmoid and tanh functions. The cell state, is now
updated and the output gate decides what the next hidden state should be, through
another pair of sigmoid and tanh functions. LSTMs have achieved state of art results
in many sequence problems, with a particular success in speech recognition (Graves
et al., 2013).

However, at this point it is natural to wonder which parts of the LSTM are actually
necessary. Recent variants of the LSTM include the Gated Recurrent Units (GRUs) (Cho
et al., 2014), which use the hidden state to transfer information, doing without the
cell state of the LSTM. In particular, a GRU has only two gates, a reset gate which
decides how much past information to retain, and an update gate which combines the
functionality of the forget and input gates of the LSTM. A conceptual illustration of
the variants of recurrent networks can be found in Fig. 2.2, where one can observe the
increasing complexity of LSTMs and GRUs over the RNN.

Another useful property of RNNs/LSTMs is the ability to forecast multiple timesteps.
Hidden Markov Models (HMMs), autoregressive models and regression algorithms
have been traditionally applied to sequence prediction. HMMs and autoregressive
models operate by default on single sequences, being unable to learn patterns from
several users. Traditional feature-based ML algorithms such as linear regression, ran-
dom forests or support vector regressors, can solely predict one scalar value. They
do not support an extended forecast horizon without feeding through the previous
prediction as its new input (Venkatraman et al., 2015), which unavoidably introduces
compounding errors that skew the input distribution for future prediction steps. RNNs
have become increasingly popular in modeling sequential, high-dimensional, non-
linear data by incorporating encoder-decoder architectures (Figure 2.4). Recent RNN
models (named sequence-to-sequence or seq2seq) can map an input sequence to an
output sequence of any arbitrary length, making RNNs the state-of-the-art in Natural
Language Processing for machine translation and speech processing (Sutskever et al.,
2014) since they can map, for example, a phrase in French to a phrase of different
length in English.

2.2.2 Convolutional neural networks

An effectively simpler approach to timeseries modeling is to repurpose the convolu-
tional operations that have been successfully applied to image processing (Krizhevsky
et al., 2012). Traditionally, the image processing community would use the convolution
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Figure 2.3: Convolutional neural networks. Conceptual illustration of the components
of a convolutional neural network applied to timeseries data.

operation (or kernels) for tasks such as blurring or sharpening. In its simplest form,
a convolution is done by multiplying a pixel and its immediate neighborhood with
a matrix. The same idea is applied to CNNs, where every subsequent layer learns
feature maps of increasing or decreasing granularity by scanning the 2D space of an
input image.

Until recently, sequence modeling was synonymous with RNNs. However, em-
pirical results suggest that 1D CNNs are equally good –or better– in a set of diverse
tasks (Bai et al., 2018). This idea goes back to the 1980s where time-delay networks
first popularized the notion of shift-invariance in time: the network would discover
temporal relationships which will not be confounded by temporal shifts of the input
(Waibel et al., 1989). In addition to better performance, CNNs are faster to train, which
justifies the resurgent interest in the ML community for sequential tasks.

More formally, given an input dataset x = (x1,...,xN) 2 RN⇥T⇥F, it passes through a
stack of CNN layers that scan over the sequences with 1D windows and learn filters
f : {0, ..., k � 1} 2 R. The convolution operation C of a sequence element s is defined
as

C(s) = (x ⇤ f )(s) =
k�1

Â
i=0

f (i) · xs�i (2.7)

where k is the filter size, s � i records the convolution step and ⇤ denotes the convo-
lution operator. We note that the 1D window learns patterns across all the parallel
features of the 3D input tensor x. Often, after the convolutional layers the dimensional-
ity of the resulting feature maps is further reduced with a pooling layer, which either
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aggregates the maps with a max or averaging operation (same dimensions but fewer
parameters), or –more aggressively– performs global pooling (reduced dimension)4.
A conceptual illustration of a CNN applied to timeseries data can be found in Fig.
2.3, where one can observe how the learned CNN features are further summarized by
pooling operations.

1-dimensional CNNs have been applied to various fields with remarkable success.
For example, some of the most widely-used audio synthesis and language modeling
systems are based on CNNs (Van Den Oord et al., 2016; Dauphin et al., 2017).

2.2.3 Other layers

Apart from RNNs and CNNs, other layers have been proposed over the past years to
model sequence data with neural networks. Most notably, attention layers leverage
dot products of the input data in combination with simple feed-forward networks
(Bahdanau et al., 2014). The intuition is based on how we pay visual attention to
different regions of an image or correlate words in one sentence while reading. Pure
attention architectures –like the Transformer or BERT (Vaswani et al., 2017; Devlin
et al., 2019)– have dominated language tasks, however, in the case of high-dimensional
signals, the literature has not ”converged” to attention-only networks yet. Instead,
it is common to mix CNN/RNNs with further attention layers (Hao and Cao, 2020).
This might be due to the structural differences between language and time-series data;
memory-aware layers may explicitly capture the temporal patterns of continuous data,
whereas discreet data (text) could be favored by attention.

Another approach tailored to irregularly sampled timeseries was to supercharge
RNNs with properties of ordinary differential equations (ODEs). ODE-RNNs (Rubanova
et al., 2019) achieve strong results in datasets with missing timesteps, when compared
to simpler methods like GRU-D which tweak the RNN’s internal state to account for
the time delta between the datapoints (Che et al., 2018).

On the other hand, we see that sometimes the data sampling method is more
important than the layer of choice. For instance, it is worthwhile to mention MLP-Mixer
(Tolstikhin et al., 2021), a recent method that achieves state of art results in vision with
simple feed-forward layers (no CNN/RNN/Attention), by splitting the input images
into patches. This thesis advocates for and presents some new data alignment methods
towards better representation learning. In the next section, we discuss some notable
training paradigms that are gaining momentum towards this direction, moving beyond

4Considering that neural networks can be seen as LEGO™ blocks whereby every layer has to match
the dimensions of the next one, the output vector defines the intermediate operations. The data has to
flow from the high-dimensional input to the –usually simpler– output, and hence different layers such
as Pooling or Flattening are used to achieve that.
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traditional supervised learning.

2.3 Training paradigms

After introducing the main building blocks of neural networks, we will now discuss
some emerging training paradigms which are inspired by real-world tasks and their
challenges. For example, humans perform thousands of tasks naturally, but our models
are still painfully single-purpose. What does it take to bridge this gap? Also, infants are
never explicitly taught physics or grammar, but they still learn to speak or the effects
of gravity through observation and interaction with their surroundings (Vallabha et al.,
2007). Likewise, can we apply this paradigm to machine learning? For instance, we
never start learning something new from scratch, but we build upon basic abstractions.
Our models can learn to re-use and fine-tune, but what are their limits?

As a means of answering these fundamental questions, this thesis is employing
multi-task learning, multimodal learning, self-supervision, and transfer learning.

2.3.1 Multi-task learning

Multi-task learning is a training method in which a model learns to predict simulta-
neously two or more similar tasks. For example, an architecture with shared layers
and separate outputs might enable to perform –with a single model– robotic grasping,
pushing, and poking (Pinto and Gupta, 2017). Multi-tasking has been used to reduce
overfitting on the main task (with auxiliary targets), produce better data representations,
and in general to improve accuracy in neural networks (Ruder, 2017). Specifically in
deep neural networks, this multi-target setup forces the shared weights of the network
to optimize all tasks and consequently learn internal representations that draw from
multiple outcomes.

More formally, let T be a set of learning tasks for a dataset {x,y}. The model tends
to share some weights qg on the lower layers, where it learns generic patterns that are
useful to all tasks. As we move to the last layers, the model is split to various ”forks”
which host task-specific weights qt (see Fig. 2.4). In particular, the training optimizes a
joint multi-objective loss where each task contributes to the weighted sum as follows:

Ljoint =
T
Â
t=0

wt ⇥ Lt (2.8)

where Lt denotes the individual-task loss and wt the task weights. Despite this
joint objective formulation and the parameter sharing, the tasks should present some
similar characteristics. Besides, the input data should be general enough so as to
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Figure 2.4: Training paradigms. Illustration highlighting the differences across su-
pervised, unsupervised, and self-supervised learning, along with emerging neural
network architectures applied to multimodal data.
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generalize to many tasks; otherwise the singular tasks would dominate the loss. We
point the interested reader to this survey which covers many recent architectures and
applications of multi-tasking (Crawshaw, 2020).

Multi-task learning has been successfully applied to high-impact systems which
range from single models that caption images and translate text (Kaiser et al., 2017),
to self-driving cars which perform joint depth estimation and image segmentation
(Kendall et al., 2018). In this thesis, we use multitask learning in conjunction with
encoder-decoder models in Chapter 4.

2.3.2 Multimodal learning

While multi-task learning aims to better leverage the outputs or outcomes, multimodal
learning involves relating information from multiple inputs and sources. An illustrative
example comes from speech recognition: a visual /ga/ with a voiced /ba/ is perceived
as /da/ by most people. In other words, the so-called McGurk effect (Ngiam et al.,
2011) showed that people tend to integrate audio-visual information in order to
decode speech, and as such, the visual modality provides information which helps to
disambiguate between similar acoustics.

Machine learning at its core is about finding better representations of data. When
dynamic data comes from different sources (e.g., a motion sensor and an ECG), it may
present non-linear correlations where it is not straightforward to match and relate
raw time-series collected with different devices or sampling rates. On top of that,
extra metadata encoded as static features (e.g., sex or height) have to be processed
in isolation. Multimodal representations usually involve a single end-to-end network
with individual sub-networks for every modality which are later merged in a joint
representation (see Fig. 2.4). Similar to parameter sharing in multi-tasking, here we
decide between early (or data-level) and late fusion, which defines the stage in which
the latent features are merged. In general, late-fusion strategies are more intuitive,
particularly when the modalities vary in terms of sampling and dimensionality and
often result in better performance (Ramachandram and Taylor, 2017).

Nonetheless, reiterating the Lego analogy of neural network layers, a third category
became possible with modern models, that of intermediate fusion. The latest models
attempt to first transform all modalities into representations, and then it becomes
possible to fuse different representations into a single hidden layer (or shared represen-
tation). A simple –yet effective– strategy is to concatenate all resulting representations,
with increasingly more sophisticated ideas investigating loss functions which enforce
inter- and intramodality correlations (Wang et al., 2015).

Multi-task and multimodal learning can be seen as two sides of the same coin, in
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which we strive for enabling many capabilities and leveraging different sources with a
single model. In this thesis, we use multimodal models in Chapters 3, 5, and 6.

2.3.3 Self-supervised learning

Given a training task and enough labels, supervised learning can achieve good perfor-
mance. This performance usually requires a decent number of manual labels which
–in the best scenario– might become easier through crowdsourcing (cf. Imagenet),
but in some cases is virtually impossible. For example, annotating wearable sensor
timeseries for human activity recognition tasks a posteriori is not feasible without a
video recording. On the other hand, considering the amount of unlabeled data (e.g. all
the images on the internet or the entire Fitbit user base) is considerably more than is
contained within a limited curated dataset, motivates ongoing research in this area.
However, unsupervised learning is hard and until recently was less efficient than
supervised learning (Chen et al., 2020).

A simple yet exciting recent idea was to obtain labels ”for free” from the input data
(x) through various transformations, and then use conventional supervised objectives
to predict them (x̂). The representations obtained this way would be meaningful for
downstream tasks with limited labeled data and linear classifiers (see Fig. 2.4). This is
coined as self-supervised (or predictive) learning due to learning the supervision directly
from the data5. Even before this term, researchers would attempt to find surrogate
tasks (Dosovitskiy et al., 2015) which would exploit unlabeled data. The most common
tasks involve predicting distorted versions of the spatial characteristics of image data
by means of rescaling (Dosovitskiy et al., 2015), rotating (Gidaris et al., 2018), patching
(Doersch et al., 2015), shuffling (Noroozi and Favaro, 2016), colorization (Zhang et al.,
2016), and inpainting missing parts (Pathak et al., 2016).

These pre-training tasks have achieved state-of-the-art results in computer vision
(Lee et al., 2017; Jenni and Favaro, 2018) and natural language processing (Lan et al.,
2020). However, someone would argue that devising these increasingly complex
pre-training tasks resembles traditional feature engineering that neural networks
promised to automate. Therefore, more generic methods switched focus from data
transformations to the loss function level by offering elegant methods of implicit
clustering between pseudo– positive and negative samples. Notably, SimCLR (Chen
et al., 2020) achieved –for the first time– performance on par with supervised models,
by proposing a training method for visual representations which maximizes agreement

5The terminology surrounding unsupervised and self-supervised learning is a bit blurry. In strict
terms, unsupervised used to mean methods for principal component and cluster analysis (no labels). Be-
yond the supervision dichotomy, reinforcement learning offers an alternative formulation to intelligence
through reward-based learning, which is however out of scope of this thesis.
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between differently transformed views of the same sample via a contrastive cosine
similarity loss in the latent space. More recently, BYOL claimed better results even
without the negative pairs in its training objective through a similar two-network
approach (Grill et al., 2020).

It is not clear, however, whether these methods can generalize beyond the image
domain, with preliminary results showing that they underperform without domain-
aware modifications (Tang et al., 2020; Kiyasseh et al., 2020). On the other hand, the
closest conceptual modality to mobile and wearable timeseries is video, in which the
relevant literature attempts to leverage the temporal –rather than spatial– information.
Namely, approaches like the arrow of time (Wei et al., 2018) posit that low-level physics
(like the smoke rising up) and high-level events (e.g. you cannot revert breaking a
glass), produce more effective representations in downstream action classification tasks.
This thesis, along with recent works (Jawed et al., 2020; Taghanaki and Etemad, 2020;
Chen et al., 2021), argues that models which anticipate and forecast the future are
more robust and generalizable. We use principles of time-aware self-supervision in
Chapters 4 and 5.

2.3.4 Transfer learning

Transfer learning is the natural application of self-supervised learning. The term
transfer describes a set of methods towards preserving and reusing previously acquired
information, applied possibly to a slightly different domain. This stored information
can further accelerate the training of a downstream task with usually limited training
data. For the context of this thesis –and considering that it is a well-studied problem
with traditional methods–, we focus on transferring the weights (also known as
representations or embeddings) of deep neural networks. Modern transfer learning uses
pre-trained networks –either supervised or self-supervised– as fixed feature extractors
in linear downstream models (e.g. logistic regression) or further fine-tuning by freezing
the backbone architecture and retraining the last layer. This has shown remarkable
results in vision and language domains (Chen et al., 2020; Devlin et al., 2019).

More formally, given a source domain DS and learning task TS, a target domain
DT and learning task TT, the goal of transfer learning is to improve the predictive
performance of target function fT(·) in DT, leveraging the knowledge of the source
domain DS and TS, where DS 6= DT, or TS 6= TT. In the special case when the target
and source tasks are identical, it is known as transductive transfer, whereas in inductive
transfer, the target task differs from the source task, no matter if the source and target
domains are the same or not. Multi-task learning can be seen a special case of inductive
transfer, where labeled data is available in the source domain and source/target tasks
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are learnt simultaneously. We point the interested reader to this comprehensive survey
(Pan and Yang, 2009).

In this thesis, we explore transfer learning in conjunction with self-supervision in
Chapter 5 and implicitly through multi-task learning in Chapter 4.

2.4 Modeling time-series and signals

We saw that most novel models in deep learning are evaluated with either image or text
data. We will now discuss whether we should take into account specific considerations
when training ML models with high-dimensional signals.

In the following sections, two schools of thought are presented, in the context of
mobile and wearable health data. The first seeks for informative features that represent
time-series through inventive feature extraction, while the second is based on the
emerging power of representation learning to automatically extract features from
lightly processed time-series.

2.4.1 Traditional feature-engineering modeling

Most commonly, sensor data coming from personal devices is transformed to feature
vectors in order to be compatible with the majority of machine learning algorithms.
A feature vector is a spreadsheet-like data structure where each row is a unique
sample and each column a different feature or variable. However, the raw readings
coming from e.g. an accelerometer are represented as multiple continuous sequences.
Consequently, the next step after the data collection is to summarize each sensor in
a couple or more independent variables through a sliding window operation. This
laborious task is called feature-extraction and researchers try to come up with increas-
ingly more complicated features that explain the respective label (see Fig. 2.5). For
example, the MoodExplorer study (Zhang et al., 2018) extracted the mean, variance,
and signal-to-noise ratios from the microphone sensor, while the EmotionSense study
(Servia-Rodrı́guez et al., 2017) calculated the standard deviation of the magnitude of
acceleration (

p
x2 + y2 + z2) from the three axes (x, y, z) of the accelerometer.

Depending on the size of the datasets and the computing power, computing these
features as a pre-processing step can be time-consuming as well as renders the pro-
cess multi-step. Simple statistics like the mean, median, standard deviation and
inter-quartile ranges might be easier to estimate but they may not capture informative
features of noisy signals. On the other hand, higher-order statistics and transformations
like the kurtosis, skewness, stationarity, least squares slope, autocorrelation, Fourier
transforms, and entropy, provide more expressive metrics that reflect real-world phe-
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Figure 2.5: Typical feature engineering pipeline for movement sensor data. From
raw accelerometer data to appropriate filters and summary statistics. (ENMO: Eu-
clidean Norm Minus One, HPFVM: High-pass Filtered Vector Magnitude)

nomena like the seasonality or repeatability, but might require extensive computation
(Fulcher, 2018; Fulcher and Jones, 2014).

The field of signal processing and waveform analysis has proposed multiple algo-
rithms for extracting useful features from sensor timeseries. A common first step is
computing a signal quality index (SQI) which assesses how physiologically reasonable
a signal is (Orphanidou et al., 2014). An SQI is typically a combination of thresholds
that should be met in order to keep or discard a signal (for example, in the case of PPG
signals, check that all RR6 intervals are < 3s). We can group the techniques for extrac-
tion of a waveform signal into two categories: filter based or feature based. Filter-based
techniques are performed in a single step and they attenuate frequency components of
the raw signal (e.g., bandpass filtering, wavelet transforms, detrending, or resampling).
Feature-based techniques involve multiple steps and consist of extracting windowed
feature measurements (e.g., amplitude, kurtosis between peaks, or maximum upslope).
Another useful grouping is between time-domain and frequency-domain features: the
former usually operate on the raw signal and calculate peaks or zero-crossings7 over
time, while the latter operate on the power spectrum of the signal using Fourier and
wavelet transforms, or auto-correlations for periodicity estimation. We should note
here that every application area has its own domain-specific features that attempt to
best leverage the underlying data. We point the interested reader to indicative papers
discussing the role of features for breathing rate estimation from PPG (Charlton et al.,
2017) and human activity recognition with accelerometers (Haresamudram et al., 2019).

After the calculation of the appropriate features, they are fed to ML models. If
static metadata exist (like demographics or personality traits), they are concatenated
with the sensor features on a large feature vector. Common classification algorithms
that appear in the literature are the Logistic Regression, Random Forests, Support

6the time elapsed between two successive R-waves of the QRS signal on the electrocardiogram
7a point where the sign of a signal changes (e.g. from positive to negative)
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Vector Machines, and variants of Neural Networks. When the number of features
increases as a result of the extensive feature extraction, we might end up with sub-
optimal results: learning algorithms under-perform when the number of features
is higher than the number of samples (”the curse of dimensionality”) (Friedman et al.,
2001). As a result, we aim to reduce the number of features before training, either
through feature selection or dimensionality reduction. For example, in a study of
recognition of state changes in bipolar patients with smartphones (Grünerbl et al.,
2015), data is reduced using Linear Discriminant Analysis. More robust approaches
include the Principal Component Analysis (PCA), however we see cases such as this
study on stress recognition (Bogomolov et al., 2014), which avoided using it because
the transformation produces new variables that are difficult to interpret. The trade-off
of interpretability and feature representation is an important open problem in this
area, which is particularly exacerbated by the dominance of neural networks.

Most notably, and reiterating on the curse-of-dimensionality argument, the main
bottleneck of using either more sophisticated models or features, is the risk of overfit-
ting. Especially when dealing with human-generated data, overfitting refers to models
which memorize exactly a particular set of data, but fail to generalize to a different
population. As mentioned in previous sections, many studies conducted in the area
of mobile health, included small numbers of participants. For example, some mile-
stone studies using mobile sensors to track mood, sleep or other behavioral outcomes,
analysed data from around 10 to 50 participants (Lane et al., 2011; LiKamWa et al.,
2013; Wang et al., 2014). Based on each study’s setup, the required granularity, and the
duration of the tracking, each participant might contribute some tens or hundreds of
data-windows. It goes without saying then that only the simplest models and features
can be effective in this low data regime. In this thesis, we extensively discuss the
trade-offs of feature engineering and more automated approaches for longitudinal
sensor data, as well as limitations of encoding domain knowledge when processing
raw data.

2.4.2 Raw sensor time-series modeling

The state of the mobile sensing–ubiquitous computing research community until
recently used to resemble the computer vision community (then image processing)
around 10 years ago. Due to the inability of algorithms back then to work directly on
the raw pixels of an image (raw sensors in our case), researchers published inventive
methods that were called feature descriptors. Seminal papers of that time like the Scale
Invariant Feature Transform (SIFT) (Lowe, 2004), or the Histogram of Oriented Gradients
(HOG) (Dalal and Triggs, 2005), are handcrafted algorithms that extract interest points
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from an image based on geometry8. The turning point was in 2012 when the Imagenet
study (Krizhevsky et al., 2012) showed that better results are possible with deep
learning that does not need all these extra hand-crafted features.

The Imagenet moment in mobile sensing has yet to come because of various reasons.
Datasets are not as big as to be fully exploited with deep learning, as well as there are
no big benchmark datasets that are systematically evaluated through yearly competi-
tions. Also, unlike object recognition, there is not one established task; we see many
overlapping but different areas covering mood, stress, schizophrenia, bipolar disorders,
sleep patterns, social interactions or depression, to name a few.

However, this plethora of tasks is achieved with a small number of sensors that
reside in mobile phones or wearables (motion, ECG, etc), which can be modeled
with light pre-processing in a similar manner with recurrent or convolutional neural
networks. The field of human activity recognition embraced these methods early
due to the availability of limited but standardized benchmark datasets and showed
state-of-the-art results (Hammerla et al., 2016). This quickly spread to other tasks such
as in mental-wellbeing modeling (Cao et al., 2017), and a more unified architecture was
presented in DeepSense (Yao et al., 2017). This architecture integrated convolutional
and recurrent layers and showed the efficacy of CNNs to learn local patterns, and
RNNs to learn temporal properties. They demonstrated that the same architecture
can generalize to various domains: car tracking with motion sensors, human activity
recognition, and user identification with biometric motion analysis.

In the past three years, the literature has converged to the use of 1D CNNs
(and sometimes a combination of CNNs and RNNs), when processing large datasets
(Ballinger et al., 2018; Saeed et al., 2019). However, in tasks where non-standardized
or smaller datasets are employed, researchers still use traditional features and linear
models (Schubert et al., 2020). It is then obvious that we need better methods for ”small
data”. As discussed earlier, the focus seems to have shifted to better training paradigms
which exploit unlabeled data in a more efficient manner. In 2021, we would argue that
the field of mobile and wearable health can skip the Imagenet moment altogether and
strive for achieving its BERT moment (Devlin et al., 2019). Just as Imagenet showed
that deep learning works in supervised setups, BERT showed that simple pre-training
(fill the gaps) on massive cheaply-sourced unlabeled data produces models which can
transfer effectively.

This thesis takes a pragmatic approach with regards to deep learning and feature
engineering. In the next chapter, we see that sometimes careful feature engineering

8It is noteworthy – and somehow ironic –, that the vision community is now using similar transfor-
mations as targets in self-supervised pre-training tasks. We might have come full circle in that instead
of inventing features, we now do so with tasks, although it highlights that the same operations capture
very fundamental information.
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achieves results on par with deep learning, especially when it comes to modeling
very long time-frames of fine-grained signals. Last, we argue that, beyond accuracy,
deep learning is particularly useful for its internal representations and the re-usability
thereof in other transfer tasks.

2.5 Relating to planned work

Having reviewed the state of the art in the area of ML for mobile health with a fo-
cus on mental and physical well-being, we will now discuss how the next chapters
improve upon existing works. We acknowledge that the building blocks of machine
learning such as neural network layers (CNNs or RNNs for example) have become
commoditised and can be used in various configurations to create ”novel” architec-
tures. However, our focus has been on targeted approaches which best leverage large
retrospective behavioral data, such as new loss functions that are inspired by the data
generation distribution (see Chapter 5), or ways to visualize neural activations towards
understanding the temporal dynamics of the underlying data (see Chapter 4).

Regarding mental health, we present results on a global dataset of mood reports
associated with passive sensing data, orders of magnitude larger than other studies
(LiKamWa et al., 2013; Lane et al., 2011; Taylor et al., 2017). Also, given the imprac-
ticability of obtaining clinical labels — such as depression (Suhara et al., 2017; Shah
et al., 2021) — in this scale, we focused on mood prediction whose instability is a
predictor of poor mental health. Chapter 3 proposed a methodology which combines
clustering historical mood trajectories with classification models that operate on these
clusters. A conceptually similar methodology follows a cluster-then-classify approach
on a smaller sample (Taylor et al., 2017), although their goal is to provide personalized
predictions to these clusters. Our work provides insights in terms of evaluating the
impact of adding sensor data to personality metadata through ablation studies, as
well as providing actionable recommendations on handling sparse smartphone sensor
data. Chapter 4 proposed an encoder-decoder multi-task model for mood forecasting,
which to the best of our knowledge has not been investigated before. Mood forecasting
was the subject of other studies (Suhara et al., 2017), however they focused on using
multiple mobile sensor data for this task. Our aim is to understand the interplay of
the two dimensions of mood through multi-task learning and investigate the learned
temporal dynamics of mood as well as how they relate to personality or external
factors.

For the second half of the thesis which is related to physical health, we present
results on a retrospective dataset of high-frequency free-living physical activity sensor
data and lab-measured clinical outcomes. Chapter 5 proposed a model that — by
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mapping activity to future heart rate — learns a meaningful representation that can be
used as features in many downstream tasks. Many studies have focused on unimodal
unsupervised learning on either activity or ECG data (Saeed et al., 2019; Tang et al.,
2021; Sarkar and Etemad, 2019), however our work was one of the first ones proposing a
multi-modal pre-training task. Our work is conceptually similar to (Hallgrı́msson et al.,
2018), with the main difference of this approach being the requirement of a historical
input of one month of data, as well as the application to more coarse-grained data
than ours. On the other hand, our approach provides ablation tests and experiments
with a wider range of transfer learning outcomes. It is also noteworthy that ideas from
our model are incorporated in a recently published paper proposing a self-supervised
model for forecasting adverse surgical events (Chen et al., 2021). In Chapter 6, we
develop models which can predict the gold standard of cardio-respiratory fitness
using completely free-living wearable data along with demographics. Once again,
the difference to other studies is in the scale and validation methods. While recently
published studies used 50 (Eades et al., 2021), 46 (Altini et al., 2016), 37 (Bonomi
et al., 2020), and 191 patients (Kwon et al., 2019), we leverage a cohort of over 11, 000
participants with a large sample of over 2, 000 people repeating the protocol almost a
decade later. This allows us to train robust models which can potentially generalise
to the population level. Also, we are able to investigate hypotheses pertaining to
fundamental challenges in machine learning such as distribution shifts, by applying
the same models to the longitudinal cohort.

Last, we should note that the publications arising from the chapters of this thesis
have already been cited by other researchers more than 30 times, with multiple studies
building on top of our work.



Chapter 3

Multimodal mobile sensing
for mood prediction

To Ïlon e–nai megal‘tero apÏ to àjroisma twn mer∏n tou1

–Aristotle

3.1 Introduction

In this chapter, we present a training pipeline for population-scale mobile sensor data
towards more accurate mood clustering and prediction. These results motivate the
complimentary use of different modalities through multimodal learning, which is
further studied in Chapters 5 and 6.

Experience sampling has long been the established method to sample people’s
mood in order to assess their mental state. Smartphones start to be used as experi-
ence sampling tools for mental health state as they usually accompany individuals
throughout their day and can therefore gather in-the-moment data. However, the
granularity of the data needs to be balanced with the level of user inconvenience that
these tools introduce. Interrupting users during their daily lives at a high frequency
and with the same purpose is seen as a high burden by many users (Mehrotra et al.,
2015), as it is evidenced by the high dropout rates reported in these applications.
Indeed, according to recent statistics, more than two thirds of people who download
a mobile health app used it only once (Lee et al., 2018). As a consequence, the data
collected with this technique is often sparse. This has been obviated by the use of
passive sensing in addition to mood reports; however, this adds additional noise. In
this chapter, we show that psychological traits collected through one-off questionnaires
combined with passively collected sensing data (movement from the accelerometer

1The whole is greater than the sum of its parts.
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and noise levels from the microphone) can be used to detect individuals whose general
mood deviates from the common relaxed characteristic of the general population. By
using the reported mood as a classification target, we show how to design models that
depend only on passive sensors and one-off questionnaires, which do not entail the
user inconvenience associated with experience sampling. We validate our approach by
using a large dataset of mood reports and passive sensing data collected in the wild
with tens of thousands of participants, finding that the combination of these modalities
achieves the best classification performance, and that passive sensing yields a +5%
boost in accuracy. We also show that sensor data collected for a week performs better
than single days for this task. We discuss feature extraction techniques and appropriate
classifiers for this kind of multimodal data, as well as the overfitting shortcomings
of using deep learning to handle static and dynamic features. These findings have
implications for mobile health applications, that can benefit from the correct modeling
of passive sensing along with additional user metadata.

A summary of the contributions of this chapter is as follows:

• We conducted an extensive data exploration of the self-reported moods provided
by 17, 251 of the users of an experience-sampling based smartphone application,
with the aim of identifying the most common reporting behavior in order to
characterize mentally healthy individuals in the context of our research. Our
findings showed that the majority of the population in our dataset reported –on
average– a relaxed feeling (bottom-right side of the affect grid, Fig. 3.1a), which
is in line with previous research (Russell et al., 1989).

• We provide a supervised learning methodology to detect individuals whose
general mood deviates from the common relaxed mood distinctive among mentally
healthy individuals (Russell et al., 1989). Our methodology does not involve any
kind of cumbersome experience sampling, but only uses one-off questionnaires
(demographics, personality, etc.) as well as sparse and noisy passive sensing
data collected with the accelerometer and microphone sensors of individuals’
smartphones.

• We performed an extensive evaluation of our methodology using a large scale
dataset collected in the wild. Our results showed that the combination of one-off
questionnaires and passive sensing data gives the best performance in mood
prediction. Indeed, by adding passive sensing data we achieved a +5% in accuracy
(75% in absolute) with respect to only using questionnaires.

These findings have the potential to inform future developers of mobile health
applications as well as psychologists on how to how to most effectively use one-off
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(a) Heatmap of valence and arousal. (b) Distribution of valence and arousal.

Figure 3.1: Aggregate 735.778 self-reported mood scores in the EmotionSense
dataset collected from 17.251 users. Most users report neutral (around 0.5,0.5) and
calm-happy (bottom-right quadrant) mood on the affect grid (a). The two multimodal
distributions (Pearson’s r=-0.23, p < 0.001) of the mood (b).

questionnaires and passive sensing data for the early detection of symptoms of mental
disorders at scale.

3.2 Problem formulation

A machine learning model that combines passive sensor signals with tradi-
tional user-level metadata should be more accurate in predicting mental health
outcomes (mood differences).

Hypothesis

Mobile health applications, aimed at assisting users with their mental health to
prevent clinical intervention outcomes should minimize the burden to the user so
as to increase adherence and satisfaction with the app. Instead of the timely and
continuous collection of mood self-reports, psychological traits obtained through one-
off questionnaires, as well as passive sensing data, should be preferred in order to
design effective and useful applications. Our aim in the rest of this chapter is to
investigate how psychological traits and passive sensing data can be used to detect
individuals who might not feel mentally well, i.e., users who have been reported
moods that deviate from the general reports of the population.

To do so, we first conduct an exploratory analysis of the mood reports provided by
more than 17,000 individuals for a period of more than 3 years, in order to identify
the most common set of mental states (moods) reported by any of these individuals
(Section 3.3.1). Given the scale and the real-world context of the data collection, we
believe our results are general enough to be representative of the whole population.
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Figure 3.2: Screens of the mood tracking application. Users could report their mood
in an affect grid, as well as complete personality-related and other questionnaires.

We then use these findings as the ground truth to validate our machine learning
methodology and identify individuals whose record of reported moods deviates
from that of the majority, by using only one-off questionnaires and passive sensing
data (Section 3.3.2). We provide further details of the data used in our analysis and
experiments in the rest of this section.

3.2.1 Data modalities

Experience sampling. Figure 3.1 shows the aggregate of mood self-reports for all
users of the application, where the bottom-right quadrant, corresponding to relaxed
mood, is the most densely populated, a result that matches previous studies in the
area (Russell et al., 1989). Due to the real-world context of the data collection, users
did not always report their mood even if they were prompted to do so, which might
be consequence of the burden that experience sampling brings to the users. Figure 3.3
shows in more detail the CCDF of moods reported per participant, included the reports
they were expected to do given the time they were using the app, the reports they were
prompted to do but did not give (missed), and those that they actually did give. The
results show that alternatives to experience sampling are required to design effective,
long-term, mobile health applications for mental health. As we will show later, by
using the reported mood as a classification target we can design systems that depend
only on passive sensors and one-off surveys.
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Figure 3.3: Complementary cumulative distribution function of the mood reported
by users during the time they were using the application. This includes (i) the self-
reports actually done (done), (ii) those that users were prompted to report but they did
not do so (missed) and (iii) the sum of both (expected).

One-off questionnaires. Previous research has found a link between self reported
mood and personality traits such as emotional stability (Ching et al., 2014; Geukes
et al., 2017). However, to the best of our knowledge, it is not clear yet how to utilise
personality, and other psychological traits, to detect potentially mentally unhealthy
individuals. In the EmotionSense dataset, a subset of the users (12, 106, 70% of total)
completed some one-off surveys providing information regarding their demographics,
personality, gratitude, health, sociability, job satisfaction, life aspirations, connectedness,
and satisfaction with life.

Passive sensing data. Data collected through the built-in accelerometer sensor of
our smartphones provide valuable insights into our activity level throughout the day.
At the same time, previous research has demonstrated the link between activity level
and happiness (Lathia et al., 2017; Servia-Rodrı́guez et al., 2017). We hypothesize
that our activity level throughout the day has a high impact on how we feel on that
day and therefore we use this data in our experiments. In the EmotionSense dataset,
accelerometer samples consist of [x, y, z](m/s2) axes data for periods of 5, 8 or 10
seconds, collected at different intervals throughout the day depending on the version
of the application. Microphone samples, on the other hand, provide insights into the
noise level in the user’s environment. As with activity, we hypothesize that how we
feel (our mood) influences/is influenced by the kind of places or environments we
visit and the level of noise in these spaces. Therefore we use this in our experiments.
To preserve privacy, the EmotionSense application only recorded the amplitude level of
noise at 20Hz (the lower limit of human’s audible spectrum) for periods of 5, 8, and
10 seconds at different intervals throughout the day depending on the version of the
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Figure 3.4: Hierarchical clustering of the users (y-axis, only some user IDs are visible)
and features (x-axis) extracted from their historical mood ( x=valence, y=arousal). The
colorbar represents the actual value of the feature.

application.
Varying amounts of data is available for each of the sensors and self reports, mainly

due to the uncontrolled methodology for participant recruitment. Also, the in the wild
nature of the data collection makes the available data noisy and sparse, which adds to
the challenge. We present more detail on how we dealt with the noise and sparseness,
as well as on the number of participants and days of sensed and self-reported data
used for each analysis, in Sections 3.3.1 and 3.3.2.

3.3 Method

3.3.1 Clustering historical trajectories

The main goal of our research is to investigate whether psychological traits and passive
sensing data can be used to identify users whose set of mood reports deviates from
those of the general population, which might be indicative of some mental condition.
Fig 3.1 shows a visualization of the aggregation of self-reports provided by users in the
EmotionSense dataset, where the most common mood reported is in the bottom-right
side of the affect grid, corresponding to the relaxed mental state. However, it is not
clear how to split the affect grid into bins or classes. We propose not to hard code any
thresholds and potentially induce biases in our labels, but instead to rely on clustering
techniques in order to make labels naturally emerge from the data. The rest of this
section describes in detail the methodology to label users into relaxed/non-relaxed in
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(a) (b) (c)

Figure 3.5: Clustering the historical mood trajectories. Grouping in 2, 3, and 4
clusters: (a,b,c) Affect grid plot of the mean valence and arousal of the clustered users
(every dot is a user). The clusters of the first plot (a) are used as prediction labels for
the subsequent classification task.

the EmotionSense dataset.
Feature extraction. A mood self-report in the affect grid is described by means of

two coordinates: the x-coordinate that indicates the feeling in terms of its positive and
negative affect, and the y-coordinate indicates the intensity of alertness. The history
of mood-reports of an individual consists of time-series trajectories of [x,y] tuples
recorded over time in the affect grid. Also, the in-the-wild setup is reflected on that (i)
the number of self-reports reported by different individuals might be different, and
(ii) that for a given individual, the reported moods might not be consecutive (as a
consequence of users missing reports). In order to cope with this variability and obtain
independent features to allow clustering algorithms to learn representative clusters,
we extract eight simple features for each axis or coordinate, namely counts, mean, std,
min, max and quantiles (25%, 50%, 75%), resulting in 16 final features for every user.
Missing values are replaced with zeros and minmax [0,1] normalization is applied to
the final features column-wise. Due to the sparsity of the mood and the power law
distribution of the counts, these two count features that measure non-missed reports
are affected the most by the normalization, concentrating all their mass close to zero.

Clustering. We then apply a clustering algorithm to produce mutually exclusive
clusters (k-means (MacQueen et al., 1967)). In order to come up with the optimal
number of clusters, we apply the Elbow method (Thorndike, 1953) where we increase
the number of clusters and observe the drop of the evaluation metric. Here, we use
the silhouette metric (Rousseeuw, 1987) which measures how similar a sample is to
its own cluster in comparison with other clusters. Other clustering algorithms might
also be used. In fact, techniques such as hierarchical (agglomerative) clustering (Kundaje
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Figure 3.6: Clustering evaluation. Elbow plot to determine the optimal number of
clusters, estimated with the silhouette score.

et al., 2015) applied to the matrix of [users,features], can be used to find partitions in
the data, but also to uncover overlapping patterns between features.

We applied our methodology to identify non-relaxed users (or those that deviate
from the most common mood feeling reported) in the EmotionSense dataset. For each
of the 17,251 users who have reported their mood at least once, we obtain 2,682 sparse
mood reports completed over 3 years, for valence and arousal. This is the final sample
we used for this experiment.

Exploratory analysis. As a first exploratory analysis, we apply hierarchical clus-
tering to the historical mood of the users. Figure 3.4 shows the resulting trees. We
observe that there are multiple user groups shown on the left side tree, pointing out
that some mood reporting behaviors resemble those of other users. However, it is
not easy to spot a clear relationship due to the number of users. The highest-level
clusters predictably split to valence and arousal features. However, there are some
inliers in those clusters: for example, the maximum arousal (max y) belongs to the
valence cluster while the counts (counts x) and the minimum (min x) of valence goes
into the arousal group. These feature clusters provide hints regarding the non-linear
relationships of the mood components.

Label extraction. After applying k-means we obtain the labels to use in our
experiments. We repeat the experiments by varying k, that is the resulting number
of clusters. Figure 3.5 shows the resulting clusters when increasing the number of
clusters from 2 to 4. For 2 clusters (Fig. 3.5a), by plotting the mean valence and arousal
in the affect grid, we notice a group of consistently relaxed users on the bottom-right
quadrant and another group that consists of depressed, stressed and excited users on
the rest of the grid. When we further increase the number of clusters, the classes are
not so apparent. For example, with 3 clusters (Fig. 3.5b) we spot a central neutral
group which is now distinct, while the rest is similar to the previous plot (relaxed
and non-relaxed). Finally, for 4 clusters (Fig. 3.5c), we spot again the middle neutral
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(a) (b)

(c) (d)

Figure 3.7: Sparsity analysis of the sensors. Missing values for the sensors on the
weekly (a,c) level. Cumulative distribution functions (CDF) for the missing time-steps
(b,d) show the long tail distribution of sparsity. Some daily periodicity is also spotted.
Similar conclusions are drawn with the daily level sensors.

users but this time the valence axis breaks down to two areas: excitement (up right)
and relaxation (down right). It notable that the negative feelings (left side) do not
break down to sub-clusters, hinting that the two dimensions of arousal for unpleasant
feelings (stress and depression) might share some common characteristics. However,
these plots (3 and 4 clusters) present significant cluster overlap.

Finally, we perform the elbow method to quantitatively find the optimal number of
clusters. Figure 3.6 shows that the top silhouette score is 0.30 (the higher the better)
with two clusters, while it drops to 0.23 with three clusters. We observe that it plateaus
at around 0.20 with seven clusters or more. These two groups will be used as a label
in the machine learning pipeline to infer non-relaxed users from one-off questionnaires
and passive sensing data in the next section. We are aware that these clusters are
inferred information and thus could include some errors, however we incorporate
the silhouette score with the lowest error. Please note that there is a class imbalance
between the clusters on the user level: cluster 1 (65%), cluster 2 (45%), which we will
address later in the section.
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3.3.2 Classifying clustered mood

We now describe our methodology to identify non-relaxed individuals from their
psychological traits obtained through one-off questionnaires, and passive sensing data
collected using the accelerometer and microphone sensors of their smartphones. We
follow the workflow in Figure 3.8, where we begin by extracting features from the
accelerometer and microphone raw data, as well as one-hot encoding the answers of
user-surveys. We then perform a two-step feature selection, where we first calculate
the feature significance of a real-valued feature to a binary target as a p-value using
the univariate Mann-Whitney U test (Mann and Whitney, 1947), and then transform
these selected features with Principal Component Analysis (PCA) (Pearson, 1901) to
obtain feature combinations with the maximum variance. These features are finally
fed to classifiers. We detail these steps below.

Questionnaires. One-off surveys cover a wide range of a user profile attributes
such as demographics, personality, gratitude, health, sociability, job satisfaction, life
aspirations, connectedness, and satisfaction with life. These 92 features are represented
as Likert-scales or categories which are described in detail in (Lathia et al., 2017).
In order to be appropriate for machine learning models, the categorical features are
transformed to individual features with one-hot encoding, so that a feature with e.g. 3
possible choices (Yes, No, missing), is transformed to 3 different features. Categorical
features include the gender, age group, education level and ethnic group among others.
The total list of questionnaire features is 131.

Accelerometer. We consider the 3 (x,y,z) dimensions of the accelerometer and
compute the magnitude of the acceleration for 5, 8, and 10-second samples, resulting
in 48 time-steps for every user-day (336 time-steps for every user-week). We aggregate
the sensor in 30-min bins since this level of granularity is the best trade-off between
data sparsity and modeling the sub-hourly movement of individuals. By doing this
light processing, we end up with one time-series instead of three, combining the three
axes into one time-series. Based on the sparsity histogram (Fig. 3.7b), we filter those
samples that have at least 50 time-steps during the week (20 time-steps during the day).
This time-series is normalized with minmax scaling to a [0.05-1] range and the missing
values are replaced with zeros. We extract 721 simple and second order features
that cover a wide range of attributes of a sensor such as the energy, auto-correlation,
entropy, trends, wavelet and Fourier coefficients, peaks, etc. For a comprehensive list
of the features we refer the reader to the documentation of the tsfresh library (Christ
et al., 2018) and the Appendix A.

Microphone. Similar to the accelerometer data, we compute the mean of the 5, 8,
and 10-second window over the initial raw microphone data over the amplitude level
of noise at 20 Hz, ending up with 48 time-steps for every user-day (336 time-steps for
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Figure 3.8: Data flow. Conceptual illustration of the data modality merge and pre-
processing steps for the mood prediction task.

every user-week). We apply the same filtering, normalization and feature extraction as
the accelerometer above, resulting in 717 features.

Seasonality. Temporal features are extracted by the end of the sensor user-week
timestamp in order to capture the inherent seasonality patterns. Namely, we compute
these 5 increasingly detailed time-aware features: the number of the calendar year
quarter, month, week, day of week and hour of day. We group these features under
the sensor modality that we introduce later.

Classifiers. We considered three different classifiers for our inference task: Logistic
Regression, Gradient Boosting Trees and a Deep Neural Network. Below we describe
the details of our implementation.

Logistic Regression (LR). An sklearn implementation of a binary logistic regression,
with penalty of L2 regularization along with a C = 1 (inverse of regularization
strength), was tested.

Gradient Boosting Trees (GB). An sklearn implementation of a gradient boosting
was tested. Reportedly the state-of-art in feature-based machine learning (Olson et al.,
2018), this classifier forms an ensemble of weak prediction models, typically decision
trees.

Deep Neural Network (NN). We use a straightforward bottleneck architecture of 4
feed forward Dense layers of dimensionality 100-50-100. The reduced dimensionality in
the middle (50 units) has been shown to lead to better generalization in deep learning
architectures (Lozano-Diez et al., 2017; He et al., 2016). A rectified linear unit (ReLU)
(Glorot et al., 2011) activation is applied at the output of every layer, followed by a batch
normalization layer that transforms the output to have zero mean and unit variance
(Ioffe and Szegedy, 2015). Dropout of 50% probability is applied to every layer to reduce
overfitting (Srivastava et al., 2014). The final layer performs a softmax activation which
estimates the cross-entropy loss, while the backpropagation optimizer is Adam (Kingma
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Table 3.1: Classification performance. AUCs for the task of predicting mood group
based on weekly or daily sensors, across 10 cross-validation runs along with standard
deviation in brackets (NN=neural network, LR=Logistic Regression, GB=Gradient
Boosting).

Modality Weekly Daily
LR GB NN LR GB NN

Sensors (S) 0.575 (0.03) 0.555 (0.03) 0.550 (0.04) 0.543 (0.04) 0.514 (0.02) 0.510 (0.03)
Questionnaires (Q) 0.690 (0.05) 0.627 (0.10) 0.687 (0.09) 0.671 (0.11) 0.729 (0.09) 0.701 (0.09)
All (S + Q) 0.749 (0.06) 0.721 (0.03) 0.725 (0.06) 0.706 (0.07) 0.740 (0.09) 0.697 (0.10)

and Ba, 2014). We train for 300 epochs or until the validation loss stops improving
for 10 consecutive epochs. Our implementation is based on Tensorflow/Keras. In
Appendix A we provide more details regarding the models.

3.4 Evaluation

We now detail the evaluation of our methodology to identify non-relaxed users from
one-off questionnaires and passive sensing data described in Section 3.3.2. We used the
EmotionSense dataset, for our experiments, and the clustered mood we obtained using
k-means in the Section 3.3.1 as the labels for the classifiers. Below we indicate how we
merged the data from the different modalities and how we partition the dataset for
our experiments.

3.4.1 Experimental setup

Modality merge. Experiments in the wild such as this one do not guarantee complete
and fine-grained data, especially when they involve battery consuming tasks such as
sensor-tracking or input-based prompts such as self-reports from users. Therefore,
not all modalities appear for the same users. We start by merging the accelerometer
and microphone modalities, resulting in 141,261 user-weeks while we concatenate
their features along with the seasonality features. Next, we find which users from
those weeks have completed at least a single questionnaire and concatenate these static
features to the feature vector, resulting in 131,793 user-weeks. Finally, we merge with
the clusters that we produced in the previous section, so that every user-week feature
vector corresponds to one of the two user mood clusters. Please note that these clusters
came up by taking into account the full mood history of the users and therefore we do
not imply that mood is static. Predictably, the high class-imbalance on the user level
seen earlier is exaggerated here because only 7% of the user-weeks belong to cluster 2
(green in Fig. 3.5). As a result, we subsample the majority class, resulting in 18,998
balanced user-weeks from 2,812 users. The same processing is followed for the daily
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sensors: 112,161 user-days after sensor merge, 106,672 after questionnaire merge, and
we end up with 16,470 user-days from 1,859 unique users when we merge with the
labels and sub-sample.

Feature ablation studies. In order to identify which feature modality contributes
more to the classification we repeat our experiments with 3 different modalities:
only sensors (accelerometer, microphone and seasonality), only one-off questionnaires
(psychological profile), and a combination of these. To make for a fair comparison,
for every modality we keep only 100 features that we feed to the classifiers. Since
every modality contains different numbers of features (combined=1,564, sensors=1,434,
questionnaires=130), we perform a two-step feature selection. First, we calculate the
feature importance with a Mann-Whitney U test (Mann and Whitney, 1947). Next, these
selected features are transformed with Principal Component Analysis (PCA) (Pearson,
1901), a common decorrelation method that produces latent features, resulting in 100
components.

User based cross validation. Typical cross-validation would not be adequate in
our task since some static features such as the age or gender are repeated for different
weeks because they belong to the same user. Therefore, we create training and test sets
from disjoint user splits, making sure that weeks from the same user do not appear
in both splits. Please note that this does not result in perfectly balanced class splits,
but the evaluation metric we are using, the Receiver operating characteristic-Area
Under Curve (ROC-AUC or simply AUC) is robust to class imbalances. Even using
this metric, it is not easy to guarantee that a split picked a representative test-set,
thus we perform a 10-fold-like cross validation using 10 different seeds to pick disjoint
users. Consequently, we conduct an extensive experimentation by testing 180 models
(3 modalities ⇥ 10 user splits ⇥ 3 classifiers ⇥ 2 temporal levels). The size of the test
set is 10% of the dataset, and of the rest 90% used for training we keep a random 10%
for validation (used only in neural networks). This validation set belongs to the same
distribution as the training set. We report the average performance of the folds and
the standard deviation.

3.5 Results

We now present the classification results of predicting whether a user-week/day
belongs to the relaxed or to the rest of the mood spectrum, based on sensors, question-
naires and other meta-data. As discussed earlier, we performed extensive experiments
and trained 180 models to evaluate the impact of the different modalities and user splits.
In Table 3.1, we present the mean classification performance of the experiment setup
described in the previous section, that of predicting the mood cluster group (relaxed
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or not) based on each user’s weekly/daily sensors and questionnaire metadata.
Week level. By using the sensors at the week level we achieve the best overall

performance of 0.749 AUC, which comes from the LR model, while the NN comes
second with 0.725. Even though the NN and GB are non-linear classifiers, they under-
perform, possibly due to the issue of overfitting or the data compression with PCA.
Also the LR model shows stability with the lowest standard deviation across all cross-
validation runs. Regarding the modalities, in the best case of the LR, the combined
representation of the sensors and the questionnaires outperforms the single modality
of questionnaires by +5.9% AUC and reaches +9.4% in the case of GB (with a lower
max AUC in the combined representation though). The sole use of sensors achieves
less than 60% for all the models. This ranking is consistent for all the classifiers.

Day level. Considering only one day of sensing data, the absolute results are
slightly lower than those of the weekly level. Here, the GB model achieves an AUC of
0.740, while the LR comes second with 0.706. The NN presents similar performance
for the combined and questionnaire representation, hinting that the daily sensors do
not contribute significantly to it. However, the rest models show a rise of +1.1% (GB)
and +3.5% (LR) in AUC, when we add the sensors to the questionnaires.

3.6 Discussion

These results show that by adding passive sensing to traditional personality and
demographics surveys we are able to predict the mood group of individual users with
a higher precision. Specifically, for our task we achieve ⇠ 75% AUC by classifying
users’ status into relaxed or not. Also, we observe that by tracking the users for a
longer time duration (one week, instead of one day), we achieve better performance. In
hindsight, this is intuitive, since movement and noise levels are expected to be related
with relaxation levels. Beyond the binary task, additional experiments with 3 or 4
clusters (multi-class) yielded worse results due to the significant cluster overlap and
fewer data-points per class to learn. Furthermore, putting our results in the context
of related work we see that similar datasets yield lower accuracy (around 65%) for
slightly different tasks such as predicting tomorrow’s mood (Taylor et al., 2017) or
daily mood average (LiKamWa et al., 2013). Furthermore, perhaps the most closely
related work to ours is the Snapshot (Sano, 2016) study. This study investigated how
daily behavior gathered through passive sensing data influence sleep, stress, mood,
and other wellbeing-related factors. Multiple papers focused on different aspects
of the collected dataset, such as personalization with multi-task learning to predict
tomorrow’s mood, stress, and health (Taylor et al., 2017), prediction of happy/sad
mood based on sleep history (Sano et al., 2015), or a denoising autoencoder to fill
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in missing sensor data for mood prediction (Jaques et al., 2017). Similarly to our
methodology, they first cluster the users before going into classification (Taylor et al.,
2017), although their goal here is to provide personalized predictions to these clusters.
However, our models do not distinguish between healthy and depressed patients, but
instead predict the clustered mood group which roughly correspond to relaxed or
not-relaxed users. From a more practical perspective, personalized models are difficult
to be deployed in a real world scenario, since they require training N personalized
models, with N being the number of users. Even though previous research has shown
that better performance can be achieved by averaging the individual model accuracies
(Canzian and Musolesi, 2015; LiKamWa et al., 2013), no results are reported on unseen
disjoint users. Here, we propose a robust ML pipeline and report results on a disjoint
user set.

3.7 Conclusion

In this chapter, we showed how the pervasiveness of smartphones has converted them
into experience sampling tools to collect people’s mood in order to assess their mental
state. However the granularity of the data needs to be balanced with the level of user
inconvenience these tools introduce on users’ activities, which often results into very
sparse data. In this chapter, we propose a machine learning methodology to detect if
an individual’s perceived mood differs from that of the general population, by solely
considering their psychological traits collected through one-off questionnaires and
passively collected mobile sensing data, thus avoiding the use of experience sampling
questionnaires.

We evaluate our methodology by using a large-scale dataset collected in the wild
for more than 3 years and 17, 000 participants. An exploratory analysis of the data
revealed that relaxed is the most common state reported by our population. Our
experiments also confirmed that our methodology is able to distinguish between
generally relaxed/non-relaxed individuals with a 75% AUC when using a combination
of weekly sensors (accelerometer and microphone) and one-off questionnaire data
(personality, demographics, etc) as inputs. Besides, the use of passive sensing data
yields a +5% boost in accuracy. In a healthcare context, this accuracy suggests that we
can group users correctly 3 out of 4 times using only short-time mobile phone sensing
and sparse surveys. While this level of accuracy might not be adequate for deployment
in clinical settings, our focus is mostly on the positive contribution of passive sensing.

This first empirical chapter of the thesis sets the tone of the following ones by
introducing models and methodologies which can leverage mobile sensor data along
with other traditional features. Although the employed models are commonly used in
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the literature, here we propose a new robust model pipeline which includes clustering
user trajectories followed by classification models. We consider a key contribution to
be the correct handling of user-level data towards generalising to held-out populations.
Last, regarding the application area, this chapter focused on the association of passive
sensing to mental health, but we used aggregated clustered trajectories as mood
outcomes. Therefore, we have not yet explored how mood variability across consecutive
days could inform potential predictions of mental health issues. To this end, the
following chapter puts forward a model which learns patterns in mood sequences
through multi-task learning.



Chapter 4

Sequence multi-task learning
for mood forecasting

Prediction is very difficult, especially if it’s about the future.
–Niels Bohr

4.1 Introduction

In the previous chapter, we focused on the feasibility of large-scale mood prediction
through passive sensing and proposed a multimodal training pipeline. In this chapter,
motivated by the temporal dynamics of mood instability, we present an encoder-
decoder model which exploits the bi-modality of mood with multi-task learning,
enabling more accurate multi-step mood forecasting. These results motivate the use
of forecasting as a means of learning meaningful representations, which is further
explored in Chapter 5.

Smartphones are increasingly used as self reporting tools for mental health state
because they accompany individuals throughout the day and can therefore gather
temporally fine-grained data. However, the analysis of self reported mood data offers
challenges related to non-homogeneity of mood assessment among individuals due
to the complexity of individual mood states and the reporting scales that capture
these, as well as the noise and sparseness of the reports when collected in the wild.
In this chapter, we propose a new end-to-end ML model inspired by video frame
prediction and machine translation, which forecasts future sequences of mood from
previous self-reported moods collected in the real world using mobile devices. In con-
trast to traditional time series forecasting algorithms, our multi-task encoder-decoder
recurrent neural network learns patterns from different users, thus allowing and im-
proving the prediction for users with limited number of self-reports. Unlike traditional

67
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feature-based machine learning algorithms, the encoder-decoder architecture enables to
forecast a sequence of future moods rather than one single step. Meanwhile, multi-task
learning exploits some unique characteristics of the data (for example that mood is
bi-dimensional), achieving better results than when training single-task networks or
other classifiers.

Our experiments using a real-world dataset of 33, 000 user-weeks revealed that (i) 3
weeks of sparsely reported mood is the optimal number to accurately forecast mood,
(ii) multi-task learning models both dimensions of mood — valence and arousal —
with higher accuracy than separate or traditional ML models, and (iii) mood variability,
personality traits and day of the week play a key role in the performance of our model.

This chapter makes the following contributions:

• We propose and adapt an end-to-end, stand-alone model inspired by video frame
prediction (Srivastava et al., 2015) and machine translation (Sutskever et al., 2014),
to forecast sequences of future moods — valence and arousal — from previous
self-reported moods.

• Our evaluation on real world data reveals that (i) our model forecasts tomorrow’s
mood with ±0.14 minimum error, and 7 days later with ±0.16 error on the affect
grid, and (ii) that the multi-task model trained to learn predicting both valence
and arousal simultaneously is more accurate than independent models trained
on each dimension separately, especially for arousal.

• We show the internal learned black-box representations of the deep neural net-
works and observe that different neurons learn different non-linear sequential
patterns, which helps us to understand the complex trajectories of future mood.

• An exploratory post-hoc analysis reveals that the accuracy of the learned model is
related to the day of the week, personality traits and mood variability. Specifically,
our model performs better for open-personality users and on weekends.

We believe that this work provides psychologists and developers of future mobile
mental health applications with a ready-to-use and effective tool for early diagnosis of
mental health issues at scale.
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4.2 Problem formulation

A machine learning model that employs multi-task learning within an encoder-
decoder architecture should be more accurate in forecasting mental health
outcomes (fine-grained valence and arousal).

Hypothesis

We start by analyzing self-reporting behavior in smartphone applications for mood
monitoring. To do so, we consider the EmotionSense dataset (Servia-Rodrı́guez
et al., 2017), as in the previous chapter. For this analysis, we solely consider self-
reported mood collected graphically using the Affect Grid scale (Russell et al., 1989).
As we discussed in Chapter 3, participants were asked to complete profile-related
questionnaires covering a broad range of topics such as demographics, personality
and sociability, measured using Likert scales. We will only use such metadata during
post-hoc analysis in order to gain insights about model performance at user and group
levels.

Sparsity of mood reports. A quick inspection of the dataset revealed that users
did not always report even if they were prompted to do so. In the previous chapter,
Figure 3.3 showed the complementary cumulative distribution function (CCDF) of
moods reported per participant, including those they were prompted to fill (expected),
the ones they were prompted to fill but did not (missed) and the ones they filled
(complete). This is also true for users who used the app for large periods. Indeed, those
who used the app for 45 or more consecutive days (n=16, 8% of the users) reported, on
average, for fewer than half of the expected timepoints. The absence of mood reports
might be a symptom of boredom or dissatisfaction with the app, but could also be
indicative of mental disorders, especially in cases where users have been reporting
anger and depression related feelings.

Variability of mood reports. A longitudinal exploration of the mood reported
shows large differences between users in the way they report, in terms of both specific
positions on the grid and the area covered. Figure 4.1 shows moods reported by two
different individuals who self-reported for at least 300 days, and who are representative
of two different behavioral patterns we identified. The first user (user 1 in Fig. 4.1)
reports consistently over time, both in the short and long term, and their reports are
concentrated on the positive and calm area of the grid. As time elapses, their reports
progressively become more negative (but still in the positive area) and active. The
second user (user 2 in Figure 4.1) has quite the opposite behavior. That is, at the outset
(purple dots), they report mixed affect states during consecutive days (purple dots
are almost all over the grid), but, over time, their reports concentrate mainly in the
negative and active area.



70 CHAPTER 4. SEQUENCE MULTI-TASK LEARNING FOR MOOD FORECASTING

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
valence

ar
ou
sa
l

100
200
300
400
500

day

(a) user 1 (daily level)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
valence

ar
ou
sa
l

100
200
300
400

day

(b) user 2 (daily level)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
valence

ar
ou
sa
l

10
20
30
40

month

(c) user 1 (monthly average)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
valence

ar
ou
sa
l

5
10
15
20

month

(d) user 2 (monthly average)

Figure 4.1: Longitudinal mood monitoring for 2 illustrative users. Differences across
users in reporting mood levels over time.
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Given the longitudinal variability of user’s mood, forecasting current and future
mood entails different levels of difficulty for different users. For example, it is expected
to be much easier to predict for user 1 than for user 2. We will explore this further in
§4.5.4.

4.3 Method

We now describe our methodology to build a mood prediction framework capable of
handling for the level of noise and sparsity of this kind of data. It consists of a sequence-
to-sequence neural network that learns from previous mood sequences to predict
future ones (Fig. 4.2). The main advantage of this approach is that, unlike traditional
regression, it allows the model to regress to multiple steps into the future by mapping
the input sequence to an arbitrary output sequence. The model is composed of an
encoder and decoder, each of which are RNNs. The individual units that build up the
recurrent networks are Long Short-Term Memory units. We use a simplified adaptation
of the sequence-to-sequence model proposed for machine translation (Sutskever et al.,
2014) as we know exactly how many steps in the future we want to predict, while in
translation this length varies (e.g. a sentence in English might have different length in
French).

Long Short-Term Memory (LSTM). RNNs are well known to be hard to train
especially when employed on sequences with long-term dependencies and patterns
(Hochreiter and Schmidhuber, 1997). LSTMs overcome this problem by introducing
memory cells.

Each LSTM unit has a cell composed of state ct at time t, also called a memory unit.
Sigmoid gates allow the reading and modification of this unit via the input gate it, the
forget gate ft, and the output gate ot. Each unit has four paths, the three gates and
the input. At every time-step the unit receives at its four paths inputs coming from
two sources: the current mood xt and the previous hidden states of all the units in the
same layer ht�1. Internally, each gate has another source, the previous cell state ct�1.
The inputs are summed along with a bias term b and the total input goes through a
sigmoid logistic function. The total input of the input path goes through a non-linearity
(tanh). The result is multiplied with the activation of the input gate, and then added to
the current cell state after multiplying the previous cell state ct�1 with the forget gate
activation ft. The final output ht is calculated by multiplying the output gate ot with
the updated cell state ct passed through a non-linearity. This happens in a single layer
of LSTM units during training (Fig. 4.2). Our encoder and decoder layers are LSTM
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Figure 4.2: LSTM Encoder-Decoder model. The mood sequence (v1,v2,v3) passes
through an LSTM (states W1), is transformed to a single vector (dotted) and decoded
through another LSTM (W2) that predicts future mood sequences (v4,v5,v6). Two
fully-connected layers are applied to every time-step of the output (yellow circle), one
for valence and one for arousal (purple box).

layers like the ones described here. The above updates are summarized as follows:

it = s(Wxixt + Whiht�1 + Wcict�1 + bi)

ft = s(Wx f xt + Wh f ht�1 + Wc f ct�1 + b f )

ct = ftct�1 + ittanh(Wxcxt + Whcht�1 + bc)

ot = s(Wxoxt + Whoht�1 + Wcoct + bo)

ht = ottanh(ct)

(4.1)

where s(·) is the sigmoid function, it, ft, and ot are the input, forget and output gates,
respectively. Since we predict precise mood scores and not binary outcomes, we use
the Mean Squared Error (MSE) as the evaluation metric and the loss function to train
the model:

MSE =
1
n

n

Â
i=1

(Yi � Ŷi)
2 (4.2)

where Yi is the vector of n predictions and Ŷi is the ground truth.
Encoder-Decoder LSTM. The above structure of the LSTM unit outputs the same

number of time-steps as the input sequence. Hence, ht must connect to additional
fully-connected layers to reach the desired dimension of the final output. However,
by using simple fully-connected layers we dismiss the sequential nature of the data.
To address this, we use a standard LSTM layer as an Encoder in order to map the
past mood into a fixed length representation with the size of the prediction, and then
another LSTM layer as a Decoder to reconstruct the original sequence in future steps.
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The fixed length representation is feasible through a layer (dotted arrow in Fig. 4.2)
designated copy (or repeat), which repeats the Encoder 2D output as many times as
the output length, in order to create a 3D input for the Decoder. For example, given a
week of past mood, we may want to forecast the next two days: the encoder learns
to map the past week sequence into a decoded vector of the next two days. A similar
model has been applied successfully to video frame prediction, which the authors
named LSTM Future Predictor Encoder-Decoder (Srivastava et al., 2015).

Multi-task Encoder-Decoder LSTM. As we discussed in Chapter 2, multi-task
learning is a transfer learning method in which a model learns to predict simultane-
ously two or more similar tasks. It has been used to reduce overfitting (with auxiliary
targets), produce better data representations, and in general to improve accuracy in
neural networks (Ruder, 2017). Specifically in deep neural networks, this multi-target
setup forces the shared weights of the network to optimize both tasks and consequently
learn internal representations that reflect on both.

4.4 Evaluation

We now evaluate our deep encoder-decoder to forecast mood sequences. We first test
different ablations such as a simplified, single-task version of this model and study the
optimal length of the input sequence, i.e., number of days in the past, that minimizes
the prediction error (§4.5.1). We then explore the performance of multi-task learning
for predicting valence and arousal simultaneously (§4.5.2).

Data pre-processing. We selected users who reported more than 100 days (>
200 half-days reports) between May 2013 and October 2016 — the period when the
application was most active — resulting in 177, 111 unique self-reports from 566
participants. This is the sample we used in our experiments. This subset has similar
statistics to the initial sample in terms of valence and arousal: µval = 0.57 (±0.17)
and µaro = 0.46 (±0.19) for the initial dataset, and µval = 0.60 (±0.17) and µaro = 0.43
(±0.18) for the subset (± denotes one standard deviation).

We used a sliding window with step 1 over the mood sequences for each user,
obtaining consecutive sequences of 4 weeks of past and 1 week of future moods. We
then remove those samples whose future moods contained missing values, including
these would make training more difficult, resulting in 33, 461 final sequences of past
and future moods. For the past weeks, we found that only 6, 000 out of 33, 000 (20%)
user-weeks had no missing values. Every sequence had on average 15% missing values
(i.e. µspar = 6.36 (±8.69) for missed time-steps out of 42 steps for a past duration of
3 weeks). For these past sequences, we replaced the missing values with zeros. We
tested other data imputation methods such as filling with the median of the sequence,
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(a)

(b)

Figure 4.3: Model comparison and performance analysis. (a) How many days into
the past should we look for accurate valence prediction? (b) Which is the best model to
forecast mood using 3 weeks of past data? (smiley face=valence, sleepy face=arousal)
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or min-max scaling to [0.05, 1] but we did not observe any considerable gain on the
validation set. To be able to distinguish between real and missing values, we used a
Masking layer to skip the missing values during training. In order to prevent over-
fitting, we split the data into 20% testing and 80% training, ensuring that the users in
the test set were completely disjoint, and did not overlap with those in the training set.
During training, we used 10% of the training set as validation set to tune our models’
hyper-parameters.

Implementation. Our implementation is based on Keras (with Tensorflow backend).
We trained two separate models, one for valence and one arousal, for the Encoder-
Decoder LSTM model. The input and output data are a matrix M 2 Rs⇥t, where s
are the samples and t the time-steps. After grid-search we found the best-performing
number of LSTM units for the Decoder and the Encoder (80 units each). The input
layer is a standard Masking layer that skips the time-steps of missing values. In every
LSTM layer, a rectified linear unit (ReLU) as well as recurrent dropout of 0.5 probability
is applied, to prevent overfitting. The final layer is a standard feedforward neural
layer (Dense) with a linear activation, that is being applied to every time-step. The
objective function minimizes the MSE since this is a regression problem, while the
backpropagation optimizer is Rmsprop. We train for 300 epochs or until the validation
loss stops improving for 15 consecutive epochs. In Appendix A we provide more
details regarding the models.

Baselines. We compared our proposed model against a naive baseline based on
simply using the average of the past days for predicting future moods (excluding the
missing values), a Support Vector Regressor (SVR) and a Gradient Boosting Regressor
(GBR). We used the Python’s library sklearn implementations of an SVR with a radial
basis function (RBF) kernel, and a tree-based ensemble model for the GBR, which
is reportedly the state-of-art in feature-based machine learning (Olson et al., 2018).
SVRs and GBRs do not operate on sequences and assume feature independence, so
we extracted 8 representative features from the time-series (non-missing counts, mean,
std, min, max, and 25%, 50% and 75% quantiles) and normalized them column-wise
to [0, 1]. We again exclude the missing values when we calculate those features. We
only report the prediction for the first future mood since these models cannot regress
to sequences.
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(a) True and predicted valence. (b) True and predicted arousal.

Figure 4.4: Correlations of predictions against ground truth. Predictive performance
of the multi-task model for the first future mood forecast (p = 0 denotes a p < 0.001).

4.5 Results

4.5.1 How many days should we look back?

Building on previous research (Suhara et al., 2017) we now investigate how many days
we should look back (i.e., how much history to consider) to predict the sequence of next
week’s moods. We conduct different experiments to find out which period — 4 weeks,
3 weeks, 2 weeks, 1 week, 3.5 days, or 1 day — predicts with the lowest error the
self-reported mood states in the following week. Our assumption is that by using fewer
days, the prediction error will increase. By using only the valence axis on the affect
grid for training and prediction, we trained a single-task, Encoder-Decoder LSTM
model and tested its performance on a test set of disjoint users. Fig. 4.3a shows the
MSE for each half-day of the following week for different training sequences. We make
the following observations. First, the error increases as we forecast more days into the
future. Second, the lowest reported error is 0.022MSE when using 3 weeks of data for
training, which corresponds to ±0.14 error on the affect grid (see Fig. 3.1). Although 1
month includes more time-steps, the length of the optimal sequence of past moods
for training is 42 half-days, which corresponds to 3 weeks. This could be attributed
either to the inability of the model to learn such long sequences, or that the fourth
week of the past does not contain informative and predictive patterns in this dataset.
We observe similar behaviors by testing this assumption with our baseline models.
Third, our model achieves the highest error when it is trained with just one day of
data, i.e., two mood self-reports (±0.18 error on the affect grid at its worst), followed
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by a half-week of data.

4.5.2 How effective are multitask LSTMs?

Motivated by the moderate correlation between valence and arousal (Pearson’s r=-
0.23) at a significant level (p <0.001), we experiment with learning the two sequences
simultaneously in a joint model. Our assumption is that, given this similarity, a
multi-task model trained to simultaneously predict valence and arousal would perform
better than a single model trained on each separately. To investigate this, we train a
single multi-task model with the input and output containing the aligned sequences of
valence and arousal in a tensor T 2 Rs⇥t⇥ f , where s are the samples, t the time-steps,
and f the two features or sequences of mood. The only modification to the single-task
model is on the final feed-forward layer, which now has two units, one for each task.

We use the sequence of moods of the previous 3 weeks to predict the sequence of
moods in the next week. We do so because in the previous experiment 3 weeks was
found to be the period that produces the lowest error in the prediction. From now
on, we will refer to these 3 past weeks as user-weeks. We use the same data split as
in the previous setup and compare different algorithms and approaches. To allow
for comparison, we also train a single-task model for the arousal axis using the setup
followed earlier with the valence (see 4.5.1), a SVR, a GBR, and a naive baseline that
predicts just the average of the past self-reports.

Figure 4.3b shows the MSE for each half-day of the next week for different training
sequences and algorithms. Similar to the previous experiment, we observe that the
error increases over time. The most interesting result comes from the multi-task
learning, which improves the performance of the arousal when trained jointly with
the valence, but not the opposite. In general, the arousal axis throughout all of our
experiments is more difficult to predict, which reflects on higher errors in all the
models. We posit that users might not be as confident evaluating their calmness as
they are with their happiness, hence the relationship between the two axes might not
be linear. We showed in §5.3 that the heatmap of the two axes forms a X-shape (Fig.
3.1). There is evidence that there is a V-shaped relationship of arousal as a function
of valence (Kuppens et al., 2013). This is in line with previous studies that found
that happy/unhappy feelings usually co-occur with higher arousal for some people
(reflecting joy/stress), but with lower arousal for others (relaxation/sadness) (Kuppens,
2008).

Regarding the baselines, we observe that the error on the next day’s prediction using
single-task and multi-task models is lower than those achieved with feature-based
algorithms, which fail even to improve the performance of the naive heuristic. In fact,
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the maximum MSE of 0.032 (±0.17 on the affect grid), makes them equivalent to using
only one day of data for training in the previous experiment (brown line in Figure 4.3a).
This motivates the need of using non-linear models like LSTMs. However, and
regarding their utility, we believe that simple baselines like these should be encouraged
more in time-series forecasting since they provide a fast lower bound. In a more
systematic comparison, we compare the error distributions (squared error of predicted
and ground truth) of each classifier with a Welch’s t-test. Our hypothesis states that
multi-task learning will outperform the other classifiers. Indeed, for the valence axis at
the first future forecast, the multi-task model presents statistically significant results
over the naive baseline (p < 0.001), the SVR (p < 0.001), and the GBR (p < 0.001).
Similarly, for the arousal axis, the multi-task model outperforms the naive baseline
(p < 0.05) and the GBR (p < 0.05), and shows a weaker significance against the SVR
(p < 0.10). For both valence and arousal there is no statistical association between the
single-task and multi-task models for the first forecast. However, even if the multi-task
models are not better than the single task for the first day, they show lower error
during the week for the arousal axis (red lines in Fig. 4.3a). Because of that, we test
the forecast of the whole future sequence by taking the median of the week (since the
error is not normally distributed) and compare the models. Indeed, the arousal of the
multi-task model is significant over the single-task model (p < 0.05).

Finally, we inspect the relationship between the predicted and the ground truth
scores of valence and arousal for the first future day using our multi-task model
(Fig. 4.4). We observe a significant approximation of the two distributions. A non-
parametric LOWESS model (locally weighted linear regression) is fitted in order to
illustrate the trend. Almost linear trends appear for high valence (happy users) and
low arousal (relaxed users), which is also the area with the highest density in the
dataset (see Figure 3.1). This is further validated by high and significant (p < 0.001)
correlations of 0.76 and 0.72 for valence and arousal, respectively.

4.5.3 Understanding the role of the encoder and decoder

We now analyze the role of the LSTM encoder and decoder in predicting sequences
of future mood. To do so, we pass the test-set through the multi-task LSTM model
and use Principal Component Analysis (PCA) to visualize the response of the network
after the encoder and decoder.

Learned representations vs next day’s mood. Our test-set is a tensor T 2 Rs⇥t⇥ f

where s are the samples, t the time-steps, and f the two features or sequences (for
valence and arousal). Fig. 4.5 shows the visualization results for the valence feature
and the first time-step in this tensor. Results for arousal and other time-steps follow a
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(a) PCA before training (b) PCA on the LSTM Encoder
layer activations after training

(c) PCA on the LSTM Decoder layer
activations after training

Figure 4.5: Projection of original and latent data. Visualization of the Encoder and
Decoder responses on the first time-step for the valence axis.

similar pattern, and are omitted here due to space limitations. Data points in the figure
are colored according to the first mood to predict (ground truth). We observe that as we
move into deeper layers, the network lays out the continuum of positive-negative mood,
even though it has been trained to solely predict the next week’s mood. Although after
the encoder we can already see this continuum, this is more evident after the decoder
layer. Apart from qualitative measures, the explained variance of the projections, i.e.,
the sum of variances of all individual principal components, or more intuitively how
much information is lost by going from N to 2 dimensions, increases up to 40% after
training (from 0.52 to 0.88 after the encoder, and 0.92 after the decoder).

Learned patterns of individual neurons. We now inspect how the individual
neurons of the decoder layer fire as we pass the test-set through them. Fig. 4.6 shows
the mean and standard deviation (denoted in dark and light green respectively) of
the activations of the test samples (vertical axis in each subplot) for the 14 time-steps
(horizontal axis). We make the following observations: first, the decoder learns various
non-linear sequence patterns of future moods, second, some neurons, such as the 4th

and 5th in the 6th column, fire almost always with the same exponential decay slope
(low deviation), while others, such as the 1st, 3rd and 4th in the second column, are
more conservative with almost flat lines (high deviation). Since the decoder is the
penultimate layer before the final feed-forward layer that performs the regression, we
may interpret it as a proxy for the predictions. For example, one neuron that always
fires like the 3rd in the 7th column might be specialized in future mood that rapidly
drops and then slowly improves.

4.5.4 Error analysis

We have shown earlier that mood reports might vary within a single user, and especially
across a population. Previous research has also found a link between mood variability
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Figure 4.6: Latent activations. Visualization of the responses of the 80 neurons of the
Decoder (one per subplot) for each of the 14 time steps for the valence axis. Light green
denotes the mean, and dark green denotes the standard deviation.

Figure 4.7: Influence of mood variability on predictive performance. Deviation of
past and future mood by top and bottom performing user-weeks.

and personality traits such as emotional stability (Geukes et al., 2017), and that people
tend to exhibit more positive affect on Saturdays than on Mondays (Areni and Burger,
2008). To better understand the performance of our model and assist clinicians in
taking informed decisions based on its output, we now investigate how it performs for
different mood variability, psychological traits, and days of the week.

To do so, we first average the errors of the predicted sequence on the test-set,
obtaining two long tail distributions for valence and arousal (Fig. 4.8). These appear
because some user-weeks have errors higher than 0.20 MSE (±0.44 on the affect
grid), although the majority of the distribution resides below 0.025 MSE. Indeed, for
valence, more than 10% of the user-weeks have MSE close to zero. We then divide the
MSE-distributions in three equally-sized samples, and consider the 1st quantile as the
top-performing user-weeks, and the 3rd quantile as the worst-performing.
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Figure 4.8: Error distributions across the two mood dimensions. Distribution of avg
MSE for valence and arousal. The MSE corresponds to the average predictions of all
future days of the week for the multi-task model. Black bars denote the 1st and 3rd

quantiles (at 33% and 66%, respectively).

Mood variability

We first investigate the influence of the mood variability in the best and worst per-
forming user-weeks. We assess the mood variability for each user-week in these two
groups by computing the standard deviation of both the mood of the three past weeks
(ignoring the missing values) and the mood of the future week. The boxplot in Fig. 4.7
shows the difference between these two groups. We observe that (i) the MSE increases
with the variability of the (past or future) mood, and (ii) valence and arousal have
similar median deviation, although the median of the arousal is slightly higher. The
lowest deviation is on the future top-weeks, where there are no outliers in the boxplot,
which means that the model is very reliable for those user-weeks with more stable
future mood. Finally, the absolute mood differs between the bottom (⇡ 0.2 std) and top
quantiles (⇡ 0.1 std) of the error. Specifically, the model is more reliable for user-weeks
with high valence and low arousal as we saw in Fig. 4.4.

Personality traits

We now study the influence of personality traits in the best and worst performing user-
weeks. We consider those individuals with samples in the 1st and 3rd quantile of the
prediction error distributions (Fig. 4.8) who completed the personality questionnaire.
This includes questions regarding the Big-Five personality traits (Gosling et al., 2003):
Agreeableness, Conscientiousness, Emotional Stability, Openness, and Extraversion,
answered through a discrete Likert scale with values normalized in [0,1]. Note that not
every user completed the personality questionnaire. Thus, even though each original
quantile contains the same number of user-weeks (2188), our sample shrinks to 701 (1st)
and 1082 (3rd) user-weeks for valence when we consider only users who responded
the questionnaire, and to 687 (1st) and 1207 (3rd) user-weeks for arousal (some users
might appear in both quantiles).
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Table 4.1: Personality and model performance. Differences on personality between
the top and bottom quantiles, broken down by valence and arousal. Significance is
represented with * = p < 0.05, ** 0.01, *** 0.001.

Valence Arousal
Mean Mean

Top Bottom t-stat Sig Top Bottom t-stat Sig
Agreeableness 0.67 0.61 6.58 *** 0.68 0.60 9.53 ***
Conscientiousness 0.66 0.59 5.55 *** 0.70 0.64 4.72 ***
Emotional Stability 0.33 0.25 6.42 *** 0.38 0.25 11.89 ***
Openness 0.77 0.61 16.48 *** 0.78 0.66 12.55 ***
Extraversion 0.24 0.29 -4.00 *** 0.32 0.27 3.62 ***

Table 4.2: Personality and correlation with model’s error. Pearson’s correlation (r) of
the prediction error (MSE) with the personality of top and bottom quantiles, broken
down by valence-arousal. Significance is represented with * = p ¡ 0.05, ** 0.01, ***
0.001.

Valence Arousal
r with MSE r with MSE

Top Sig Bottom Sig Top Sig Bottom Sig
Agreeableness -0.12 ** -0.06 * 0.01 -0.10 ***
Conscientiousness -0.06 0.03 -0.20 *** 0.29 ***
Emotional Stability -0.19 *** -0.00 -0.11 * 0.00
Openness -0.03 -0.07 * 0.03 0.14 ***
Extraversion -0.06 -0.00 0.11 * -0.06 *

We first perform a Welch’s t-test to check whether there are significant differences
between the personality traits of the users in the two quantiles (Table 4.1). Significant
differences were found for all traits, with special relevance for Openness. That is, users
for whom the model forecasts happiness and calmness more accurately tend to be more
open to new ideas and showcase creativity, intellectual curiosity, and a preference for
novelty.

Previous research found that Emotional Stability, Extraversion, Agreeableness, and
sometimes Conscientiousness were related to decreased variability in affect (Geukes
et al., 2017). Earlier, we showed that users in the top and the bottom performing
quantiles differ in terms of their mood stability, while here we see also that all of their
personality traits are significantly related with the performance of the model. In our
case, higher Openness might be associated with the nature of our experiment and data
collection since users who are more open to new technologies might use the app more
honestly and therefore becoming more predictable.

We finally check whether increments in personality scores increase or decrease
the error. Table 4.2 shows the correlation of the error with the personality traits. For
valence users in the top quantile we observe that our model is increasingly more
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(a) (b)

Figure 4.9: Day and model performance. Contribution of the day of the week to the
median error for the first future mood (valence) (a). Comparison with the actual mood
variability (b).

accurate for Emotionally Stable users (r = -0.19). We do not observe the reverse effect
in the bottom quantile. For arousal, the model is more accurate for users with high
Conscientiousness — which is associated with self-discipline — (r = -0.20) and a reverse
effect appears on the bottom quantile (r = 0.29).

Day of the week

We now investigate the impact of the day of the week on the accuracy of our model.
We consider the error of the first mood in the sequence of predicted moods, grouped
by the day of the week. The distribution of this error is similar to the distribution of the
average error of the sequence of predicted moods in Fig. 5.3, but skewed towards lowest
errors since our errors are lower for tomorrow’s mood (first day in the sequence). We
group and average (i) the errors by the day of the week, and (ii) the actual mood of
this day across all the user-weeks in the test set. We observe that the distributions of
the actual mood (Fig. 3.1) and the error (Fig. 5.3) across all user-weeks in the test set
are very different. While the actual mood has a bimodal shape, the error resembles
more a long tail. Thus, since we compare distributions with non-uniform shapes we
use robust statistics, such as the median or median absolute deviation (the median of
the absolute deviations from the data’s median: MAD = median(|Xi � median(X)|)).

We obtain the median and variance of the error for each day of the week, and the
median absolute deviation (MAD) of the actual mood for each day. Fig. 4.9 shows the
median of the MSE (a) and the MAD of the actual mood (b) across different days of the
week. We observe that our model (Fig. 4.9 (a)) is more accurate on Tuesdays, Fridays
and Saturdays, while the highest median error is on Wednesdays. This is consistent
with the trend observed on the variability of the actual mood (Fig. 4.9 (b)), where on
Fridays and Saturdays there were fewer differences across the reported moods.
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Error analysis implications

Mood variability, personality and day of the week could play a role in the performance
of our model. Clinicians may wish to screen their patients with brief personality ques-
tionnaires to assess the reliability of the sequences of moods predicted. For example,
Openness affects performance in both dimensions, whereas Emotional Stability affects
valence, and Conscientiousness arousal. Clinicians should also consider the day of the
week when forecasting sequences of mood, however, we think that this, due to the
high variance, needs to be validated by external datasets.

We also acknowledge the caveats of our model. The average error (MSE) of our
model is low across the population (±0.14 error on the affect grid valence for valence,
±0.16 for arousal). However, the fact that it performs better for Emotionally Stable
users, and users with low mood variability, might limit its utility in patients with
mental disorders. Further analysis of the trajectories of mood reported by unstable
individuals is required to build accurate models for this specific population. Moreover,
the studied outcome should be affected by a variety of environmental and genetic
factors and additional data collected in this study could improve forecasting. We leave
this for future work.

4.6 Discussion

Most of the related works focus on binary outcomes such as depression prediction. In
particular, the Deepmood (Suhara et al., 2017) study analyzed 2,382 users over 2 years.
In contrast to this work, our model does not aim to distinguish between healthy and
depressed patients, but to predict a sequence of real-valued moods. Binary prediction
is ubiquitous in the mood prediction literature, where mood is simplified to a binary
state (Taylor et al., 2017; Servia-Rodrı́guez et al., 2017), and extreme depression is
considered in the same class as moderate unhappiness. Since neutral mood might be
uninformative and make the predictions harder, authors often omit the middle 40-60%
of reports. Instead, we use regression to predict precise mood scores.

4.7 Conclusion

This chapter introduces a new end-to-end, stand-alone ML model to forecast future
sequences of mood from previous self-reported mood. Contrary to previous research
on classifying between extremes of mood using data collected in controlled experiments
with limited number of participants, we forecast exact values of valence and arousal
from noisy and sparse reports collected in the wild.
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Experiments using a real-world dataset revealed that (i) 3 weeks of sparsely reported
mood is the optimal number to accurately forecast mood, (ii) multi-task learning learns
both dimensions of mood — valence and arousal — with higher accuracy than when
training separate models, and (iii) mood variability, personality traits and day of the
week play a key role in the performance of our model. We believe that this work
provides psychologists and developers of future mobile mental health applications
with a ready-to-use and effective tool for early diagnosis of mood issues at scale.

This second empirical chapter of the thesis builds on the topic introduced by the
previous one by modeling mobile-measured mood. However, it slightly diverts from
the general theme of the thesis by using only self-reported mobile surveys, instead
of passively sensed data. While clustered or binary mood outcomes were reasonably
predictable as we saw in the previous chapter, we observed that adding sensor data
was not helpful in fine-grained forecasting of mood. Therefore, in this chapter we
focused on modeling the sequences of mood reports, motivated by the — as of now —
limited understanding of the temporal dynamics of mood variability of individuals.
In these two chapters (3 and 4), we focused on single-purpose models tailored to
mental health tasks. In the following chapter, we take a more generalized approach
on using mobile sensor data for learning latent features which can be used in many
health-related tasks. In particular, we develop self-supervised models which learn
a physiological representation that can transfer to many tasks pertinent to physical
health.
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Chapter 5

Learning generalizable physiological
representations with self-supervision

Data without generalization is just gossip
–Robert M. Pirsig

5.1 Introduction

In the previous chapters we proposed models which improve mood prediction in the
wild. We now switch focus to physical health and in particular using wearables which
provide behavioral and physiological data for population-health inferences. We present
a self-supervised model which exploits the multimodal data of modern wearables to
learn meaningful representations which generalize to several outcomes with transfer
learning. These results also motivate the use of free-living data for more accurate
prediction of cardio-respiratory fitness, which is further explored in Chapter 6.

Wearable devices such as smartwatches are becoming increasingly popular tools
for objectively monitoring physical activity in free-living conditions. To date, research
has primarily focused on the purely supervised task of human activity recognition,
demonstrating limited success in inferring high-level health outcomes from low-level
signals. In particular, even though deep learning has shown great promise in human
activity recognition (HAR) tasks using wearable sensor data (Yang et al., 2015; Ma et al.,
2019; Alsheikh et al., 2015), it relies, by and large, on purely labeled datasets which
are costly to collect (Bulling et al., 2014). In addition, they are obtained in laboratory
settings and hence might not generalize to free-living conditions where behaviors
are more diverse, covering a wide distribution of activities (Krishnan et al., 2018).
Unsupervised learning is a qualified candidate to solve this label scarcity problem in
wearable data, particularly given the vast amounts that can be collected in free-living

87
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Figure 5.1: Heart rate and acceleration temporal dynamics. Illustrative visualization
of the relationship between movement and heart rate responses (randomly selected
participant). Shaded areas show this lagging relationship.

conditions. Recent models have effectively utilized unlabeled activity data to learn
useful summary representations of sensor signals (Aggarwal et al., 2019). Notwith-
standing the value of these newly proposed methods, they only rely on a single stream
of sensor data, usually movement data, and do not fully exploit the multimodal nature
of modern wearable devices. Here, we present a novel self-supervised representation
learning method using activity and heart rate (HR) signals without semantic labels.
With a deep neural network, we set HR responses as the supervisory signal for the
activity data, leveraging their underlying physiological relationship (this relationship is
conceptualized in Figure 5.1). Multimodal learning has proven beneficial in supervised
tasks such as fusing images with text to improve word embeddings (Mao et al., 2016),
video with audio for speech classification (Ngiam et al., 2011), or different sensor
signals for HAR (Radu et al., 2018). However, all these approaches rely on the modali-
ties being used as parallel inputs, limiting the scope of the resulting representations.
Self-supervised training allows for mappings of aligned coupled data streams (e.g.
audio to images (Owens et al., 2016) or, in our case, activity to heart rate), using
unlabeled data with supervised objectives (Lan et al., 2020). In addition, we propose a
custom quantile loss function that accounts for the long-tailed HR distribution present
in the general population.

We evaluate our model in the largest free-living combined-sensing dataset (compris-
ing >280, 000 hours of wrist accelerometer & wearable ECG data). Our contributions
are two-fold: i) the pre-training task creates a model that can accurately forecast HR
based only on cheap activity sensors, and ii) we leverage the information captured
through this task by proposing a simple method to aggregate the learnt latent rep-
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Figure 5.2: Schematic of model architecture and tasks. (1) Self-supervised pre-
training, CNN + GRU temporal model for HR forecasting, (2) window-level represen-
tation extraction, (3) aggregation and summary at the individual level, (4) inference
of health and fitness related outcomes, and (5) clustering through PCA based on
embedding space and latent structure discovery.

resentations (embeddings) from the window-level to user-level. Notably, we show
that the embeddings can generalize in various downstream tasks through transfer
learning with linear classifiers, capturing physiologically meaningful, personalized
information. For example, they can be used to predict variables associated with indi-
viduals’ health, fitness and demographic characteristics (AUC >70), outperforming
unsupervised autoencoders and common biomarkers. Overall, we propose a multi-
modal self-supervised method1 for behavioral and physiological data with implications
for large-scale health and lifestyle monitoring.

This chapter puts forward four key technical contributions:

• We propose a novel self-supervised model and a pre-training task which maps
activity data to HR responses. Through this architecture, our model learns
physiologically meaningful user-level representations that can then be used for a
variety of practical downstream tasks that are personalized to the users’ unique
physiology.

• For pre-training, we introduce a joint loss function that acts as a regularizer to
traditional MSE by using the quantiles of the predictive density of the model
in order to approximate the long-tails of HR data, an ubiquitous problem in
real-world (health) data.

• We evaluate this model in the largest multimodal wearable ECG and wrist
accelerometry dataset, including over 1, 700 participants tracked for a week,
along with associated health outcomes measured with clinical lab equipment.

1Code and sample data: https://github.com/sdimi/Step2heart
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We perform ablation tests to show the performance of different modalities and
components to the architecture.

• We perform a set of downstream, transfer learning tasks by aggregating the
window-level features to user-level ones and showcase the value captured by
the learned embeddings through strong performance at inferring physiologically
meaningful variables, outperforming autoencoders and common biomarkers.
For example, our models achieve an AUC of 0.70 for Body Mass Index (BMI)
prediction and an AUC of 0.80 for Physical Activity Energy Expenditure.

We envision our work having applications in facilitating the comprehensive moni-
toring of cardiovascular health and fitness at scale. Further, our models could be used
to correct faulty HR readings of noisy sensors such as PPGs and broadly to characterize
the objectively measured physical behaviors in large population cohorts. Some of
the downstream classification tasks highlight the potential of these techniques for the
monitoring of important health information, which is usually costly or burdensome
to obtain (such as fitness or obesity levels). The proposed model is summarized in
Figure 5.2 and our code/models are publicly available.

5.2 Method

A machine learning model that is trained with a self-supervised objective —
using physical activity data — should generalize better in multiple downstream
health-related tasks.

Hypothesis

In this section, we provide a brief introduction to the problem formulation and
notation used and then explore the model architecture and the associated methods
proposed in this work.

Problem formulation and notation. For this work, we assume N samples of T
timesteps and F features of an input dataset X = (x1,...,xN) 2 RN⇥T⇥F and a target
heart rate response y = (y1,...,yN) 2 RN. Additionally, we also consider contextual
metadata like the hour of the day M = (m1,...,mN) 2 RN⇥F. We use the same length T
for all sequences in our model. However, this sequence length is not a requirement
and can be adapted based on the requirements of the task at hand or the granularity of
the data. The intermediate representations of the model after training are E = (e1,...,eN)
2 RN⇥D where D is the latent dimension. These embeddings are aggregated at the
user level Ẽ = (ẽ1,..., ˜eN) 2 R

N
U ⇥D, where U is the number of users, in order to predict

relevant outcome variables ỹ = (ỹ1,...,ỹN) 2 RN. Our full notation is summarized in
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Table 5.1: Notation.

Notation Description

Dtrain, Dtest training and testing set for the forecasting task
X, 2 RN⇥T⇥F input sensor sequences
M, 2 RN⇥F input user metadata
y, 2 RN target heart rate response
N number of data points (samples)
T length of input sequence
F number of features (attributes)
U number of users
D̃train, D̃test training and testing set for the transfer learning task
q parameters (weights) of a trained neural network
D dimension of latent space embedding
E, 2 RN⇥D embeddings matrix learned from activity to heart rate mapping
Ẽ, 2 RU⇥D embeddings matrix learned like E (aggregated at the user level)
ỹ, 2 RU target variable for transfer learning (user level)

Table 5.1. We employ two representation learning tasks: self-supervised pre-training
and a downstream transfer learning task.
Upstream task: self-supervised pre-training and HR forecasting. Given the ac-
celerometer input sensor sequence X and associated metadata M, predict the target
HR y in the future. The input and target data shouldn’t share temporal overlap in
order to leverage the cardiovascular responses with the self-supervised paradigm by
learning to predict the future. Similar formulations have been proposed in mental
health forecasting (Spathis et al., 2019) and reinforcement learning for video prediction
(Ha and Schmidhuber, 2018). Motivated by population differences in heart rates, here
we propose a custom quantile regression loss to account for the tails of the distribution.
This task by itself can be used for a reliable and real-time estimation of HR based on
activity data.
Downstream task: transfer learning of learned physiological representations. Given
the internal representations E –usually at the penultimate layer of the aforementioned
neural network (Sanchez-Lengeling et al., 2019)–, predict relevant variables ỹ regarding
the users’ fitness and health using traditional classifiers (e.g. Logistic Regression).
Inspired by the associations between word and document vectors in NLP (Le and
Mikolov, 2014), we develop a simple aggregation method of sensor windows to the
user level. This is a common issue in the literature (Chen et al., 2019).
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5.2.1 Model architecture

As shown in Figure 5.2 we propose Step2Heart, a deep neural network for HR fore-
casting and transfer learning. Its layers receive high-dimensional activity inputs along
with associated metadata and learn spatio-temporal dynamics in order to accurately
predict HR responses. It uses stacked convolutional (CNN) and recurrent (RNN) layers
building upon architectures like DeepSense (Yao et al., 2017), which have been proven
state of art in mobile sensing. Here we present each component of the model. An
overview of the overall method is given as a pseudocode in Algorithm 1. We note
that we do not claim novelty on the backbone model and its layers, instead, we keep
its architecture as simple as possible in order to showcase that the task of mapping
activity to (future) heart rate signals with a joint quantile loss enables the model
to learn generalizable representations of the users’ current health state, which can
generalize in different downstream tasks.

CNNs to learn spatial features

Given an input dataset X = (x1,...,xN), it passes through a stack of CNN layers that
scan over the sequences with 1D windows and learn filters f : {0, ..., k � 1} 2 R. The
convolution operation C of a sequence element s is defined as

C(s) = (x ⇤ f )(s) =
k�1

Â
i=0

f (i) · xs�i (5.1)

where k is the filter size, s � i records the convolution step and ⇤ denotes the
convolution operator. Please note that the 1D window learns patterns across all the
parallel features of the 3D input tensor X.

RNNs to learn temporal features

The learned filters of the CNNs are then fed into stacked RNNs. Specifically, we
employ a fast variant of RNNs known as Gated Recurrent Units (GRU) (Cho et al.,
2014). The GRU has a reset gate r and an update gate z which change the hidden state
h at each time step. The update functions are as follows:

rt = s(Wrxt + Urht�1 + br)

zt = s(Wzxt + Uzht�1 + bz)

h̃t = tanh(Wxt + U(rt � ht�1) + b)

ht = (1 � zt) � ht�1 + zt � h̃t

(5.2)
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where matrices W, U and b are model parameters and biases respectively, s is
a sigmoid function, and � element-wise multiplication. The stacked GRUs output
sequences which correspond to latent temporal features.

Algorithm 1: Step2Heart model pseudocode
Input : X (sensors), M (metadata), y (target HR)
Output : Ẽ (user-level embedding), ỹ (target variable)
while neural network q not converged do

pass X through CNN/RNN layers (eq. 5.1 & 5.2);
pass M through reLU layers;
concatenate outputs in E;
forecast & backpropagate with joint loss L (eq. 5.5);

end
use trained network q to extract embeddings E;
aggregate E to the user-level Ẽ with average pooling;
train a linear model to predict target variables ỹ;

Pooling and prediction

Then, the GRU output ht passes through a pooling layer that performs global element-
wise averaging in order to summarize all the timesteps of the 3D tensor to a 2D matrix.
If needed, the representation after the pooling operation can be concatenated with
other features or metadata after passing through feed forward ReLu layers. We also
refer to this representation at the penultimate layer, E, or embeddings matrix. Lastly,
the final layer is a feed forward neural network with a linear activation which is
appropriate for regression tasks.

5.2.2 Loss function

Heart rates vary across large populations. As such, some individuals may reach very
low (<50 bpm, at rest/sleeping) or high (>180 bpm during vigorous exercise) (Tanaka
et al., 2001) generating very long tails on the heart rate distribution. In traditional
regression, the aim is to minimize the squared-error loss function or MSE LMSE(y, f) =
1
N ÂN

i=1 L(yi � f (xi))2 to predict a single point estimate, similarly, quantile regressions
aim to minimize the quantile loss in predicting a certain quantile. As such, the higher
the quantile, the more the quantile loss function penalizes underestimates and the less
it penalizes overestimates.

The loss for an individual data point in quantile regression is defined by:

L(xi|a) =
(

axi if xi � 0,
(a � 1)xi if xi < 0.

(5.3)
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where a is the required quantile (between 0 and 1) and
xi = yi � f (xi), where f (x) is the predicted (quantile) model and y is defined by

the observed value for input x. A more compact version of Eq. (5.3) can be formulated
as L(xi|a) = max(axi, (a � 1)xi) where x 2 R is the residual. As such, the average
quantile loss over the whole dataset is:

LQ(y, f|a) = 1
N

N

Â
i=1

L(yi � f (xi)|a) (5.4)

The quantile loss (or tilted/pinball loss in the literature) can be seen as a tilted
version of the l1 loss which estimates the unconditional median. Instead, if a prediction
falls below a given quantile (e.g. a = 0.10), the residual is scaled (or tilted) by its
probability a. Thus, we can obtain the conditional quantile by minimizing the empirical
LQ loss. This formulation is inspired by similar loss functions applied to transportation
problems (Rodrigues and Pereira, 2018) as well as reinforcement learning (Dabney
et al., 2018).

In practice, we are interested in various quantile levels for the predicted probability
distribution, not only one. Let {a}J

j=1 be a set of J quantiles (e.g. 0.05, 0.10, ..); we
propose a joint loss function that leverages the LMSE and LQ loss for an arbitrary
number of quantiles:

LMSE+Q =
1
N

N

Â
i=1

✓
(yi � f (xi))

2

+
J

Â
j=1

max
⇣

aj(yi � f (xi)
(aj)),

(aj � 1)(yi � f (xi)
(aj))

⌘◆

(5.5)

which can be seen as a sum of the MSE and the respective quantile losses, repre-
sented in one scalar. This scalar is used as the new backpropagation objective.

In Figure 5.3 we use a toy example to illustrate the differences between the MSE
and Quantile loss; the former increases very fast in case of outliers, whereas the
latter is more robust. For the individual quantiles, we observe that for very extreme
values (e.g. 0.01 or 0.99) the loss skews significantly assigning high penalties to
underestimation and overestimation, respectively. In our context, very athletic or very
sedentary people can be considered as long-tail outliers and we want our models to
account for it. Intuitively, the proposed loss can be seen as a combination of multiple
objective functions where the second term acts as a regularizer for the MSE. During
our experiments in the next sections, we apply different ablations of these terms to
evaluate their impact.
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Figure 5.3: Quantile vs MSE loss. Illustration of the relationship between the pre-
diction and the loss with respect to the shapes of the MSE and various levels a of
quantiles. Simulated data, the true value is yi = 0.

5.3 Evaluation

Data Pre-processing. We used the Fenland dataset we introduced in Chapter 2. All
participant heart rate data collected during free-living conditions underwent pre-
processing for noise removal (Stegle et al., 2008). Similarly, all accelerometer data was
auto-calibrated to local gravity, the non-wear time was inferred and participants with
less than 72 hours of wear were removed. Magnitude of acceleration was calculated
through the Euclidean Norm Minus One (ENMO) and the high-passed filtered vector
magnitude (VM-HPF) (expressed in milli-g/mg per sample). Both the accelerometry
and ECG signals were summarized to a common time resolution of one observation
per 15 seconds and no further processing to the original signals was applied. Since the
time of day and seasonality can have a significant impact on physical activity, such as
sleeping and commuting, we encoded the sensor timestamps using cyclical temporal
features Tf (Chakraborty and Elzarka, 2019). Here, we encoded the month of the year
and the hour of the day as (x, y) coordinates on a circle:

Tf1 = sin
⇣2 ⇤ p ⇤ t

max(t)

⌘
(5.6) Tf2 = cos

⇣2 ⇤ p ⇤ t
max(t)

⌘
(5.7)

where t is the relevant temporal feature (hour or month). The intuition behind this
encoding is that the model will ”see” that e.g. 23:59 and 00:01 are 2 minutes apart (not
24 hours).

Training procedure. To create appropriate training batches for deep learning, we
segmented the signals into fixed non-overlapping windows of 512 timesteps, each one
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Table 5.2: Data description. Seq. denotes sequential measurements (timeseries), while
Inp. the inputs to the pre-training task. (⇧ feature used in some models, see Results)

Feature Seq. Inp. Unit

Sensor
Acceleration X X m/s2

Heart Rate X 7 Beats/Min. (BPM)
Timestamp X X N/A

Metadata
UserID 7 7 N/A
Height 7 7 Meters
Weight 7 7 Kilograms
Sex 7 7 Male–Female
Resting HR 7 ⇧ BPM
VO2max 7 7 mL/min · kg

Derived
Triaxial Acceleration X X m/s2

ENMO X X milli-g
VM-HPF X X milli-g
PAEE 7 7 J/min · kg
Body Mass Index (BMI) 7 7 kg/m2

Month, Hour 7 ⇧ cos-sin transform

comprising 15-seconds and therefore yielding a window size of approximately 2 hours.
In other words, we slice the data in such a way so that the activity signals consist of
a window spanning from two hours ago until the present, while the forecast heart
rate is 15” after the last activity sample. A sensor window, in this case, is the result of
splitting the week-long user data into smaller chunks. The resulting dataset is divided
into training and test sets randomly using an 80-20% split, with the training set then
being further split into training and validation sets (90-10%). We ensured that the
test and train set had disjoint user groups (unseen participants are used for model
evaluation). Further, we normalized the data by performing min-max scaling on all
features described on Table 5.2 (sequence-wise for timeseries and column-wise for
tabular ones) on the training set and applying it to the test set. During training, the
target data (HR bpm) is not scaled and the forecast is 15” in the future after the last
activity input.

Network parameters. The neural network was built through a stack of 2 CNN
layers of 128 filters each, followed by 2 Bidirectional GRU stacked layers of 128 units
each (resulting in 256 features due to bidirectional passes). When using extra inputs
(RHR or timestamp derived features), a ReLu MLP of dimensionality 128 was employed
for each one and its outputs were concatenated with the GRU output. We trained
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Table 5.3: Forecasting task results. Ablation test to compare the HR forecasting error
using different input modalities and baselines.

MSE RMSE MAE

Step2HeartA 144.61 (0.62) 12.02 (0.02) 9.23 (0.03)
Step2HeartA/T 143.65 (0.28) 11.98 (0.01) 9.21 (0.03)
Step2HeartA/R 91.76 (0.12) 9.57 (0.00) 6.92 (0.03)
Step2HeartA/R/T 91.11 (0.37) 9.54 (0.01) 6.88 (0.02)

Baselines
Global mean 250.99 15.84 12.46
User mean 186.05 13.64 10.40
XGBoostA 162.92 (0.20) 12.76 (0.00) 9.83 (0.00)

using the Adam (Kingma and Ba, 2014) optimizer for 300 epochs or until the validation
loss stopped improving for 5 consecutive epochs 2. The quantiles we used were [0.01,
0.05, 0.5, 0.95, 0.99] so that they equally cover extreme and central tendencies of the
heart rate distribution. The XGBoost baseline’s hyperparameters were found through
5-fold cross validation and were then applied to the test set. Likewise, in the transfer
learning task, we followed the same procedure for Logistic Regression. We provide
more details about the models in the Appendix A.

Label and embeddings extraction. For the transfer learning task, we studied
whether the learned embeddings E can predict user variables ranging from demo-
graphics to fitness and health. Since a slightly lower number of users (1506) had
sufficient fitness data obtained from the lab test visit, we report only their results (the
users remained in the same train/test splits D̃train / D̃test as earlier). To create binary
labels we calculated the 50% percentile in each variable’s distribution on the training
set and assigned equally sized positive-negative classes. Therefore, even continuous
outcomes such as BMI or age become binary targets for simplification purposes (the
prediction is high/low BMI etc). The window-level embeddings were averaged with
an element-wise mean pooling to produce user-level embeddings3. Then, to reduce
overfitting, Principal Component Analysis (PCA) was performed on the training em-
beddings after standard scaling and the resulting projection was applied to the test
set. We examined various cutoffs of explained variance for PCA, ranging from 90% to
99.9%. Intuitively, lower explained variance retained fewer components; in practice the
number of components ranged from 10 to 160.

2hyper-parameter search was conducted with different layer numbers, unit sizes, learning rates and
optimizers and we evaluated their impact on the validation set.

3we experimented with min, max and median pooling over embeddings but yielded consistently
worse results across all variables.
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Table 5.4: Loss function results. Ablation test to compare the best performing model
with regards to different loss functions.

MSE RMSE MAE

Step2HeartA/R/T
LMSE 91.11 (0.37) 9.54 (0.01) 6.88 (0.02)
LMSE+Q 90.94 (1.12) 9.53 (0.05) 6.90 (0.10)
L0.5⇤MSE+Q 90.27 (0.53) 9.50 (0.02) 6.81 (0.05)
LQ 92.0 (0.16) 9.59 (0.00) 6.75 (0.02)

5.3.1 Baselines and metrics

For our baselines, we used naive lower bounds as well as modern ML models (similar
to those used in previous works (Ni et al., 2019; Hallgrı́msson et al., 2018)):

• Convolutional Autoencoder: A convolutional autoencoder learns to compress
the input data (X ! X) with a reconstruction loss. This unimodal baseline uses
movement data only and is conceptually similar, albeit simpler, to (Aggarwal
et al., 2019; Saeed et al., 2019). The intuition behind this choice is to assess
whether Step2Heart learns better representations due to learning a multimodal
mapping of movement to heart rate (X ! y). To make a fair comparison, it
has similar number of parameters to the self-supervised models and we use the
bottleneck layer to extract embeddings (128 dimensions). This baseline is used
only for the transfer learning experiments.

• Gradient Boosting (XGboost): gradient boosting machines are among the best
performing ML methods (Chen and Guestrin, 2016). Since XGboost cannot work
directly with timeseries, we extracted the following statistical features from the
sensor windows: mean, std, max, min, percentiles (25%, 50%, 75%) and the slope
of a linear regression fit. The final feature vector consists of 80 features.

• Global mean: Predicts yi at each time step as the global HR mean of the training
set. This is a naive baseline that assumes all users have the same HR at any one
time but provides a good lower bound for this longitudinal dataset.

• User mean: Personalized baseline obtained by predicting yi at each time step as
the mean value for all the user’s X in the training set. This is similar to the
previous baseline but considers the entire heart rate range of each user over the
study week.

Given the continuous nature of the forecasting task, we employ standard evaluation
metrics such as the Root Mean Squared Error (RMSE), Mean Squared Error (MSE),
and Mean Absolute Error (MAE) for our evaluation. For the transfer learning task, the
evaluation metric is the Area under curve (AUC).
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5.4 Results

5.4.1 Pre-training

We consider different ablation tests for Step2Heart as well as several baselines and
report the average and standard deviation of 3 runs. For our ablation tests we consider
the same model with different inputs: acceleration features only (A), with temporal
features (A/T), with resting heart rate (A/R) and with both temporal features and
resting heart rates (A/R/T).

Impact of the Resting Heart Rate. All results are summarized in Table 5.3.
Step2Heart outperforms all baselines for this forecasting task and, when including
temporal features and RHR (Step2Heart (A/R/T)), all performance metrics improve,
resulting in an RMSE of 9.54. We note that the RMSE is probably the most interpretable
metric since it directly translates to the error in HR beats per minute. Given the
acceleration input, the addition of the RHR appears to be the most significant one,
improving the RMSE by ⇠ 2.5 and validating previous research that highlights RHR
as a powerful biomarker (Fox et al., 2007).

Implicit personalization. Interestingly, the baselines also reinforce the importance
of personalized approaches as the user mean baseline vastly outperforms the global
mean. Our models implicitly learn personalized patterns outperforming all baselines.
Given the strong results of the embeddings in demographic prediction we present in
the next section, we postulate that these models learn personalized features which
would not be possible with other methods that –for example– require user-specific
layers and might not scale in large-scale datasets (Jaques et al., 2017).

Impact of the joint loss. When comparing different loss functions with the best
performing model Step2Heart(A/R/T), we see (Table 5.4) that the proposed loss func-
tion better captures the long tails of HR. The lowest error, 9.5 RMSE, is achieved when
weighting the MSE loss with the rest of the quantiles (L0.5⇤MSE+Q). Notably the pure
quantile model achieves the best MAE of 6.75. We understand that a model optimized
with the MSE loss would achieve better MSE score and a model including the 50%
quantile would optimize the MAE score. Thus, for this experiment we evaluate the
impact of the losses across all 3 metrics. In this case, the joint losses achieve the best
results; the LQ model may achieve the best MAE but predicably falls short in the other
metrics. Given the overlapping standard deviations of the joint models (L0.5⇤MSE+Q

and LMSE+Q) we consider both to be our best models, however we select the former as
the one with the lowest average error.
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Table 5.5: Transfer learning results. Performance of embeddings in predicting vari-
ables related to health, fitness and demographic factors. A random baseline yields an
AUC of 50. All values are ⇥100 for better legibility. (*percentage of explained variance
by compressing the dimensionality of embeddings with PCA)

Outcome AUC

Conv. Autoencoder Step2HeartA/T Step2HeartA/R/T

PCA* 90% 95% 99% 99.9%90% 95% 99% 99.9%90% 95% 99% 99.9%

VO2max 52.6 52.6 59.6 61.8 58.6 60 63.9 64.5 68.3 67.8 68 68.2
PAEE 69.6 70.0 70.2 71.8 74.7 74.7 77.5 76.8 78.2 79.2 80.6 79.7
Height 60.8 60.3 75.9 79.4 66 67.4 77.4 82.1 70.3 74 80.5 81.3
Weight 56.5 56.2 70.3 72.1 65.7 67.6 75 77.2 69.9 70.7 77.4 76.9
Sex 66.7 67.0 86.5 89.7 72.3 72.9 87.1 93.2 76.2 81.5 91.1 93.4
Age 46.2 46.3 53.9 59.5 55.0 61.7 66.2 66.9 61.1 63.8 67.3 67.6
BMI 51.6 51.5 60.1 61.2 62.8 63 68.2 67.6 64.7 66.1 67.8 69.4
Resting HR 49.1 49.4 55.8 55.4 56.7 56.6 62.7 61.7 N/A

5.4.2 Transfer learning

For this set of results, we use the best-performing model as shown above (L0.5⇤MSE+Q),
extract embeddings and train linear classifiers for different outcomes. All results are
presented in Table 5.5.

Effect of embeddings in generalization. Quantitatively, the embeddings achieved
strong results in predicting variables like users’ sex, height, PAEE and weight (0.93,
0.82, 0.80 and 0.77 AUC respectively). Also, BMI, VO2max and age are moderately
predictable (0.70 AUC). The pure acceleration model (A/T) moderately predicts Resting
HR (0.62 AUC), but this does not apply to the (A/R/T) since it already includes the
RHR as input. Generally, the A/R/T model outperforms the A/T model showing that
using the RHR as input is helpful, as discussed in the previous sections.

Impact of the new pre-training task. Our results validate previous studies like
(Hallgrı́msson et al., 2018) with different and very aggregated data. As a simple
baseline, we followed their idea of using the RHR as a single predictor and we could
not surpass an AUC of 0.55 for BMI and age. Also, the autoencoder baseline, which
learns to compress the activity data, under-performs when compared to Step2HeartA/T,
illustrating that the proposed task of mapping activity to HR captures the physiological
state of the user, which translates to more generalizable embeddings. We note that
both approaches operate only on activity data as inputs. This shows that the embed-
dings carry richer information than single biomarkers or modalities by leveraging the
relationship between physical activity and heart rate responses.

Clinical relevance of results. Obtaining these outcomes in large populations
can be valuable for downstream health-related inferences which would normally be
costly and burdensome (for example a VO2max test requires expensive laboratory
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treadmill equipment and respiration instruments). Additionally, PAEE has been
strongly associated with lower risk of mortality in healthy older adults (Manini et al.,
2006). Similarly, VO2max is prospectively associated with the incidence of type 2
diabetes (Katzmarzyk et al., 2005).

Impact of the latent dimensionality size. From the representation learning per-
spective, we observe considerable gain in accuracy in some variables when retaining
more dimensions (PCA components). More specifically, Sex and Height improve in
absolute around +0.20 in AUC. However, this behavior is not evident in other variables
such as PAEE and VO2max, which seem robust to any dimensionality reduction. This
means that the demographic variables leverage a bigger dimensional spectrum of latent
features than the fitness variables which can be predicted with a subsample of the
features. These findings could have great implications when deploying these models in
mobile devices and deciding on model compression or distillation approaches (Hinton
et al., 2015).

Visualizing the latent space. Qualitatively, we visualized the resulting latent space
in 2D with t-Distributed Stochastic Neighbor Embedding (t-SNE) (Maaten and Hinton,
2008) as shown in Figure 6.6. In this setup, we used the embeddings of the entire
dataset. We found that many of the outcomes, like the depicted PAEE cluster in their
own specific regions. We color code the extreme PAEE users in order to illustrate that
most normal users are grouped in the center but high/low PAEEs are diametrically
opposed. These visualizations can help us understand common behaviors (similar users
are neighbors in the latent space), would allow for risk stratification and potentially
suggest interventions to specific groups (e.g. nutrition or exercise advice to high-risk
BMI–obesity onset cluster).

5.5 Discussion

Our results showcase the generalizability of the proposed models to solve differ-
ent tasks pertinent to physiological and behavioral data. Most studies in wearable
and mobile sensing have been focused on human activity recognition using mobile
devices (Saeed et al., 2019; Tang et al., 2021) and emotion recognition using ECG
data (Sarkar and Etemad, 2019), both using a single modality (acceleration or ECG),
whereas we explore the unsupervised combination thereof guided by their physiologi-
cal relationship. Our work is also inspired by the cardiovascular signature network
introduced by Hallgrimmson et al (Hallgrı́msson et al., 2018). However, this is an
auto-encoder based approach requiring a historical input of one month of data for
its prediction, which renders the whole setup not feasible for real time applications.
Furthermore, the data used is much more aggregated and limited in terms of outcomes
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than the data presented here. Overall, the generalizability of the learned embeddings
is an under-explored area with some recent promising results in hospital operation
room data (Chen et al., 2021), while abstract (non-sensor related) attributes such as
gender and age have been proved to be predictable with wearable embeddings (Wu
et al., 2020). Additionally, previous work has explored forecasting heart rate from
movement data, however this was done on a much smaller scale (3 users) and used
PPG sensors instead of the more accurate ECG (McConville et al., 2018).

Viewing the upstream task (HR forecasting) in isolation, we consider the error
acceptable for real-world deployments, especially in cases of energy-constraint envi-
ronments where the heart rate sensors could be precluded (an accelerometer consumes
substantially less power). In our future work, we will assess the feasibility of the
deployment of such model and examine its performance in different conditions (e.g.,
HR is generally steadier during sleep and this may affect the average error).

Further, some interesting extensions to the transfer learning experiments include
quantifying the optimal number of hours/days of data we need for each user in
order to accurately predict these health-related outcomes. This could have cost saving
implications as well, given that large population studies like the UK Biobank (Doherty
et al., 2017) or the All of Us (of Us Research Program Investigators, 2019) procure
wearable devices for large cohorts over long periods of time, and therefore the shortest
monitoring period would be beneficial. Our current approach assumes that all temporal
windows over the observation week for each user are aggregated resulting in a user-
level embedding.

Zooming out, we consider the latent information captured as the most important
finding of our method. Drawing parallels from the fields of natural language process-
ing (NLP) and computer vision (CV), and pioneers in representation learning (Shin
et al., 2016), we posit that the behavioral and physiological signals captured by wear-
able sensors are appropriate and suitable for neural embeddings. In NLP and CV,
researchers share pre-trained networks that can then be used to solve various down-
stream tasks. Inspired by the terminology used in (Chen et al., 2021), physiological
signals display similar levels of complexity (it is not trivial to generate hand-crafted
features) and consistency (movement is reflected as an increase in acceleration across all
people) to NLP and CV. We believe that this could motivate a similar paradigm shift in
the area of mobile health data, especially given the privacy constraints associated with
sharing such data. Instead, sharing models and embeddings would not directly expose
participants’ information and could accelerate research in a privacy-conscious way.

Regarding broader implications, we should acknowledge that the healthcare indus-
try is undergoing an unprecedented digital transformation, producing and curating
large amounts of data. Annotating all this data in order to feed to deep learning mod-
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Figure 5.4: Model embeddings for transfer learning visualized with t-SNE. 2D rep-
resentation of the test set colored with the PAEE outcome, with the colorbar showing
the extreme values (the median participant has PAEE=48, white color). See Table 5.5
for full results.

els for pattern recognition is impractical. Through self-supervised learning, we can
leverage this unlabeled data to learn meaningful representations that can generalize
in situations where ground truth is inadequate or simply infeasible to collect due to
high costs. Such scenarios are of great importance in population health, where we may
be able to achieve clinical-grade health inferences with widely-adopted devices such
as wearables and smartphones. Our work makes contributions in the area of transfer
learning and subject-specific representations, which is of the utmost importance in
machine learning for health.

Personalized health-representations like the ones arising from our models could
raise some concerns if used maliciously for exclusionary insurance policies or unfair
credit scoring, for example. However, we should clarify that our proposed model is a
tool, and like all tools might be subject to misuse. Hence, while the risks associated
with Step2Heart are minimal, it is paramount that future developments and use of this
technology follow data governance principles that guarantee the rights of users, prevent
misuse of data and promote trust in the rapidly evolving digital health ecosystem.

5.6 Conclusion

In this Chapter, we proposed a novel self-supervised general-purpose neural network
which can be used as a feature extractor for wearable data. These features can be used
for a variety of practical downstream tasks that are personalized to the users’ unique
physiology. We evaluated this model with the largest dataset of its kind, including
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over 1, 700 participants with combined heart and activity sensors for a week. Our
model outperforms a set of strong baselines in both upstream and downstream tasks
evaluated with ablation studies.

In the upstream task we found that including a single measure of RHR had
significant impact, and in combination with cyclical modeling of the timestamps
achieved the lowest error of ⇠9 BPM in free living conditions. Nevertheless, even
the model solely relying on acceleration (A/T) achieved competitive results (⇠12
BPM) outperforming other ML baselines. We also introduced a joint loss function in
order to capture the long-tails of HR observed in the real world. These joint losses
outperformed single losses across all error metrics. The task-agnostic embeddings
achieved strong performance at inferring physiologically meaningful variables (BMI,
fitness etc), outperforming unsupervised autoencoders and common biomarkers. By
inspecting the embeddings we also noticed most outcomes improve with higher latent
dimensionality, while some are invariant to its size. More fine-grained prediction of
the outcomes as well as comparison with contrastive approaches (Chen et al., 2020;
Tang et al., 2020) is also left for future work. Last, this method proposed hereby
could potentially be applied to other domains where parallel time-series are prevalent
(weather, traffic etc) in order to learn rich cross-modal representations.

This third empirical chapter of the thesis builds on the two previous chapters by
employing machine learning on mobile-measured data. While the previous chapters
focused on smartphone-based assessment of mental health, here we investigated
wearable-based inferences of outcomes related to physical activity and metabolic health.
We believe that there are many associations between physical and mental health as
evidenced by the improvement of the mood prediction when using movement data
in Chapter 3. Therefore, models developed for mental health outcomes could be also
used for physical activity outcomes and vice versa. For instance, the upstream model
of this chapter is an encoder-decoder model conceptually similar to that of Chapter
4; the former is used as the main model since we are interested in the task of mood
forecasting while the latter is used simply as a feature extractor. In the end of the day,
the problem formulation defines the task and the modeling; for example, continuous
heart rate sensing is impossible with smartphones and hence it can only be leveraged
with a wearable dataset.

While this chapter showed how generic models could transfer to many coarse-
grained outcomes related to one’s physiology, it also highlighted the promise of
wearable-based estimation of cardio-respiratory fitness, a well-established predictor of
metabolic disease and mortality. The following chapter expands this line of work with
models tailored to fine-grained fitness prediction through extensive experiments on a
larger dataset of the Fenland Study.



Chapter 6

Longitudinal fitness prediction with
wearables

T–c eŒda–mwn, Â t‰ m‡n s¿ma Õgi†c, tòn d‡ yuqòn e÷poroc, tòn d‡ f‘sin eŒpa–deutoc 1

–Thales of Miletus

6.1 Introduction

In the previous chapter, we introduced a new self-supervised task which sets the heart
rate responses to activity as a supervisory signal and showed promising results across
a range of binary outcomes pertinent to one’s physiology. In this chapter, we delve
into the task of fitness prediction. We use a larger set of the Fenland Study than that of
Chapter 5, which includes only data from the wearable-ECG, and most importantly, a
longitudinal cohort who repeated the protocol (both free-living and lab-based) almost
a decade later. The latter allows us to validate the adaptability of our models in
predicting long-term fitness change. Our findings motivate the complementary use
of wearables with deep learning models for fine-grained and more accurate fitness
estimation, compared to established estimations of commercial wearables.

Cardiorespiratory fitness is a well-established predictor of metabolic disease and
mortality. Fitness is directly measured as maximal oxygen consumption (VO2max),
or indirectly assessed using heart rate response to a standard exercise test. However,
such exercise testing is costly and burdensome, limiting its utility in healthcare and
large-scale population studies. Fitness can also be approximated using resting heart
rate and self-reported exercise habits, but accuracy is low compared to estimates based
on dynamic data.

Given these limitations, VO2max is usually not assessed directly in most settings.

1Who is happy? One who has a healthy body, a resourceful mind and a docile nature.
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STUDY DESIGN

Fenland I
(N = 11,059)

Fenland II
(N = 2,675)

VO2max
Test

BASELINE VISIT (DAY 1) FREE-LIVING PHASE (DAY 1-7)

Anthropometrics

Questionnaires

Δ ~ 7 years

~ 6 days

 Movement and heart 
data from wearables

MODELING FITNESS 

  1        
FEATURES

U
SER

S

Fine-grained cardiorespiratory 
fitness prediction in the present

2        Inferring fitness direction and 
magnitude 7 years in the future 

DEEP NEURAL NETWORK
3        Validating adaptability and 

change with new sensor data 

Figure 6.1: Study and experimental design. We include 11, 059 participants with
treadmill and wearable sensor data at baseline (Fenland I, 2005-2015) and a longitudinal
subsample of 2, 675 participants who were retested approximately 7 years later (Fenland
II). Following this baseline clinic visit, participants were fitted with a combined heart
rate and movement sensing device which they wore during free-living conditions for
approximately six days.
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Instead, indirect methods to estimate VO2max through submaximal exercise tests have
been developed, aiming to predict VO2max from the heart’s response to incremental
exercise at submaximal intensities (Abut et al., 2016; Brage et al., 2007). These models
are based on the parallel increase of heart rate and VO2 consumption during exercise,
and assume a linear relationship between work rate and heart rate that holds at
maximal intensities (Davies, 1968; Tanaka et al., 2001). Although some studies have
measured submaximal VO2 (Jurca et al., 2005; Wareham et al., 1997; Dunbar, 1992), the
most common approach is to estimate the oxygen cost of standardised work loads and
only directly measure the heart rate response (Brage et al., 2007; Weller et al., 1995;
Christensen et al., 2012; Assah et al., 2015). Even though these submaximal tests are
valuable alternatives to maximal exertion tests, particularly for older and non-athlete
populations, they still require standardised testing and access to ergometry equipment,
thus limiting their applicability in large-scale population studies due to scalability, cost,
time consumption and potential risks associated to exertion (Noonan and Dean, 2000).

Modern wearables capture dynamic heart rate data which could improve fitness
prediction. In this work, we analyze movement and heart rate signals from wearable
sensors in free-living conditions from 11,059 participants who also underwent a
standard exercise test. We develop a deep neural network model that leverages sensor
information to predict maximal oxygen uptake (VO2max), yielding high correlation
(r = 0.82, 95% CI 0.80-0.83), when compared to the ground truth in a holdout sample.
This model outperforms conventional non-exercise fitness models and traditional
bio-markers using measurements of normal daily living without the need to undertake
a specific exercise test. Additionally, we show the adaptability and applicability of this
approach for detecting fitness change over time in a longitudinal subsample (n = 2,675)
who repeated measurements after 7 years. The latent representations that arise from
this model pave the way for fitness-aware monitoring and interventions at scale.

This work makes the following contributions:

• We analyze movement and heart rate signals from wearable sensors in free-living
conditions from 11, 059 participants who also underwent a standard exercise test.

• We develop a deep neural network model that leverages sensor information to
predict maximal oxygen uptake (VO2max), yielding high correlation (r = 0.82,
95% CI 0.80-0.83), when compared to the ground truth in a holdout sample.

• This model outperforms conventional non-exercise fitness models and traditional
biomarkers using measurements of normal daily living without the need to
undertake a specific exercise test.

• Additionally, we show the adaptability and applicability of this approach for
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detecting fitness change over time in a longitudinal subsample (n = 2, 675) who
repeated measurements after seven years. The latent representations that arise
from this model pave the way for fitness-aware monitoring and interventions at
scale.

6.2 Method

A machine learning model that is trained on a combination of free-living wear-
able data and traditional biomarkers should be more accurate in predicting
lab-measured cardio-respiratory fitness.

Hypothesis

6.2.1 Cardiorespiratory fitness assessment

VO2max was predicted in study participants using a previously validated submaximal
treadmill test (Gonzales et al., 2020). Participants exercised while treadmill grade and
speed were progressively increased across several stages of level walking, inclined
walking, and level running. The test was terminated if one of the following criteria
were met: 1) the participant wanted to stop, 2) the participant reached 90% of age-
predicted maximal heart rate (208-0.7*age) (Tanaka et al., 2001), or 3) the participants
exercised at or above 80% of age-predicted maximal heart rate for 2 minutes.

6.2.2 Free-living wearable sensor data processing

Participants were excluded from this analysis if they had less than 72 hours of concur-
rent wear data (three full days of recording) or insufficient individual calibration data
(treadmill test-based data). All heart rate data collected during free-living conditions
underwent pre-processing for noise filtering (Stegle et al., 2008). Non-wear detection
procedures were applied and any of those non-wear periods were excluded from
the analyses (Brage et al., 2015). This algorithm detected extended periods of non-
physiological heart rate concomitantly with extended (> 90 minutes) periods that also
registered no movement through the device’s accelerometer. We converted movement
intensities into standard metabolic equivalent units (METs), through the conversion 1
MET = 71 J/min/kg ( 3.5 ml O2· min�1· kg�1). These conversions where then used to
determine intensity levels with  1.5METs classified as sedentary behavior, activities
between 3 and 6 METs were classified as moderate to vigorous physical activity (MVPA)
and those > 6METs were classified as vigorous physical activity (VPA).
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Since the season can have a big impact on physical activity in terms of how it
affects workouts, sleeping patterns, and commuting patterns, we encoded the sensor
timestamps using cyclical temporal features Tf . Here we encoded the month of the
year as (x, y) coordinates on a circle as previously shown in Chapter 5. The intuition
behind this encoding is that the model will ”see” that for example December (12th) and
January (1st) are 1 month apart (not 11). Considering that the month might change over
the course of the week, we use the month of the first time-step only. Additionally, we
extracted summary statistics from the following sensor time-series: raw acceleration,
HR, HRV, Aceleration-derived Euclidean Norm Minus One, and Acceleration-derived
Metabolic Equivalents of Task. Then, for every time-series we extracted the following
variables which cover a diverse set of attributes of their distributions: mean, minimum,
maximum, standard deviation, percentiles (25%, 50%, 75%), and the slope of a linear
regression fit. The remainder of the variables (anthropometrics and RHR) are used as
a single measurement.

In total, we derived a comprehensive set of 68 features using the Python libraries
Pandas (Wes McKinney, 2010) and Numpy (Harris et al., 2020). A detailed view of the
variables is provided in Table 6.1.

6.2.3 Deep learning models

We developed deep neural network models that are able to capture non-linear re-
lationships between the input data and the respective outcomes. Considering the
high-sampling rate of the sensors (1 sample/minute) after aligning HR and Acceler-
ation modalities, it is impossible to learn patterns with such long dependencies (a
week of sensor data includes more than 10,000 timesteps). Even the most well-tuned
recurrent neural networks cannot cope with such sequences and given the size of the
training set (7,545 samples), the best option was to extract statistical features from
the sensors and represent every participant-week as a row in a feature vector (see Fig.
6.1). This feature vector was fed to fully connected neural network layers which were
trained with backpropagation.
Data preparation. For Task 1 (see Figure 6.3), we match the sensor data with the
participants who have eligible lab tests. Then we split into disjoint train and test sets,
making sure that participants from Fenland I are allocated to the train set, while those
from Fenland II are allocated to the test set (see Fig. 6.2). This would allow to re-use
the trained model from Task 1, with different sensor data from Fenland II participants.
Intuitively, we train a model on the big population, and we evaluate it with two
snapshots of another longitudinal population over time (Task 1 & 3). After splitting,
we normalize the training data by applying standard scaling (removing the mean
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Table 6.1: Description of the features/variables used in our analysis as inputs to
the models. The features with asterisks(*) are time-series and therefore we have
extracted the following statistical variables: mean, minimum, maximum, standard deviation,
percentiles (25%, 50%, 75%), and the slope of a linear regression fit. The final set of features
is 68.

Features/Variables Description

Sensors
Acceleration* Acceleration measured in mg

Heart rate (HR)* Mean HR resampled in 15sec intervals, measured in BPM

Heart Rate Variability (HRV)*
HRV calculated by differencing
the second-shortest and the second-longest inter-beat interval
(as seen in (Faurholt-Jepsen et al., 2017)), measured in ms

Acceleration-derived
Euclidean Norm Minus One (ENMO)*

ENMO-like variable, measured in
(Acceleration/0.0060321) + 0.057) (as seen in (White et al., 2016))

Acceleration-derived
Metabolic Equivalents of Task (METs)*

Sedentary* If Accelerometer <1 and daily count average
Moderate to Vigorous* If Accelerometer >= 1 and daily count average
Vigorous* If Accelerometer >= 4.15 and daily count average

Anthropometrics
Age Age, measured in years

Sex Sex is binary (female/male)

Weight Weight, measured in kilograms

Height Height, measured in meters.centimeters

Body Mass Index (BMI) BMI is calculated by Weight/(Heightˆ2), measured in kg/ m̂2
Resting Heart Rate

Wearable-derived RHR
RHR is calculated by averaging the 4th, 5th, and 6th minute
of the baseline visit and adding to that the Sleeping Heart Rate
that has been inferred by the wearable device. (Gonzales et al., 2020)

Seasonality

Month of year The month number is used along with a coordinate encoding that
allows the models to make sense of their cyclical sequence.



6.2. METHOD 111

Figure 6.2: Distribution of VO2max in the training and test sets in Fenland I cohort.
Both sets display similar ranges of values, making sure that inferences based on the
test set are robust. This plot refers to Task’s 1 train and test sets.

and scaling to unit variance) and then denoise it by applying Principal Components
Analysis (PCA), retaining the components that explain 99.99% of the variance. In
practice, the original 68 features are reduced to 48. We save the fitted PCA projection
and scaler and we apply them individually to the test-set, to avoid information leakage
across the sets. The same projection and scaler are applied to all downstream models
(Task 2 and 3) to leverage the knowledge of the big cohort (Fenland I).
Model architecture and training. The main neural network (used in Task 1) receives
a 2D vector of [users, features] and predicts a real value. For this work, we assume
N users and F features of an input vector X = (x1,...,xN) 2 RN⇥F and a target VO2max
y = (y1,...,yN) 2 RN. The network consists of two densely-connected feed forward
layers with 128 units each. As we reviewed in Chapter 2, a dense layer works as
follows: output = activation (input · kernel + bias), where activation is the element-
wise activation function (the exponential linear unit in our case (Clevert et al., 2015)),
kernel is a learned weights matrix with a Glorot uniform initialization (Glorot and
Bengio, 2010), and bias is a learned bias vector. Each layer is followed by a batch
normalization (Ioffe and Szegedy, 2015) operation, which maintains the mean output
close to 0 and the output standard deviation close to 1. Also, dropout of 0.3 probability
is applied to every layer, which randomly sets input units to 0 and helps prevent
overfitting (Srivastava et al., 2014). Last, the final layer is a single-unit dense layer and
the network is trained with the Adam optimizer (Kingma and Ba, 2014) to minimize
the Mean Squared Error (MSE) loss, which is appropriate for continuous outcomes.
We use a random 10% subset of the train-set as a validation set. To combat overfitting,
we train for 300 epochs with a batch size of 32 and we perform early stopping when
the validation loss stops improving after 15 epochs and the learning rate is reduced
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Figure 6.3: Flowchart of the analytical sample and the training/testing splits across
the three tasks. The first task trains a model to predict fitness using the large cohort
(Fenland I). The second task is using the smaller cohort of repeats in Fenland I (called
Fenland II) and trains further models to predict fitness now and in the future (and their
delta). The third task evaluates the original model trained in Task 1 by feeding new
sensor data (Fenland II sensors and anthropometrics) to assess the adaptability of the
model to pick up change. (*Training set is 90% of the 80% remaining dataset after
splitting to testing set. Validation set is 10% of the training set)

by 0.1 every 5 epochs. All hyperparameters (# layers, # units, dropout rates, batch
size, activations, and early stopping) were found after tuning on the validation set. We
provide more details about the models in the Appendix A.
Model differences across tasks. Task 1 trains the main neural network of our study
(see previous subsection). Task 2 re-trains an identical model to predict VO2max in
the future (and the delta present-future). However, when we re-frame this problem
as a classification task (see Figure 6.5), we use significantly fewer participants when
we focus on the tails of the change distribution. Therefore, to combat overfitting, we
train a smaller network with only one Dense layer of 128 units and a sigmoid output
unit, which is appropriate for binary problems. Instead of optimizing the MSE, we
now minimize the binary cross-entropy. In all other cases — such as in Task 3 or
when visualizing the latent space— we do not train new models; the model which was
trained in Task 1 is used in inference mode (prediction).
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6.2.4 Evaluation

To evaluate the performance of the deep learning models which predict continuous val-
ues, we computed the root mean squared error (RMSE) =

q
1

|Ntest| Ây2Dtest ÂN
t=1(yt � ŷt)2,

the coefficient of determination (R2) = 1 � ÂN
t=1(yt�ŷt)2

ÂN
t=1(yt�ȳt)2 , and the Pearson correlation

coefficient. Here y and ŷ are the measured and predicted VO2max and ȳ is the mean.
For the binary models, we used the Area under the Receiver Operator Characteristic
(AUROC or AUC) which evaluates the probability of a randomly selected positive
sample to be ranked higher than a randomly selected negative sample.

6.2.5 Visualizing the latent space

The activations of the trained model allow us to understand the inner workings of
the network and explore its latent space. We first pass the test-set of Task 1 through
the trained model and retrieve the activations of the penultimate layer (Yosinski et al.,
2015). This is a 2D vector of [2675, 128] size, considering that the layer size is 128
and the participants of the test-set are 2675. Intuitively, every participant corresponds
to an 128-dimensional point. In order to visualize this embedding, we apply tSNE
(Van der Maaten and Hinton, 2008), an algorithm for dimensionality reduction. For its
optimization, we use a perplexity of 50, as it was suggested recently as an effective
methodology (Wattenberg et al., 2016).

6.2.6 Statistical analyses

We performed a number of sensitivity analyses to investigate potential sources of bias
in our results. Full results of these sensitivity analyses are shown in the main text
and corresponding tables. In particular, we use bootstraping with replacement (1000
samples) to calculate 95% confidence intervals when we report the performance of the
models in the hold-out sets (Carpenter and Bithell, 2000). Wherever we report p-values,
we use the recently proposed strict threshold of p < 0.005 (Benjamin et al., 2018).

6.3 Results

Baseline measurements were collected from 12, 435 healthy adults from the Fenland
study in the United Kingdom (Lindsay et al., 2019), where all required data for the
present analysis was available in 11, 059 participants (Fenland I, baseline timepoint
referred to as ”current” in our evaluation). A subset of 2, 675 participants were assessed
again after a median (interquantile range) of 7 (5-8) years (Fenland II, referred to as
”future” in our evaluations). Descriptive characteristics of the two analysis samples
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Table 6.2: Characteristics for the study analytical sample: The Fenland I and II
studies. Data is in mean (std). Values with asterisk(*) indicate that this variable comes
from Fenland II sensor data which is a smaller cohort (N=2071) due to data filtering
(see Figure 6.3–Panel 3). The values in FII (future) cohort correspond to the second
assessment (7 years later). In Task 1, the training set is FI (present) and the testing set
is FII (present) so as to make sure that they come from similar distributions.

Fenland Ipresent Fenland II f uture Fenland IIpresent

Men (n= 5229) Women (n= 5830) Men (n=1303) Women (n=1372) Men (n=1303) Women (n=1372)

mean std mean std mean std mean std mean std mean std

Demographics
Age (years) 47.70 7.57 47.66 7.36 54.11 7.08 54.76 6.81 47.19 7.18 47.83 6.96

Anthropometrics
Height (m) 1.78 0.07 1.64 0.06 1.77 0.06 1.64 0.06 1.77 0.06 1.64 0.06
Body mass (kg) 85.85 13.83 70.54 13.92 85.31 13.59 69.58 13.77 84.85 13.14 69.04 13.26
BMI (kg/m2) 27.16 3.97 26.17 4.97 27.03 4.01 25.85 4.94 27.00 4.03 25.84 4.98

Physical activity
MVPA (min/day) 35.87 22.35 34.40 22.59 34.92* 22.18* 35.35* 23.26* 34.41 22.23 32.81 21.45
VPA (min/day) 3.27 8.57 3.31 15.67 3.57* 8.78* 3.30* 7.52* 3.38 9.30 3.86 27.80

Resting Heart Rate
RHR (bpm) 61.48 8.68 64.46 8.28 59.63* 8.28* 62.21* 8.10* 61.06 8.44 63.81 8.20

Cardiorespiratory fitness
VO2max (ml O2/min/kg) 41.95 4.61 37.44 4.73 42.32 4.68 37.93 4.72 42.21 4.42 37.84 4.69

are presented in Table 6.2. Mean and standard deviations for each characteristic are
presented in this table. An overview of the study design and the three experimental
tasks is provided in Figure 6.1.

6.3.1 Fine-grained fitness prediction from wearable sensors

We first developed and externally validated several non-exercise VO2max estimation
models as a regression task using features commonly measured by wearable devices
(anthropometry, resting heart rate (RHR), physical activity (PA); see Table 6.3). Here our
goal was to explore how conventional non-exercise approaches to VO2max estimation
could be enhanced by features from free-living PA data. We split participant data into
independent training and test sets. The training set (n=8384, participants with baseline
data only) was used for model development. The test set (n=2675, participants with
baseline and followup data) was used to externally validate each model. Models using
anthropometry or RHR alone had poor external validity, but validity improved when
combined in the same model. The best performance (R2 of 0.67) was attained using a
deep neural network model combining wearable sensors, RHR, and anthropometric
data (Figure 6.4).

Deep neural networks can learn feature representations that are suitable for cluster-
ing tasks, such as population stratification by implicit health status, but are difficult to
reveal using linear dimension-reduction techniques (Gaspar and Breen, 2019). We used
t-distributed stochastic neighbor embedding (tSNE), a nonlinear dimension-reduction
technique, to visualise deep-learned feature representations from our model and their
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(a)
(b)

Figure 6.4: Fine-grained fitness prediction. Comparing the predicted and true
VO2max coming from the best performing comprehensive model (Sensors + RHR
+ Anthro.) trained with Fenland I. (a) Distribution of predicted and true VO2max. The
plot combines a kernel density estimate and histogram. (b) Correlation of predicted
and true VO2max (r = 0.82, p < 0.005, see Table 6.3). The gray line denotes a linear
regression fit. Transparency has been applied to the datapoints to combat crowding.

Table 6.3: Evaluation of predicting fine-grained VO2max with the Fenland I cohort.
Comparison between traditional antrhopometrics, common biomarkers (RHR), and
passively collected data over a week (wearable sensors). Best performance in bold.

Data modality Evaluation Metrics [95% CI] N (train+val / test set)

R2 Corr RMSE

11059
(8384/2675)

Anthropometrics
Age/Sex/Weight/BMI/Height 0.362 [0.332-0.391] 0.604 [0.579-0.627] 4.043 [3.924-4.172]

Resting Heart Rate
RHR (Sensor-derived) 0.374 [0.344-0.403] 0.615 [0.589-0.639] 4.007 [3.891-4.117]

Anthropometrics + RHR
Age/Sex/Weight/BMI/Height/RHR 0.616 [0.588-0.641] 0.785 [0.767-0.802] 3.138 [3.031-3.237]

Wearable Sensors + RHR + Anthro.
Acceleration/HR/HRV/MVPA
Age/Sex/Weight/BMI/Height/RHR

0.671 [0.649-0.692] 0.822 [0.808-0.835] 2.903 [2.801-3.003]

relationship to participant VO2max and HR levels (Figure 6.6). Clustering and coloring
by VO2max and HR levels were shown to be inversely related and more apparent in
the learned latent representation space, compared to the original observation space.
For example, participants with higher VO2max were clustered similarly to those with
lower HR levels, and vice versa.

6.3.2 Predicting magnitude/direction of fitness change in the future

The second group of tasks evaluated our model on the subset of participants who
returned for Fenland II approximately 7 years later (referred to as future in our evalua-
tions). For these experiments we carried out three evaluations. Following the process
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(a) (b)

Figure 6.5: Evaluation in predicting the magnitude and direction of the VO2max

change between the present and the future. (a) Distribution of the D of VO2max in
the present and the future. The shaded areas represent different binary bins that are
used as outcomes, increasingly focusing on the extremes of this distribution. (b) ROC
AUC performance in predicting the three D outcomes as shown on the left hand side.
Brackets represent 95% CIs.

described earlier, we re-trained a model to predict future VO2max using only informa-
tion from the present as input (Table 6.4). This model yielded a slightly lower accuracy
than Fenland I, achieving a R2 of 0.49 and a correlation of 0.72. This lower performance
is expected since the model has no indication of the behavior of the individuals 7
years later. We also trained a model to directly predict the difference (or delta) of
current-future VO2max, which reached a correlation of 0.23.

Further, motivated by the moderate predictability of the fine-grained delta of
VO2max, we formulated this problem as a classification task. A visual representation
of this task can be found in Figure 6.5a. By inspecting the distribution of the difference
(delta) of current-future VO2max on the training set, we split it to 2 halves (50%
quantiles) and set these as prediction outcomes. The purpose of this task is to assess
the direction of individual change of fitness. We report an area under the curve (AUC)
of 0.61 in predicting the direction of change (N = 2, 675). We also focused on the
tails of the change distribution which indicates participants who had substantial and
dramatic change in fitness over the period of time between Fenland I and Fenland
II (approximately 7 years). In this case, the distribution was split into 80%/20%
(substantial) and 90%/10% (dramatic) quantiles. The results from these experiments
show that the models can distinguish between substantial fitness change with an
AUC of 0.72 (N = 1, 068) and between dramatic fitness change with an AUC of 0.74
(N = 535). All AUC curves can be found in Figure 6.5b.
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(a) (b)

(c) (d)

Figure 6.6: t-distributed stochastic neighbor embedding (tSNE) projection of the
original feature vector (Fenland I testing set, Sensors + RHR + Anthro.) compared to
the model’s latent space after training. (a-b) The original data presents some clusters
but the outcome is not clearly linearly separable. The model activations capture the
continuum of low-high VO2max both locally and globally. (c-d) A similar assessment
to VO2max is presented by coloring with the mean HR of the week of each participant.
In the learned space, participants with low HR (high fitness) are placed in the same
clusters as in VO2max, unlike the original space. In all plots a 50% transparency has
been applied to combat crowding and the colorbar is centered on the median value to
illustrate extreme cases. The VO2max label is used only for color-coding purposes (the
projection is label-agnostic). Each participant is a dot.
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Table 6.4: Evaluation of predicting fine-grained VO2max in the present and the fu-
ture with the Fenland II repeats cohort using covariates of Fenland I. Neural network
results. (*the Delta outcome is in a different unit and hence a direct comparison with
raw VO2max results might not apply)

Outcomes Evaluation Metrics [95% CI] N (train+val / test set)

R2 Corr RMSE

2675
(2140/535)

Wearable Sensors + RHR + Anthro.
Current VO2max 0.652 [0.606-0.695] 0.815 [0.783-0.846] 2.959 [2.742-3.201]

Future VO2max 0.499 [0.431-0.55] 0.721 [0.67-0.759] 3.673 [3.421-3.916]

Delta (Current - Future)* 0.081 [0.02-0.078] 0.233 [0.159-0.307] 3.175 [2.923-3.41]

6.3.3 Enabling adaptive cardio-respiratory fitness inferences

For the final task, we assessed whether the trained models can pick up change using
new sensor data from Fenland II, considering that obtaining new wearable data is
relatively easy since these devices are becoming increasingly pervasive. The intuition
behind this task is to evaluate the generalizability of the models over time. We first
matched the populations that provided sensor data for both cohorts (N = 2, 042) and
applied the trained model from Task 1 in order to produce VO2max inferences. We
then compared the predictions with the respective ground truth (current and future
VO2max). The true and predictive distributions are shown in Figures 6.7c and 6.7d.
Through this procedure, we found that the model achieves an r = 0.84 for VO2max
future prediction and an r = 0.82 for VO2max current prediction (validating our
Task 1 results). In other words, if we have access to wearable sensor data and other
information from the future time, we can reuse the already trained model from Fenland
I to accurately infer fitness with minimal loss of accuracy over time, even though this
is new sensor data from a completely separate (future) week.

Last, we calculated the delta of the predictions and compared it to the actual delta
of fitness over the years. This task showed that the models tend to focus mostly on
positive change and under-predict when participants’ fitness deteriorates over the
years (Figures 6.7a, 6.7b). The overall correlation between the delta of the predictions
with the ground truth is significant (r=0.57, p<0.005).

6.3.4 Contextualising the results

Cardiorespiratory fitness declines with age independently of changes to body composi-
tion, and low cardiorespiratory fitness is associated with poor health outcomes (Lynch
et al., 1996; Lakka et al., 1994; Myers et al., 2002; Ekelund et al., 1988; Schmid and Leitz-
mann, 2015; Schuch et al., 2016; Blair et al., 1989; Laukkanen et al., 2004; Mandsager
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(a)
(b)

(c) (d)

Figure 6.7: Assessing the robustness of the model to pick up change using new
sensor data from Fenland II repeats. By matching the populations who provided
sensor data for both cohorts (N=2,042) we passed them through our trained model
from Task 1 to predict VO2max. (a-b) We then calculated the difference (D) of the
predictions juxtaposed with the true difference of fitness over the years. Distribution
of D of predicted and true VO2max. Correlation of D of predicted and true VO2max
(r = 0.57, p < 0.005). The gray line denotes a linear regression fit. Transparency has
been applied to the datapoints to combat crowding. (c-d) Comparison of predicted
and true VO2max using FI and FII covariates (sensors, RHR, anthro.), respectively.
The distribution plots combine a kernel density estimate and histogram with bin size
determined automatically with a reference rule.
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et al., 2018). As such, having the capacity to predict whether CRF would decline in
excess of natural aging could be valuable to clinicians when tailoring therapeutic inter-
ventions. Here we have developed a deep learning framework for predicting CRF and
changes in CRF over time. Our framework estimates VO2max by combining learned
features from heart rate and accelerometer free-living data extracted from wearable
sensors with anthropometric measures. To evaluate our framework’s performance,
VO2max estimates were compared with VO2max values derived from a submaximal
exercise test (Gonzales et al., 2020). Free-living and exercise test data were collected at
a baseline investigation in 11,059 participants (Fenland I). A subset of those participants
(n=2,675) completed another exercise test at a follow-up investigation approximately
seven years later (Fenland II). This study design allowed us to address three questions:
1) Do baseline estimates of VO2max from the deep learning framework agree with
VO2max values measured from exercise testing at baseline?, 2) Can the framework
learn features from heart rate and accelerometer free-living data collected at baseline
that predict VO2max measured at follow-up?, and 3) Can the framework be used to
predict the magnitude of change in VO2max from baseline to follow-up?

In the VO2max estimation tasks, our model demonstrated strong agreement with
VO2max measured from the submaximal exercise test at baseline (Pearson’s correlation
coefficient (PCC): 0.82) as well as for the longitudinal, follow-up visit (PCC: 0.72). We
were also able to distinguish between substantial and dramatic changes in CRF (AUCs
0.72 and 0.74, respectively). Finally, we further evaluated the initial model on new
input data by feeding Fenland II free-living data along with updated heart rate and
anthropometrics to the model, showing that it is able to adapt and monitor change
over time. We evaluated the inference capabilities of the model in the difference (delta)
between the current (Fenland I) and future (Fenland II) VO2max for those participants
who came back approximately 7 years later. For this last task, the model produced
outcomes that translated to a 0.57 correlation between the delta of predicted and delta
of true VO2max.

The application of our work to other cohort and longitudinal studies is of particular
importance because serial measurement of cardiorespiratory fitness has significant
prognostic value in clinical practice. Small increases in fitness are associated with
reduced cardiovascular disease mortality risk (Blair et al., 1995) and better clinical
outcomes in patients with heart failure (Swank et al., 2012) and type 2 diabetes (Jakicic
et al., 2013). Nevertheless, routine measurement of fitness in clinical practice is rare
due to the costs and risks of exercise testing. Non-exercise based regression models
can be used to estimate changes in fitness in lieu of serial exercise testing. It is unclear,
however, the extent to which changes in fitness detected with such models reflect true
changes in exercise capacity. Here, we relied on the relationship between CRF and
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heart rate responses to different levels of physical activity at submaximal, real-life
conditions captured through wearable sensors. Using deep learning techniques, we
have developed a non-exercise based fitness estimation approach that can be used
not only to accurately infer current VO2max, but also can do so when applied to a
future cohort, where the model did not require any retraining, just influx of new data.
Further, we show that the model can also be used to infer the changes in CRF that
occurred during the approximately seven year time span between Fenland I and II.

Our proposed deep learning approach outperforms traditional non-exercise models,
which are the state-of-the art in the field and rely on simple variables inputted to
a linear model. Importantly, our model is able to take week-level information from
each participant and combine it with various anthropometrics and biomarkers such
as the RHR, providing a truly personalized approach for CRF inference generation.
The approach we present here outperforms traditional non-exercise models, which
are considered state-of-the-art methods for longitudinal monitoring and highlights the
potential of wearable sensing technologies for digital health monitoring.

This study has several limitations worthy of recognition. First, the validity of the
deep learning framework was assessed by comparing estimated VO2max values with
those derived from a submaximal exercise test. Ideally, one would use VO2max values
directly measured during a maximal exercise test to establish the ground truth for
cardiorespiratory fitness comparisons. Maximal exercise tests, however, are problematic
when used in large population based studies because they may be unsafe for some
participants and, consequently, induce selection bias. The submaximal exercise test
used in the Fenland Study was well-tolerated by study participants and demonstrated
acceptable validity against direct VO2max measurements (Gonzales et al., 2020). We are
therefore confident that VO2max values estimated from the deep learning framework
reflect true cardiorespiratory fitness levels.

6.4 Discussion

Although the use of wearable devices continues to grow, most of the derived variables
in commercial wearable devices lack rigorous scientific validation and as such, their use
in health-related inferences has been questioned (Henriksen et al., 2018; Passler et al.,
2019; Shcherbina et al., 2017; Boudreaux et al., 2018; Perez-Pozuelo et al.). Specifically,
VO2max estimations using commercial devices are particularly non-transparent and at
times unreliable (Shcherbina et al., 2017; Esco et al., 2011). Although certain commercial
devices have shown stronger results than others, many tend to rely on detailed activity
intensity measurements paired with speed monitoring through GPS and require users
to reach heart rates that are close to their maximum capabilities, limiting the application
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to self-selecting, fitter individuals (Cooper and Shafer, 2019; Lucio et al., 2018). Despite
some promising studies which attempt to infer VO2max from data collected during
free-living conditions, these mostly stem from small-scale cohorts with less than 50
participants and use contextual data from treadmill activity, which again limits their
application in real-world contexts (Altini et al., 2016). In this work, we use data
from the largest study of it’s kind, by over two orders of magnitude, and use purely
free-living data to predict VO2max, with no requirement for context-awareness.

6.5 Conclusion

In this chapter, which concludes the empirical works of this thesis, we developed
deep learning models utilising wearable data and other biomarkers to predict the gold
standard of fitness (VO2max) and achieved strong performance compared to other
traditional approaches. Cardio-respiratory fitness is a well-established predictor of
metabolic disease and mortality and our premise is that modern wearables capture non-
standardised dynamic data which could improve fitness prediction. Our findings on a
population of 11, 059 participants showed that the combination of all modalities reached
an r = 0.82, when compared to the ground truth in a holdout sample. Additionally, we
show the adaptability and applicability of this approach for detecting fitness change
over time in a longitudinal subsample (n = 2, 675) who repeated measurements after
seven years. Last, the latent representations that arise from this model pave the way
for fitness-aware monitoring and interventions at scale. It is often said that ”If you
cannot measure it, you cannot improve it”. Cardio-respiratory fitness is such an important
health marker, but until now we did not have the means to measure it at scale. Our
findings could have significant implications for population health policies, finally
moving beyond weak health proxies such as the BMI.

This chapter built on ideas of the previous chapters, such as the promising pre-
dictability of fitness in Chapter 5, the task-inspired feature extraction in Chapter 3, and
the latent patterns seen in the intermediate representations in Chapters 4 & 5. While
this chapter featured the most medically-relevant application of the four, we believe
that ideas from the rest of the chapters can be applied here as well. For example, we
did not see significant improvements in predicting fine-grained VO2max when using a
self-supervised formulation similar to that of Chapter 5, which can be attributed to the
difference in devices since here we use a uniaxial chest accelerometer while in Chapter
5 the input data was a wrist-worn triaxial accelerometer. However, we still believe that
other self-supervised objectives such as in SimCLR (Chen et al., 2020; Tang et al., 2020)
should be beneficial in learning robust representations of large-scale sensor data.



Chapter 7

Conclusion

Sometimes it seems as though each new step towards AI, rather than producing something
which everyone agrees is real intelligence, merely reveals what real intelligence is not.

–Douglas R. Hofstadter

In this thesis, we presented four original pieces of work drawing on some funda-
mental research problems in machine learning for mobile health: finding better data
representations through neural networks and validating the impact of sensor data
when compared to other traditional sources. Our premise has been that new training
paradigms such as multi-tasking, self-supervision, and multimodal machine learn-
ing should create more robust predictive models, which in turn can be applied to
tasks in mental and physical health. In this Chapter, we briefly summarize our key
contributions and suggest directions for future research.

7.1 Summary of contributions

7.1.1 Multimodal machine learning for mood prediction

In Chapter 3, we presented a training pipeline for population-scale mobile sensor data
towards more accurate mood clustering and prediction. The main motivation behind
this study was that experience sampling has been proposed as a mechanism to monitor
mental health, but it requires users’ attention and therefore this leads to considerable
retention issues. The proposed training pipeline involved two steps: first, clustering
historical mood trajectories in order to find groups of users with similar trajectories
and second, classifying users into the found clusters. We found that the combination of
these modalities achieves the best classification performance, and that passive sensing
yields a +5% boost in performance (75% AUC). These findings might have implications
for digital phenotyping applications that can benefit from the correct modelling of
large-scale passive sensing data alongside extra user metadata.
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7.1.2 Sequence multi-task learning for mood forecasting

In Chapter 4, we presented an encoder-decoder model which exploits the bimodality
of mood with multi-task learning, enabling more accurate multi-step mood forecasting.
Our results showed that multi-tasking learns both dimensions of mood simultaneously,
which is more accurate than individual models or baselines. Our results showed
that 3 weeks is the best window of mood reporting, validating previous research on
depression prediction. Also, our models outperformed regressors and other baselines,
while extra analysis showed that mood variability, personality traits, and that the day
of the week play a key role in the performance of the models. Last, we inspected
the learned representations and observed that different neurons learn different non-
linear sequential patterns, which helps us understand the complex trajectories of the
evolution of mood.

7.1.3 Self-supervised transfer learning for wearable data

In Chapter 5, we developed a self-supervised model which exploits the multimodal
data of modern wearables to learn meaningful representations which generalize to
several outcomes with transfer learning. The model maps activity data to heart
rate responses and can be used as a feature extractor for wearable data. For pre-
training, we introduced a joint loss function that accounts for the long-tails of HR data,
while downstream, we aggregated the window-level features to user-level ones and
showcased the value captured by the learned embeddings through strong performance
at inferring physiologically meaningful variables, outperforming autoencoders and
common biomarkers. For example, our models achieved an AUC of 0.70 for BMI
prediction and an AUC of 0.80 for Physical Activity Energy Expenditure.

7.1.4 Longitudinal fitness prediction with wearables

In Chapter 6, we developed deep learning models utilising wearable data and common
biomarkers to predict the gold standard of fitness (VO2max) and achieved strong
performance compared to traditional approaches. Cardio-respiratory fitness is a well-
established predictor of metabolic disease and mortality and our premise is that
modern wearables capture non-standardised dynamic data which could improve
fitness prediction. Our findings on a population of 11, 059 participants showed that
the combination of all modalities reached an r = 0.82, when compared to the ground
truth in a holdout sample. Additionally, we show the adaptability and applicability of
this approach for detecting fitness change over time in a longitudinal subsample (n = 2,
675) who repeated measurements after seven years. Last, the latent representations
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that arise from this model pave the way for fitness-aware monitoring and interventions
at scale.

7.2 Implications and limitations

The work presented in this thesis has potential implications for various communities
and stakeholders. Researchers could use methods, ideas, and developed models to
produce inferences and predictions for their own data and study different populations.
Engineers could create ML/software products targeted to mobile and wearable devices
which understand the context of the users by anticipating mental health instabilities
and the link of physical activity to metabolic health. On the other hand, medical
practitioners could use the outputs of such software products to better understand their
patients’ daily lives away from hospital settings; continuous, passive person-generated
data can complement episodic data generated during routine clinical practice. Last,
policymakers could use our findings to advocate for new population health initiatives;
for example, if a cheap wearable device can offer better proxies for one’s overall health
and mortality than demographics or aggregated self-reported metrics (e.g. BMI), they
could support nationwide initiatives similar to ”One Laptop per Child”.

All studies have limitations. Our work is potentially affected by the nature of
the data at hand. Observational studies provide larger samples which more closely
approximate the general population but, at the same time, the researchers cannot
control any interventions or exposures. For example, considering that our mental
health dataset was collected through a widely distributed mobile app, we can assume
some selection bias from people who tend to follow science news and live in Western,
Educated, Industrialized, Rich, and Democratic (WEIRD) societies (Henrich et al.,
2010). However, it is still today one the most comprehensive global datasets to study
the interplay of mobile sensing and mental health.

Further, our physical activity dataset was focused on a regional population in
England, but due to being a prospective population-based cohort study, it included
more control in order to ensure that the sample is nationally representative. We also
acknowledge the fact that this dataset was originally collected to study metabolic
disease in people born from 1950 to 1975, therefore our results might not generalize to
very young populations. On the other hand, predicting poor overall health through
fitness biomarkers is particularly more significant in older populations due to increased
mortality risk.

Another limitation refers to missing modalities, namely over-relying on data inputs
which might be easy to collect but do not explain the underlying research question.
For instance, our mental health dataset includes movement sensors, background audio,
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personality surveys and other mobile phone metadata. External factors such as the
weather or menstruation cycles for women could also influence mood (Golub and
Harrington, 1981), but the collection of weather data is challenging on a globally
distributed user-base and menstruation could be regarded as very private information
to self-report. Likewise, fitness is influenced by both physical activity and nutrition,
but there is considerable bias in self-reported meal intake (Schoeller, 1995) (besides
being impractical to log).

Another important point worth mentioning is the degree in which the proposed
models can generalise to other domains. We discussed in previous chapters that the
models developed for mental health outcomes could be also used for physical activity
outcomes and vice versa. Given that the main focus of this thesis is on modeling
sequential data, we believe that the models could potentially be applied to other
domains where parallel time-series are prevalent — such as energy or traffic — in
order to learn rich cross-modal representations (as in Chapter 5). Besides, in the last
year we have witnessed a remarkable consolidation in deep learning architectures,
with most modalities being modeled with a variant of the Transfomer architecture
(Dosovitskiy et al., 2020) — we expect this trend to accelerate in the future.

All things considered, there is no silver bullet for this kind of challenges, however,
we believe that by carefully formulating the research questions and slicing the data
in a meaningful way which respects the temporal/causal aspect thereof, can alleviate
some of these problems. In our studies, we employ forecasting and user-based cross-
validation, as well as we validate our models in future cohorts repeating the same
protocols, as a means of reducing bias.

7.3 Future research directions

Paraphrasing the quote in the beginning of this chapter, every step towards more
intelligent machines reveals limitations which mostly arise from the way that we
formulate such prediction tasks. As such, a simplistic task may yield impressive
accuracy, which however will not generalise to the real world. Future models should
be able to exploit different modalities, limited ground truth, and discover hidden
causal effects in person-generated observational data.

Nevertheless, we should keep in mind that these problems are hard. For instance,
Moravec’s paradox states that, contrary to traditional beliefs, reasoning (”playing
checkers”) requires very little computation, whereas sensorimotor capabilities (”the skills
of a one-year-old when it comes to perception and mobility”) require enormous resources
(Moravec, 1998). Even though the original observation referred to robotics, we could
extrapolate it to every field that requires intelligence from sensory inputs. In other
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words, this observation helps us understand why AI has been first successful in
strictly-defined reasoning tasks (e.g., chess, Go), over open-ended problems that
involve perception. On top of that, mobile health -apart from the sensory component-
includes another layer of ambiguity, where there might not be strong consensus in
what constitutes an outcome (e.g., depression).

The above remarks should motivate more work with real data and tasks. As such,
below are some potential future directions.

7.3.1 Multimodal health modeling: striking a fine balance

In most of the Chapters we used modalities such as the accelerometer, the electro-
cardiogram, or the microphone. However, as humans employ all their senses when
navigating the word, we could expand to underutilized modalities, but as in most cases,
we are limited by the existing datasets. For example, it has been recently suggested
that the task of human activity recognition might have reached a plateau by focusing
on accelerometers only, with the authors proposing a vision-based alternative (Tong
et al., 2020). Admittedly, every new modality complicates the fine balance between
privacy and accuracy, while motivating new policy frameworks for data governance
(Perez-Pozuelo et al., 2021). Still, we need new models which can ingest structurally
different data types (e.g., video and signals) in a principled way; large pre-trained
models (Bommasani et al., 2021) and contrastive learning have a lot to offer here (Wang
et al., 2021).

If for a moment we imagine that we have the perfect multimodal datasets, it is
not yet straightforward how to optimally fuse different modalities. Recently, a new
category was coined to describe models that are trained on ”broad data at scale and
are adaptable to a wide range of downstream tasks”, the authors of the report call them
Foundation models (Bommasani et al., 2021). In this ideal scenario, data from care
providers, institutions (universities, non-profits, and governments), pharmaceuticals,
wearables, and insights extracted from medical publications would be sourced. Then,
individual modalities would be extracted including medical images, ultrasound videos,
tabular electronic health records (EHRs) data, text from clinical notes, and time series
such as ECGs from wearables. As these models are particularly adaptable through
fine-tuning and prompting, they can be used in all sorts of useful downstream tasks
such as question answering by both doctors and patients.

Nevertheless, current self-supervised models are developed for each modality
independently, e.g., images (Chen et al., 2020), text (Devlin et al., 2019), and ECG
(Kiyasseh et al., 2020). Therefore, we need methods that learn cross-modal patterns on
different fusion levels (patient, population, and temporal). A promising recent direction
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is surpisingly one which is modality-agnostic; the Perceiver is a Tranformer which
maps input arrays1 to output arrays through a small latent array (Jaegle et al., 2021).
To illustrate this contribution, they employed a dataset with audio-video-label inputs
and the objective was to learn a model that can accurately compress and reconstruct
its inputs in the presence of a bottleneck. With traditional autoencoders like CNNs, it
is not obvious how to fuse these three modalities since video is 3D, audio is 1D and
class labels are 0D. The Perceiver team used padded inputs, serialized them into a 2D
array, and queried the model using Fourier-based position encodings (Tancik et al.,
2020). Other tricks involved masking the label 50% of the time (similar to BERT) and
subsampling the decoding, both during training. The results showed consistently low
peak signal-to-noise ratios for both audio and video which hints that the model learns
a joint distribution across modalities.

These types of input-agnostic models have the potential to automate the manual
process of building multi-modal pipelines, and in particular mobile health is well-
poised to benefit from models that learn cross-modal patterns of tabular, sequential,
and spatial data.

7.3.2 Representation learning: contrastive, generative, or both?

As we discussed back in Chapter 2, unsupervised models for the first time outper-
formed supervised ones (Lan et al., 2020), even in sensor tasks (Saeed et al., 2019; Tang
et al., 2021). Generic pre-training methods like SimCLR (Chen et al., 2020) or BYOL
(Grill et al., 2020) proposed a two-network setup which ingests different views of the
same datapoint, with the loss minimizing the distance of the latent representations.
This sounds surprisingly similar to another family of models: Generative Adversarial
Networks (GANs), where the objective draws from game-theoretic principles and two
networks contest with each other in a game to generate more realistic data. We expect
to see more overlap between generative and contrastive training in the future. We
point the interested readers to this survey on the similarities and differences of these
two paradigms (Liu et al., 2020). Beyond generic training, we are also excited about
timeseries-specific self-supervised models which take into account properties such
as local smoothness (Tonekaboni et al., 2021), and other spatio-temporal invariances
(Kiyasseh et al., 2020).

Starting from the latter, we acknowledge that ECG data is ubiquitous in healthcare
settings and is increasingly common in personal devices such as the Apple Watch.
CLOCS proposed a method which leverages temporal and spatial invariances of ECG
leads based on the two key observations: adjacent ECG segments of shorter duration

1a byte array can be a flattened image or an entire ECG sequence and is generally large
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will continue to share context, and recordings from different leads (at the same time)
will reflect the same cardiac function, and thus share context (Kiyasseh et al., 2020). The
new idea was to define a positive pair as representations of transformed instances that
belong to the same patient. By doing so, the model implicitly personalizes the learned
representations to each patient. Driven by this, they designed a new SimCLR-like
objective that outperformed supervised and generic self-supervised methods (in terms
of AUC) such as BYOL, most notably, with only 25% of labelled training data.

Yèche et al took the idea of inducing priors on contrastive losses a step forward
(Yèche et al., 2021). They design an objective that preserves the time dependency of
the representations of the time-series segments and outperforms unsupervised and
supervised methods in predicting ICU decompensation, length of stay, and sepsis
onset (on the MIMIC dataset). The versatility of this approach is twofold: when fully
unsupervised, it is competitive to supervised models, and when used in a supervised
manner, it outperforms contrastive methods. Another study independently arrived
to a similar formulation (Tonekaboni et al., 2021) by ensuring that in the encoding
space, the distribution of signals from within a neighborhood is distinguishable from
the distribution of non-neighboring signals. Their models surpassed competitors such
as the Triplet Loss and Contrastive Predictive Coding in predicting diverse outcomes
ranging from atrial fibrillation to human activity recognition. They also showed better
clusterability over other contrastive losses. Both studies highlighted the generality of
such models which can be reused in multiple downstream tasks.

Another study proposed a self-supervised model with an adversarial subject identi-
fier to minimize subject-specific content (Cheng et al., 2020). We expect these subject-
focused objectives to become more common when training unsupervised models on
large health datasets. For a comprehensive view of the field, we point the reader to
our recent review (Spathis et al., 2022).

7.3.3 Transfer learning: the next frontier of intelligent health?

Andrew Ng has recently expressed some alarm that there is a a considerable gap
between proof of concept models and actual in-situ use, due to different sensors,
protocols, or data collection methods: ”In contrast, any human [..] can walk down the
street to the other hospital and do just fine” (Reader, 2021). Sequential transfer learning,
as seen for example in Chapter 5 or in numerous recent works (Grill et al., 2020),
is probably the first step to validate that the learned representations can generalize
across many different tasks. We should now go the extra mile and validate that
these models can perform equally well in changing environments. Some exciting new
approaches towards this direction include disentangled and adversarial autoencoders
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(Han et al., 2021), domain adaptation (Yang and Soatto, 2020), and meta learning (Li
and Hospedales, 2020).

A potential fertile ground for improving transfer learning methods is through
domain generalization (DG). DG deals with the problem of out-of-distribution gen-
eralization and has attracted increasing interest (Wang et al., 2021). In this setup,
several different but related domains are given, and the goal is to learn a model that is
invariant to the input domains and can generalize to unseen test domains. Concep-
tually different approaches have been proposed to solve this problem, with the most
noteworthy being Invariant Risk Minimization (IRM) (Arjovsky et al., 2019), which
aims to extend traditional domain-unaware training or Empirical Risk Minimization
(ERM). IRM features a joint loss function: the ERM component which tries to mini-
mize the average risk across all environments, and the IRM one optimizes the data
representation such that all domains have the same downstream classifier. Another
approach applies the meta-learning paradigm to the DG setting: MLDG simulates
train/test domain shifts during training by synthesizing virtual testing domains within
each mini-batch, with a meta-objective that assumes improvement in training domain
performance will reflect on test domain performance (Li et al., 2018). Other ideas such
as GroupDRO focused on minimizing the worst-case training loss of each domain
(Sagawa et al., 2019), and CORAL suggested aligning the mean and covariance of latent
distributions across domains (Sun and Saenko, 2016).

Even though all these methods produced superior results on their respective evalua-
tion setups, recent benchmarks on a large array of datasets and methods criticized their
effectiveness over simple baselines like the ERM (Gulrajani and Lopez-Paz, 2020). Later
works challenged these findings, claiming that progress has actually been made over
ERM, pointing to pre-training and augmentations (learned/generative or heuristic) as
potential solutions (Wiles et al., 2021). However, the culprit behind these inconsistencies
could be the lack of high-quality distribution shift datasets and benchmarks. While
steps have been taken to introduce new multi-domain ML benchmarks (Koh et al.,
2021), they heavily feature vision and language modalities, with limited support for
timeseries (let alone medical or wearable timeseries). We are particularly excited about
new methods and benchmarks in this area because it could unlock the full potential
of generalization to unseen domains with versatile methods that learn the essence of
data, regardless of populations, devices, and environments.
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Manoux, and Séverine Sabia. Accelerometer assessed moderate-to-vigorous



148 BIBLIOGRAPHY

physical activity and successful ageing: results from the whitehall ii study.
Scientific reports, 7:45772, 2017.

[165] Gatis Mikelsons, Matthew Smith, Abhinav Mehrotra, and Mirco Musolesi. To-
wards deep learning models for psychological state prediction using smartphone
data: Challenges and opportunities. In In Workshop on Machine Learning for Health
(ML4H) at NIPS 2017, December 2017.

[166] David C Mohr, Mi Zhang, and Stephen M Schueller. Personal sensing: under-
standing mental health using ubiquitous sensors and machine learning. Annual
review of clinical psychology, 13:23–47, 2017.

[167] David C Mohr, Katie Shilton, and Matthew Hotopf. Digital phenotyping, behav-
ioral sensing, or personal sensing: names and transparency in the digital age.
NPJ digital medicine, 3(1):1–2, 2020.

[168] Hans Moravec. When will computer hardware match the human brain. Journal
of evolution and technology, 1(1):10, 1998.

[169] Jonathan Myers, Manish Prakash, Victor Froelicher, Dat Do, Sara Partington,
and J Edwin Atwood. Exercise capacity and mortality among men referred for
exercise testing. New England journal of medicine, 346(11):793–801, 2002.

[170] Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Çağlar Gulçehre, and Bing
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Appendix A

Extra information

A.1 Hyperparameters

Here we list the hyperparameters used to fine-tune the models proposed throughout
the thesis.

A.1.1 Chapter 3 model

For the MLP network, we ended up with a 3-dense layer architecture with 100-50-100
units, after a grid search of {1-3, with 3 options} layer depth and unit dimensionality
of {25-100, with 4 options}. There was an initial heuristic search in order to narrow
down these ranges. The dropout rate was found through a search of {0.25-0.75, with 3
options}. For the rest of the baselines, the sklearn hyperparameters were used.

A.1.2 Chapter 4 model

For the encoder-decoder LSTM, we endep up with an architecture of 80-80 units, after
a grid search of unit dimensionality {20-100, 5 options}. There was an initial heuristic
search in order to narrow down these ranges. The recurrent dropout rate was found
through a search of {0.25-0.75, with 3 options}. For the rest of the baselines, the sklearn
hyperparameters were used.

A.1.3 Chapter 5 model

For the multimodal CNN, we ended up with an architecture of two 128d CNNs
followed by two 128d Bi-GRUs and a pooling layer. The other two branches of the
network used two 128d Dense layers followed by a dropout layer. The last Dense layer
concatenates the outputs [256, 128, 128] of all branches and predicts a single value. The
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unit dimensions were found through a grid search of units {64-256, 3 options}, and
dropout through a search of {0.3-0.66, 3 options}. The XGboost hyperparameters were
found through 5-fold cross validation using a learning rate of {0.05-0.30, 6 options}.

For the transfer learning task, a Logistic Regression classifier with a balanced class
weight was trained with a 5-fold cross validation and the best model was applied to
the test set. The best hyperparameters were found through a random search of 20
iterations picking from a uniform distribution with 0 lower bound and the distribution
range of 10, for the inverse of regularization strength parameter (”C”), and the norm
of the penalty between {L2, L1}.

A.1.4 Chapter 6 model

For the main neural network, we ended up with an architecture of two 128d Dense
layers, whose dimensions were found after grid search of {64-256, 3 options}, dropout
through a search of {0.3-0.6, 3 options}, layer depth of {1-3, with 3 options}, and the
activation is ’elu’ which was found through a search of {’elu’, ’relu’}. For the network
in Task 2, the binary task has one 128d Dense layer followed by a 0.5 Dropout found
after searching the same parameters.

A.2 Feature list
Below is the full feature list for the models used in Chapter 3. We note that this feature
set was extracted for each of the sensor modalities. For a detailed overview of the
naming conventions we refer the reader to the documentation of the tsfresh library.

[abs_energy’,

absolute_sum_of_changes’,

agg_autocorrelation__f_agg_"mean"’,

agg_autocorrelation__f_agg_"median"’,

agg_autocorrelation__f_agg_"var"’,

agg_linear_trend__f_agg_"max"__chunk_len_10__attr_"intercept"’,

agg_linear_trend__f_agg_"max"__chunk_len_10__attr_"rvalue"’,

agg_linear_trend__f_agg_"max"__chunk_len_10__attr_"slope"’,

agg_linear_trend__f_agg_"max"__chunk_len_10__attr_"stderr"’,

agg_linear_trend__f_agg_"max"__chunk_len_5__attr_"intercept"’,

agg_linear_trend__f_agg_"max"__chunk_len_5__attr_"rvalue"’,

agg_linear_trend__f_agg_"max"__chunk_len_5__attr_"slope"’,

agg_linear_trend__f_agg_"max"__chunk_len_5__attr_"stderr"’,

agg_linear_trend__f_agg_"mean"__chunk_len_10__attr_"intercept"’,

agg_linear_trend__f_agg_"mean"__chunk_len_10__attr_"rvalue"’,

agg_linear_trend__f_agg_"mean"__chunk_len_10__attr_"slope"’,

agg_linear_trend__f_agg_"mean"__chunk_len_10__attr_"stderr"’,
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agg_linear_trend__f_agg_"mean"__chunk_len_5__attr_"intercept"’,

agg_linear_trend__f_agg_"mean"__chunk_len_5__attr_"rvalue"’,

agg_linear_trend__f_agg_"mean"__chunk_len_5__attr_"slope"’,

agg_linear_trend__f_agg_"mean"__chunk_len_5__attr_"stderr"’,

agg_linear_trend__f_agg_"min"__chunk_len_10__attr_"intercept"’,

agg_linear_trend__f_agg_"min"__chunk_len_10__attr_"rvalue"’,

agg_linear_trend__f_agg_"min"__chunk_len_10__attr_"slope"’,

agg_linear_trend__f_agg_"min"__chunk_len_10__attr_"stderr"’,

agg_linear_trend__f_agg_"min"__chunk_len_5__attr_"intercept"’,

agg_linear_trend__f_agg_"min"__chunk_len_5__attr_"rvalue"’,

agg_linear_trend__f_agg_"min"__chunk_len_5__attr_"slope"’,

agg_linear_trend__f_agg_"min"__chunk_len_5__attr_"stderr"’,

agg_linear_trend__f_agg_"var"__chunk_len_10__attr_"intercept"’,

agg_linear_trend__f_agg_"var"__chunk_len_10__attr_"rvalue"’,

agg_linear_trend__f_agg_"var"__chunk_len_10__attr_"slope"’,

agg_linear_trend__f_agg_"var"__chunk_len_10__attr_"stderr"’,

agg_linear_trend__f_agg_"var"__chunk_len_5__attr_"intercept"’,

agg_linear_trend__f_agg_"var"__chunk_len_5__attr_"rvalue"’,

agg_linear_trend__f_agg_"var"__chunk_len_5__attr_"slope"’,

agg_linear_trend__f_agg_"var"__chunk_len_5__attr_"stderr"’,

approximate_entropy__m_2__r_0.1’,

approximate_entropy__m_2__r_0.3’,

approximate_entropy__m_2__r_0.5’,

approximate_entropy__m_2__r_0.7’,

approximate_entropy__m_2__r_0.9’,

ar_coefficient__k_10__coeff_0’,

ar_coefficient__k_10__coeff_1’,

ar_coefficient__k_10__coeff_2’,

ar_coefficient__k_10__coeff_3’,

ar_coefficient__k_10__coeff_4’,

augmented_dickey_fuller__attr_"pvalue"’,

augmented_dickey_fuller__attr_"teststat"’,

augmented_dickey_fuller__attr_"usedlag"’,

autocorrelation__lag_0’,

autocorrelation__lag_1’,

autocorrelation__lag_2’,

autocorrelation__lag_3’,

autocorrelation__lag_4’,

autocorrelation__lag_5’,

autocorrelation__lag_6’,

autocorrelation__lag_7’,

autocorrelation__lag_8’,

autocorrelation__lag_9’,

binned_entropy__max_bins_10’,

c3__lag_1’,

c3__lag_2’,
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c3__lag_3’,

change_quantiles__f_agg_"mean"__isabs_False__qh_0.2__ql_0.0’,

change_quantiles__f_agg_"mean"__isabs_False__qh_0.4__ql_0.0’,

change_quantiles__f_agg_"mean"__isabs_False__qh_0.4__ql_0.2’,

change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.0’,

change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.2’,

change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.4’,

change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.0’,

change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.2’,

change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.4’,

change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.6’,

change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.0’,

change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.2’,

change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.4’,

change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.6’,

change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.8’,

change_quantiles__f_agg_"mean"__isabs_True__qh_0.2__ql_0.0’,

change_quantiles__f_agg_"mean"__isabs_True__qh_0.4__ql_0.0’,

change_quantiles__f_agg_"mean"__isabs_True__qh_0.4__ql_0.2’,

change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.0’,

change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.2’,

change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.4’,

change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.0’,

change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.2’,

change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.4’,

change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.6’,

change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.0’,

change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.2’,

change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.4’,

change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.6’,

change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.8’,

change_quantiles__f_agg_"var"__isabs_False__qh_0.2__ql_0.0’,

change_quantiles__f_agg_"var"__isabs_False__qh_0.4__ql_0.0’,

change_quantiles__f_agg_"var"__isabs_False__qh_0.4__ql_0.2’,

change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.0’,

change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.2’,

change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.4’,

change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.0’,

change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.2’,

change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.4’,

change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.6’,

change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.0’,

change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.2’,

change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.4’,

change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.6’,

change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.8’,
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change_quantiles__f_agg_"var"__isabs_True__qh_0.2__ql_0.0’,

change_quantiles__f_agg_"var"__isabs_True__qh_0.4__ql_0.0’,

change_quantiles__f_agg_"var"__isabs_True__qh_0.4__ql_0.2’,

change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.0’,

change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.2’,

change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.4’,

change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.0’,

change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.2’,

change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.4’,

change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.6’,

change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.0’,

change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.2’,

change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.4’,

change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.6’,

change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.8’,

cid_ce__normalize_False’,

cid_ce__normalize_True’,

count_above_mean’,

count_below_mean’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_0__w_10’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_0__w_2’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_0__w_20’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_0__w_5’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_10__w_10’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_10__w_2’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_10__w_20’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_10__w_5’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_11__w_10’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_11__w_2’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_11__w_20’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_11__w_5’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_12__w_10’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_12__w_2’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_12__w_20’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_12__w_5’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_13__w_10’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_13__w_2’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_13__w_20’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_13__w_5’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_14__w_10’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_14__w_2’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_14__w_20’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_14__w_5’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_1__w_10’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_1__w_2’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_1__w_20’,
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cwt_coefficients__widths_(2, 5, 10, 20)__coeff_1__w_5’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_2__w_10’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_2__w_2’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_2__w_20’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_2__w_5’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_3__w_10’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_3__w_2’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_3__w_20’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_3__w_5’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_4__w_10’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_4__w_2’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_4__w_20’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_4__w_5’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_5__w_10’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_5__w_2’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_5__w_20’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_5__w_5’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_6__w_10’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_6__w_2’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_6__w_20’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_6__w_5’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_7__w_10’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_7__w_2’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_7__w_20’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_7__w_5’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_8__w_10’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_8__w_2’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_8__w_20’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_8__w_5’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_9__w_10’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_9__w_2’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_9__w_20’,

cwt_coefficients__widths_(2, 5, 10, 20)__coeff_9__w_5’,

energy_ratio_by_chunks__num_segments_10__segment_focus_0’,

energy_ratio_by_chunks__num_segments_10__segment_focus_1’,

energy_ratio_by_chunks__num_segments_10__segment_focus_2’,

energy_ratio_by_chunks__num_segments_10__segment_focus_3’,

energy_ratio_by_chunks__num_segments_10__segment_focus_4’,

energy_ratio_by_chunks__num_segments_10__segment_focus_5’,

energy_ratio_by_chunks__num_segments_10__segment_focus_6’,

energy_ratio_by_chunks__num_segments_10__segment_focus_7’,

energy_ratio_by_chunks__num_segments_10__segment_focus_8’,

energy_ratio_by_chunks__num_segments_10__segment_focus_9’,

fft_aggregated__aggtype_"centroid"’,

fft_aggregated__aggtype_"kurtosis"’,

fft_aggregated__aggtype_"skew"’,
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fft_aggregated__aggtype_"variance"’,

fft_coefficient__coeff_0__attr_"abs"’,

fft_coefficient__coeff_0__attr_"real"’,

fft_coefficient__coeff_10__attr_"abs"’,

fft_coefficient__coeff_10__attr_"angle"’,

fft_coefficient__coeff_10__attr_"imag"’,

fft_coefficient__coeff_10__attr_"real"’,

fft_coefficient__coeff_11__attr_"abs"’,

fft_coefficient__coeff_11__attr_"angle"’,

fft_coefficient__coeff_11__attr_"imag"’,

fft_coefficient__coeff_11__attr_"real"’,

fft_coefficient__coeff_12__attr_"abs"’,

fft_coefficient__coeff_12__attr_"angle"’,

fft_coefficient__coeff_12__attr_"imag"’,

fft_coefficient__coeff_12__attr_"real"’,

fft_coefficient__coeff_13__attr_"abs"’,

fft_coefficient__coeff_13__attr_"angle"’,

fft_coefficient__coeff_13__attr_"imag"’,

fft_coefficient__coeff_13__attr_"real"’,

fft_coefficient__coeff_14__attr_"abs"’,

fft_coefficient__coeff_14__attr_"angle"’,

fft_coefficient__coeff_14__attr_"imag"’,

fft_coefficient__coeff_14__attr_"real"’,

fft_coefficient__coeff_15__attr_"abs"’,

fft_coefficient__coeff_15__attr_"angle"’,

fft_coefficient__coeff_15__attr_"imag"’,

fft_coefficient__coeff_15__attr_"real"’,

fft_coefficient__coeff_16__attr_"abs"’,

fft_coefficient__coeff_16__attr_"angle"’,

fft_coefficient__coeff_16__attr_"imag"’,

fft_coefficient__coeff_16__attr_"real"’,

fft_coefficient__coeff_17__attr_"abs"’,

fft_coefficient__coeff_17__attr_"angle"’,

fft_coefficient__coeff_17__attr_"imag"’,

fft_coefficient__coeff_17__attr_"real"’,

fft_coefficient__coeff_18__attr_"abs"’,

fft_coefficient__coeff_18__attr_"angle"’,

fft_coefficient__coeff_18__attr_"imag"’,

fft_coefficient__coeff_18__attr_"real"’,

fft_coefficient__coeff_19__attr_"abs"’,

fft_coefficient__coeff_19__attr_"angle"’,

fft_coefficient__coeff_19__attr_"imag"’,

fft_coefficient__coeff_19__attr_"real"’,

fft_coefficient__coeff_1__attr_"abs"’,

fft_coefficient__coeff_1__attr_"angle"’,

fft_coefficient__coeff_1__attr_"imag"’,
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fft_coefficient__coeff_1__attr_"real"’,

fft_coefficient__coeff_20__attr_"abs"’,

fft_coefficient__coeff_20__attr_"angle"’,

fft_coefficient__coeff_20__attr_"imag"’,

fft_coefficient__coeff_20__attr_"real"’,

fft_coefficient__coeff_21__attr_"abs"’,

fft_coefficient__coeff_21__attr_"angle"’,

fft_coefficient__coeff_21__attr_"imag"’,

fft_coefficient__coeff_21__attr_"real"’,

fft_coefficient__coeff_22__attr_"abs"’,

fft_coefficient__coeff_22__attr_"angle"’,

fft_coefficient__coeff_22__attr_"imag"’,

fft_coefficient__coeff_22__attr_"real"’,

fft_coefficient__coeff_23__attr_"abs"’,

fft_coefficient__coeff_23__attr_"angle"’,

fft_coefficient__coeff_23__attr_"imag"’,

fft_coefficient__coeff_23__attr_"real"’,

fft_coefficient__coeff_24__attr_"abs"’,

fft_coefficient__coeff_24__attr_"angle"’,

fft_coefficient__coeff_24__attr_"real"’,

fft_coefficient__coeff_2__attr_"abs"’,

fft_coefficient__coeff_2__attr_"angle"’,

fft_coefficient__coeff_2__attr_"imag"’,

fft_coefficient__coeff_2__attr_"real"’,

fft_coefficient__coeff_3__attr_"abs"’,

fft_coefficient__coeff_3__attr_"angle"’,

fft_coefficient__coeff_3__attr_"imag"’,

fft_coefficient__coeff_3__attr_"real"’,

fft_coefficient__coeff_4__attr_"abs"’,

fft_coefficient__coeff_4__attr_"angle"’,

fft_coefficient__coeff_4__attr_"imag"’,

fft_coefficient__coeff_4__attr_"real"’,

fft_coefficient__coeff_5__attr_"abs"’,

fft_coefficient__coeff_5__attr_"angle"’,

fft_coefficient__coeff_5__attr_"imag"’,

fft_coefficient__coeff_5__attr_"real"’,

fft_coefficient__coeff_6__attr_"abs"’,

fft_coefficient__coeff_6__attr_"angle"’,

fft_coefficient__coeff_6__attr_"imag"’,

fft_coefficient__coeff_6__attr_"real"’,

fft_coefficient__coeff_7__attr_"abs"’,

fft_coefficient__coeff_7__attr_"angle"’,

fft_coefficient__coeff_7__attr_"imag"’,

fft_coefficient__coeff_7__attr_"real"’,

fft_coefficient__coeff_8__attr_"abs"’,

fft_coefficient__coeff_8__attr_"angle"’,
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fft_coefficient__coeff_8__attr_"imag"’,

fft_coefficient__coeff_8__attr_"real"’,

fft_coefficient__coeff_9__attr_"abs"’,

fft_coefficient__coeff_9__attr_"angle"’,

fft_coefficient__coeff_9__attr_"imag"’,

fft_coefficient__coeff_9__attr_"real"’,

first_location_of_maximum’,

first_location_of_minimum’,

friedrich_coefficients__m_3__r_30__coeff_0’,

friedrich_coefficients__m_3__r_30__coeff_1’,

friedrich_coefficients__m_3__r_30__coeff_2’,

friedrich_coefficients__m_3__r_30__coeff_3’,

has_duplicate’,

has_duplicate_max’,

has_duplicate_min’,

index_mass_quantile__q_0.1’,

index_mass_quantile__q_0.2’,

index_mass_quantile__q_0.3’,

index_mass_quantile__q_0.4’,

index_mass_quantile__q_0.6’,

index_mass_quantile__q_0.7’,

index_mass_quantile__q_0.8’,

index_mass_quantile__q_0.9’,

kurtosis’,

large_standard_deviation__r_0.15000000000000002’,

large_standard_deviation__r_0.2’,

large_standard_deviation__r_0.25’,

large_standard_deviation__r_0.30000000000000004’,

large_standard_deviation__r_0.35000000000000003’,

large_standard_deviation__r_0.4’,

last_location_of_maximum’,

last_location_of_minimum’,

linear_trend__attr_"intercept"’,

linear_trend__attr_"pvalue"’,

linear_trend__attr_"rvalue"’,

linear_trend__attr_"slope"’,

linear_trend__attr_"stderr"’,

longest_strike_above_mean’,

longest_strike_below_mean’,

max_langevin_fixed_point__m_3__r_30’,

mean’,

mean_abs_change’,

mean_change’,

mean_second_derivative_central’,

median’,

minimum’,
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number_cwt_peaks__n_1’,

number_cwt_peaks__n_5’,

number_peaks__n_1’,

number_peaks__n_10’,

number_peaks__n_3’,

number_peaks__n_5’,

partial_autocorrelation__lag_1’,

partial_autocorrelation__lag_2’,

partial_autocorrelation__lag_3’,

partial_autocorrelation__lag_4’,

partial_autocorrelation__lag_5’,

partial_autocorrelation__lag_6’,

partial_autocorrelation__lag_7’,

partial_autocorrelation__lag_8’,

partial_autocorrelation__lag_9’,

percentage_of_reoccurring_datapoints_to_all_datapoints’,

percentage_of_reoccurring_values_to_all_values’,

quantile__q_0.1’,

quantile__q_0.2’,

quantile__q_0.3’,

quantile__q_0.4’,

quantile__q_0.6’,

quantile__q_0.7’,

quantile__q_0.8’,

quantile__q_0.9’,

range_count__max_1__min_-1’,

ratio_beyond_r_sigma__r_0.5’,

ratio_beyond_r_sigma__r_1’,

ratio_beyond_r_sigma__r_1.5’,

ratio_beyond_r_sigma__r_2’,

ratio_beyond_r_sigma__r_2.5’,

ratio_beyond_r_sigma__r_3’,

ratio_beyond_r_sigma__r_5’,

ratio_beyond_r_sigma__r_6’,

ratio_value_number_to_time_series_length’,

sample_entropy’,

skewness’,

spkt_welch_density__coeff_2’,

spkt_welch_density__coeff_5’,

spkt_welch_density__coeff_8’,

standard_deviation’,

sum_of_reoccurring_data_points’,

sum_of_reoccurring_values’,

sum_values’,

symmetry_looking__r_0.05’,

symmetry_looking__r_0.1’,
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symmetry_looking__r_0.15000000000000002’,

symmetry_looking__r_0.2’,

symmetry_looking__r_0.25’,

symmetry_looking__r_0.30000000000000004’,

symmetry_looking__r_0.35000000000000003’,

time_reversal_asymmetry_statistic__lag_1’,

time_reversal_asymmetry_statistic__lag_2’,

time_reversal_asymmetry_statistic__lag_3’,

value_count__value_0’,

value_count__value_1’,

variance’]
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