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Abstract

Efficient, robust and uncertainty aware mobile health

Lorena Qendro

Sensor-equipped smartphones and wearables are transforming various mobile applications, in-
cluding health monitoring. As the difference between consumer health wearables and medical
devices begins to soften, it is now common for a single wearable device to monitor a range of
medical risk factors. Potentially, these devices could give patients direct access to personal ana-
lytics that can contribute to their health, facilitate preventive care, and aid in the management of
ongoing illness. This data can be fed into machine learning algorithms aiming to help practition-
ers better assess the progress of the patient or other aspects of the disease evolution. Therefore, it
is essential to have accurate model predictions and, equally significantly, a better understanding
of what happens within the machine learning model suggesting a prediction. Deep learning is
considered a key element in analyzing these new data types. However, traditional deep learn-
ing models cannot capture the predictive uncertainty leading to overconfident predictions, and,
ultimately, they are less robust in real-world applications. Bayesian deep learning or other non-
Bayesian probabilistic techniques can naturally quantify such uncertainty. Still, they do come
with quite a few drawbacks, the biggest one being the fact that they tend to be computationally
heavy. This dissertation attempts to address the challenges above by developing new efficient-
by-design frameworks for robust and uncertainty aware mobile health.

Firstly, we introduce a framework that enables already trained deep learning models to generate
uncertainty estimates on edge computing platforms with no need for fine-tuning or re-training
strategies. This simple and system-efficient solution is built to provide predictive uncertainty
for convolutional neural networks based only on one forward pass and a negligible number of



additional matrix multiplications. Next, we evaluate our approach on multiple mobile sensing
datasets and show that it can provide reliable uncertainty estimates and accurate predictions with
very little computation and memory overhead.

Next, we provide a new interpretation of early exit neural networks as an implicit ensemble of
weight-sharing sub-networks from which predictive uncertainty can be estimated. Our approach
can be applied to any feed-forward deep learning architecture. Empirical evaluation of several
medical imaging and biosignal datasets and state-of-the-art architectures demonstrates strong
performance in accuracy and uncertainty metrics as well as computation gain, highlighting the
benefit of combining multiple structurally diverse models that can be jointly trained.

Finally, acknowledging that in real-world deployments, deep learning-based mobile health appli-
cations may encounter malign inputs that can have a catastrophic impact, we propose an attack-
agnostic adversarial mitigation approach based on the previously described early exit ensemble
framework. We show that this approach can guarantee robustness generalizable to various white
box and universal adversarial inference time attacks, increasing the accuracy of vulnerable tar-
geted deep learning models while providing mitigation comparable to adversarial training but
without the computational burden.

The frameworks devised in this thesis suggest promising future directions for efficient uncer-
tainty estimation in mobile health research. Furthermore, designing robust deep learning models
has increasingly proved to be extremely relevant to health-critical mobile applications. By ad-
dressing several challenges in this problem space, these contributions take a few steps toward
building machine learning systems that can be safely deployed in real-life settings.
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Chapter 1

Introduction

The proliferation of smartphones, wearables, and edge devices has revolutionized our lives.
They come equipped with various sensors, for instance, microphones, accelerometers, electroen-
cephalogram (EEG), and electrocardiogram (ECG) sensors which enable the fine-grained and
continuous collection of data carrying information about human behavior, health, and context.
At the same time, machine learning (ML) algorithms have made unprecedented advancements in
how computers extract information from the collected data. The combination of data availability
and powerful ML techniques are the main drivers and enablers of a new set of sensing-based
applications that were not feasible before.

Recently, deep learning models have become the method of choice for the analysis of many
mobile sensing and health applications such as activity and context recognition (Wang et al.,
2018; Hsu et al., 2018; Alharbi and Farrahi, 2018; Lane et al., 2015, 2016), health and well-being
monitoring (De Pessemier and Martens, 2018; Ryder et al., 2009; Subasi et al., 2018; Wang et al.,
2022), and location prediction (Ballinger et al., 2018; Lu et al., 2012; Ronao and Cho, 2016; Figo
et al., 2010). Most importantly, deep learning achieves state-of-the-art performance on a variety
of tasks within the medical field, such as classification (Esteva et al., 2017; Wang et al., 2022),
segmentation (Perslev et al., 2019), and monitoring (Chan et al., 2019). The key to their success
relies on their structure of multiple non-linear hidden layers, enabling them to learn complex,
intricate relationships between the sensory inputs and predicted outputs. Many mobile sensing
applications have a significant role in healthcare, for instance, in detecting cardiac arrest via
smart devices (Stamate et al., 2017), sleep apnea (Nandakumar et al., 2015) or freezing of gaits
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in Parkinson’s Disease (PD) patients (Chan et al., 2019). In addition, mental health illnesses,
such as depression (Valstar et al., 2013) and stress (Lu et al., 2012), can also be detected using
speech samples collected with device microphones.

The crucial motivation of machine learning research is to eventually integrate automatic intelli-
gent systems into humans’ lives and enable them to co-operate with humans and the surrounding
environment towards solving the aforementioned vital health tasks. However, as these systems
become more pervasive, so too has the concern over how we can trust their underlying algo-
rithms. Therefore, in April 2021, the European Commission became the first governmental body
to propose an international regulation for artificial intelligence (AI) (Commission et al., 2021)
highlighting the need for techniques necessary to build trust in AI.

Reasonably, as soon as the developed ML-based frameworks are deployed into the real world,
they will face challenging requirements caused by introducing new devices, noisy and unpre-
dictable settings, the physical world, and device constraints. Therefore, we need to equip them
with capabilities to capture the inherent uncertainty stemming from the environment, the data,
and the ML models. These frameworks are required to be efficient by design, too. They can
guarantee deployability in all kinds of devices, even the ones with resource limitations. Smart
devices do not provide only data. At the same time, they are computing platforms that can be
exploited for on-device intelligence. These platforms promise a seamless experience tailored to
each user’s specific needs while maintaining the integrity of their personal health data.

Although the research literature offers crucial steps toward accurate machine learning models,
designing efficient, robust, and uncertainty aware mobile health applications present several un-
resolved challenges. While the research community and policy-makers design new trust metrics
and policies, many models have already been deployed in the real world. Many of these mod-
els, however, are not robust enough to handle difficult situations in the wild. For example, we
can mention two disastrous incidents caused by unreliable ML models: an assisted driving car
autopilot confusing the white side of a tractor-trailer for bright sky (NHTSA, Jan 2017) result-
ing in a life-threatening accident, and an image classifier mistakenly identifying two African
Americans as gorillas (Guynn, 2015). Chapter 3 of the thesis helps with building more robust
ML-based applications by providing a framework to enable already trained and deployed deep
learning models to quantify their predictive uncertainty. Many of these wrong decisions that lead
to severe consequences are caused by machine learning models sometimes encountering exam-
ples outside of the data distribution used during the training procedure. Chapter 4 delves into
this problem space and proposes a new framework able to quantify in-distribution calibration
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as well as out-of-distribution detection efficiently. Finally, a significant challenge is handling
and mitigating adversarial attacks. While out-of-distribution inputs, noisy data, and distribution
shifts can happen naturally in the wild, adversarial attacks are operated by malign agents whose
aim is to inject malicious inputs intentionally or leak prediction model parameters or training
data (Shokri et al., 2017; Mo et al., 2020). Based on the methodology proposed in Chapter
4, Chapter 5 presents an attack-agnostic-based defense framework designed to mitigate against
prediction time injection attacks efficiently.

The rest of this chapter motivates and outlines a series of methods we have designed and pre-
sented to the mobile systems and machine learning communities. They each contribute toward
providing robust and uncertainty aware predictions for mobile sensing and health applications–by
either improving upon previous approaches or achieving comparable performance while reduc-
ing the computational burden. The decisions made throughout this dissertation have been guided
by both the application settings mentioned earlier and the computational limitations of modern-
day mobile and edge devices. Our research, therefore, is not solely focused on advancing the
field from a scientific perspective, but rather on addressing real-world situations. We have aimed
to produce a line of work that is both theoretically sound and practically significant, offering the
potential to enhance and streamline real-world practices.

1.1 Motivation

Deep neural networks are deployed in increasingly safety-critical and health-impactful applica-
tions, motivating the need for novel techniques that guarantee robustness by preserving model
performance under both naturally-induced corruptions or alterations and adversarial perturba-
tions. Despite the great success and predictive capacity, DNNs lack interpretability which does
not allow a proper understanding of how the final predictions were deduced. When encountered
with examples outside its data distribution, a DNN model deployed in high-risk scenarios can
make inaccurate decisions or suggestions that can lead to severe consequences.

Understanding the model’s uncertainty gives a helpful indication of when the system is guessing
at random or if it is confident about the prediction. In the medical field, uncertainty quantifi-
cation is critical since the input distributions are often shifted from the training distribution due
to different hardware, data collection protocols, change in demographics, or country where the
data is collected from (Mårtensson et al., 2020; Amodei et al., 2016). In such scenarios, a model
with well-calibrated uncertainty can indicate if a prediction should be trusted (Ovadia et al.,
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2019). Furthermore, such a model could inform clinicians on how its performance may degrade
in different deployment settings and when a human-in-the-loop is required to analyze uncertain
samples (Garcı́a Rodrı́guez et al., 2020; Xia et al., 2021). While noisy conditions might occur
naturally, an adversary entity can exploit the vulnerabilities above of the deep learning model
and compromise its prediction by injecting malign perturbations. For instance, simple manip-
ulation of the peripherals of brain-computer interfaces can alter the model output (e.g., from
drowsy to awake), causing severe traffic accidents in EEG-based driving assistance for self-
driving cars (Zhu et al., 2021). Additionally, automatic medical systems are notoriously difficult
to update, so new defenses could be challenging to roll out (Finlayson et al., 2019) especially
given the speed new attacks are produced. Therefore, to keep up with the fast pace of new attacks,
there is a need for attack-agnostic and generalizable solutions.

Adopting a Bayesian framework offers uncertainty estimations on predictions made by
DNNs (Welling and Teh, 2011; Graves, 2011; Ustyuzhaninov et al., 2020; Dutordoir et al., 2021),
which helps capture the erroneous overconfident decisions in case of out-of-distribution or noisy
data. However, their training and inference 1 are computationally very expensive (Dusenberry
et al., 2020). Hence running them on devices with limited resources, such as smartphones and
wearables, is a big challenge (Yao et al., 2018a). Even if the training is done on clusters of
powerful GPUs, just running inference remains a computational burden for these platforms. The
latest studies by the machine learning community offer enlightening directions on getting ro-
bust uncertainty estimations for DNNs. Although recent efforts have been devoted to making
them more efficient, their improvements are still not a good fit for mobile or edge devices since
they are based either on sampling (Gal and Ghahramani, 2015a, 2016a,b) or ensembles of mod-
els (Lakshminarayanan et al., 2017; Wenzel et al., 2020). While sampling demands running a
single stochastic neural network multiple times, ensemble methods require training and running
various neural networks, which linearly increases latency if run in sequence or memory if run in
parallel. Indeed, these solutions are resource agnostic and would incur unfeasible increases in
power consumption, latency, and memory requirements on many devices with limited resources.

1.2 Research questions

We have reviewed the benefits of using deep learning for mobile health, what risks arise when tra-
ditional methods are employed, and what computational challenges are involved when adopting

1Throughout this dissertation by inference we mean the prediction of the model, not the statistical meaning of
inference in variable marginalization.
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existing state-of-the-art uncertainty aware approaches. This thesis proposes a set of contributions
in the form of deep learning-based frameworks with the ultimate goal of providing techniques to

efficiently and accurately yield uncertainty aware mobile sensing and health applications and ap-

ply them to achieve real-world robustness against distributional shifts and adversarial attacks.
These frameworks are evaluated via several classification tasks, ranging from mobile sensing
with inertial measurement units to audio recognition and real-time biosignal applications.

The central questions guiding the thesis are summarized below:

• Research Question 1: How can we provide uncertainty awareness on deep learning mod-

els which have already been trained and deployed?

• Research Question 2: How can existing efficient paradigms be exploited under novel in-

terpretation for uncertainty quantification?

• Research Question 3: To what extent can the introduced ensemble-based framework mit-

igate against inference time adversarial attacks? How can its orthogonality to existing

mitigation techniques be exploited for better robustness?

The deep learning-based frameworks proposed in this thesis aim to address these questions by,
firstly, putting forward an efficient solution for predictive uncertainty estimation in NNs deployed
on edge computing platforms with no need for fine-tuning or re-training strategies. Further, we
design a framework that leverages existing efficient paradigms (i.e., early exit neural networks)
under a novel interpretation as an ensemble technique for uncertainty quantification. Finally,
we exploit the latter framework for mitigation against adversarial attacks and combine it with
traditional defense approaches to increase robustness further.

1.3 Contributions and thesis outline

Chapter 2—Background This chapter starts with a definition, sources, and potential appli-
cations of predictive uncertainty in mobile health. It continues with the necessary theoretical
background required to carry out the research presented in the contribution chapters—machine
learning and neural network fundamentals, Bayesian deep learning literature, and the fundamen-
tals of more pragmatic uncertainty-aware approaches (Monte Carlo Dropout and deep ensem-
bles). We then discuss the characteristics of the edge platforms used in this thesis.
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Chapter 3—Uncertainty aware sensing for edge computing platforms In Chapter 3, we
propose an efficient framework for predictive uncertainty estimation in NNs deployed on edge
computing platforms with no need for fine-tuning or re-training strategies. To meet the energy
and latency requirements of these systems, the framework is built from the ground up to pro-
vide predictive uncertainty based only on one forward pass and a negligible amount of additional
matrix multiplications. We aim to enable already trained deep learning models to generate uncer-
tainty estimates on resource-limited devices at inference time, focusing on classification tasks.

This framework is founded on theoretical developments casting dropout training as approxi-
mate inference in Bayesian NNs. Our layerwise distribution approximation to the convolution
layer cascades through the network, providing uncertainty estimates in one single run, which en-
sures minimal overhead, especially compared with uncertainty techniques that require multiple
forward passes and an equal linear rise in energy and latency requirements, making them unsuit-
able in practice. We demonstrate that it yields better performance and flexibility over previous
work based on multilayer perceptrons to obtain uncertainty estimates. Although our approach
draws on the theoretical underpinnings of Monte Carlo Dropout (Gal and Ghahramani, 2015a),
it significantly diverges from it. Unlike Monte Carlo Dropout, our technique embeds the distri-
butions within the network, eliminating the need for multiple runs to produce them. Moreover,
we introduce a novel method for adapting the distribution output to make accurate predictions in
classification tasks while simultaneously providing the desired predictive uncertainty estimates.

Our evaluation with mobile applications datasets on Nvidia Jetson TX2 and Nano shows that
our approach obtains not only robust and accurate uncertainty estimations but also outperforms
state-of-the-art methods in terms of systems performance, reducing energy consumption (up to
28–folds), keeping the memory overhead at a minimum while still improving accuracy (up to
16%).

Chapter 4—Early exit ensembles for uncertainty quantification Chapter 4 introduces early
exit ensembles, a novel framework capable of capturing predictive uncertainty via an implicit
ensemble of early exits. In particular, early exit ensembles are a collection of weight-sharing
sub-networks created by adding exit branches to any backbone neural network architecture. We
evaluate our approach to the task of classification using four state-of-the-art deep learning archi-
tectures applied to four medical imaging datasets. Empirical evaluation of the proposed solution
demonstrates strong performance in accuracy and uncertainty metrics as well as computation
gain highlighting the benefit of combining multiple structurally diverse models that can be jointly
trained.
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Compared to state-of-the-art baselines (with an ensemble size of 5), early exit ensembles can
improve uncertainty metrics up to 2× while providing test-time speed-up and memory reduction
of approx. 5×. Additionally, our approach can improve accuracy by up to 3.8 percentage points
compared to single model baselines reflecting the variance-reducing effect of averaging a set of
diverse models with individually high variance and low bias. Finally, our results suggest that by
providing well-calibrated predictive uncertainty for both in- and out-of-distribution inputs, early
exit ensembles have the potential to improve the trustworthiness of models in high-risk medical
decision-making.

Chapter 5—Towards adversarial robustness with early exit ensembles In this chapter,
we propose an adversarial mitigation technique for biosignal classification tasks by leveraging
our findings by interpreting early exit neural networks as an ensemble of weight-sharing sub-
networks. This work is motivated by the fact that adversarial examples across different clinical
domains can easily manipulate deep learning models. Their security and privacy vulnerabili-
ties raise concerns about the practical deployment of these systems. The number and variety of
adversarial attacks grow continuously, making it difficult for mitigation approaches to provide
effective solutions. Current mitigation techniques often rely on expensive re-training procedures
as new attacks emerge.

Our experiments on state-of-the-art deep learning models show that early exit ensembles can
provide robustness generalizable to various white box and universal adversarial attacks. The
approach increases the accuracy of vulnerable deep learning models up to 60 percentage points
while providing adversarial mitigation comparable to adversarial training. This is achieved with-
out previous exposure to the adversarial perturbation or the computational burden of re-training.
Here, we notice that when the attacker is aware of the intermediate exits, early exit ensembles can
still provide adversarial robustness, although the mitigation is weaker. Nevertheless, this attack
is very expensive to produce, circa 10x more expensive than the others that do not aim the early
exits. In this scenario, we show that we can exploit the orthogonality of early exit ensembles
to adversarial training to compensate for and build even more robust models. In summary, we
can benefit from early exit ensembles on mitigating attacks not seen before without the need for
retraining. Since mitigation also means making it more difficult and expensive for the adversary
to consider the attack worthy, the presence of intermediate exits can achieve this goal.

Chapter 6—Conclusion and future work This chapter summarizes the contributions pre-
sented in the thesis, reflects on the new insights resented in the previous chapters, and outlines
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limitations along with potential future research directions.

1.4 List of publications

The research efforts presented in this thesis have led to several publications at peer-reviewed
conferences and workshops, which gave us the opportunity to present and discuss these ideas
with relevant mobile systems, machine learning, and health-focused communities. Most of them
correspond to the main contributions in Chapters 3, 4, and 5, while the remaining ones, while not
directly related to this dissertation, are highly related in nature and aim to these contributions.

Works related to this dissertation

• Qendro L., Mascolo C. Towards Adversarial Mitigation with Early Exit Ensembles. Pro-
ceedings of the 44th IEEE International Engineering in Medicine and Biology Conference,
EMBC’22 (Qendro and Mascolo, 2022).

• Campbell A.*, Qendro L.*, Lio’ P., Mascolo C. Robust and Efficient Uncertainty Aware
Biosignal Classification via Early Exit Ensembles. IEEE International Conference on
Acoustics, Speech, & Signal Processing, ICASSP’22 (Campbell et al., 2022).

• Qendro L.*, Campbell A.*, Lio’ P., Mascolo C. Early Exit Ensembles for Uncertainty
Quantification. Proceedings of Machine Learning Research (PMLR) Machine Learning
for Health, ML4H’21 (Qendro et al.).
[Best Thematic Paper Award] for best contribution to ”Real-world robustness and general-
ization in machine learning for health”.

• Qendro L.*, Campbell A.*, Lio’ P., Mascolo C. High Frequency EEG Artifact Detection
with Uncertainty via Early Exit Paradigm. Workshop on Human In the Loop Learning,
ICML’21 (Qendro et al., 2021a).

• Qendro L., Chauhan J., C. P. Ramos A. G., Mascolo C. The Benefit of the Doubt:
Uncertainty Aware Sensing for Edge Computing Platforms. Proceedings of the Sixth
ACM/IEEE Symposium on Edge Computing, SEC’21 (Qendro et al., 2021b).

• Qendro L., Ha S., de Jong R., Maji P. Stochastic-Shield: A Probabilistic Approach To-
wards Training-Free Adversarial Defense in Quantized CNNs. Proceedings of the 1st
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Workshop on Security and Privacy for Mobile AI, MobiSys’21 (Qendro et al., 2021c).

*equal contribution

Other works

• Xia T., Han J., Qendro L., Dang T., Mascolo C. Hybrid-EDL: Improving Evidential Deep
Learning for Uncertainty Quantification on Imbalanced Data. Workshop on Trustworthy
and Socially Responsible Machine Learning, NeurIPS 2022 (Xia et al.).

• Ferlini A.*, Ma D.*, Qendro L.*, Mascolo C. Mobile Health with Head-Worn Devices:
Challenges and Opportunities. IEEE Pervasive Computing Magazine 2022 (Ferlini et al.,
2022).

• Tarkhani Z.*, Qendro L.*, O’Connor Brown M., Hill O., Mascolo C., Madhavapeddy
A. Enhancing the Security & Privacy of Wearable Brain-Computer Interfaces. arXiv
preprint 2021 (Tarkhani et al., 2022).

• Xia T., Han J., Qendro L., Dang T., Mascolo C. Uncertainty-Aware COVID-19 Detection
from Imbalanced Sound Data. Proceedings of the Annual Conference of the International
Speech Communication Association, Interspeech’21 (Xia et al., 2021).

• Montanari A., Sharma M., Jenkus D., Alloulah M., Qendro L., Kawsar F. ePerceptive:
energy reactive embedded intelligence for batteryless sensors. Proceedings of the 18th
Conference on Embedded Networked Sensor Systems, Sensys’20 (Montanari et al., 2020).

*equal contribution
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Chapter 2

Background

Recent advances in machine learning, specifically in the domains of computer vision, natural
language processing, and signal processing, have greatly facilitated the development of auto-
mated medical diagnostic and screening tools. This has been made possible by breakthroughs in
deep learning techniques and their ability to automatically learn high-level representations from
raw data. Deep learning-powered health applications such as disease pre-screening from clinical
images (Wang et al., 2021; Li et al., 2021), self-diagnosis through medical chatbots (Divya et al.,
2018), and health monitoring using smartwatches (King and Sarrafzadeh, 2018) have achieved
remarkable success. Notably, these models have become more widely available to consumers
through mobile devices, enabling remote testing and expediting medical diagnosis beyond hos-
pital settings (Qudah and Luetsch, 2019; Wood et al., 2019). Given the remarkable capabilities
of deep learning techniques in various fields, we have decided to focus specifically on deep
learning-based approaches in this dissertation.

This chapter starts with an introduction to the mobile health ecosystem in Section 2.1. While
Section 2.2 reviews the machine learning theory used as a foundation for this work. It continues
by defining and identifying the sources of predictive uncertainty in mobile health in Section 2.2.4.
Section 2.4 presents the state-of-the-art uncertainty aware approaches used as both baselines and
foundation theories for the frameworks proposed in this thesis. The chapter concludes with an
overview of the edge computing platforms targeted in this work and their characteristics (Sec-
tion 2.5). The purpose of this chapter is to make the thesis self-contained, but the material
presented here is by no means exhaustive with respect to the corresponding research sub-fields.
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2.1 The mobile health ecosystem

Mobile health aims at providing cost-effective healthcare support, delivery, and intervention to
a large population via mobile technologies. Specifically, it relies on modern mobile devices to
monitor human-related biometrics. It uses the collected data for automatic disease diagnosis
and tracking, thus reducing healthcare costs by obviating physical presence at hospitals or direct
contact with doctors. Mobile health enables a variety of services and applications, such as: col-
lecting community and clinical health data; sharing of healthcare information with practitioners,
researchers, and patients; real-time monitoring of patient vital signs; direct provisioning of care;
and training and collaboration of health workers (Germanakos et al., 2005).

Figure 2.1.1 represents the typical architecture of a mobile health system. Mobile health targets
various user groups, including patients with chronic diseases, elderly people with health risks,
children requiring special care, and adults wanting a better understanding of their physical fit-
ness. Smart devices (for instance, smartwatches, smart earbuds, or glasses) are equipped with
multiple sensors (such as photoplethysmography, inertial measurement units, electroencephalog-
raphy, etc.) which can measure vital signs and keep a record of daily activities. The collected
data is then offloaded and stored in healthcare platforms based either in the cloud or in edge
devices, depending on the device’s compute capacity and privacy requirements. Finally, health
experts in the form of automatic systems, human clinicians, or a combination of both interpret
and analyze the data for a better understanding of the health conditions of the patient. In the
case of intervention, the information flow would go the reverse way, with the (AI or human)
doctors sending treatments or rehabilitation instructions (such as therapy and drug delivery) to
the patients via the mobile health platform.

Within the mobile systems community, a considerable number of health applications stem from
coupling machine learning and sensor data. Detection of depression is possible using audio and
text in conversation (Al Hanai et al., 2018). In addition, the camera and speaker can serve as
eyes and voices for people with vision and speech disorders (Smaradottir et al., 2018). Now
we are seeing more ML-based mobile health applications deployed in the real world. A recent
example is the automatic skin lesion system deployed as a mobile application for end users (Liu
et al., 2020; Bui, 2021). Acknowledging that the impact and applications of mobile health can be
countless, the scope of this thesis is to study more in-depth the opportunities/challenges of smart
devices with connected sensors and their associated deep learning-based mobile health applica-
tions. Additionally, the examples mentioned above show how the predictive distributions of the
deep learning models are increasingly being used to make decisions in important scenarios. Such
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Figure 2.1.1: The architecture of a mobile health system. Sensing is provided by the multiplicity
of sensors available in the mobile/wearable device(s). The collected data is stored and processed
in the cloud, edge devices, or wearable for more privacy. Finally, a summary or clues are sent to
the practitioner for a human-in-the-loop model, which provides the required human expertise for
intervention.

high-stakes applications require not only accurate predictions but also accurate quantification of
predictive uncertainty, i.e., meaningful confidence values in addition to class predictions. In such
settings, calibrated predictive uncertainty is important because it enables accurate assessment of
risk, allows practitioners to know how accuracy may degrade, and informs an automatic system
to abstain from decisions due to low confidence. Uncertainty aware deep learning health appli-
cations not only provide increased accuracy and robustness (Leibig et al., 2017) but also help in
establishing trust in these methods. In the following sections, we define predictive uncertainty
and introduce the building blocks needed to build the uncertainty aware frameworks proposed in
this thesis.
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2.2 Deep neural networks

Deep learning aims to train a model on a set of data known as a training set and enable it to
perform well on new and unseen data, referred to as a test set. The model’s ability to achieve
this objective is known as generalization, and its performance is typically quantified by a mea-
sure such as a cost function (or error). To evaluate the generalization capabilities of a given
model, the difference between the test and train errors, referred to as the generalization gap, is
calculated. Poor performance on the training set is termed as underfitting, whereas a substantial
generalization gap is referred to as overfitting, where the test error is greater than the training
error. To strike a balance between underfitting and overfitting, machine learning practitioners
modify the model’s capacity, which determines the model’s ability to fit different functions.

A model with higher complexity, e.g. model parameters, usually also has a higher capacity. A
machine learning algorithm performs best when its capacity is appropriate for the complexity of
the task and the availability of data. To achieve optimal performance, a machine learning algo-
rithm must strike a balance between the model’s capacity, the task’s complexity, and the amount
of available data. The algorithm performs best when the capacity is appropriately matched to
these factors. However, measuring performance only on these terms would bring several issues
during deployment. For optimal performance in real-world scenarios, a deep learning model
must provide indications of uncertainty when the prediction is uncertain and capable of handling
data outside of its training data distribution. In this section, we present two fundamental deep
learning models: multi-layer perceptrons and convolutional neural networks. Furthermore, we
provide an introduction to early exit neural networks, which form the basis of the deep learning
models used in Chapter 4 and 5.

2.2.1 Multi-layer Perceptrons

Multi-layer perceptrons (MLPs), are a class of machine learning models whose aim is to learn an
optimal set of parameters θ to best approximate a function fθ(x). In classification tasks, studied
throughout this thesis, the neural network computes y = fθ(x) which maps the input x to a
category or real value y. A neural network consists of a composition of L differential operations
or layers, such that:

fθ(x) = (f (L) ◦ f (L−1) ◦ · · · ◦ f (1))(x)

y = (f (L)(. . . f (2)(f (1)(x)))
(2.1)
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where (f (i) ◦ f (j))(x) = fθi(fθj(x)) denotes function composition for i ̸= j and θ = ∪L
i=1θi.

Let h(i) denote the intermediary output of the i-th layer such that h(i) = fθi(h
(i−1)), and h(0) = x.

A simple fully-connected layer i computes a linear transformation of its input h(i−1):

h(i) = W(i)h(i−1) + b(i) (2.2)

The output of the fully-connected layer is then passed through an activation function, which
accounts for non-linear patterns in the input features. A widely used activation function is the
rectified linear unit (ReLU (Glorot et al., 2011)):

ReLU(h(i)) = max(0,h(i)) (2.3)

Last, the output layer of the neural network activation can categorize the inputs via a special
activation function, the softmax function such as:

softmax(h(i)) =
exp (h(i))∑C
c=1 exp (h

(c))
(2.4)

where C denotes the classification categories and the predicted class is defined by

y = argmax(softmax(h(i))). (2.5)

2.2.2 Convolution Neural Networks

In MLPs, each neuron interacts with each element of the input introducing a high number of
model parameters in each neuron and hurting the statistical generalization ability of the net-
work. Convolutional neural networks (CNNs) were introduced to solve this issue by exploiting
the idea of locality and spatial structure in inputs. A CNN contains a sequence of alternating
convolutional and pooling layers. The convolutional layers output feature maps, which are then
downsampled by the pooling operations building an increasingly compact representation of the
input. A summarization layer is then applied, with the resulting feature vector being fed to an
MLP that outputs predictions.

A convolutional layer takes as input a multidimensional tensor that contains intermediate features
(or, in the case of the first network layer, the raw signal). The tensor is passed through a set of
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kernels, each of them computing its own feature map of the input. The input to the layer is
represented by x ∈ R(H,W,C) with height H , width W and C channels. Let w ∈ R(h,w,c,f) be
the weight matrix with height h, width w, c channels and f filters, and b ∈ R(f) the bias vector.
Consequently, the output will be represented as

y[:,:,k] := x ∗w[:,:,:,k] + b[k] (2.6)

for y ∈ R(H−h+1,W−w+1,f) and for k = 1, . . . , f where ∗ is the convolution operation.

The pooling operation, which follows the feature computation stage, compresses the feature rep-
resentation by computing summary statistics for each input location. This step not only reduces
the memory of the model but also enforces a translation-invariant representation, where small
shifts in the inputs do not affect the resulting feature map.

2.2.3 Training neural networks

To train a neural network and learn the parameters θ, a differentiable cost function J(θ) is intro-
duced as the objective function for an optimization algorithm. The parameters which minimize
the cost function, J(θ), are considered to best fit the model. A very common guiding principle
for training is the maximum likelihood, shown to be the best estimator asymptotically as the
number of training examples goes to infinity, in terms of rate of convergence (Rao, 1992).

In a classification task, the learning procedure aims to minimize the negative log-likelihood cost
function J that encodes the cross-entropy between the true, underlying data distribution, pdata,
and the distribution modeled by the network, pmodel. The cost function can be written as an
average over the training set:

J(θ) = Ex,y∼p̂dataL(fθ(x, y)) (2.7)

where L is the per-example loss function and p̂data is the empirical data distribution.

We aim to reduce the expected generalization error by minimizing the empirical risk over the
training dataset. Minimizing the cost function, J(θ), is achieved with an optimization algorithm
that iteratively updates the parameters. For this task, the most commonly used property is the
gradient ∇θJ(θ). For the statistical estimation of the gradient, the expectation is computed by
randomly sampling a small number of examples from the dataset, i.e., a batch b, then taking
the average over only those examples. Most optimization algorithms converge faster using such
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approximate estimates of the gradient. A canonical example is the stochastic gradient descent
(SGD) which optimizes the network parameters using unbiased estimates of the exact gradient
of the generalization error:

θ = θ − µ
1

b
∇θ

b∑
i=1

L(fθ(xi), yi) (2.8)

In summary, before training a neural network model on a dataset, the data is first split into
batches, the batches are shuffled, and then a minibatch variant of SGD is run until all batches
are exhausted. An entire pass through the training set is called an epoch, with training typically
spanning multiple epochs. The number of epochs can vary, depending on the size of the dataset,
the number of model parameters, the type of optimization algorithm used, and the learning rate
µ employed. ∇θJ(θ) is calculated using backpropagation by applying the chain rule for partial
derivatives, starting from the output layer towards the input.

Training a deep learning model includes making decisions on the values of hyperparameters,
such as the depth of a network or the architecture size. Usually, a grid search is performed over
a hyperparameter range, in which the model is trained with a certain hyperparameter setting, and
then the model performance on the validation set is recorded. Finally, the highest-performing
hyperparameter tuning is chosen, and the respective model is tested on the test set.

2.2.4 Early exit neural networks

Most deep learning models offer a fixed computational graph that stays unchanged at inference
time. This might not always be optimal as, in many cases, the system has to deal with vari-
ous computation requests. In mobile and wearable devices, the battery imposes a limitation on
the system’s functionality; intuitively, a fixed-size network becomes a waste of resources or the
cause for the system not being able to deliver the prediction. Early prediction models are a class
of conditional computation models that exit once a criterion (e.g., sufficient accuracy) is satisfied
at early layers. Leveraging that not all inputs are equally easy/difficult to process, they dynam-
ically change their computational graph at inference time based on the input’s complexity and
the prediction confidence. Early exit networks comprise a backbone architecture and additional
intermediate exit blocks (or classifiers) along its depth. At inference time, when a sample propa-
gates through the network, it flows through the backbone and each of the exits sequentially, and
the result that satisfies a predetermined criterion (exit policy) is returned as the prediction output,
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without computing further the rest of the model. The exit policy can be informed not only by
the output accuracy but also by the target device capabilities and load and dynamically adapt the
network to meet specific runtime requirements (Montanari et al., 2019, 2020; Laskaridis et al.,
2020a).

Early prediction methods embed a gating mechanism that informs the dynamic change of the
neural network computation graph at inference time. For example, in Huang et al. (2017), and
Teerapittayanon et al. (2016), the decision to exit the network is taken based on the output accu-
racy of each branch, meaning that the branches need to be executed until the end to determine if
the input should exit or not. For inputs that need to exit at deeper branches, this constitutes over-
head and wasted computation/energy. Similarly, in Bolukbasi et al. (2017), the network contains
decision functions at the branching points to decide if an example should go out or continue fur-
ther down the network. These functions are implemented as dense layers and trained iteratively
one after the other. To address this computation overhead, other approaches (Wang et al., 2019;
Li et al., 2019; Nan and Saligrama, 2017) propose a gating (exit) policy in the backbone. While
more efficient, these approaches make an exit decision based on the features of the backbone
model, assuming that the exit blocks do not contain any learning capacity materialized by more
parameters or extra layers.

The design choice for the model architecture is crucial as it later affects the network’s capacity
and learning process, as each architecture scales and converges differently. The vast majority
of early exit approaches start with a state-of-the-art architecture later modified by intermediate
exits. The number and position of the early exits along the depth of the network affect both the
granularity of results and the parameter/computation overhead compared to the vanilla approach
(backbone only). Depending on the application and desired accuracy, intermediate exits can be
placed equidistantly or at variable positions across the depth of the network; therefore, there is
no predefined general rule on where to exit. Recent work proposes a way to define exit points
based on the floating point operations (FLOPs) or parameters in the network (Kaya et al., 2019)
allowing for a customizable distribution of the exits. Nevertheless, where to exit is a hyperpa-
rameter that should be tuned based on the application at hand. An architecture with too many
exits can yield extreme overhead; instead, if the exits are too sparse, it would undermine the ul-
timate efficiency goal as the output takes longer to process. Moreover, too many early classifiers
can negatively impact convergence when training end-to-end.

Training with early exits mainly falls into two categories: end-to-end and exit-only training. The
end-to-end training represents a joint training of the network as a whole, including the backbone
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Figure 2.2.1: Training with early exits. Each exit branch g(i) propagates the prediction error in
relation to the ground truth label L(i), training the blocks that precede each exit point f (i−1) for
i = 1, . . . , B.

and exit blocks. In this procedure, the loss function is a composition of the individual predictive
losses of each exit (see Figure 2.2.1). As such, each prediction propagates the error in relation
to the ground truth label to the blocks preceding that exit. This can be represented as a weighted
sum

L =
B∑
i=1

αiL
(i)(y, ŷ(i)) (2.9)

where L(i)(·, ·) is the loss function for the i-th block’s exit and αi ∈ {0, 1} is a weight parameter
corresponding to the relative importance of the exit. Increasing the weight at a specific exit point
forces the network to learn better features at the preceding layers (Scardapane et al., 2020). This
training paradigm can increase accuracy for both the intermediate exits and backbone. However,
this is not always guaranteed due to cross-talk between exits (Laskaridis et al., 2020b).

The second training approach consists of attaching early exits to existing pretrained models such
that the backbone and the exits are trained separately (Equation 2.10). This procedure yields
higher flexibility as the exits can be arbitrarily placed at a later stage (deployment phase), as well
as higher efficiency as the exit blocks have fewer parameters allowing for on-device training, for
instance. However, this training approach is more restrictive and thus can present lower accuracy
than an optimized jointly trained variant.

L
(i)
exit only = L(i)(y, ŷ(i)) (2.10)

All the aforementioned previous work is based on the traditional use of the early exit paradigm
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as a framework for efficient computation. However, in Chapter 4 and Chapter 5, we give early
exit neural networks a completely different interpretation in two important robustness aspects for
deep learning models, such as uncertainty quantification and adversarial mitigation.

2.3 Predictive uncertainty

The predictions made by traditional deep neural networks, as described in Section 2.2, are typi-
cally point estimates. This is the case for regression networks and classification networks with a
softmax layer. While the softmax layer can provide class probabilities, it is primarily a smooth
approximation to the arg max function, which identifies the index with the maximum value (see
Equation 2.5 and Equation 2.4). The softmax function predicts which classes are more likely
relative to each other but does not provide information on how confident the network is in its
prediction. The softmax probability only captures the relative probability of the input belonging
to a particular class compared to other classes, but it does not reflect the overall model confi-
dence. As a result, softmax outputs are not well calibrated and can be problematic (Gal and
Ghahramani, 2015a; Guo et al., 2017). In contrast, predictive uncertainty provides a more in-
formative interpretation of the inference as it can indicate whether the deep learning model is
certain about its prediction or is just guessing randomly. While interpretation encompasses an
understanding of all the elements that contributed to the prediction, uncertainty estimation is the
first step to detecting anomalies and serves as a trigger for further investigation.

2.3.1 Shortcomings of softmax in predicting class probabilities

An exemplary benchmark for deep neural networks is to employ the softmax function to trans-
form the continuous activations of the output layer into probabilities assigned to each class. The
resultant model can be represented as a multinomial distribution, where the neural network’s
outputs specify the parameters, and hence the discrete class probabilities.

The neural network dynamically updates the probabilities of the different classes, but these prob-
abilities are compressed into a simplex using the softmax function. As a result, the final output is
a multinomial probability distribution that is optimized based on the neural network’s parameters.
To accomplish this optimization task, the cross-entropy loss is minimized, which has a proba-
bilistic interpretation as a frequentist maximum likelihood estimation. However, this approach is

33



limited in that it cannot provide information on the variance of the predictive distribution.

The softmax function is known for overestimating the probability of the predicted class due
to the exponent applied to the neural network outputs. This can lead to unreliable estimations
of uncertainty because the distance of a newly observed label from the predicted label is not
informative in and of itself, apart from its relative value compared to other classes. Numerous
studies (Gal and Ghahramani, 2015a; Louizos and Welling, 2017; Sensoy et al., 2018), including
our own in this dissertation, have demonstrated that even small and straightforward modifications
to the input, such as adding noise or rotation, can lead to incorrect predictions by the model.
Even for the misclassified samples, the probability of classification calculated using the softmax
function is often quite high showing that softmax is inadequate in incorporating uncertainty in
the prediction.

2.3.2 Uncertainty in mobile health applications

Uncertainty is manifested in various forms in mobile health applications. In traditional mobile
systems, it can be at the physical layer due to node mobility, network topology, routing, and re-
source availability (Das and Rose, 2005). In medical EEG systems, both ambulatory and mobile
can be caused, for instance, by biological calibration, signal acquisition, sensitivity settings, and
human error and bias in the annotation. These factors, together with the sensor or electrode mea-
surements, calibration, software, and device heterogeneity, add variability to the system feeding
uncertainty. When using deep learning, the uncertainty induced by the model architecture and
parameters is an additional factor that jeopardizes the trust in the prediction. Observed data can
be consistent with many models, and therefore which model is appropriate, given the data, is
uncertain. Similarly, predictions about future data and the future consequences of actions are
uncertain.

2.3.3 Uncertainty estimation

In the field of machine learning, it’s often assumed that we possess knowledge of the loss function
and can train algorithms to output decisions that minimize expected loss. However, in real-life
situations, the loss function may be unknown or dependent on other factors that are determined
later on. In such cases, it is critical to express uncertainties to prevent valuable information
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from being lost. One way to capture uncertainty is to treat the unknown quantity of interest
as a random variable and make predictions in the form of probability distributions, also known
as predictive distributions. This discussion will focus on this particular method of representing
uncertainty, as it’s the interpretation used in this dissertation inspired by Quinonero-Candela et al.
(2005). However, the questions of how to generate reasonable predictive uncertainties and what
constitutes a reasonable predictive uncertainty still need to be addressed.

The Bayesian framework represents model parameters using posterior distributions that capture
both noise-induced uncertainty and lack of knowledge about the true model. By integrating over
this posterior, we arrive at the posterior distribution of the variables of interest, which leads to the
predictive distribution. However, the choice of the prior distribution is critical to the validity of
the resulting predictive distribution. In a frequentist framework, the problem is reduced to select-
ing the correct prior, whereas a Bayesian framework acknowledges that priors reflect subjective
degrees of belief, rather than absolute truths. Sometimes, for convenience, overly restrictive pri-
ors are used, which can eliminate plausible hypotheses about the origin of the data and quantify
inaccurate predictive uncertainties. Thus, it is crucial to use a reasonable prior that reflects a
thorough understanding of the problem at hand. If one is confident in the prior’s validity, then
the resulting predictive distribution should be equally valid. However, it is essential to remember
that the predictive distribution represents an updated belief and its accuracy will depend on how
well the prior reflects the reality of the situation.

In traditional machine learning, the complete posterior distribution is simply disregarded and the
focus is brought into maximum a posteriori (MAP) approaches which are tantamount to maxi-
mum penalized likelihood. However, the predictions made using the MAP approach lack any
measure of uncertainty. Therefore, alternative methods for obtaining predictive uncertainties,
like bagging (Breiman, 1996), bootstrap (Efron, 1982), ensembles (Lakshminarayanan et al.,
2016), or dropout (Gal and Ghahramani, 2015a), are needed. Another option is to adopt simpler
approaches that always generate the same predictive uncertainties regardless of the input, based
on an estimate of the overall generalization error. This generalization error can be estimated
empirically via cross-validation or theoretically through statistical learning bounds on the gen-
eralization error. Undoubtedly, any method that independently estimates predictive uncertainties
based on the input has the potential to be superior to this simplistic approach.

Overall, it seems that generating accurate estimates of predictive uncertainty in machine learning
is not a straightforward task. Additionally, there is a noticeable absence of agreement on the most
effective methods for assessing predictive uncertainties. As a result, the field is currently priori-
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(a) Aleatoric Uncertainty (b) Epistemic Uncertainty

Figure 2.3.1: Predictive uncertainty decomposed into epistemic (model) and aleatoric (data) un-
certainty. The lines represent the deep learning models with parameter θ which can fit the data.

tizing the validation of different approaches through practical application rather than theoretical
examination.

2.3.4 Types of uncertainties

In our work, we define predictive uncertainty as the probability of the target variable occurring
given all available information. Unlike traditional approaches, we view the predictions of deep
learning models as random variables (Quinonero-Candela et al., 2005). As a result, we represent
predictions as probability distributions rather than point estimates. These distributions capture
all the sources of uncertainty in a model, including structural, parametric, and noise-related un-
certainties.

There are two primary types of uncertainty: aleatoric and epistemic (Der Kiureghian and
Ditlevsen, 2009; Gal et al., 2022). Aleatoric uncertainty (shown in Figure 2.3.1b) is associated
with noise in observations caused by factors such as sensor, motion, or label noise. This uncer-
tainty cannot be reduced even if more data is collected. Aleatoric uncertainty is not influenced
by the choice of the machine learning method. Even with the most sophisticated methodology,
it is impossible to precisely determine the true value of a quantity that is only observed through
a limited number of noisy measurements. To account for this type of uncertainty, it is neces-
sary to model its distributions which can be done via various techniques such as neural density
estimators or deep generative models. On the other hand, epistemic uncertainty (shown in Fig-
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ure 2.3.1a) arises from our ignorance about which model generated the collected data, and it
represents uncertainty in the model parameters. Typically, when estimating epistemic uncertain-
ties in neural networks, ad hoc priors are employed for both the network architecture and the
model weights. However, these priors do not have a direct interpretation in terms of physically
meaningful priors on the functional space of the neural network output. Nonetheless, they can
be valuable for detecting cases where a model is poorly constrained by data. In such situations,
active learning strategies may be employed to acquire more data. In general, once the constraints
of an application are understood, it is crucial to select appropriate metrics for quantifying how
well the uncertainty is modeled. While frequentist statistical tools such as expected calibration
error (Guo et al., 2017) can be used to quantify aleatoric uncertainty, epistemic uncertainty is
inherently subjective and cannot be measured using such tools. A model can be well calibrated
for aleatoric uncertainty but still produce meaningless epistemic uncertainty, and vice versa.

It is important to note that while the two types of uncertainty mentioned are the most relevant in
machine learning, the use of approximation methods inevitably introduces approximation error.
This is due to the limited computation available, which introduces yet another type of uncertainty,
known as computational uncertainty. These approximation methods use a reasonable amount of
computation to obtain an approximation of the mathematical posterior, which is theoretically pos-
sible but cannot be accessed given limited computational resources. The approximate posterior is
then used as a direct replacement for the mathematical posterior in downstream tasks. It’s crucial
to recognize that limited computation induces approximation error captured by computational
uncertainty, and accounting for it would generally enhance uncertainty quantification (Wenger
et al., 2022). We leave the incorporation of computational uncertainty into our framework as
future work.

Our approach to predictive uncertainty considers both aleatoric and epistemic uncertainties in
a unified framework. By modeling both types of uncertainties, we gain a more comprehensive
understanding of the underlying system, and we are better equipped to make accurate predictions.

2.3.5 Applications of uncertainty

The use of the estimated uncertainty is multi-fold. Firstly, using uncertainty aware approaches
can provide better-calibrated models, which can give an extra indication if they are guessing at
random to trigger further investigation. This further investigation could be performed by a clini-
cian in a human-in-the-loop system where uncertain samples are sent to an expert, ensuring that
the whole system, automatic and human-aided, is accurate. Uncertainty can be the metric of the
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decision on how to choose samples for labeling in an active learning scenario to avoid sending
too many samples and overwhelming the user. Furthermore, uncertainty can be used for balanc-
ing the computation in a distributed multi-tier (cloud) architecture in the presence of uncertainty.
High uncertainty predictions might need further computation so that the sample might be sent
for processing to the cloud or on bigger-capacity devices. Finally and most importantly, it can
detect distributional shifts from deploying on different devices or environments, which can then
be included in a retraining procedure.

Human-in-the-loop

Incorporating a human-in-the-loop system when deploying automated decision support is critical
to providing reliable performance. Given the vital importance of health applications, uncertainty
quantification is crucial not only to inform the confidence of the prediction but also to provide
the opportunity to keep clinicians in the loop to correct the potentially wrong (or uncertain) auto-
matic predictions. Leibig et al. (2017) found that when using deep learning to diagnose diabetic
retinopathy from fundus images of the eye, incorrect prediction usually yielded higher uncer-
tainty than true predictions therefore by excluding the most uncertain predictions, the automatic
diagnosis’ accuracy could be improved by 13 percentage points (from 87% to 96%) (Singh et al.,
2021). Diabetic retinopathy is one of the leading causes of blindness in the working-age popula-
tion of the developed world, so uncertainty estimations unlock two opportunities: (a) it provides
better overall predictions, and (b) it allows for real-world deployment following recommenda-
tions from regulatory entities. For example, recommendations of the British Diabetic Association
(now Diabetes UK) should comply with an 80% sensitivity and 95% specificity (Antal and Hajdu,
2014; Kapetanakis et al., 2015). Without a measure of uncertainty to isolate unreliable predic-
tions, this algorithm would not be deployed, given the regulation thresholds, delaying symptom
detection.

Active Learning

Supervised machine learning is revolutionizing healthcare, but acquiring labeled data in medical
settings is a costly, long, and laborious process. Active learning (Cohn et al., 1996) (a special
case of a human-in-the-loop system) provides a framework that allows the model to learn from
a small amount of data and automatically select the most informative data points increasing its
overall accuracy. In this paradigm, the model is initially trained on a small proportion of the
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training data and leverages an acquisition function that decides what data points to ask labels on
the fly (to an external automatic or human oracle). The acquisition function selects several points
from a set of data points that lie outside the training set.

There is three main approaches of active learning representing different querying algorithms (Set-
tles, 2009):

• Membership query synthesis (Angluin, 1988). In this scenario, during training, the
model requests labels for any unlabeled sample in the input space, including new samples
that the learner generates, rather than those sampled from an underlying natural distribu-
tion. The active learner can generate synthetic data and its own examples for labeling. This
strategy might lead to asking for labels for arbitrary samples (such as unrecognizable sym-
bols or artificial hybrid characters for handwritten character classification tasks) which are
impossible to annotate by a human oracle (Baum and Lang, 1992). The following strate-
gies have been proposed to solve this issue.

• Stream-based selective sampling (Atlas et al., 1989; Cohn et al., 1994). This approach
is sequential in nature. The model is presented with a single data point and immediately
must make the decision whether to create a query or discard it. The benefit of selective
sampling relies on the fact that even if the input distribution is unknown and non-uniform,
the queries still come from a real underlying distribution and are therefore significant for
human annotators too.

• Pool-based sampling (Lewis, 1995) This sampling method is the most well-known sce-
nario for active learning. It also fits very well for many real-world problems including
those in the mobile health space where the labeled data is scarce but large collections of
unlabeled data can be gathered at once. The pool-based active learning cycle starts with
the selection of a small number of samples in the labeled training set A. The learner then
asks the oracle to label another set of carefully selected instances from the unlabeled set
B, which are further added to the labeled set A. This process activates another learning it-
eration with the recently labeled data in a standard supervised manner allowing the learner
to leverage the new knowledge for choosing which samples to query next. This process is
repeated, with the training set increasing in size over time. Typically, samples are queried
in a greedy fashion, according to an acquisition function used to evaluate all (or a subset of
all) samples in the pool. This approach is sequential in nature to a certain extent however
in contrast to selective sampling it does allow for managing a large set of unlabelled data
all at once. It comes with the disadvantage of requiring more memory to store the data in
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the pool, however different querying strategies can help with solving this issue.

All active learning scenarios involve leveraging an acquisition function whose key purpose is
to determine which unlabeled data points need to be labeled, so it requires a way of assessing
how informative each of them is (Settles and Craven, 2008). Uncertainty sampling is one of the
most frequently used approaches to achieve that (Lewis and Catlett, 1994), as it only queries the
clinician to label a data point if its classification uncertainty is significant. The intuition here
is that the most informative examples are the ones that the classifier is more uncertain about.
Specifically, the examples that lie near the class boundaries. If these difficult examples are chosen
for the next training iteration the model will gain the most knowledge about the class boundaries
compared to choosing more confident samples. In contrast to other learning approaches such as
passive learning, which relies on random sampling (Figueroa et al., 2012), an uncertainty-based
strategy is the best option for interactively labeling data points as it makes informed decisions
reducing the overall labeling cost (Hong et al., 2020).

Distributed computation

While flagship devices can support the performance requirements of deep learning workloads,
the current landscape is still very diverse, including previous generation and low-end models (Wu
et al., 2019). In this context, the less powerful low-tier devices struggle to consistently meet the
application-level performance needs. To address these limitations, two recent lines of work have
been proposed to enhance the collaboration between device and cloud for model inference. One
line of work (Hu et al., 2019; Kang et al., 2017; Li et al., 2019) treats the deep learning model as a
computation graph and partitions it between device and cloud. At run time, the personal/edge de-
vice executes the first part of the model and transmits the intermediate results to a remote server.
The server continues the model execution and returns the final result back to the device. The
second type of approach is based on progressive inference; a mechanism that allows the system
to exit early at different parts of the model during inference, based on the input complexity or
device computational capacity (Montanari et al., 2020; Teerapittayanon et al., 2016; Bolukbasi
et al., 2017). Different from the first class of approaches, these techniques always provide an
output that might be intermediate (on the tiny device) or refined (on the cloud or bigger capac-
ity device). The gating mechanism adopted is often based on the accuracy (based on a single
softmax output) or/and the current battery of the device. However, the gating mechanism of
these progressive approaches would benefit from incorporating the predictive uncertainty, which
would provide a more accurate device-cloud system as well as a more principled way of decid-
ing if the current local prediction can be trusted or needs further exploration on a bigger model
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in the cloud. An uncertainty aware approach in this context can help in building a hierarchical
inference, too, by providing a more abstract – and therefore easier to materialize – prediction
(e.g., “steps”) before specializing their prediction in deeper (more complex) models (e.g. “steps
up” or ”steps down”) (Bilal et al., 2017; Zamir et al., 2017). This paradigm allows for fast in-
ference when a very specific classification is not needed (depending on the task). It also helps in
user retention as they are always presented with a prediction, but the specific prediction is only
presented when the model is confident.

Out-of-distribution (OOD) detection

Despite the impressive performance achieved by deep learning, the underlying premise is that
training and test data are from the same distribution. Yet, this assumption does not often hold
in practice because dataset shift caused by user variability, device discrepancy, artifacts, and
other factors is inevitable during in-the-wild signal (data) acquisition (Pooch et al., 2020). Most
existing deep learning models cannot capture this distributional shift and tend to be overconfi-
dent during inference which may, in the long run, undermine trust in applying deep learning for
healthcare (Guo et al., 2017). As it is not feasible to build a dataset that guarantees the coverage
of all possible distributions for open-world scenarios, approaches to detect OOD inputs are im-
portant to ensure the safety of the overall system. For this purpose, an uncertainty aware deep
learning approach would be able to isolate OOD samples and monitor covariate shift because
a well-calibrated model will manifest much lower confidence when presented with unseen data
from a distribution not included in the training procedure (Ovadia et al., 2019).

2.3.6 Uncertainty evaluation metrics

Throughout this dissertation, we use many evaluation metrics to better showcase the perfor-
mance of our approaches in terms of accuracy and uncertainty quantification. The classification
performance is evaluated based on class-weighted F1, precision, and recall. For uncertainty
quantification, we use negative log-likelihood (NLL), Brier score (BS) (Brier et al., 1950), and
expected calibration error (ECE) (Naeini et al., 2015). NLL and BS are proper scoring rules
therefore their optimum values correspond to perfect predictions. Although not a proper scoring
rule, ECE is intuitive and commonly used. The out-of-distribution behavior is evaluated using
predictive confidence (PC) and predictive entropy (PE) since there is no ground truth label for
fully out-of-distribution input.
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F1 score is the harmonic mean of precision and recall, used to measure a model’s accuracy.

F1 =
2

precision−1 + recall−1
= 2

precision ∗ recall
precision+ recall

=
2TP

2TP + FP + FN
, (2.11)

where TP, FP, and FN represent true positive, false positive, and false negative predictions re-
spectively.

Precision is the fraction of true positive samples among the samples classified as positive.

precision =
TP

TP + FP
(2.12)

Recall (or sensitivity) is the fraction of samples classified as positive among the total number of
positives.

recall =
TP

TP + FN
(2.13)

Negative log-likelihood (NLL) measures how likely it is to observe the data under the model.
NLL is defined as:

NLL = −
∑

c∈{1,...,C}

1(y = c) log pθ(y = c|x)

+(1− 1(y = c)) log(1− p(y = c|x))
(2.14)

where 1(·) is the indicator function.

Brier score (BS) measures the accuracy of predicted probabilities. BS is defined as:

BS =
∑

c∈{1,...,C}

(pθ(y = c|x)− 1(y = c))2. (2.15)

Expected calibration error (ECE) measures the expected difference (in absolute value) be-
tween accuracies and the predicted confidences on samples belonging to different confidence
intervals. ECE is defined as:

ECE =
M∑

m=1

|Bm|
n
|acc(Bm)− conf(Bm)| (2.16)
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where accuracy and confidence for bin Bm are

acc(Bm) =
1

|Bm|
∑
n∈Bm

1(ŷn = yn)

conf(Bm) =
1

|Bm|
∑
n∈Bm

pcn

such that ŷn = argmaxc∈{1,...,C} pθ(yn = c|xn) is the predicted class, M is the number of bins of
size 1/M , and bin Bm covers the interval (m−1

M
, m
M
].

Predictive confidence (PC) is the probability of the top-class prediction. PC is defined as:

PC = max
c∈{1,...,C}

pθ(y = c|x) (2.17)

Predictive entropy (PE) measures the average amount of information in the predicted distribu-
tion. PE is defined as:

PE = −
∑

c∈{1,...,C}

pθ(y = c|x) log pθ(y = c|x) (2.18)

2.4 Bayesian Deep Learning

MacKay (1992) showed the several potential benefits of a Bayesian approach to neural network
learning; in particular, this work contained a convincing demonstration of naturally accounting
for model flexibility in the form of the Bayesian Occam’s razor, aiding comparison between
different models, accurate calibration of predictive uncertainty, and to perform learning ro-
bust to over-fitting. This initial exploration of Bayesian neural networks led to two main ap-
proaches being developed. The first variational inference approximation, the variational Bayes
(VB) approach for posterior inference (Hinton and Van Camp, 1993) was motivated by the use
of minimum description length (MDL) to penalize a high volume of information contained in
the weights. Second, Neal (1993) developed efficient gradient-based Monte Carlo methods, now
known as Hamiltonian Monte Carlo (HMC). HMC is a method based on a dynamical simulation
that does not rely on any prior assumption about the kind of posterior distribution. These are
the first steps toward practical inference in Bayesian neural networks but are difficult to adapt to
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modern practical needs.

2.4.1 Modern approaches to Bayesian neural networks.

Modern research in Bayesian NNs relies on either sampling-based techniques or the different
flavors of variational inference. The field was restored by using Monte Carlo variational inference
(MCVI) (Graves, 2011) to make variational Bayes practical and scalable, confirming gains in
predictive performance in real-world tasks. Blundell et al. (2015) introduced Bayes by Backprop

basing their work on Graves (2011) and further altering the Bayesian model by introducing a
mixture of Gaussians prior to each weight and optimizing the mixture components. Although
they improved the model performance, this variational approach is still computationally costly
and difficult to use on edge devices. As an alternative to VB, probabilistic backpropagation
(PBP) (Hernández-Lobato and Adams, 2015) employs approximate inference in the form of
assumed density filtering (ADF) to refine a Gaussian posterior approximation. Each update to
the approximate posterior requires propagating means and variances of activations through the
network. Another rich family of approximate inference methods for Bayesian neural networks
are stochastic gradient Markov chain Monte Carlo (SG-MCMC) methods (Welling and Teh,
2011; Ahn et al., 2012; Gong et al., 2018). These techniques allow for approximate posterior
parameter inference using unbiased log-likelihood estimates.

The above methods are principled but often require sophisticated implementations - recently, a
few methods aim to provide efficient approximations to the Bayes posterior. Bootstrap poste-
riors (Lakshminarayanan et al., 2017; Fushiki et al., 2005) have been proposed as a compre-
hensive, robust, and accurate method for posterior inference. However, obtaining a bootstrap
posterior ensemble of size M is computationally intense M times the computation of training a
single model. A few important and interesting methods used dropout as a Bayesian approxima-
tion. Dropout (Hinton et al., 2012; Srivastava et al., 2014) randomly drop units (along with their
connections) from the neural network during training. This prevents units from co-adapting too
much. During training, dropout samples form an exponential number of different ”thinned” net-
works. At test time, it is easy to approximate the effect of averaging the predictions of all these
thinned networks by simply using a single unthinned network with smaller weights. This signifi-
cantly reduces over-fitting and gives major improvements over other regularization methods. Gal
and Ghahramani (2015b) show that a neural network with arbitrary depth and nonlinearities, with
dropout applied before every weight layer, is mathematically equivalent to an approximation to
the probabilistic deep Gaussian process (marginalized over its covariance function parameters).
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They present Monte Carlo dropout sampling, which places a Bernoulli distribution over the net-
work’s weights. In practice, this means we can train a model with dropout. Then, at test time,
we can stochastically sample from the network with different random dropout masks rather than
performing model averaging. The statistics of this distribution of outputs will reflect the model’s
uncertainty. Concrete dropout (Gal et al., 2017) conducts a grid-search over the dropout probabil-
ities to choose the optimal one adaptively by treating it as part of the model parameter. Still, this
approach requires modifying the training phase. Another similar work used when batch normal-
ization (BN) is adopted as a regularisation method (Teye et al., 2018) shows that training a deep
network using batch normalization is equivalent to approximate inference in Bayesian models.
An exciting aspect of BN is that the mini-batch statistics used for training each iteration depend
on randomly selected batch members. Exploiting this stochasticity, they show that training with
BN, like dropout, can be cast as an approximate Bayesian inference.

2.4.2 Dropout as Bayesian Approximation

Dropout training (standard dropout)

Srivastava et al. (2014) proposed dropout as a regularization method to prevent over-fitting. The
idea is to drop units from layers to avoid feature co-adaptation (see Section 2.4). For a fully

connected (FC) neural network the linear operation can be:

y(l) = x(l)W(l) + b(l)

x(l+1) = ρ(l)
(
y(l)

) (2.19)

where for each layer l, x(l) and y(l) are the input and output of that layer, and ρ(l)(·) is a nonlinear
activation function. W(l) is the weight matrix of l with dimensions K(l) x K(l−1) and b(l) is the
bias vector of dimensions K(l). Using dropout at the lth layer is mathematically equivalent to
setting the rows of the weight matrix W(l) for that layer to zero. The FC layer can, therefore, be
represented with dropout:

z
(l)
[i] ∼ Bernoulli

(
· |p(l)

[i]

)
W̃(l) = diag

(
z(l)

)
W(l)

y(l) = x(l)W̃(l) + b(l)

x(l+1) = ρ(l)
(
y(l)

)
(2.20)
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Here z
(l)
[i] are Bernoulli distributed random variables with some probabilities p

(l)
[i] . The diag(·)

maps vectors to diagonal matrices.

The described dropout operations convert a deterministic neural network with parameters W(l)

into a random Bayesian neural network with random variables W̃(l), which equates to a neural
network with a statistical model without using the Bayesian approach explicitly.

Dropout as Bayesian approximation

Gal and Ghahramani (2015a) proves the equivalence between dropout training in a neural net-
work and approximate inference in a deep Gaussian process (GP). Differently from a non-
probabilistic neural network, a deep GP is a powerful statistical tool that allows modeling dis-
tributions over functions. This means that to formulate the neural network layer as a Gaussian
process, we would define its covariance function.

K(x,x′) =

∫
p
(
W(l)

)
ρ(l)

(
xW(l) + b(l)

)
ρ(l)

(
x′W(l) + b(l)

)
dW(l), (2.21)

with an element-wise nonlinearity ρ(l)(·) and distribution p(W(l)). If we consider now a deep GP
with L layers and covariance function K(x,x′), it can be approximated by setting a variational
distribution over each element of a spectral decomposition of the covariance function of the GP.
This spectral decomposition maps each layer of the deep GP to a layer of hidden units in the
NN. For an L-layer neural network, this suggests that we can feed the output of one GP to the
covariance of the next GP matching a deep GP (Damianou and Lawrence, 2013). Hence, the
final predictive distribution can be formulated as

p(y|x,X,Y) =

∫
p(y|x,W)p(W|X,Y)dW , (2.22)

where p(y|x,W) is the whole Bayesian neural network posterior with random variablesW =

{p
(
W(l)

)
}. To infer the predictive distribution estimation p(y|x,X,Y) we need to calculate

p(y|x,W) which is intractable. To address this, Gal and Ghahramani (2015a) proposed to use
q
(
W̃(l)

)
, a distribution over the weight matrices as follows:

z
(l)
[i] ∼ Bernoulli

(
· |p(l)

[i]

)
q
(
W̃(l)

)
= diag

(
z(l)

)
W(l)

(2.23)

The true posterior distribution is, therefore, approximated by the variational distribution q
(
W̃(l)

)
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Figure 2.4.1: Monte Carlo dropout (MCDrop): activating dropout during inference creates an
implicit ensemble of models. As shown, it requires running the same network with different
dropout masks in order to provide uncertainty estimations. Grey nodes and connections denote
the dropped ones.

where W̃(l) represents the random variables used in dropout operations as described in 3.1.
Finally, to approximate the predictive distribution p(y|x,X,Y) they perform Monte Carlo (MC)
sampling of the random variablesW ,

q(y|x) = 1

T

T∑
t=1

q(y|x,Wt), (2.24)

where T is the number of MC samples. This method is called Monte Carlo Dropout (MCDrop)
and is equivalent to performing T stochastic passes.

In the same way as using dropout on the FC layer, MCDrop can be applied to the individual
convolutions in convolution neural networks (Gal and Ghahramani, 2015a). The convolution
process is an iterative process that takes a sequence of steps in order to compute all elements
in the input layer. Similarly to the FC layers, we can sample Bernoulli random variables zi,j,k

and apply them as masks to the weight matrix Wi · diag([zi, j, k]) which is equivalent to setting
weights to 0 for different elements of the input.

Figure 2.4.1 illustrates how MC dropout is implemented. This technique relies on MC sampling
and requires the whole network to run multiple times. Performing the multiple forward passes
creates an implicit ensemble of models that differ from one other due to changes in the dropout
masks. This implies that different runs will have different nodes and connections and provide
the desired stochasticity in the deep learning model. The predictive distribution is, therefore,
not produced by explicitly placing distribution over the layers but by running multiple stochastic
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forward passes with dropout also activated during inference. These runs are then averaged and
give an indication of the predictive uncertainty provided by the variance in the output, distribution
variance in the regression context, and softmax variance in the classification.

While MCDrop can be seen as a variational approximation to Bayesian uncertainty from a Gaus-
sian process several works describe it as a poor Bayesian approximation (Osband, 2016; Hron
et al., 2017; Folgoc et al., 2021). Osband (2016) counterexamples revealing that even for sim-
ple networks you can analytically show that the posterior from MCDrop doesn’t concentrate
asymptotically. Additionally, using a fixed dropout rate, rather than optimizing this variational
parameter can lead to an arbitrarily bad approximation. Hron et al. (2017) criticize the Bayesian
interpretation of Variational Gaussian Dropout showing that the chosen improper log-uniform
prior generally does not induce a proper posterior, and thus cannot be explained by the stan-
dard Bayesian and the related minimum description length arguments. Although, rather than
specifically on MCDrop, this work focuses in general on approaches that reinterpret Gaussian
multiplicative noise (commonly used as a stochastic regularisation technique in training of de-
terministic neural networks (Srivastava et al., 2014)) as a specific algorithm for approximate
inference in Bayesian neural networks (Kingma et al., 2015; Molchanov et al., 2017; Neklyudov
et al., 2017). Recently, Folgoc et al. (2021) question the properties of MCDrop for approximate
inference, arguing that since MCDrop changes the Bayesian model, its predictive posterior as-
signs 0 probability to the true model on closed-form benchmarks; therefore the multimodality
of its predictive posterior is not a property of the true predictive posterior. However, MCDrop
remains an inexpensive way to quantify uncertainty, which is useful in many applications. Many
works based on MCDrop have demonstrated reasonable empirical performance, and for some
applications, it may be better to have some form of uncertainty than none at all, such as improv-
ing the performance of a reinforcement learning model quickly. Although MCDrop is a step
forward towards optimizing and accelerating Bayesian deep learning techniques, it is not enough
for running on edge platforms.

In Chapter 3, we use the theoretical foundations presented in this section to build an efficient
framework that allows for uncertainty estimation in a single forward pass.

2.5 Edge Computing platforms

In recent years, the landscape of edge platforms has grown exponentially. Such platforms are
required to provide the necessary components for sensing, data storage, and processing. Ad-
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Figure 2.5.1: Deep learning workflow described in different training and inference phases on
cloud or edge devices. Depending on the phase, a different capacity device is assigned.

ditionally, given the multiple functionalities these devices need to perform, there is a need for
efficient algorithms running on such platforms. For example, Figure 2.5.1 represents a workflow
for a deep learning framework where training is performed on very powerful tensor core GPUs
such as the Nvidia DTX1 optimized to accelerate the process of matrix multiplication. Inference
on edge devices, such as Nvidia Jetson ones in this example, requires careful consideration in
building efficient solutions that can maximize prediction throughput while keeping the resource
footprint to a minimum. The range of edge devices is vast, and in this work, we consider two
platforms that represent devices with different capacities, NVIDIA Jetson TX22 and Nano3. The
TX2 is an embedded system-on-module, and it is representative of today’s embedded platforms
with capabilities (256-core Pascal GPU, 2-core Denver + 4-core ARM A57 CPU, 8GB RAM,
input ~19V) similar to high-end smartphones such as Samsung Galaxy 20 and OnePlus 7 Pro
(Octa-core CPUs, Adreno 640/650 GPU, and 12GB RAM). The Nano, instead, has lower capa-
bilities (128-core Maxwell GPU, 4-core ARM A57 CPU, 4GB RAM, input ~5V) and represents
more constrained embedded platforms. Both devices have CPU and GPU support for deep learn-
ing libraries (Tensorflow, PyTorch, CUDA, and cuDNN). The platforms have different frequency
modes4. By choosing a frequency mode, it is possible to select a trade-off between speed and
power consumption. A higher frequency results in a shorter computation time but higher power

1https://www.nvidia.com/en-us/data-center/dgx-a100/
2https://developer.nvidia.com/embedded/jetson-tx2
3https://developer.nvidia.com/embedded/jetson-nano-developer-kit
4https://jetsonhacks.com/2017/03/25/nvpmodel-nvidia-jetson-tx2-development-kit/
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consumption. In this thesis, the frequency mode ”Max-N” (2.0 GHz and 1.2 GHz for Arm CPU
and GPU, respectively) was chosen, with the highest GPU frequency assigning the needed re-
sources based on the task.

Both devices are equipped with power monitoring chips (Texas Instruments INA2265) which
measure voltage supply and current draw. INA226 monitors both a shunt voltage drop and bus
supply voltage. Programmable calibration value, conversion times, and averaging, combined
with an internal multiplier, enable direct readouts (via software) of current in amperes and power
in watts. Throughout this thesis, we use the edge devices presented here as hardware platforms
for developing the proposed frameworks.

2.6 Summary

This chapter presented the background in deep learning and mobile health which we use as build-
ing blocks for this work. Additionally, it has provided a broad overview of the state-of-the-art in
uncertainty quantification. Specifically, we outlined the limitations of current approaches high-
lighting the need for efficient uncertainty quantification for mobile health applications running
on resource-scarce devices. This dissertation fills the gaps, stemming from the limitations of the
prior art, by first introducing a framework that enables already trained deep learning models to
quantify uncertainty during inference (Chapter 3). We further explore early exit neural networks
and present a novel interpretation of this paradigm which can be exploited for uncertainty estima-
tion and out-of-distribution detection (Chapter 4). Finally, leveraging on our early exit ensemble
framework, we propose a new way to mitigate adversarial attacks (Chapter 5).

5https://www.ti.com/product/INA226
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Chapter 3

Uncertainty aware mobile sensing for edge
computing platforms

3.1 Introduction

In Chapter 1, we discussed the importance of deep learning in mobile and embedded applica-
tion, including health and well-being monitoring (De Pessemier and Martens, 2018; Ryder et al.,
2009; Subasi et al., 2018; Ballinger et al., 2018; Lu et al., 2012; Ronao and Cho, 2016). Addi-
tionally, we talked about how traditional deep learning models are scrutinized due to their lack
of interpretability. Reliable uncertainty quantification, as an additional insight to point predic-
tions, will improve the ease of understanding in deep learning, resulting in a more informed
decision-making process.

Probabilistic approaches exist to provide frameworks for modeling uncertainty toward capturing
the erroneous overconfident decisions, and we describe them thoroughly in Chapter 2. However,
enabling such approaches on deep neural networks brings significant challenges to embedded
devices. There is minimal work on alternatives to Bayesian deep learning or other approaches
providing predictive uncertainty efficiently designed for embedded systems (Yao et al., 2018a,b)
applicable only to multi-layer perceptrons (MLPs). However, as well known in the applica-
tions above, using convolution neural networks (CNNs) leads to more accurate predictions than
MLPs (Hammerla et al., 2016; Yao et al., 2017). Indeed, most modern embedded deep learning
models do not rely solely on MLPs but are often a combination of different neural layers, CNNs,
and MLPs (Yao et al., 2017; Hammerla et al., 2016; Mathur et al., 2019). Consequently, these
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approaches, although suitable for embedded devices, are not relevant for the types of deep learn-
ing models being deployed in practice. Moreover, they focus mainly on regression tasks, leaving
many questions on how they can be used in classification contexts.

In light of the highlighted challenges, in this chapter, we propose a framework that addresses
these limitations by enabling predictive uncertainty estimations for mobile and embedded ap-
plications and evaluating its efficiency on resource-constrained devices. Overall, we make the
following contributions:

• We introduce an efficient framework that directly enables already trained deep learning
models to generate uncertainty estimates without re-training or fine-tuning. Its core is
based on theoretical developments casting dropout training as approximate inference in
Bayesian Convolutional Neural Networks (Gal and Ghahramani, 2015a); we consider
models already trained with dropout as a regularization method. This assumption is easily
satisfiable since many modern deep learning networks use dropout during training (Yao
et al., 2017; Hammerla et al., 2016). To achieve our goal of providing the uncertainty esti-
mates, we propose an efficient layerwise distribution approximation, which transforms the
single deterministic convolutional layer into a stochastic convolutional layer. Unlike previ-
ous methods that generate the prediction distribution via multiple runs (Lakshminarayanan
et al., 2017; Gal and Ghahramani, 2015a, 2016b), our layerwise distribution is propagated
through the network in a cascaded manner, massively reducing the computational complex-
ity by allowing the model to produce uncertainty estimations in one single run. Therefore,
this approach makes it possible to enable predictive uncertainty on a much more com-
prehensive range of small devices where running uncertainty aware deep learning models
would be impossible with traditional techniques.

• Our approach focuses on classification tasks which make obtaining uncertainty estimates
more challenging. Unlike regression, we cannot interpret the output distribution as the
model prediction output in a classification scenario. To solve this problem, we introduce
an efficient way to sample over the final distribution to capture the predictive uncertainty
and present the class accuracy. Moreover, our approach can offer the desired flexibility by
enabling predictive uncertainty in CNNs, which have better predictive power than MLPs.
Combining CNNs with layerwise distribution approximations becomes a powerful tool to
estimate uncertainty while offering higher accuracy compared to the existing works which
utilize MLP-based models (Yao et al., 2018a,b).

• We evaluate our framework on the Nvidia Jetson TX2 and Nano embedded platforms on
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human activity recognition (HAR) and audio sensing applications. We compare our ap-
proach with the state-of-the-art Monte Carlo dropout (Gal and Ghahramani, 2016b), a
fully connected network based approach (Yao et al., 2018a) as well as deep ensembles
technique (Lakshminarayanan et al., 2017). For all approaches, we measure the resource
consumption (latency and energy) and model performance, such as the accuracy and the
quality of uncertainty estimations. Our approach can reduce inference and energy con-
sumption by 8–fold to 28–fold while obtaining robust and accurate uncertainty estimation.
We also significantly improve the accuracy of the deep learning models compared to pre-
vious work based on fully connected layered MLP models (Yao et al., 2018b) by a margin
of at least 6% to 16% while being more cost-effective computationally. We make sure not
to heavily contribute to the memory footprint by adding only a negligible runtime memory
overhead (max 5%) compared to the vanilla deep learning model and improving (by 30%)
on the MLP baseline. We show that our technique can run smoothly on CPU only, allowing
devices without GPU to have fast and robust uncertainty aware predictions still.

The rest of the chapter is organized as follows: In Section 3.2, we use a case study to understand
the motivation behind this work better. The review of the related works on uncertainty estima-
tions and deep neural networks in mobile sensing and other applications is presented in Section
3.3. We introduce the technical details of the proposed framework in Section 3.4. The evaluation
of our framework is presented in Section 3.5 and Section 4.5. After discussing some lessons
learned and future work, we conclude the contributions of this chapter in Section 3.7.

3.2 Motivation

Limited previous work in mobile and embedded systems (Yao et al., 2018b,a) has empirically
studied ways to provide uncertainty estimations in deep learning models. These techniques
mainly focus on regression, leaving the classification scenario relatively unexplored. Classifi-
cation tasks make the highest percentage of mobile sensing applications (Lane et al., 2015; Yao
et al., 2017; Hammerla et al., 2016; Mathur et al., 2019; De Pessemier and Martens, 2018) but
providing uncertainty estimations in the context of mobile sensor data and resource-constrained
devices is still an open research area. Deterministic DNNs are trained to obtain maximum like-
lihood estimates and therefore do not consider the model parameters’ uncertainty leading to
predictive uncertainty. As a result, they provide overconfident decisions as the softmax probabil-
ity only captures the relative probability that the input is from a particular class compared to the
other classes but not the overall model confidence.
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Figure 3.2.1: Density histogram of vanilla DNN confidence measures. [The density histogram
is a histogram with an area normalized to one. Plots are overlaid with kernel density curves for
better readability.]

To visualize the issue mentioned above, we analyze experiments performed on the Heteroge-

neous human activity recognition dataset (Stisen et al., 2015) which consists of readings from
two motions sensors (accelerometer and gyroscope) on nine users performing six activities (bik-
ing, sitting, standing, walking, climb stairs-up, and stairs-down). We chose a 5-layer network
(four convolutional layers and one fully connected) and evaluated the behavior of softmax on
the test set as well as on random input data 1. In Figure 3.2.1a, we can see the confidence mea-
sures for true (correct) and false (incorrect) predictions. A distribution skewed towards the right
(near 1.0 on the x-axis) shows that the model has higher confidence in predictions than the dis-
tributions skewed towards the left. This model gives a high probability for correct and incorrect
predictions, while we would like to see low confidence for false predictions.

In Figure 3.2.1b, we plot the confidence given by the same model on entirely random data,
which shows that vanilla DNNs are overconfident even when presented with random data the
model has not seen during training. This limitation of conventional deep learning approaches
motivates our work. We aim to provide accurate predictions while understanding if the model is

1More details on these experiments in Section 3.5.
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guessing at random or if it is certain about the prediction. In addition, we want the deep learning
models to run on resource-limited devices, therefore, to be latency and energy-savvy. We aim
to overcome the computation overhead of sampling-based Bayesian techniques and other non-
Bayesian approaches like deep ensembles. Running a single stochastic NN multiple times for
each prediction, or needing to retrain or fine-tune existing model(s), is not feasible for many edge
platforms. To close this gap, we build a new framework that can enable uncertainty estimates
for currently deployed models under the constraints that it must require only one forward pass
for each prediction, no retraining or fine-tuning, and incur only a residual increase in latency and
memory. This is possible due to an approximation of the internal statistics of neural networks
that allows an approximate propagation of the signal and confidence through the network layers.
Its core is a layerwise distribution approximation that creates a stochastic convolution layer that
enables uncertainty estimates to be approximately propagated from inputs to outputs in a single
run, which incurs only negligible increased linear algebra cost.

3.3 Related Work

As previously highlighted in Chapter 2, the benefits that may result from providing uncertainty
estimates for predictive models have long been recognized. Naturally, the vast majority of this
rich literature (see Section 2.4) aims at small-scale problems and precludes deployability con-
siderations. More recently, there has been a significant scale-up of the problems to which such
techniques can be applied. Still, the focus is on investigating more accurate uncertainty esti-
mates without considering the system implications of mobile and embedded computing. As
a consequence, the proposed methods often i) require training new models from scratch or
retraining/fine-tuning existing models with a development cost that might inhibit their use and/or
ii) are computationally prohibitive, i.e., require a linear increase in latency or memory due to
multiple forward passes through a single model or one forward pass through several models.
We, on the other hand, take a different approach and focus primarily on providing a simple and
effective solution that enriches existing deep learning models with predictive uncertainty estima-
tions in a manner that does not require retraining/fine-tuning and ensures latency, memory, and
energy consumption in the same ballpark as the original model.

3.3.1 Mobile Applications, Resource Constraints, and Uncertainty

Numerous works have investigated the use of deep neural networks for human activity recogni-
tion (Hammerla et al., 2016; Radu et al., 2018; Ravi et al., 2016; Khan et al., 2018; Peng et al.,
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2018) and audio sensing (Lane et al., 2015; Georgiev et al., 2017b,a; Bhattacharya and Lane,
2016; Chauhan et al., 2018). These applications need intelligence at the edge and, therefore, deal
with constrained resources. Recently, traditional DNNs have been modified to fit in memory,
increase execution speed, and decrease energy demand to inference models on the edge (Yang
et al., 2018; Cai et al., 2019; Lane et al., 2016). However, there is limited previous work that aims
to enable uncertainty estimations on these models. ApDeepSense (Yao et al., 2018b) proposes
a seminal approach to approximating the output distribution using standard dropout (Srivastava
et al., 2014), which aims to reduce computation time and energy consumption. However, this
work only applies to fully-connected NNs, leaving the challenges for more complex models, like
Convolutional Neural Networks (CNNs), to be addressed. Modern architectures are very rarely
solely MLP-based (Hammerla et al., 2016; Yao et al., 2017). This suggests that extending CNNs
to obtain uncertainty estimations makes it possible to obtain not only higher accuracy but also
more robust models in their predictive abilities. Moreover, being mainly engineered for regres-
sion, it does not use the distribution variance for the uncertainty in the classification task. Using
the variance is fundamental to properly capture the uncertainty; without it, the variability in the
prediction is not taken into consideration. Classification scenarios make up the majority of mo-
bile sensing applications; therefore, we intentionally focus on these tasks in our work. We use
the variance by adding sampling to the logit distribution to simulate the sampling in MCDrop
but at a much lower computational cost.

Also, unlike previous works providing uncertainty estimation only in the last layer or after several
runs, our approach provides flexibility through its layerwise approximation, which captures the
uncertain unobserved quantities at the layer level. This is useful in scenarios where models
cannot execute all layers, possibly due to energy and latency constraints (Lee and Nirjon, 2019;
Montanari et al., 2020) or would like to exit early in a densely layered model to save energy
while providing robust uncertainty estimates.

3.4 Methods

We present a framework that enables pre-trained deterministic deep learning models to generate
uncertainty estimates on resource-limited devices i) without increasing their latency, memory,
and energy profiles except for a minimal amount due to additional linear algebra and ii) without
any retraining/fine-tuning which could prevent deployability on the same devices. This is in stark
contrast to existing techniques for providing uncertainty estimates which have a linear (often
unaffordable) increase in operational costs due essentially to their reliance on multiple forward
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Figure 3.4.1: Overview of the framework: describing the composition of the stochastic convolu-
tion, its propagation throughout the network, and finally, the distribution sampling at the softmax
layer.

passes, and which may require training new models.

3.4.1 High-level representation of our framework

Our framework is grounded on the fact that when using a neural network trained with dropout, the
network does not have a deterministic structure anymore since it is described in part by random
variables. Therefore, we enable the convolution operations in the stochastic network generated
by dropout to apply to inputs described by probabilistic distributions and generate distributions
as outputs (Figure 3.4.1). This means that for every layer, the network is described by inputs
(and consequently outputs) which are Gaussian distributions with a mean and variance. The
layerwise distribution is going to capture the predictive uncertainty since we are not considering
point estimates anymore.

As described in the visual overview in Figure 3.4.1, these distributions are then propagated
through the whole network carrying and transmitting the information on the prediction and the
uncertainty of these predictions. Finally, we integrate over the culminating Gaussian distribu-
tions to ultimately sample point values (unaries) and pass them through the softmax function. At
this point, we only sample from the final distribution, which is a tiny fraction of the network’s
compute (see Section 3.6.2), and therefore, it does not significantly increase the model’s infer-
ence time. At the end of this process, the classification model produces the class prediction and
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its predictive uncertainty based on the samples. This operation is extremely fast as we only run
the model once, passing inputs to the models to get the output distribution.

While our approach uses the theoretical foundations of MCDrop (Gal and Ghahramani, 2015a)
casting dropout training as an implicit Bayesian approximation, it radically distinguishes from it
as in our technique, the distributions are embedded in the network and do not rely on multiple
runs to produce them. In addition, we offer a novel mode to adapt the distribution output to
predict the outcome in classification tasks while providing the desired predictive uncertainty
estimations.

3.4.2 Our Approach to Efficient Uncertainty Estimation

We have developed an alternative approach that eliminates the need for a time-consuming and
computationally intensive sampling process. Our method is designed to be resource-friendly by
enabling convolution neural networks to generate both predictive uncertainty and predictions. To
achieve this, we introduce a layerwise distribution approximation that allows us to incorporate
the distribution at the layer level and propagate it throughout the network. We utilize a multi-
variate Gaussian distribution as our chosen distribution due to the equivalence of the layerwise
approximations of deep Gaussian processes and neural networks trained with dropout.

A layer l of a neural network trained with dropout can be represented as:

z
(l)
[i] ∼ Bernoulli

(
· |p(l)

[i]

)
W̃(l) = diag

(
z(l)

)
W(l)

y(l) = x(l)W̃(l) + b(l)

x(l+1) = ρ(l)
(
y(l)

)
(3.1)

where x(l) and y(l) are the input and output of the layer l, ρ(l)(·) is a nonlinear activation function,
while W(l) is the weight matrix with dimensions K(l) x K(l−1) and b(l) is the bias vector of
dimensions K(l). Here z(l)[i] are Bernoulli distributed random variables with probabilities p(l)

[i] . The
outlined dropout operations transform a neural network with deterministic parameters W(l) into
a random Bayesian neural network with random variables W̃(l). This results in a statistical model
for the neural network without the need to explicitly utilize Bayesian techniques.

In a Bayesian framework, we are interested in learning the posterior distribution which can be
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applied to calculate the final predictive distribution given the input x:

p(y|x,X,Y) =

∫
p(y|x,W)p(W|X,Y)dW , (3.2)

where p(y|x,W) is the whole Bayesian neural network posterior with random variablesW =

{p
(
W(l)

)
}. However, computing the exact posterior distribution p(W|X,Y) is not tractable.

To address this, we can use variational inference as an approximate to the posterior distribu-
tion (Wainwright et al., 2008). As such, inspired by Gal and Ghahramani (2015a) we employ the
variational distribution q

(
W̃(l)

)
, a distribution over the weight matrices as follows:

z
(l)
[i] ∼ Bernoulli

(
· |p(l)

[i]

)
q
(
W̃(l)

)
= diag

(
z(l)

)
W(l)

(3.3)

where W̃(l) represents the random variables used in dropout operations. Choosing the approx-
imate posterior distribution as specified in Equation 3.3 establishes an equivalence between the
layerwise approximation of a deep Gaussian process and the neural network, which is trained
using either the mean square error or a cross-entropy loss function while incorporating dropout
operations.

A Gaussian process is a stochastic process such that every finite collection of those random vari-
ables has a multivariate Gaussian distribution. Therefore, we initially considered our layerwise
distribution approximation represented by multivariate normal distributions. We found, how-
ever, that this approximation was not enough for avoiding multiple forward passes and therefore
explored an additional approximation of Gaussian distributions with diagonal covariance matri-
ces. Indeed, by modeling inputs and outputs of each layer as approximately following normal
distributions with diagonal matrices, it is possible to compute the output’s mean and standard
deviation in closed-form from those of the inputs as well as the layer operations for determin-
istic models trained with dropout, without requiring any retraining. Our approach is based on
an approximation to the internal statistics of neural networks that permits an approximate prop-
agation of the signal and confidence through the network layers in a manner that is applicable to
convolution and dense layers.

To start, we enable the basic operations in convolution neural networks to output the expected
value and a probability distribution of the output random variable. Computing the exact out-
put distribution is intractable; consequently, we approximate it with the multivariate Gaussian
distribution. This approximation is based on minimizing the Kullback-Leibler (KL) divergence

59



between the exact and approximate distributions as follows:

min
q

KL(p(x)∥q(x)) =min
q

∫
p(x) log

(
p(x)

q(x)

)
dx

=min
µ,σ2
−
∫

p(x) logN
(
x|µ, σ2

)
dx

=min
µ,σ2

log(σ2)

2
+

∫
x
p(x)(x− µ)2dx

2σ2
,

(3.4)

where p(x) is the exact output distribution and q(s) ∼ N (x|µ, σ2) is the approximate output
distribution. To obtain the optimal approximate output distribution, we take the derivative over
the µ and σ2; therefore, the approximation can be represented as matching the mean and variance
between the two distributions:

µ =

∫
p(x)xdx

σ2 =

∫
p(x)(x− µ)2dx.

(3.5)

We reformulate the convolution operation with dropout as follows. The input to the layer is
represented by x ∈ R(H,W,C) with height H , width W and C channels. Let w ∈ R(h,w,c,f)

be the weight matrix with height h, width w, c channels and f filters, and b ∈ R(f) the bias
vector. Consequently, the output will be represented as y[:,:,k] := x ∗ w[:,:,:,k] + b[k] for y ∈
R(H−h+1,W−w+1,f) and for k = 1, . . . , f where ⊙ represents the element-wise operation and ∗
the convolution operation. Formally,

y[i,j,k] := vec
(
x[i+[0:h],j+[0:w],:] ⊙ z[i+[0:h],j+[0:w],:]

)⊤
vec

(
w[:,:,:,k]

)
+b[k], (3.6)

where

z[i+[0:h],j+[0:w],l] ∼ Bernoulli
(
· |p[i+[0:h],j+[0:w],l]

)
x[i+[0:h],j+[0:w],l] ∼ N

(
· |µ[i+[0:h],j+[0:w],:], σ

2
[i+[0:h],j+[0:w],l]

)
.

(3.7)

According to Equation 3.4, we need to calculate the mean and the variance of the output dis-
tribution p(y[i,j,k]). Given that the Bernoulli variables z and the input Gaussian variables x, as
shown in Equation 3.7, are independent random variables, we can have the mean of the output
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as follows:

E
[
y[i,j,k]

]
= E

[
i+h−1∑
u=i

j+w−1∑
v=j

c∑
a=1

x[u,v,a]z[u,v,a]w[u−i,v−j,a]

]
+ b[k]

=
i+h−1∑
u=i

j+w−1∑
v=j

c∑
a=1

E
[
x[u,v,a]

]
E
[
z[u,v,a]

]
E
[
w[u−i,v−j,a]

]
+ b[k]

=
i+h−1∑
u=i

j+w−1∑
v=j

c∑
a=1

µ[u,v,a]p[u,v,a]w[u−i,w−j,a] + b[k].

(3.8)

Since x[u,v,a]z[u,v,a]w[u−i,v−j,a] are independent variables, we can measure the variance as follows:

Var
[
y[i,j,k]

]
=Var

[
i+h−1∑
u=i

j+w−1∑
v=j

c∑
a=1

x[u,v,a]z[u,v,a]w[u−i,v−j,a] + b[k]

]

=
i+h−1∑
u=i

j+w−1∑
v=j

c∑
a=1

Var
[
x[u,v,a]z[u,v,a]w[u−i,v−j,a] + b[k]

]
=

i+h−1∑
u=i

j+w−1∑
v=j

c∑
a=1

E
[(
x[u,v,a]z[u,v,a]w[u−i,v−j,a] + b[k]

)2]
−

(
E
[
x[u,v,a]z[u,v,a]w[u−i,v−j,a] + b[k]

])2
=

i+h−1∑
u=1

j+w−1∑
v=j

c∑
a=1

E[x2
u,v,a]E[z2u,v,a]E[w2

u−i,v−j,a]− E2[xu,v,a]E2[zu,v,a]E2[wu−i,v−j,a]

=
i+h−1∑
u=1

j+w−1∑
v=j

c∑
a=1

(µ2
u,v,a + σ2

u,v,a)pu,v,aw
2
u−i,w−j,a − µ2

u,v,ap
2
u,v,aw

2
u−i,w−j,a

=
i+h−1∑
u=1

j+w−1∑
v=j

c∑
a=1

E[x2
u,v,a]E[z2u,v,a]E[w2

u−i,v−j,a]− E2[xu,v,a]E2[zu,v,a]E2[wu−i,v−j,a]

=
i+h−1∑
u=i

j+w−1∑
v=j

c∑
a=1

((
µ2
[u,v,a] + σ2

[u,v,a]

)
p[u,v,a] − µ2

[u,v,a]p
2
[u,v,a]

)
w2

[u−i,w−j,a].

(3.9)

We can further represent the operations and efficiently compute the output distribution, namely
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E[y] = (µ⊙ p) ∗w + b

Var[y] = (((µ⊙ µ) + (σ ⊙ σ))⊙ p− (µ⊙ µ)⊙ (p⊙ p)) ∗ (w ⊙w)

y[i,j,k] ∼ N
(
· |E

[
y[i,j,k]

]
,Var

[
y[i,j,k]

])
.

(3.10)

We have provided a mathematically grounded proof of calculating the mean and the variance of
the output at each convolution layer on networks trained with dropout. This means we can have
CNNs taking probabilistic distributions as inputs and generating distributions as outputs. Hence,
avoiding the need for computationally costly sampling from these distributions.

Given our approximation of modeling the inputs and the outputs as Gaussian distributions with
a diagonal covariance matrix, what is required now is to compute the mean and variance of the
activation function that follows the linear mapping, which can then be plugged into the Gaussian
model. Toward this end, the mean and variance

µy = E[y]

σ2
y = E[y − µy]

2,
(3.11)

can be represented as a sum of expectations of the output activations with respect to the Gaussian
input distribution over the compact intervals where the activation function is linear. This compu-
tation can be done in closed-form via erf(·) for any piece-wise linear activation as demonstrated
in Yao et al. (2018b), and particularly for the ReLU activation used in our work.

Secondly, we propose an efficient way to exploit the output distribution of our stochastic neural
network to provide a classification prediction and a predictive uncertainty measure. To this aim,
we sample these Gaussian distributions in the logit space. We sample unaries (single elements)
from the output distribution and then pass the point values from this distribution to the softmax
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function, such as

y ∼ N
(
· |E[y],Var[y]

)
p(y = c|x,X,Y) ≈ 1

S

S∑
s=1

ξ(ys)

H(y|x, D) = −
S∑

i=1

pcµ ∗ logpcµ,

(3.12)

where y is the output distribution of the model; therefore, the prediction can be considered as the
mean of the categorical distribution obtained from sampling S single values from the Gaussian
output distribution and then squashed with the softmax function ξ(·) to get the probability vector
and the predictive entropy. The sampling operation from the output distribution is extremely fast
as we only run the model once, passing inputs to the models to get the output logits. At this
point, we only sample from the logits, which is a tiny fraction of the network’s compute, and as
we can see in Section 3.6.2, it does not significantly increase the model’s inference time.

In conclusion, we add a layerwise approximation to the convolutional layers, propagated
throughout the network to produce a probability distribution in output. With the approxima-
tion presented in Equation 3.10 and the output distribution sampling in Equation 3.12, we can
now enable classification models to output predictive uncertainties alongside the class inference
in one single run.

3.5 Experiments

We design experiments to verify the improvement of our framework in providing well- calibrated
uncertainty quantification compared to state-of-the-art uncertainty aware baselines.

3.5.1 Datasets

Heterogeneous human activity recognition dataset (HHAR). (Stisen et al., 2015) HHAR
contains readings from two motion sensors (accelerometer and gyroscope). The data is gathered
from nine users performing six activities (biking, sitting, standing, walking, climbing stairs up,
and climbing stairs down) with six types of mobile devices. Conforming to the description
on Yao et al. (2018b), we segment raw measurements into five seconds samples and take a Fourier
transform on these samples as the input data. Each sample is further divided into time intervals
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Dataset #Training #Testing Output One-hot Encoding

HHAR 28,314 1,686 Sit, Stand, Walk, Bike,
StairUp, StairDown

✓

Opportunity 26,908 6,287 Stand, Walk, Sit, Lie ✓
Speech Commands 1,668 562 Yes, No, Up, Down,

Left, Right, On, Off,
Stop, Go

✓

Table 3.5.1: Statistical information of the publicly available datasets used for evaluation. Het-
erogeneous human activity recognition (HHAR) (Stisen et al., 2015), Opportunity (Chavarriaga
et al., 2013) and Speech Commands (Warden, 2017) dataset.

of the length of 0.25s.

Opportunity. (Chavarriaga et al., 2013) This dataset consists of data from multiple accelerom-
eters and gyroscopes placed on participants’ bodies at different locations such as arms, back, and
feet. They used three devices on a hip, a left lower arm, and a right shoe by default and target to
detect the mode of locomotion: stand, walk, sit and lie. In total, for all users and all recordings,
the dataset consists of 3,653 modes of locomotion instances of variable duration (between 0.2
and 280 seconds). Following the preprocessing proposed by Hammerla et al. (2016), we use the
run 2 from user 1, and runs 4 and 5 from users 2 and 3 in our test set. The remaining data is used
for training. For frame-by-frame analysis, we created sliding windows of duration 1 second with
50% overlap.

Speech Commands. (Warden, 2017) For audio sensing, we use the Speech Commands dataset,
and the suggested preprocessing by Mathur et al. (2019). We train our network with the portion of
the dataset that consists of 2,250 one-second-long speech files belonging to 10 keyword classes
(yes, no, up, down, left, right, on, off, stop, and go). In this task, the goal is to identify the
presence of a certain keyword class in a given speech segment. This 10-class dataset was then
randomly split into training (75%) and test (25%) class-balanced subsets to make sure we get the
same amount of data for each class. The input to the model is a two-dimensional tensor extracted
from the keyword recording, consisting of time frames and 24 MFCC features.

Augmentations. All three of our datasets were collected in a controlled environment; there-
fore, we augmented real-life noise to the datasets in a principled manner to include real-world
variability. Data augmentation can encode prior knowledge of the data, resulting in more robust
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models and providing more resources to the deep learning platform. For both HAR datasets,
we used the data augmentation techniques proposed in Um et al. (2017) which consist of seven
variations for IMU data on wearables: rotation, permutation, time-warping, scaling, magnitude-
warping, jittering, and cropping. For example, permutation consists of randomly perturbing the
temporal location of events within the same time window. Rotation, instead, enriches the data
to match different sensor placements like an upside-down position. These alterations allow for
real-life noise considerations which cannot be witnessed in the data collected in a lab-controlled
setting, e.g., rotating a smartwatch. We randomly chose a period between 20 seconds and two
minutes and applied a randomly selected augmentation method; the intervals between noise pe-
riods were randomly selected between two and five minutes. For audio, we sampled examples
of ambient noise from a publicly available environment sound dataset (Piczak, 2015) and added
them to the audio dataset. We assume that only one type of noise is present at a given time, and
each noise lasts between 15 and 60 seconds.

3.5.2 Baseline algorithms

We tested our proposed method on the three datasets described above and compared the outcome
with other four state-of-the-art approaches:

Backbone. This is a conventional deep neural network. To show the benefits of a stochastic
approach, we need to compare it to the traditional deep learning network. This network is used as
the non-Bayesian baseline. As mentioned before, our technique and MCDrop rely on an already
trained network; therefore, this network is the one we consider the already trained network we
refer to.

MCDrop. Monte Carlo dropout (Gal and Ghahramani, 2016a) is based on Monte Carlo sam-
pling and runs the neural network multiple times to generate the uncertainty estimation. Hence,
we use MCDrop-k to represent MCDrop with k (3, 5, 10, and 30) runs (forward passes). This
approach, like ours, assumes that the model has already been trained with dropout. For this
baseline, we keep dropout activated during inference too.

ApDeepSense. ApDeepSense (Yao et al., 2018b) is an algorithm that enables fully-connected
NNs to provide uncertainty estimations during inference. This technique uses dropout to per-
form the basic operations in the FC layers, too. Compared to our method, ApDeepSense works
only with MLPs and considers mainly regression tasks where the variance of the distribution
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represents the uncertainty. Therefore, it does not translate very well to classification tasks. For
this baseline, as suggested in the original proposal Yao et al. (2018b), we use a 5-layer neural
network composed of fully connected layers with 512 hidden dimensions and ReLU activation
function.

Deep. Deep ensembles (Lakshminarayanan et al., 2017) rely on providing uncertainty estima-
tions by training and running an ensemble of models (multiple networks). Although this baseline
requires retraining, we include it to illustrate the upper bound of the uncertainty estimation qual-
ity that can be accomplished with retraining. Ensembles are created by training the models with
different random weight initialization. To achieve this, we use the Backbone architecture (not
its trained model) with random initialization for each model. We use Ensemble-k to represent an
ensemble of k (3, 5, and 10) individual NNs.

3.5.3 Implementation details

To evaluate the performance of our approach, we build a five-layer deep neural network com-
posed of four 2D convolutional layers with a ReLU activation function and one fully-connected
output layer. The choice of the architecture was made to make a fair comparison with the
other baselines, which mainly relied on five-layer deep networks (Yao et al., 2018b,a; Laksh-
minarayanan et al., 2017).

During training, the model is optimized by ADAM (Kingma and Ba, 2014) with a learning rate
of 1e − 4. We add dropout of pdrop = 0.5 (default) at each internal layer to stabilize training,
avoid overfitting and fulfill our requirement of having a model trained with dropout regulariza-
tion. We use cross entropy as the loss function and a batch size of 64. For all the datasets, we
isolate 5% of the training set for validation and hyperparameter tuning. We employ the described
architecture for all the datasets. The models were implemented using Tensorflow (Abadi et al.,
2015) (v.1.15.2) and trained on a 4-GPU Linux server with 64GB memory.

During inference, we enable our layerwise approximation to all layers and propagate it all the
way to the output layer (Figure 3.4.1). This architecture allows having the output of the model
represented as the mean and variance of the output distribution. However, since we are dealing
with classification tasks, we sample unaries from the output distribution and pass them through
the softmax function, as explained in Section 3.4.2. We have two inputs to the first layer of the
neural network: the sample we need to do inference on and the standard deviation of the data
calculated on the training set. We use this as a prior to feed to the stochastic network.
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3.5.4 Evaluation metrics

In Section 4.5, we present the results in terms of accuracy, F1 score, and negative log-likelihood
(NLL). The prediction accuracy expresses the correlation between the prediction of the deep
neural network and the actual value; instead, the F1 score is the weighted average of precision
and recall. NLL is a proper scoring rule that captures the correlation between the ground truth
label and the model prediction, where lower NLL means they are highly correlated.

In addition to the metrics above, we consider predictive confidence and entropy as measures
of uncertainty. The confidence metric gives a better understanding of how the model behaves
during inference. Ideally, we want to achieve high confidence for correct predictions and low
confidence for incorrect ones. In classification tasks, it is considered as the confidence given
from the softmax. In conventional DNN and APDeepsense, it is measured based on only one
softmax operation. Instead, in the other baselines, including ours, it is the mean of the cate-
gorical predictive distribution. To evaluate the predictive uncertainty, we measure the predictive
entropy H(y|x, D) which captures the average amount of information contained in the predictive
distribution. Formally,

H(y|x, D) = −
S−1∑
s=0

pcµ ∗ logpcµ, (3.13)

where piµ is the predictive mean probability of the cth class from S Monte Carlo samples in the
case of MCDrop, the S model predictions in the case of Deep, and finally, from the S unaries
sampled from the output distribution and passed to the softmax function in our approach. To
reliably capture the predictive uncertainty, we aim for a predictive entropy that is low for true
and high for false inferences.

3.5.5 Embedded Edge Systems Setup

To evaluate our framework’s performance, we run the inference on two edge platforms, NVIDIA
Jetson TX2 and Nano (described in Section 2.5), and measure the metrics above while comput-
ing the latency and energy consumption per testing sample. The latency indicates the average
time it takes for the model to predict the provided sample. For fairness, we measure only the
time needed to pass a sample and do not consider the time needed to upload the model. In most
of the considered baselines, including ours, the model is uploaded just once and kept in mem-
ory. However, for ensembles, this might be different depending on the capacity and scenario;
therefore, we decide not to add that time and computation to the results. The energy consumed

67



is expressed as power x time. We measure voltage supply and current draw by accessing the TI
INA226 power monitoring chip and computing power and energy from the logs. We perform
ten runs (with the whole test set) and average the results. For an evaluation catering to more
resource-limited devices, we evaluate our framework on the Jetson Nano with CPU only enabled
(with all the datasets). This validates the applicability to these kinds of limited platforms.

3.6 Results

3.6.1 Model Estimation Performance

Table 3.5.2 shows the accuracy, F1 scores, and negative log-likelihood obtained for the three
datasets. Negative log-likelihood (NLL) penalizes both over- and under-confident predictions.
Overconfident predictions can be infinitely penalized, which discourages probabilities equal to
zero or one. The minimum value is zero, which can be achieved if the prediction is correct with
100% confidence. Otherwise, the worse the prediction, the larger the loss. Since NLL reflects
both the accuracy and the quality of predictive uncertainty, our approach is the best performing
across the three baselines: we can provide accurate predictions with high-quality uncertainty es-
timates. We achieve higher accuracy compared to the other methods, especially ApDeepSense
because we employ CNNs instead of MLPs. MCDrop does achieve similarly accurate uncer-
tainty to our method; however, it takes 30 runs to reach an NLL close to ours, which makes
it very power-hungry and not suitable for resource-constrained devices, as highlighted in Sec-
tion 3.6.2. A similar argument holds for Deep–10. A deep ensemble not only requires running
multiple models to get the predictive uncertainty, but it also demands keeping them in memory.
In the case of many embedded devices, this would involve some kind of scheduling for memory
allocation to perform them all. To apply this technique, it is required to train multiple models;
therefore, it cannot be performed on already trained networks.

To have a closer look at what happens when we compare the best-performing approaches at
a more fine-grained level, we present the results on confidence and predictive entropy in the
following density histograms. We notice how the trust concern in the overconfident predictions
of the conventional DNN Backbone is valid for all three datasets (see Figure 3.6.1). Even if
the model has high accuracy, it loses its credibility when the confidence is so high for false
predictions. We see a peak near higher confidence values for true predictions. However, most
importantly, we want lower confidence values for false predictions. Our approach conforms to
this as the best-performing approach, especially in the HHAR dataset. ApDeepSense performs
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(a) Ours (b) ApDeepSense (c) Backbone (d) MCDrop-30 (e) Deep-10

Figure 3.6.1: Density histogram of confidence measures for true (correct) and false (incorrect)
predictions. A distribution skewed towards the right (near 1.0 on the x-axis) indicates the model
has higher confidence in predictions than the distribution skewed towards the left. [The density
histogram is a histogram with an area normalized to one. Plots are overlaid with kernel density
curves for better readability.]

worse, as expected, given its limitations in relying only on MLPs, and it is not enabled to work
well for classification.

In Figure 3.6.2, the density histograms illustrate the predictive entropy as uncertainty estimate.
Predictive entropy embodies the average amount of information in the predictive distribution.
Given a data sample, the predictive entropy reaches its maximum value when all classes are
predicted to have equal uniform probability (therefore, the model is highly uncertain), and its
minimum value of zero when one class has probability 1 and all others probability 0 (i.e., the
prediction is certain). We compare our approach versus MCDrop–30 and Deep–10, the best
performing so far and the best state-of-the-art baselines. Although the three techniques can
provide uncertainty, ours performs better than Deep–10 on all datasets and better than MCDrop–
30 on the HHAR. Our results are similar to MCDrop–30 on the other two datasets; however, we
obtain the illustrated uncertainty estimates in one single forward pass with great computational
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Figure 3.6.2: Density histogram of predictive entropy for true (correct) and false (incorrect)
predictions. Predictive entropy H(y|x, D) captures the average amount of information contained
in the predictive distribution. To reliably capture the predictive uncertainty, the predictive entropy
should be low for true and high for false inferences. [The density histogram is a histogram with
an area normalized to one. Plots are overlaid with kernel density curves for better readability.]

advantage and only a slight computation overhead compared to vanilla DNNs (see Section 3.6.2).
Our approach performs better than the others in this respect since it assigns lower confidence to
wrong predictions. Where our technique performs similarly to MCDrop or Deep, we still benefit
from a significant computational gain.

The ideal confidence distribution would have a higher density towards 1.0 for true predictions
and towards 0.0 for false predictions. This might be impossible in practice because, e.g., a
correct prediction can be influenced by noise in input, resulting in low confidence. In our speech
command task, although we include different background noises in training, there can still be
other types of noise not seen in the training data which will cause uncertainty. The uncertainty in
this prediction would trigger a reaction from the application, which might involve recording the
command again and, ultimately, collecting these noisy data to include in the next training cycle
in the cloud or smart device for personalization.
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In the human activity recognition task, we see two prediction classes (stairs down and stairs up),
which are occasionally confused by the model reflected in either a true prediction with high un-
certainty or a wrong prediction with low uncertainty. While this is an undesired outcome, as the
model should be well calibrated to handle these predictions, having the measure of uncertainty
indicates that for these classes, the models should be engineered to extract more meaningful fea-
tures. This glimpse of interpretability allows us to make decisions on the model architecture and
how to process it in a hierarchical system, i.e., the user is momentarily given the parent class
prediction (stairs), and then it is refined to a specific classification outcome (stairs up or down)
after further computation and higher confidence.

While how the uncertainty is interpreted and the reaction to this trigger is application-specific,
we provide an efficient framework that generalizes to different applications allowing us to dive
deeper into the model reasoning, improving the overall system accuracy.

3.6.2 Latency and Energy Consumption

Figure 3.6.3 shows the latency (inference time) and energy consumption for all datasets on Nvidia
Jetson TX2 and Nano. As we can see, our approach adds only a slight (max 20%) overhead over
the conventional Backbone while being able to provide uncertainty estimates. Our latency is
around 9-19ms per inference, depending on the dataset and the edge platform. The latency of
MCDrop is significantly worse, and the time to perform inference increases with the number of
runs (forward passes) being 20x times in the best scenario compared to our method and increas-
ingly more in other cases (up to 28–fold). Similar trends can be observed for Deep (2x - 8x
times) as they require running multiple neural networks.

The energy consumption measurements show similar patterns. Ours is also at least (20%) faster
than one of the most recent approaches (ApDeepSense). In general, our method requires less
energy than all the other approaches. It adds only a negligible or a tiny overhead (depending
on the dataset) to the traditional DNN approach, which does not provide uncertainty estimates.
Noticeably, our approach performs well on the Nano, highlighting that the applications can har-
ness the utility of reliable predictions on many modern mobile and embedded devices, especially
if latency could be slightly sacrificed (often the case for critical applications). Additionally,
our CPU-only results on Nano demonstrate that our framework can run efficiently on resource-
constrained devices that do not have a GPU.

As mentioned before, we want to ensure that our models can have a small footprint on these
devices. For both embedded platforms, our investigations show that we add only a negligible
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Figure 3.6.3: Inference time and energy consumption on two edge platforms with different CPU
and GPU capacity. The latency indicates the average time it takes for the deep learning model to
make a prediction on the provided sample. The energy consumed is expressed as power x time.

runtime memory overhead (max 5%) compared to the vanilla deep learning model while improv-
ing on the MLP baseline by 30%. However, deep ensembles start heavily using the memory swap
on the Nano when passing five ensembles. Therefore, there is more need for memory sharing
mechanisms. MCDrop does not contribute extra to the memory, but this technique relies on a
lengthy computation time, as seen in all the results in this section.
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3.7 Discussion and conclusions

In this chapter, we have introduced a framework able to provide uncertainty estimates through
layerwise distribution approximations using only a single forward pass. It provides a simple and
system-efficient solution that empowers convolutional neural networks to generate uncertainty
estimations during inference for classification tasks. We evaluated our approach on multiple
mobile sensing datasets and showed that it significantly outperforms state-of-the-art baselines
in terms of computation, latency, and energy expenditure while providing reliable uncertainty
estimates and accurate predictions.

In this chapter, we provide a powerful solution that does not require re-training or fine-tuning;
however, it comes with some limitations too. The probabilistic baselines (MCDrop and Deep),
due to their nature, can significantly improve their performance by continuously increasing the
number of samples or models to apply but with a huge computational overhead. Instead, our ap-
proach considers hardware limitations by design by giving the uncertainty in one single forward
pass; therefore, its performance improvements are limited to these constraints. Our approach
includes the limitations of using Multivariate Gaussian distribution, too, which are common to
Bayesian approximations using variational inference methods in general. For example, the prob-
lem of underestimation of the variance of the posterior distribution or the fact that the limited
capacity of the posterior approximation can also result in biases in model parameters (and this
is the case, e.g., in time-series models). Additionally, our framework focuses on providing pre-
dictive output distributions on models that have been trained with dropout regularization. A vast
majority of modern architectures do not use dropout anymore but batch normalization. This
slightly restricts the usage of this framework. To overcome the limitations of the solution pre-
sented in this chapter, in Chapter 4 we propose a new ensemble-based framework that can be
applied to any feed-forward neural network independently of the type of architecture, layer, or
regularization technique.

To conclude, uncertainty estimation brings the much-required element of interpretability and
reasoning to the predictions made by neural network models. Such estimates are vital in the area
of mobile, and embedded systems as these systems deal with different kinds of uncertainties.
In this chapter, we have offered an avenue to provide them cheaply on these platforms while
maintaining the needed level of performance.
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Chapter 4

Early exit ensembles for uncertainty
quantification

4.1 Introduction

In the previous chapter, we focused on already trained deep learning models and introduced a
framework that enables efficient uncertainty estimation. While providing an excellent solution
for already trained and deployed models, this approach comes with the limitations described in
Sections 3.7 and further in detail in Section 4.5.9. The most important one is the condition of hav-
ing models trained with dropout regularization; however, a vast majority of modern solutions use
other methods for regularization, such as batch normalization, L1/L2 regularization, early stop-
ping, data augmentation, or a combination of them. Therefore, there is a need for a more general
solution that can support a wider range of deep learning architectures. In this chapter, motivated
by the limitations of previous techniques (including ours in Chapter 3) described thoroughly in
Section 2.4, the ease of implementation of deep ensembles for uncertainty estimation, as well
as the wide adoption of early exit neural networks for efficient mobile applications (Montanari
et al., 2019; Laskaridis et al., 2020a), we present early exit ensembles for uncertainty quantifi-
cation - a novel framework for enabling uncertainty quantification in any feed-forward neural
network in a single forward pass.

Ensembles of deep learning models can improve predictive performance by combining the out-
put of multiple models (Peimankar and Puthusserypady, 2019; Zheng et al., 2020). Recently,
these ensemble techniques have also been shown to provide reliable predictive uncertainty quan-
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tification, where predictive uncertainty is defined as a probability distribution over multiple pre-
dictions on a single sample. These techniques can be broadly divided into implicit vs. explicit
ensembles. Monte Carlo dropout, as extensively explained in Section 2.4.2, creates an implicit
ensemble of networks by approximately sampling a weight distribution during inference. On the
other hand, deep ensembles (Lakshminarayanan et al., 2017) and hyper-deep ensembles (Wenzel
et al., 2020) are explicit ensembles composed of models of the same architecture independently
trained with different weight initialization and hyperparameters, respectively. The techniques
mentioned above, however, have limited use for real-time tasks due to their computational and
memory overhead. In particular, Monte Carlo dropout requires multiple forward passes to create
an ensemble which translates into higher latency and computational cost. On the other hand,
for deep and hyper-deep ensembles, not only does the memory footprint scale linearly with the
ensemble size, but also an increased computational burden is incurred from loading and running
multiple models. In Chapter 3, we provided an extended analysis of this computation footprint
on two edge platforms, NVIDIA Jetson TX2 and Nano (see Section 3.6.2).

To address the computational and memory bottleneck of the previous techniques for uncertainty
quantification, we propose early exit ensembles via a novel interpretation of early exit neural
networks (Teerapittayanon et al., 2016; Montanari et al., 2020). We summarize the main contri-
butions of this chapter as follows:

• In our approach, early exit ensembles form an implicit ensemble of models from which
predictive uncertainty can be quantified. Specifically, early exit ensembles are a collec-
tion of weight-sharing sub-networks that can be created by adding exit branches to any
backbone deep learning architecture.

• We compare early exit ensembles to state-of-the-art deep learning uncertainty baselines
in a series of experiments on the task of classification using real-world medical imaging
datasets. Our evaluation includes data from different modalities (images and time series)
and different model architectures (shallow and deep).

• Based on our experiments, early exit ensembles can provide significantly better uncertainty
quantification compared to baselines such as Monte Carlo dropout and deep ensembles.
On some datasets, negative log-likelihood, brier score, and expected calibration error are
improved up to 2×. Furthermore, on out-of-distribution data, early exit ensembles can
achieve a 77% higher predictive entropy compared to the state-of-the-art. We demonstrate
that early exit ensembles are not only easy-to-implement but also perform optimally in
terms of accuracy, uncertainty quantification, run-time, and memory on multiple model-
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dataset combinations.

• Finally, our approach enables training all ensemble members jointly in a single model, as
well as providing uncertainty estimations from a single forward-pass of input data. Early
exit ensembles, therefore can be applied to a wide range of real-world applications in need
of efficient uncertainty quantification.

4.2 Related Work

4.2.1 Uncertainty in medical imaging

For quantifying uncertainty in medical imaging tasks, the most commonly used techniques are
approximate Bayesian methods such as Monte Carlo dropout and deep ensembles (Leibig et al.,
2017; Rahman et al., 2021; Abdar et al., 2021). Few studies employ pure Bayesian methods
such as Bayesian neural networks on medical data (Zhao et al., 2018; Lotter et al., 2021) due
to the former techniques being simpler to implement. To date, the majority of applications of
uncertainty quantification in deep learning on medical data have focused on images such as
cancerous skin lesions (Abdar et al., 2021), diabetic retinopathy (Leibig et al., 2017), and brain
magnetic resonance imaging (Zhao et al., 2018). Prior to the work in this chapter, there was
no study of uncertainty quantification in deep learning that covers multiple medical imaging
modalities (e.g. time series and images) across different architectures.

4.2.2 Early exit neural networks

As extensively described in Section 2.2.4, within the field of efficiency in deep learning, early
exits are a class of conditional computation models that exit once a criterion (e.g., sufficient ac-
curacy) is satisfied in order to save on computation (Wang et al., 2019; Li et al., 2019). Recent
research leverages early exit predictions to dynamically change a neural network computation
graph at test time (Nan and Saligrama, 2017; Montanari et al., 2019, 2020). The two most com-
mon use cases for early exits rely on either completing the full early exit inference before making
a decision (Huang et al., 2017; Teerapittayanon et al., 2016) or applying a gating mechanism be-
fore the exit points in the backbone architecture (Bolukbasi et al., 2017). Under a different
interpretation, the early exit paradigm can be used to mitigate the problem of model overthink-
ing (Kaya et al., 2019) where the representations learned in earlier layers can be more accurate
than those learned in the later layers which can sometimes not generalize well. As of yet, the
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connection between early exit model architectures and uncertainty remains unexplored.

4.2.3 Multifidelity models

Multifidelity models are composed of multiple models which are able to estimate the same out-
put quantity with varying approximation qualities and varying computational costs (Peherstorfer
et al., 2018). These approaches are composed of low-fidelity and high-fidelity models, where a
low-fidelity model is defined as a model that estimates the same output with a lower accuracy
instead a high-fidelity model guarantees better accuracy at a higher computational cost. Similar
to our early exit ensemble approach, a multifidely method combines predictions from computa-
tionally cheap low-fidelity models with outputs from the high-fidelity model leading to signifi-
cant reductions in runtime and providing unbiased estimators of the statistics of the high-fidelity
model outputs (Narayan et al., 2014; Ng and Willcox, 2014; Teckentrup et al., 2015; Peherstorfer
et al., 2016). These multifidelity approaches aim at replacing the heavy-compute sampling-based
approaches by shifting many of the model evaluations to low-fidelity models while evaluating the
high-fidelity model a small number of times to establish unbiased estimators. In early exit en-
sembles for uncertainty quantification, however, the boundary between low- and high-fidelity
models is not defined in a way to create only two categories but it includes models of incre-
mental fidelity. Moreover, the fidelity of the models in the ensemble is not always fixed as their
performance strictly depends on the specific input. Nevertheless, under the aforementioned con-
siderations, early exit neural networks can be considered a special case of multifidelity models
with the crucial distinction that although each of the exits proposes a different fidelity, they all
share the same backbone.

4.3 Methods

We introduce a novel framework, early exit ensembles, which gives early exit neural networks
a new probabilistic interpretation as an implicit ensemble. Herein, we present the methodology
required to transform any feed-forward neural network into an efficient ensemble of weight-
sharing sub-networks from which uncertainty can be quantified.

Problem formulation. Consider a classification problem where x ∈ RD denotes a D-
dimensional input and y ∈ {1, . . . , C} a corresponding discrete target taking one of C classes.
We seek to learn a neural network that can model the probabilistic predictive distribution pθ(y|x)
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over the ground truth labels, where θ are model parameters. This predictive distribution is ob-
tained via the softmax transform ξ(·) of unnormalized log probabilities fθ(x) ∈ RC .

Neural networks. By definition of a NN, fθ(·) consists of blocks of differential operations
(e.g., convolution) (Goodfellow et al., 2016). We assume, therefore that fθ(·) can be decomposed
into a composition of B blocks such that

fθ(x) = (f (B) ◦ f (B−1) ◦ · · · ◦ f (1))(x) (4.1)

where (f (i) ◦ f (j))(x) = fθi(fθj(x)) denotes function composition for i ̸= j and θ = ∪B
i=1θi

represents the union of each blocks parameters. Let h(i) ∈ RKi×Di denote the intermediary
output of the i-th block having Ki features of dimension Di ≤ D such that h(i) = fθi(h

(i−1)) for
1 ≤ i ≤ B − 1, and h(0) = x.

4.3.1 Early Exit Ensembles

With only minor architectural modifications, any multi-layered feed-forward neural network can
be converted into an implicit ensemble of networks by adding early exits. We define an early

exit block as a neural network gϕi
(·) with parameters ϕi which takes as input the intermediary

output h(i) from the i-th block of the backbone neural network fθ(·). We let each exit block learn
a probabilistic predictive distribution pϕi

(y|x) such that

pϕi
(y|x) = ξ(gϕi

(h(i)))

= ξ((g(i) ◦ f (i−1) ◦ · · · ◦ f (1))(x))
(4.2)

for 1 ≤ i ≤ B−1. As such, any NN is able to output a setM containing up to B−1 probabilistic
distributions from early exits blocks, in addition to the standard output from its final block

M = {pϕ1(y|x), . . . , pϕB−1
(y|x), pθ(y|x)} (4.3)

where |M| = B. In practice, the number of exit blocks and therefore the ensemble size |M|
is a hyperparameter bounded above by B and bounded below by a combination of factors such
as computational cost (Kaya et al., 2019) and quality of the uncertainty estimates (Ovadia et al.,
2019). Figure 4.3.1 provides a visual representation of an early exit ensemble.

To train an early exit ensemble, we optimize a weighted sum of each exit’s individual predictive
loss. This procedure allows the training of the whole ensemble jointly. As such, each prediction
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Figure 4.3.1: Representation of an early exit ensemble. Each fθi represents a block from the
backbone NN. Exit block gϕi

take as inputs intermediary output h(i) shared by the backbone (and
previous exits) and learns a predictive distribution pϕi

(y|x).
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propagates the error in relation to the ground truth label to the preceding exit blocks. More
formally:

L = LCE(y, fθ(y|x)) +
B−1∑
i=1

αiLCE(y, gϕi
(y|x)) (4.4)

where LCE(·, ·) is the cross-entropy loss function and αi ∈ [0, 1] is a weight hyperparameter
corresponding to the relative importance of each exit.

During inference, a single forward pass of a neural network with early exits produces an en-
semble M of predictions. The overall prediction from M can be computed as the mean of a
categorical distribution obtained from averaging the predictions from the individual exits:

pθM(y|x) ≈ 1

|M|
(
pθ(y|x) +

B−1∑
i=1

pϕi
(y|x)

)
. (4.5)

where θM = θ ∪ ϕ and ϕ = ∪B−1
i=1 ϕi. Compared to a single model prediction, an ensem-

ble provides more information such as variance, entropy, and disagreement (as measured by
Kullback-Leibler (KL) divergence), that can be exploited for better-calibrated predictive proba-
bilities during both training and inference. Although other methods of aggregating the output of
the ensemble exist (e.g. majority voting, geometric mean, or weighted average), previous works
have shown that for uncertainty quantification, the arithmetic mean works well in practice (Gal
and Ghahramani, 2015a; Lakshminarayanan et al., 2017).

4.3.2 Exit Block Architecture

The exit blocks are built to satisfy two important characteristics that have been shown to make a
good ensemble: accuracy and diversity (Perrone and Cooper, 1992; Granitto et al., 2005). Since
early exit blocks exit from different points in the backbone architecture, their predictions are
naturally based on features learned from structurally distinct architectures, thereby promoting
diversity. However, the exits from earlier blocks in the backbone inherit intermediary outputs
with a weak representational capacity which can negatively impact the overall ensemble accu-
racy. While the earlier exits can learn from the deeper layers in the joint training procedure, they
might not possess enough parameters to match the representational capacity of the last exits in
the network. This might be acceptable in a traditional early exit neural network paradigm, but
it is not valid for our ensemble technique since all exits have the same weight in the uncertainty
quantification therefore the accuracy of each and every one of them cannot be compromised. To
address this issue, we add an additional layer to the exit block which allows for increasing the
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number of features and, consequently, the learning capacity of the exit. Of course, the deeper
we go into the network fewer parameters are needed as the backbone compensates for them. For
this purpose, we need the parameter increase in the exit block to be inversely proportional to the
exit point in the backbone. Nevertheless, in some scenarios, there might not be a need for more
parameters so we still need the option of having a lightweight exit block that only contains one
layer needed for the intermediate classification.

For this purpose, we design a conditional architecture for the i-th exit block as follows:

gϕi
(h(i)) =

W
(i)
2 ρ(W

(i)
1 s(h(i)) + b

(i)
1 ) + b

(i)
2 γ > 0

W
(i)
3 s(h(i)) + b

(i)
3 γ = 0

where s(·) denotes global average pooling used to reduce the spatial dimension Di of each
feature, ρ(·) is an activation function, W(i)

1 ∈ RKγ×Ki , W(i)
2 ∈ RC×Kγ , W(i)

3 ∈ RC×Ki and
b
(i)
1 ∈ RKγ , b(i)

2 ,b
(i)
3 ∈ RC are weights and biases of linear layers respectively. The hyperpa-

rameter γ ≥ 0 is a learning capacity factor used to increase the number of features from Ki to
Kγ of the i-th intermediary output such that

Kγ
i = (

√
1 + γ)B−iKB, 1 ≤ i ≤ B − 1 (4.6)

where KB is the number of features in the last block defined by the backbone. Intuitively, when
γ > 0 the number of features in each exit block is inversely proportional to the exit point i.e.
earlier exits use additional parameters to learn more complex relations between features. For
instance, let us consider an architecture composed of B = 10 blocks with exits at {2, 5, 6, 8, 10}th

block, KB = 512 and γ = 0.2. Following Equation 4.6, for each exit block, we will have a
decreasing number of parameters, specifically K0.2

2 = 1062, K0.2
5 = 808, K0.2

6 = 737, K0.2
8 =

614, and K0.2
10 = 512.

4.3.3 Exit Placement

In practice, the number of exit blocks is determined by the backbone architecture as well as
computational cost (Kaya et al., 2019) and quality of the provided uncertainty estimates (Ovadia
et al., 2019). Therefore the ensemble size |M| is a hyperparameter bounded above by B. As
such, there is a combinatorial choice of exit points and therefore ensemble arrangements. To
limit the search space, we introduce exit placement strategies in Table 4.5.4.
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Strategy Exit after

Block-wise Every block.
Pareto Blocks closest to 20% and 80% of total FLOPs.
Computation Blocks closest to {15, 30, 45, 60, 75, 90}% of total FLOPs.
Residual Residual blocks.
Last-k Last k blocks.
Semantic Blocks grouped by number and size of feature maps.

Table 4.3.1: Exit placement strategies for any backbone architecture. FLOPs: floating point
operations.

For example, given a ResNet18 backbone (with blocks defined as convolution, batch normal-
ization, and activation), the Semantic strategy places exit blocks after each of the last blocks of
kernel size and number features (3, 64), (3, 128), (3, 256), and (3, 512) resulting in size |M| = 5.
See Section 4.5.5 for more details.

4.3.4 Computational Cost

An early exit ensemble is an implicit ensemble since it constitutes a collection of sub-networks
that share the weights θ from the backbone. Table 4.3.2 compares the computational cost of
early exit ensembles vs. an ensemble of independent models and a single model (assuming
the same backbone). Explicit ensembles like deep ensembles, linearly increase the number of
parameters with the number of members, and therefore, they are not a cost-efficient technique.
The only memory overhead introduced by early exit ensembles are the parameters from exit
blocks ϕ = ∪|M|−1

i=1 ϕi. Since in general ϕ << θ where θ = ∪Bi=1θi, early exit ensembles achieve
computational and memory gains due to weight sharing.

Ensemble Size FLOPs Compute

Single θ F τ
Independent θ ∗ |M| F ∗ |M| τ ∗ |M|
Early exit θ + ϕ F + Fϕ τ + τϕ

Table 4.3.2: Computational and memory cost. F : FLOPs. τ : compute time. Fϕ and τϕ are
FLOPs (floating-point operations) and compute time for all exit blocks respectively.
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4.4 Experiments

We design experiments to verify the improvement of early exit ensembles in providing well-
calibrated uncertainty quantification for in-distribution data compared to state-of-the-art deep
learning ensemble baselines (Section 4.5.1). We then further verify the ability of early exit en-
sembles to detect out-of-distribution samples (ODD) (Section 4.5.2) as well as study its behavior
on in-distribution shifts in Section 4.5.3. Finally, we analyze latency and power consumption on
the NVIDIA Jetson TX2 embedded device while comparing it to the baselines in these efficiency
terms (Section 4.5.4).

4.4.1 Datasets

We evaluate our proposed early exit ensembles on four medical imaging classification datasets:
(1) ECG heart attack (ECG5000) (Dau et al., 2019), (2) EEG epileptic seizure (EEG-S) (Dua and
Graff, 2017), (3) skin melanoma (ISIC2018) (Codella et al., 2019) and (4) EEG eye movement
artifact (EEG-A). Table 4.4.1 contains a descriptive summary of each dataset. All datasets are
split into 80% training, 10% validation, and 10% testing maintaining the original class propor-
tions.

Dataset

Name Type Train Valid Test Classes Input dimension

ECG5000 Time series 4050 450 500 2 1 × 140
EEG-S Time series 9315 1035 1150 5 1 × 178
ISIC2018 Image 8268 919 1021 7 3 × 224 × 224
EEG-A Time series 6400 800 800 2 1 × 2000

Table 4.4.1: Summary of the datasets used for experiments. All datasets are split into 80%
training, 10% validation, and 10% testing maintaining the original class proportions.

ECG heart attack (ECG5000). (Dau et al., 2019) A dataset of univariate timeseries of ECG
signals of length 140 was extracted from a single patient. Each signal falls into one of 5 classes
which are combined to make two labels: Normal (N) and Abnormal (R-on-T, PVC, SP, UB).
The original train and test datasets are combined creating a dataset of size 5000 which is re-split
maintaining class proportions. No further data pre-processing is performed.
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EEG epileptic seizure (EEG-S). (Dua and Graff, 2017) A dataset of univariate timeseries of
single-channel EEG signal of length 178 extracted from 500 patients. Each signal falls into one
of 5 classes: normal patient eyes open, normal patient eyes closed, tumor patient healthy area,
tumor patient tumor area, epileptic patient seizure. The original train and test datasets are com-
bined creating a dataset of size 11500 which is re-split maintaining patient and class proportions.
During training, a combination of Gaussian noise, signal shift, and polarity inversion is applied
with a probability of 0.5.

Skin melanoma (ISIC2018). (Codella et al., 2019) A dataset of multi-source dermatoscopic
images of common pigmented skin lesions. Each image falls into one of 7 classes: melanocytic
nevi, melanoma, benign keratosis-like lesions, basal cell carcinoma, actinic keratoses, vascular
lesions, and dermatofibroma. The original train and validation datasets from Task 3 are combined
creating a dataset of size 10208 which is re-split maintaining class proportions. All images
are resized to 224 × 224 and then normalized using the training dataset mean and standard
deviation. During training, a combination of Gaussian noise, horizontal and vertical flips, and
jitter is applied to each image with a probability of 0.5.

EEG eye artifact (EEG-A). (Hamid et al., 2020) EEG-A consists of univariate timeseries of
length 2000 extracted from 213 patients from the Temple University Artifact Corpus (v2.0). To
create the dataset, a common set of 21 EEG channels were retained from all patients, and signals
were resampled to 250 Hz. In addition, all EEG signals were bandpass filtered (0.3-40 Hz) using
a second-degree Butterworth filter and notch filtered at the power lower frequency 60 Hz similar
to previous work (Svantesson et al., 2021). Segments of clean and eye movement artifact signals
were selected to form the EEG eye movement artifact dataset used here. Finally, all signals were
min-max scaled to the range [0, 1]. During training, a combination of signal shift and polarity
inversion was applied with a probability of 0.5.

For out-of-distribution analysis, we use three datasets containing the same type of signal but
from completely different distributions: ECG heart attack (ECG200) (Dau et al., 2019), EEG
Steady-State Visual Evoked Potential Signals (SSEVP) (Dua and Graff, 2017), and CIFAR-
10 (Krizhevsky and Hinton, 2010).

4.4.2 Backbone architectures

Each dataset is paired with a different architecture: FCNet for ECG5000, ResNet18 for EEG-S,
MobileNetV2 for ISIC2018 and VGG16 for EEG-A (see Table 4.4.2).
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Model

Name B Parameters

FCNet 5 0.2 M
ResNet18 9 3.8 M
MobileNetV2 18 1.3 M
VGG16 14 23.8M

Table 4.4.2: Summary of the models used for experiments. B is the number of blocks in each
architecture. Parameters represent the number of trainable model parameters (millions).

FCNet. (Wang et al., 2017) A fully convolutional network consisting of 4 blocks each contain-
ing a 1D convolution, batch normalization (BN), and Rectified Linear Unit (ReLU) activation.
The output of the fourth block is averaged over the time dimension using global average pooling
(GAP) and fed to a 1D convolutional layer with filter length 1. Convolutional layers all have 128
filters of lengths 8, 5, 5, and 3 all with a stride of 1 and zero padding to preserve the length of
each time series input.

ResNet18. (He et al., 2016; Bizopoulos et al., 2019) A residual convolutional network com-
posed of 8 blocks containing a 1D convolution, BN, and ReLU activation repeated twice. Con-
volutions in consecutive pairs of blocks have filters 64, 128, 256, and 512 with strides 1, 2, 2,
and 2 all with length 3. The output of these blocks is fed to a GAP and a fully connected (FC)
layer. Identity residual connections exist between consecutive blocks with the same number of
filters. Downsample residual connections exist between blocks with different filter numbers.

MobileNetV2. (Sandler et al., 2018; Chaturvedi et al., 2020) A convolution neural network
mobile architecture composed of 17 inverted residual blocks with bottleneck layers. Each in-
verted residual block contains a 2D convolution of size 1x1, a 2D depthwise convolution of size
3x3, a Rectified Linear Unit 6 (ReLU6), and finally a 2D convolution of size 1x1 followed by
ReLU6.

VGG16. (Simonyan and Zisserman, 2014) A convolutional neural network composed of 13
blocks containing a 1D convolution, BN, and ReLU activation. Convolutions filters are dis-
tributed across the blocks following 2 × 64, 2 × 128, 2 × 256, 3 × 512, 3 × 512 all with length
3 and stride 1. Consecutive blocks with different numbers of filters are interleaved with a max
pooling layer of length 2 and stride 2. The output of these blocks is fed to a GAP and 3 FC layers
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with dropout and ReLU activation.

4.4.3 Baselines

We compare early exit ensembles against its backbone without exits (Backbone), Monte Carlo
dropout (MCDrop) (Gal and Ghahramani, 2015a), deep ensembles (Deep) (Lakshminarayanan
et al., 2017) and depth ensembles (Depth).

Backbone. The unchanged implementations of FCNet, ResNet18, MobileNetV2, and VGG16
represent a single model which outputs softmax probabilities over classes.

MCDrop. An approximate Bayesian probabilistic approach is implemented by adding dropout
layers to each of the backbone architectures during training and activating them during inference.
For fairness of comparison, dropout layers are added to the same places as the exit points. A total
of 5 Monte Carlo samples are taken with a dropout rate of pMC = 0.2.

Deep. A non-Bayesian probabilistic approach based on training an explicit ensemble of models
with the same backbone architecture but trained with a different random weight initialization. A
total of 5 models were used for the ensemble.

Depth. Our own baseline is composed of an ensemble of the same backbone where each mem-
ber has a different depth determined by the exit points. Similar to Deep, all ensemble members
are trained separately. In contrast, each of the 5 models ranges from shallow to deep and is
trained with the same weight initialization.

Layerwise distribution approximation. This baseline represents the framework developed in
Chapter 3 where we enable the convolution operations in the stochastic network generated by
dropout to apply to inputs described by probabilistic distributions and generate distributions as
outputs. For every layer, the network is described by inputs (and consequently outputs) which
are Gaussian distributions with a mean and variance. A comparison to this baseline is provided
in Section 4.5.9.

4.4.4 Placement of exits

Following findings from recent works on the optimal number of ensemble members to consider
for well-calibrated uncertainty (Ovadia et al., 2019), we set the ensemble size |M| = 5 for all
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models. Since for FCNet this results in no choice of exit placement, we exit after each block.
On the other hand, for ResNet18 we semantically group residual blocks based on the number of
hidden features (based on findings from different exit strategies detailed in Section 4.5.5). For
MobileNetV2, we follow a similar strategy to Kaya et al. (2019) by placing exit points based on
the overall number of floating-point operations (FLOPs) in the model. As such, we place exit
points closest to 45%, 60%, 75%, and 90% of the overall FLOPs for MobileNetV2. For VGG16,
the best strategy was found to be following the inherent semantic grouping of the architecture.

4.4.5 Implementation details

We use the data preprocessing and hyperparameters described in the original implementation
of each model-dataset combination as the initial starting point for hyperparameter tuning. All
models are trained with the Adam (Kingma and Ba, 2014) optimizer using default parameters,
except for the learning rate which is tuned over {1e−2, 1e−3, 1e−4, 1e−5}. For MCDrop, the
dropout rate is tuned over {0.2, 0.3, 0.5}. We empirically choose batch sizes and epochs from
50, 100, 200 and 100, 200, 250 respectively based on stability of training. To prevent overfitting,
early stopping is implemented with patience of 5 based on the best validation accuracy. We
train early exit ensembles with the best performing hyperparameters across all backbone models
αi = 1. Finally, all models were implemented using PyTorch (Paszke et al., 2019) and trained
on a 4-GPU Linux server with 64GB memory.

4.5 Results

We present the results of early exit ensembles on in-distribution (Section 4.5.1) and out-of-
distribution (Section 4.5.2) experiments and compare them to the aforementioned baselines. Ad-
ditionally, we analyze the effect of the number and position of exit blocks (Section 4.5.5), the
learning capacity factor (Section 4.5.6), and diversity regularization (Section 4.5.7) as well as
exit loss weighting (Section 4.5.8).

4.5.1 Uncertainty Estimation

Table 4.5.1 shows classification results on in-distribution test datasets. Our experiments show
that the addition of early exits, and their joint training, improves accuracy compared to the back-
bone model across all datasets up to 3.8 percentage points as measured by the F1 score. These
findings are in line with existing work on early exit architectures (Teerapittayanon et al., 2016).
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Model F1 (↑) Precision (↑) Recall (↑)

FCNet
- Backbone 0.983 ± 0.010 0.983 ± 0.010 0.983 ± 0.010
- MCDrop 0.987 ± 0.002 0.987 ± 0.002 0.987 ± 0.002
- Depth 0.989 ± 0.007 0.989 ± 0.007 0.989 ± 0.007
- Deep 0.989 ± 0.003 0.989 ± 0.003 0.989 ± 0.003
- Early exit 0.992 ± 0.005 0.992 ± 0.005 0.992 ± 0.005

ResNet18
- Backbone 0.847 ± 0.012 0.848 ± 0.012 0.847 ± 0.012
- MCDrop 0.844 ± 0.007 0.849 ± 0.004 0.844 ± 0.007
- Depth 0.861 ± 0.011 0.862 ± 0.011 0.861 ± 0.011
- Deep 0.866 ± 0.009 0.866 ± 0.008 0.866 ± 0.009
- Early exit 0.865 ± 0.002 0.865 ± 0.002 0.866 ± 0.002

MobileNetV2
- Backbone 0.868 ± 0.005 0.869 ± 0.006 0.870 ± 0.003
- MCDrop 0.865 ± 0.002 0.872 ± 0.001 0.861 ± 0.002
- Depth 0.865 ± 0.011 0.873 ± 0.010 0.861 ± 0.011
- Deep 0.887 ± 0.011 0.888 ± 0.011 0.888 ± 0.009
- Early exit 0.885 ± 0.005 0.885 ± 0.004 0.886 ± 0.005

VGG16
- Backbone 0.809 ± 0.011 0.810 ± 0.014 0.809 ± 0.011
- MCDrop 0.822 ± 0.011 0.830 ± 0.010 0.825 ± 0.013
- Depth 0.821 ± 0.023 0.830 ± 0.020 0.820 ± 0.022
- Deep 0.838 ± 0.010 0.839 ± 0.011 0.839 ± 0.010
- Early exit 0.847 ± 0.003 0.848 ± 0.004 0.847 ± 0.003

Table 4.5.1: Results for classification metrics. All results are for the optimally tuned learning
rate, batch size, and number of epochs for each model: FCNet (1e−2, 200, 250), ResNet18 (1e−3,
200, 200), MobileNetV2 (1e−5, 100, 200) and VGG16 (1e−4, 200, 200). Results for MCDrop are
for the optimal dropout rate pMC = 0.2. Results for Early Exit are for the weighted classification
loss αi = 1 and learning capacity factor: FCNet (0.0), ResNet18 (0.2), MobileNetV2 (0.7),
VGG16 (0.5). We mark in bold the best results. All results are the mean plus/minus standard
deviation across 3 independent splits of the test dataset.

Furthermore, Early Exit, Deep, Depth, and MCDrop all display significantly better F1 scores,
precision, and recall compared to Backbone across each of the three datasets. We attribute these
results to a reduction in variance caused by averaging a set of NNs that individually have a high
variance and low bias (Perrone and Cooper, 1992). For ResNet18 and MobileNetV2, Deep is
on average 0.2% better than Early Exit across classification metrics. However, this marginal
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Model NLL (↓) ECE (↓) Brier score (↓)

FCNet
- Backbone 0.059 ± 0.031 0.009 ± 0.005 0.026 ± 0.015
- MCDrop 0.043 ± 0.019 0.011 ± 0.004 0.019 ± 0.004
- Depth 0.036 ± 0.008 0.017 ± 0.007 0.018 ± 0.006
- Deep 0.045 ± 0.020 0.014 ± 0.007 0.018 ± 0.005
- Early exit 0.024 ± 0.008 0.007 ± 0.001 0.009 ± 0.003

ResNet18
- Backbone 0.432 ± 0.022 0.081 ± 0.007 0.233 ± 0.018
- MCDrop 0.362 ± 0.012 0.045 ± 0.005 0.216 ± 0.011
- Depth 0.318 ± 0.028 0.028 ± 0.003 0.194 ± 0.012
- Deep 0.316 ± 0.024 0.028 ± 0.004 0.189 ± 0.011
- Early exit 0.306 ± 0.013 0.027 ± 0.006 0.189 ± 0.005

MobileNetV2
- Backbone 0.512 ± 0.022 0.080 ± 0.008 0.209 ± 0.010
- MCDrop 0.375 ± 0.016 0.041 ± 0.008 0.197 ± 0.008
- Depth 0.495 ± 0.005 0.133 ± 0.017 0.237 ± 0.004
- Deep 0.359 ± 0.019 0.037 ± 0.008 0.171 ± 0.007
- Early exit 0.357 ± 0.020 0.033 ± 0.010 0.170 ± 0.006

VGG16
- Backbone 0.589 ± 0.040 0.109 ± 0.020 0.308 ± 0.015
- MCDrop 0.574 ± 0.051 0.093 ± 0.012 0.279 ± 0.014
- Depth 0.438 ± 0.018 0.057 ± 0.009 0.275 ± 0.010
- Deep 0.400 ± 0.004 0.039 ± 0.004 0.239 ± 0.007
- Early exit 0.385 ± 0.005 0.033 ± 0.010 0.236 ± 0.003

Table 4.5.2: Results for uncertainty metrics. We mark in bold the best results. All results are the
mean plus/minus standard deviation across 3 independent splits of the test dataset.

sacrifice in accuracy is negligible compared to the improvement gain in uncertainty metrics (see
Table 4.5.2). For instance, Early Exit improves model ECE by an estimated 4% and 11% for
ResNet18 and MobileNetV2, respectively.

Early Exit clearly outperforms MCDrop both in terms of classification and uncertainty metrics.
In particular (see Table 4.5.2), BS is improved by an estimated 53%, 13%, and 14% for FCNet,
ResNet18 and MobileNetV2, respectively. In addition, compared to the current state-of-the-
art Deep, Early Exit improves calibration as measured by ECE for ResNet18 (0.028 vs 0.027)
and VGG16 (0.039 vs 0.033) representing a 3.8% and 15.4% decrease, respectively. Such im-
provement translates into the predicted probability distributions over the classes more accurately
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Figure 4.5.1: Predictive confidence (PC) on out-of-distribution samples.

reflecting the ground truth distribution in the data. Moreover, the generalizability of early exit en-
sembles is demonstrated by improvement in uncertainty quantification for both deep (ResNet18
and MobileNetV2) and shallow architectures (FCNet). In particular, for FCNet uncertainty met-
rics are roughly 2× less compared to Deep and MCDrop. In general, this translates into Early
Exit displaying greater/lesser uncertainty under out/in-distribution data shifts (see Section 4.5.3).

Finally, depth ensembles perform well across all metrics compared to MCDrop for both FCNet
and ResNet18. In particular, Depth increases the F1 score by an estimated 2% and improves
NLL by 14% compared to MCDrop for ResNet18. These results demonstrate that when forming
an ensemble, diversity in terms of different NN architecture depths improves model calibration.
Interestingly, Depth does not outperform Early Exit in either classification or uncertainty metrics.
We attribute this difference to Early Exit having the benefit of exit blocks that are jointly trained
with a backbone architecture. As a result, Early Exit not only benefits from shared features from
the backbone that are informative for the task but is also able to diversify these features at each
exit block allowing it to make accurate but independent predictions.

4.5.2 Out-of-Distribution Detection

Figures 4.5.1 and 4.5.2 show predictive confidence (PC) and predictive entropy (PE) on out-
of-distribution datasets. A well-calibrated model should show low PC and high PE on out-of-
distribution data. Our results clearly show across all datasets that Backbone is overly confident in
making wrong predictions as reflected by an average PC of 0.99 and a PE entropy of 0.00. This
demonstrates the risk of deploying deep learning models which are unable to provide proper un-
certainty estimates potentially resulting in overconfident wrong diagnoses. Our proposed early

91



Figure 4.5.2: Predictive entropy (PE) on out-of-distribution samples.

exit ensemble framework provides the highest PE and lowest PC for out-of-distribution sam-
ples. In particular, Early Exit has an estimated 38%, 77%, and 34% higher entropy for FCNet,
MobileNetV2, and ResNet18 compared to their respective best-performing baselines.

In contrast to previous works, Deep does not always out outperform MCDrop. For FCNet, Deep
is comparable to MCDrop in terms of both average confidence and entropy. For ResNet18,
MCDrop has a significantly lower PC (0.81 vs. 0.94) and PE (0.44 vs. 0.24). Depth ensembles do
not show good calibration on OOD data having the worse performance for FCNet and MobileNet
on both PC (0.97 and 0.90, respectively) and PE (0.10 and 0.40, respectively). While they showed
acceptable uncertainty metrics in in-distribution, they cannot be trusted in OOD scenarios.

4.5.3 Calibration on in-distribution shifts

For biosignal classification, the input distribution is often shifted from the training distribu-
tion due to different hardware and/or data collection protocols (Mårtensson et al., 2020). In
such scenarios, a model with well-calibrated uncertainty can indicate if a prediction should be
trusted (Ovadia et al., 2019). Figure 4.5.3 displays the effect of in-distribution shifts on EEG-
S and EEG-A test data for ResNet18 and VGG16, respectively. We apply two types of shifts:
signal masking and amplitude clipping. Signal masking represents missing EEG signals caused
by electrode movement or temporary malfunction. Signal clipping, instead, represents amplifier
saturation caused by excess voltage. For all models, accuracy decreases as each shift intensi-
fies. However, Early Exit displays greater robustness by maintaining a higher F1 score across all
intensities for both shift types compared to baselines. In terms of the accuracy of predicted prob-
abilities (as measured by BS), Early Exit performs better on clipping for VGG16 while following
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(a) ResNet18 F1 score (↑) (b) ResNet18 Brier score (↓)

(c) VGG16 F1 score (↑) (d) VGG16 Brier score (↓)

Figure 4.5.3: In-distribution shifts applied to [0%, 20%, 40%, 60%, 80%] of test data for
ResNet18 (masking) and VGG16 (clipping). A well-calibrated model shows a higher F1 and
lower Brier score across all shift percentages.

a similar trend to Deep and Depth for ResNet18 up to a shift intensity of 40%.

93



MCDrop Depth Deep Early exit

FCNet
Size (↓) 0.20 0.70 1.10 0.20
FLOPs (↓) 0.30 0.19 0.30 0.06

ResNet18
Size (↓) 3.80 8.90 19.20 4.40
FLOPs (↓) 0.33 0.18 0.33 0.07

MobileNetV2
Size (↓) 1.36 4.74 6.78 1.76
FLOPs (↓) 1.50 0.92 1.50 0.39

VGG16
Size (↓) 23.80 30.10 119.00 25.80
FLOPs (↓) 11.60 6.30 11.60 2.30

Table 4.5.3: Memory and efficiency results. Size: number of parameters (millions). FLOPs:
number of floating point operations (Giga). Best/second best results are indicated by
bold/underline.

4.5.4 Efficiency analysis

Table 4.5.3 summarizes memory and efficiency analysis for all models. As expected, the mem-
ory footprint (as measured by Size) of Deep is the highest since it consists of 5 independently
trained models. The most memory-efficient model is MCDrop, however, the FLOPs required for
uncertainty estimation are approximately 5× higher than Early Exit due to sampling at inference
time. Dealing with 5 models (Deep and Depth) or performing 5 samples (MCDrop) translates
into higher inference time compared to Early Exit. In Figure 4.5.4, we show how this reflects into
latency and energy consumption on the NVIDIA Jetson TX2 board. Of course, depending on the
model the latency and energy required increases as the number of FLOPs increase. Nevertheless,
Early Exit can make uncertainty aware inferences much faster, therefore saving from 132 mJ to
835 mJ per inference (compared to Deep), establishing a great robust technique for battery-based
devices and real-time applications.

Overall, Early Exit presents the best trade-off between memory (max 16% increase), inference
time (approx. 5× less), and number of FLOPs (approx. 5× less) since EEEs can produce all
ensemble members’ predictions in a single forward pass. Therefore, EEEs are better suited to a
wider range of real-world applications in need of efficient uncertainty quantification.

4.5.5 Effect of Number of Exits

The number of early exits, and therefore ensemble size |M|, is bounded above by the number
of blocks B in each backbone model architecture (see Table 4.4.2). As such, each exit block
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Figure 4.5.4: Latency and energy measured on the NVIDIA Jetson TX2 board. Latency measures
inference time in ms. Energy is measured as power (W) x latency. Both values are reported for a
single inference on a single sample. The value is an average of all samples in the training set.

is indexed i ∈ {1, . . . , B − 1} which gives a combinatorial choice
(

B
|M|

)
of exit points and

therefore ensemble arrangements. We investigate the effect of the number and placement of exits
on predictive uncertainty using the ResNet18 backbone with γ = 0.2 (see Figure 4.5.5). Since
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Strategy |M| F1 (↑) ECE (↓) Brier score (↓) Exit index Param. increase

Pareto 2 + 1 0.853 ± 0.01 0.049 ± 0.01 0.201 ± 0.01 {4, 7} 9.8%
Last-k 4 +1 0.849 ± 0.00 0.063 ± 0.01 0.219 ± 0.01 {5 ,6, 7, 8} 23.3%
Semantic 4 + 1 0.865 ± 0.00 0.027 ± 0.01 0.189 ± 0.01 {2, 4, 6, 8} 15.2%
Computation 6 + 1 0.861 ± 0.01 0.057 ± 0.02 0.200 ± 0.01 {3, 5, 6, 7, 8} 25.6%
Residual 8 + 1 0.856 ± 0.01 0.032 ± 0.02 0.193 ± 0.02 {1, 2, 3, 4, 5, 6, 7, 8} 30.4%

Table 4.5.4: Effect of the number of exit blocks and exit strategy on the accuracy and uncertainty
of the ensemble for ResNet18 with γ = 0.2. Reported results are the mean plus/minus standard
deviation across three independent splits of the test dataset. Ensemble size |M| includes the
backbone in addition to each exit block, represented as +1. For Last-k we set k = 4. Parameter
increase is measured as a percentage increase over the number of parameters from the backbone.
The exit index matches the indexes of the exit blocks in Figure 4.5.5.

for ResNet18, B = 9 and |M| = 5 this yields 126 possible combinations of ensembles. To limit
this search space, we introduce and test the following exit strategies:

• Pareto (Pareto, 1964): Exit at blocks closest to 20% and 80% of the overall number of
FLOPs.

• Computation: Exit at blocks closest to 15%, 30%, 45%, 60%, 75% and 90% of the overall
number of FLOPs (Kaya et al., 2019).

• Residual: Exit at residual blocks.

• Last-k: Exit at the last k blocks.

• Semantic: Exit at blocks semantically grouped by their number of features.

Table 4.5.4 summarizes the results for the listed exit strategies. A small ensemble of 3 members
in the case of Pareto does not perform well in terms of accuracy but still shows well-calibrated
uncertainty comparable to Computation with 5 members (ECE 0.049 vs. 0.057). Interestingly, a
higher number of exits does not guarantee better uncertainty quantification (Residual BS 0.193
vs. Semantic BS 0.189), nor does choosing to exit deeper in the case of Last-k (BS 0.219).
The strategy Semantic clearly gives the best results in terms of accuracy and uncertainty metrics
reinforcing our findings in Section 4.5.1 which employs the same strategy. We attribute this result
to the fact that when exiting at semantically group blocks, low-level and high-level features are
integrated by summation at residual connections, therefore, representing the points of maximum
diversity in the backbone.

96



Figure 4.5.5: Representation of an early exit ensemble applied to a ResNet18 backbone de-
composed into B = 8 blocks. The Residual strategy is used to create an ensemble of size
|M| = 8 + 1 = 9. For the Semantic strategy (best performing) only exits after each semantic
block are included in the ensemble |M| = 4 + 1 = 5. GAP represents Global Average Pooling.
Block indexes match the exit indexes i in Table 4.5.4.

4.5.6 Effect of Learning Capacity Factor

In Figure 4.5.6, we show the effect of tuning the learning capacity factor γ for Early Exit in
terms of NLL on each of the validation datasets. For FCNet, γ = 0.0 yields the best results for
Early Exit in terms of lowest NLL and smallest percentage increase in parameters. On the other
hand, for the deeper backbone architectures ResNet18 and MobileNetV2 on the larger datasets,
higher learning capacity factors (γ = 0.2, γ = 0.7, respectively) yield the best results in terms
of the lowest NLL. Intuitively, for these harder classification problems, the earlier exit blocks
require more features in order to make accurate predictions that improve the overall ensemble
performance. For ResNet18 and MobileNetV2 this translates to a small increase of 1.15× and
1.38× respectively in the number of overall parameters. In contrast, Deep with |M| = 5 al-
ways increases parameters by 5× regardless of the backbone and dataset. Additionally, unlike
MCDrop, Early Exit can provide uncertainty quantification in one single forward pass.
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Figure 4.5.6: Effect of learning capacity factor γ on NLL as well the percentage increase in
parameters over the backbone.

4.5.7 Diversity analysis

In order to further increase ensemble diversity, we experiment with a new loss function which is
a composite classification and diversity loss function:

L = LC + βLD (4.7)

where LC is the classification loss in Section 4.3.1, LD is the diversity loss, and β ≥ 0 represents
the relative weight of the diversity loss.

Since the correlation between exit block predictions must be minimal, we propose a diversity
loss such as:

LD =
1

M

B−1∑
i=1

∑
j ̸=i

LCE(gϕi
(y|x), gϕj

(y|x)) (4.8)

where M = |M|(|M| − 1). Since LD minimizes the cross-entropy between all exit pairs it
approximately maximizes pairwise mutual information (Boudiaf et al., 2020).

We further experiment with running all early exit models setting γ = 0 and tuning only the
weight β of the diversity loss (Equation 4.7) over {0.3, 0.5, 1.0, 2.0} using ResNet18. Intuitively,
a higher value of β should allocate more importance to learning a diverse early exit ensemble.
Results show that as β increases from 0.3 to 2.0, F1 score increases by 23.1% (from 0.85 to
0.86) and ECE decreases by 14.6% (from 0.047 to 0.041). Although performance improves,
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Figure 4.5.7: Visualizing diversity (↑) as measured by KL divergence for VGG16.

accuracy and calibration are still worse than the best result for early exit ensembles in Table 4.5.2.
Therefore, given the diversity already embedded in early exit ensembles, introducing a diversity
loss did not result in better-calibrated uncertainty quantification.

In Figure 4.5.7 we visualize diversity computed as the KL divergence between each ensemble
member prediction and the average ensemble prediction (Fort et al., 2019). Given the compa-
rable median diversity of Early Exit and Depth (approx. 0.024), it is clear that varying network
structure leads to higher predictive diversity. Overall, we conclude that Early Exit is the best
performing technique as it has a greater range of disagreement at a much lower computational
cost since it can provide multiple predictions in a single forward pass. The heat maps of pre-
dictive confidence in Figure 4.5.8 (4 samples from EEG-A) further highlight the importance of
ensemble diversity. Averaging the predicted probabilities of each member of Early Exit results
in a correct prediction (highlighted in green) even though some individual members are wrong.
This finding is in line with previous work suggesting that a good performing ensemble should be
both accurate and diverse (Perrone and Cooper, 1992).

4.5.8 Effect of weighting exits.

We experiment with running early exit ensembles using a ResNet18 backbone setting γ = 0

and tuning only the importance weights α from the classification loss (Equation 4.7). Without
the extra learning capacity, the early exits with αi = 1 tend to have a high misclassification
rate. However, penalizing the earlier exits by setting αi = 1/(B − 1 − i) for example, does not
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Figure 4.5.8: Visualizing predictive confidence (↑) (Early Exit, 4 samples) for VGG16. Ground
truth in green.

improve classification performance and worsens uncertainty metrics overall. We conclude the
performance of early exit ensembles requires each individual member to be accurate in line with
the findings of Perrone and Cooper (1992).

4.5.9 Comparison to layerwise distribution approximation

In Chapter 3, we propose a layerwise distribution approximation that can enable uncertainty
at inference time on deep learning models trained with dropout. Therefore, we want to com-
pare our previous work with early exit ensembles in terms of in-distribution calibration, out-of-
distribution detection, and energy efficiency. We run our experiments on the ECG dataset and
FCNet architecture (replacing batch normalization layers with dropout layers) since this archi-
tecture is a very simple one. One of the limitations of our previous technique is that the behavior
of other layers, such as batch normalization or bottleneck layers and (inverted) residual blocks
need further investigation. However, this could lead to more complex implementations, which
would hinder the adoption of our framework. For this reason, we believe that its most efficient
use is in simple convolutional neural networks. Nevertheless, we compare the two techniques
to give a better understanding of their behavior. Table 4.5.5 provides an overview of this com-
parison showing that both techniques can show good and comparable (early exits are slightly
better) accuracy and calibration for in-distribution data; the same is valid in terms of efficiency.
However, the layerwise distribution approximation proposed in Chapter 3 struggles at detect-
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ing out-of-distribution samples since its diversity is much lower, as measured by a very low KL
divergence. We believe that while the framework proposed in the previous chapter offers good
tradeoffs in terms of providing well-calibrated uncertainty for already trained deep learning mod-
els, early exit ensembles are a more robust approach that can still guarantee great computation
gains. In addition, early exit ensembles provide more flexibility in terms of types of layers and
architectures that can be used, making it a more flexible option at the cost of training exits in
addition to the backbone.

Approach F1 ECE OOD PE Diversity Latency Energy

Layerwise 0.990 ± 0.005 0.009 ± 0.001 0.26 0.02 ± 0.01 11.99 ± 0.10 24.70 ± 0.23
Early Exit 0.992 ± 0.004 0.008 ± 0.001 0.43 0.05 ± 0.02 12.05 ± 0.09 24.98 ± 0.20

Table 4.5.5: Comparison between the two uncertainty quantification approaches proposed in this
thesis. OOD PE measures the median predictive entropy under out-of-distribution samples. As
measured by KL divergence, diversity is computed between each ensemble member prediction
and the average ensemble prediction. Latency (ms) represents an average time of inference for
one single sample, while energy (mJ) is measured as power x time on NVIDIA Jetson TX2 board.
Results are mean and std of 3 different data splits, instead, latency and energy mean and std over
all samples in the test set.

4.6 Discussion and conclusions

In this chapter, we introduce early exit ensembles, a novel framework for enabling uncertainty
quantification in any feed-forward neural network. At the core of our methodology is a new inter-
pretation of early exit neural networks as an implicit ensemble of weight-sharing sub-networks
from which predictive uncertainty can be estimated. We evaluate early exit ensembles using four
state-of-the-art deep learning architectures applied to different medical imaging datasets. Our re-
sults show that, compared to competitive deep learning ensemble baselines, early exit ensembles
can provide better-calibrated uncertainty for both in-and out-of-distribution data. Moreover, our
approach enables training all ensemble members jointly in a single model, as well as providing
uncertainty estimations from a single forward pass of input data. Both the ease of implementation
and the computational efficiency of training and inference mean that early exit can be applied to
a wide range of real-world applications.

Early exit ensembles can be used in a variety of scenarios, however, they have a crucial impact
on using uncertainty in patient-level decision-making. Here, we want to showcase a scenario
where quantifying uncertainty is critical in health applications. As we explained previously, dur-
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Figure 4.6.1: Early exit ensemble test predictions. In (a), all exits agree on the prediction. In
(b) all exits highly disagree predicting different classes indicating the sample should be sent to a
clinician for further checks. Correct class in green.

ing inference, each ensemble technique outputs |M| = 5 softmax predictions over classes. The
extent of agreement/disagreement between these predictions can be used to quantify uncertainty.
Figure 4.6.1 visualizes two outputs of early exit ensembles using MobileNetV2 on the ISIC2018
(skin lesion) test dataset. It is clear from (a) that all exits are individually confident and cor-
rectly predict the same class y = 0 (melonocytic nevi). On the other hand, in (b) all the exits
highly disagree predicting different classes to the true class y = 1 (melanoma) suggesting fur-
ther investigation from an expert clinician. Both conditions, melonocytic nevi, and melanoma
are very serious however melanoma indicates that the condition is at an advanced stage. Without
uncertainty estimation, the automatic system would have missed this critical condition and had a
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drastic impact on the patient’s life.

In this chapter, we have shown the potential of early exit ensembles in aiding a human-in-the-
loop system, detecting out-of-distribution samples, or informing clinicians on how the model’s
performance may degrade in different deployment settings. However, we know that in addition to
naturally occurring noise or genuine mistakes, adversarial attacks are a constant threat to machine
learning models compromising their security and privacy. In the next chapter, we use early exit
ensembles as a building block to provide mitigation against adversarial attacks on biosignal tasks,
further extending the robustness capability of our framework.
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Chapter 5

Towards adversarial mitigation with early
exit ensembles

5.1 Introduction

Detecting anomalous samples caused by statistical shifts in data distribution is a fundamental
requirement for deploying a good classifier in the real world. In Chapter 4, we introduced early
exit ensembles, a new paradigm for uncertainty quantification, and showed their performance
in providing robustness through out-of-distribution detection. However, when deployed in the
wild, deep learning models do not only have to deal with naturally occurring noise or distribution
shifts: attackers can intentionally design synthetically transformed inputs to exploit the model
and degrade the model’s performance. Adversarial attacks introduce a new major failure mode
of modern deep learning techniques, which needs to be addressed. In this chapter, we delve into
the difficult task of adversarial mitigation. We use the early exit ensemble framework to build an
attack-agnostic mitigation technique for classification tasks.

Recent work has shown that deep learning models are susceptible to a multiplicity of at-
tacks (Goodfellow et al., 2016; Madry et al., 2017; Finlayson et al., 2019). One of the main
reasons why DNNs are easily manipulated relies on the fact that current implementations mainly
focus on improving accuracy only, overlooking robustness in general and especially towards
adversarial attacks. Adversarial perturbations can very closely mimic physiologically plausible
signals and become virtually indistinguishable from human perception. Nevertheless, they can
drastically decrease the deep learning model accuracy and introduce security and privacy vulner-
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abilities in safety-critical scenarios, such as health applications.

The diversity of attacks grows continuously, and traditional approaches that require retraining
and re-deployment of the network are a significant burden and often not feasible. Currently, the
state-of-the-art mitigation approaches rely on adversarial training (Madry et al., 2017) to mini-
mize the risk of misclassifying the perturbed signal. However, its side-effects are not negligible
since classifiers trained with adversarial examples learn fundamentally different representations
compared to standard classifiers reducing accuracy (Tsipras et al., 2018); they also can cause a
disparity in accuracy between classes for both clean and adversarial samples Xu et al. (2020).
In addition, they are (i) resource-consuming, (ii) primarily mitigate only against the attacks they
have been exposed to during training, and (iii) cannot be applied to already deployed or trained
networks, suggesting limited generalization and applicability in the real world.

To solve the abovementioned issues, we propose a mitigation technique that relies on our findings
in Chapter 4 interpreting early exit neural networks as an implicit ensemble of models. Early exit
neural networks are a class of conditional computation models that exit once a criterion (e.g.,
sufficient accuracy) is satisfied to save on computation (Teerapittayanon et al., 2016). Under a
different interpretation, the early exit paradigm can be used to mitigate the problem of model
overthinking (Kaya et al., 2019) or, as previously explored in Chapter 4, used as an ensemble for
uncertainty quantification. Our intuition on exploiting these networks for adversarial mitigation
arises from the success of ensemble defense in improving both accuracy and robustness (Tramèr
et al., 2017), however, without the computational burden of training and maintaining multiple
single models.

In this chapter, we make the following contributions:

• We introduce a novel adversarial mitigation technique that provides run-time robustness
to adversarial attacks it has never been exposed to before, presenting a highly desired at-
tack agnostic technique. Furthermore, our approach is generalizable to various adversarial
attacks (universal and white box attacks) while maintaining a low computational burden.

• We evaluate our method on state-of-the-art deep learning architectures applied to biosignal
classification tasks. Our results show that we can increase the accuracy up to 60 percentage
points (pp) compared to undefended deep learning models and provide well-calibrated
adversarial mitigation comparable to adversarial training.

• Our experiments on four major adversarial attacks show the potential of early exit en-
sembles in providing adversarial robustness and how we can exploit its orthogonality to
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adversarial training and Monte Carlo dropout to build robust models we can trust.

5.2 Related Work

In this section, we provide a simplified taxonomy of common adversarial attacks applied to deep
learning models. Additionally, we explore state-of-the-art approaches for adversarial detection
and mitigation. The literature in this space of deep learning has been expanding significantly in
the last years, therefore here, we try to mainly include prior art that is closely related to our work.

5.2.1 A taxonomy of adversarial attacks

Current deep learning models are trained to assume that all samples are representative of the
task at hand and trustworthy. However, malicious entities can impact these decision-making
algorithms by either targeting the training data or forcing the model to alter its output at inference.
These types of attacks, known as poisoning and evasion attacks, respectively, allow adversaries
to significantly decrease overall performance, causing targeted misclassification or malicious
behavior, and insert backdoors and neural Trojans (Tabassi et al., 2019; Chakraborty et al., 2018).

A simplified taxonomy of adversarial attacks is provided in Figure 5.2.1 where we identify two
main attack scenarios:

• Evasion (inference time) attacks. This class of attacks is the most common in the adver-
sarial machine learning ecosystem. Here, the adversary evades the system by perturbing
input samples during inference. This setting does not assume any perturbation over the
training data as the model is already trained and its weights are frozen.

• Poisoning (training time) attacks. In this attack scenario, the adversary poisons the train-
ing data by injecting carefully designed samples to compromise the whole learning pro-
cess.

The objective of the adversary is to compromise the integrity of the deep learning model by
causing:

• Confidence reduction. The adversary aims at reducing the confidence of the model which
might lead to misclassification, higher entropy, and, ultimately, an increase in the predictive
uncertainty.
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• Misclassification. Given an input sample, the adversary aims at assigning it to any other
class but the original one the model would have inferred.

• Targeted misclassification. Here, the adversary targets a specific class for misclassifi-
cation. Instead of a naive misclassification, there is a specific target class to channel all
samples in.

• Source/Target misclassification. In this attack, the goal is to assign a specific model to a
specific class, creating a relationship between the input at the output.

The amount of information about the model available to an adversary defines the type of attacks
that can be performed. An adversary who has access to the model architecture constitutes a
stronger attack compared to a weaker adversary having access only to the signal fed to the model
during inference time. Training time attacks attempt to influence or corrupt the model directly by
altering the dataset used for training. Nevertheless, the amount of data and parts of the model the
adversary has access to are very important in establishing the strength of the adversarial attack.
There exist three broad attack strategies for altering the model based on the adversarial access to
the model and data and, consequently what the attacker can exploit them for:

• Data Injection. This scenario happens when the adversary does not have access to the
training data or the deep learning model, nevertheless it can inject new data. This corrup-
tion can alter the model outcome at a cheap computation cost.

• Data Modification. Here, the adversary does not have access to the model, but it can fully
access the training data. This allows for augmenting or perturbing the current training set
to alter the model predictions.

• Logic Corruption. The attacker has access to the whole model architecture and parame-
ters. In this scenario, the adversary can completely alter the logic of the model by mod-
ifying the model parameters, such as updating to new ones for a more targeted attack or
presenting randomly initialized ones for confidence reduction.

Adversarial attacks operating at inference time do not interfere with the training of the targeted
model, but they aim to fool the model into producing incorrect predictions. Their success is
determined by the amount of information available to the adversary about the model. Depending
on this information, inference time attacks can be broadly classified into white-box or black-box
attacks.

White-box attacks are performed by adversaries that have total knowledge about the model,
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Adversarial attacks

Objective

Confidence reduction

Misclassification

Targeted
misclassification

Source/target
misclassification

Time of attack

Training

Logic corruption

Data modification

Data injection

White box

Non-adaptive black
box

Adaptive black box

Strict black box

Testing

Figure 5.2.1: A simplified taxonomy of the adversarial attacks. Poisoning (training time) and
evasion (inference time) attacks allow adversaries to significantly decrease overall performance,
causing targeted misclassification or malicious behavior, and insert backdoors and neural Tro-
jans.

including the model architecture, parameters, and training data distribution. This depth of in-
formation allows the attacker to extensively explore the model vulnerabilities and to produce
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perturbed samples which cause targeted/non-targeted misclassification.

Black-box attacks represent the scenario where the attacker only has access to outputs of the
target model without knowing its architecture and weights. Not having enough available infor-
mation or past inputs to analyze the vulnerability of the model, black-box attacks exploit the
model by providing a series of carefully crafted inputs and observing the outputs. Black-box
attacks can be primarily classified into:

• Non-adaptive black-box attacks. For this attack, the adversary, has only access to the
distribution of the training data of the targeted model. Given this information, it trains a
proxy model with samples from the same training data distribution, aiming to approximate
the target model. This is done by using white-box attack strategies. Ultimately the per-
turbed samples produced by this procedure are fed into the target model inference pipeline
to force misclassification.

• Adaptive black-box attacks. These attacks can access the model by making adaptive
queries and collecting the outputs stemming from the model. The attacker then uses the
formed input-output dataset to train a proxy model. Once the model is trained, it produces
adversarial samples by following the white-box attack technique forcing the target model
to behave inaccurately.

• Strict black-box attacks. Differently from the adaptive black-box attacks, these attacks
cannot alter the input to observe the output of the model. The only information is the
current input to the model and its prediction. For this attack to work well, the adversary
needs access to a larger set (compared to both adaptive and non-adaptive) of observed
input-output pairs to build a representative training set for the proxy model.

In this chapter, we focus on inference time white-box attacks for two main reasons: (1) we are
interested in applications that run on resource-constrained edge devices, where currently only
inference is performed; (2) white-box attacks are the strongest attacks that can be performed
during inference, therefore, mitigating them highlight the level of robustness our approach can
provide.

5.2.2 Adversarial detection and defense

While the number of adversarial attacks grows exponentially, the solutions for their detection
and mitigation are developed at a slower pace. This is mainly because most techniques are attack
specific and do not transfer well between attacks. Additionally, a majority of proposed prior art
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focuses on detection only, without proceeding to a defense solution. Adversarial detection is half
of the work as the ultimate goal for achieving trustworthy and robust deep learning models is to
provide adversarial mitigation. In this section, we explore state-of-the-art techniques in adver-
sarial detection and defense, which we categorize into four main classes: adversarial training,
input filtering, profiling techniques, and stochastic approaches.

Adversarial training (Goodfellow et al., 2014; Madry et al., 2017; Zhang et al., 2019) minimizes
the risk that a perturbed sample can be misclassified by augmenting the training set with adver-
sarially perturbed samples in addition to the clean original data. This approach assumes prior
knowledge of which adversarial attacks are going to be encountered during deployment. There-
fore, every time a new attack emerges, the model must be retrained with new adversarial samples
in addition to the previous ones. Although adversarial training is a very resource-consuming ap-
proach, it is state-of-the-art in adversarial mitigation. However, its side effects are not negligible.
Classifiers trained with adversarial examples learn fundamentally different representations com-
pared to standard classifiers reducing accuracy (Tsipras et al., 2018). They can cause a disparity
in accuracy for both clean and adversarial samples between different classes (Xu et al., 2020)
by favoring certain classes even in perfectly balanced datasets. In addition, they are extremely
resource-consuming as they need to be always retrained for new emerging attacks to guarantee
robustness to them during inference, suggesting a very limited generalization and applicability
in the real world.

Input filtering techniques are an interesting approach to adversarial detection because, differ-
ently from other approaches which operate at the model level, they work on the input features.
Their main goal is to reduce the degrees of freedom available to an adversary by “squeezing”
out unnecessary input features, e.g., by reducing the number of bits for color depth in images.
This class of approaches relies on the fact that adversarial attacks usually operate on these un-
necessary features in order to be less detectable. Feature squeezing (Xu et al., 2017) is the main
work in this space and consists of running the deep learning model with both the original and
squeezed/filtered input. This allows for detecting the adversarial if the difference in the prediction
exceeds a certain threshold. Although its computational overhead is minimal, it provides detec-
tion only and can be easily bypassed (Sharma and Chen, 2018). Moreover, these techniques are
mainly engineered for images; therefore, they are not directly applicable to other types of data.

Profiling techniques exist to monitor the path followed by clean samples during training or
inference and consequently detect adversarial attacks by profiling their path from input to in-
ference. Ptolemy (Gan et al., 2020), for instance, detects adversarial samples at runtime based
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on the observation that malign samples tend to activate distinctive paths from those of benign
inputs. These techniques are attack agnostic which is a great advantage however they rely on
extensive profiling, which is a time-consuming task. Additionally, their main drawback is having
a backdoor in the model since the attack can learn which specific paths get activated by profiling
too. In contrast, our approach does not depend on any specific path; therefore, profiling its acti-
vation path does not give the adversary extra information. Another approach in this space is the
Taboo Trap (Shumailov et al., 2018), which does not rely only on profiling but trains the model
by applying restrictions on activations. During inference, any sample violating these restrictions
is considered adversarial. This solution, however, is not generic as it would fail in the presence of
covariate shifts. In addition, the attack can discover the limit of activations used in the restriction
too.

Stochastic approaches assess adversarial attacks by looking at the likelihood of perturbed ex-
amples and the distance between perturbed and clean examples for each classifier (Alemi et al.,
2016; Papernot et al., 2016; Li and Gal, 2017). Bradshaw et al. (2017) propose a Gaussian Process
(GP) hybrid deep NN to help mitigate adversarial attacks; however, a closed-form solution for
GPs has a O(n3) computational complexity. In addition, GPs are very sensitive to quantization,
and thus implementation on embedded hardware is challenging. A promising direction, Monte
Carlo Dropout (MCDrop) (Gal and Ghahramani, 2015a), casts dropout training as approximate
inference in Bayesian CNNs. Feinman et al. (2017) investigate model confidence on adversar-
ial samples through MCDrop by looking at uncertainty estimates. They operate a two-feature
approach, however, where in addition to MCDrop, they need to observe the density estimates
during training to detect the points that lie far from the data manifold, which might lead to issues
adapting to data shifts. While these techniques study the uncertainty for adversarial detection,
we envision using the early exit ensemble framework to prevent the attack from changing the
prediction by making it more difficult for the attacker to overcome all the ensemble members.

5.3 Methods

In Chapter 4, we introduced early exit ensembles, a collection of weight-sharing sub-networks
created by adding exit branches to any backbone neural network architecture. During inference,
they provide an ensemble of predictions in a single forward pass which allows for efficient and ro-
bust adversarial mitigation by aggregating the predictions from individual exits. Our intuition on
using early exit ensembles as an adversarial defense relies on the fact that traditional adversarial
attacks are built to fool the backbone of the model and generally discard or are unaware of the in-
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termediate exits. Additionally, previous work has shown that for a single network, promoting the
diversity among learned features of different classes can improve adversarial robustness (Pang
et al., 2018). This is valid for ensembles of models too (Pang et al., 2019), and since early exit
ensembles naturally incorporate ensemble diversity given by the structural diversity between its
members, we propose our framework as an efficient way to provide adversarial mitigation.

Figure 5.3.1 shows a representation of an early exit ensemble. As depicted, any neural network
fθ(·) can be decomposed into B blocks such that fθ(x) = (f (B) ◦ f (B−1) ◦ · · · ◦ f (1))(x) where
(f (i) ◦ f (j))(x) = fθi(fθj(x)) denotes function composition for i ̸= j and θ = ∪Bi=1θi, x ∈ RD

denotes a D-dimensional input. Let h(i) ∈ RKi×Di denote the intermediary output of the i-th
block having Ki features of dimension Di ≤ D such that h(i) = fθi(h

(i−1)) for 1 ≤ i ≤ B − 1,
and h(0) = x.

An early exit block is defined as a NN gϕi
(·) which takes as input the intermediary output h(i)

from the i-th block of fθ(·), henceforth referred to as the backbone. Each exit block learns
a predictive distribution pϕi

(y|x) = ξ(gϕi
(h(i))) where ξ(·) is the softmax transform and y ∈

{1, . . . , C} a corresponding discrete target taking one of C classes. As such, any NN is able to
output a setM = {pϕ1(y|x), . . . , pϕB−1

(y|x), pθ(y|x)} which represents an early exit ensemble
(see Figure 5.3.1). The ensembleM contains up to B − 1 distributions from early exit blocks,
in addition to the standard output from its final block. As such, ensemble size |M| = B.

During training, a weighted sum of each exit’s individual predictive loss is optimized. This
procedure allows the training of the whole ensemble jointly. More formally:

L = LCE(y, fθ(y|x)) +
B−1∑
i=1

αiLCE(y, gϕi
(y|x)) (5.1)

where LCE(·, ·) is the cross-entropy loss function and αi ∈ [0, 1] is a weight hyperparameter
corresponding to the relative importance of each exit.

During inference, a single forward pass of a NN with early exits produces an ensemble M
of predictions. The overall prediction from M can be computed as the mean of a categorical
distribution obtained from averaging the predictions from the individual exits:

pθM(y|x) ≈ 1

|M|
(
pθ(y|x) +

B−1∑
i=1

pϕi
(y|x)

)
. (5.2)

112



Figure 5.3.1: Representation of an early exit ensemble. A collection of weight-sharing sub-
networks created by adding exit branches to any backbone neural network architecture. During
inference, they provide an ensemble of predictions in a single forward pass by aggregating the
predictions from individual exits.

Further information and analysis on early exit ensembles are described in Chapter 4.

5.4 Adversarial attacks

In this chapter, we consider 4 types of adversarial attacks: three white-box attacks (PGD, PGD-
AVG, and PGD-MAX) aimed at early exit neural networks (Hu et al., 2020) and one universal
adversarial perturbation attack (Moosavi-Dezfooli et et al., 2017). We group them into two attack
vectors based on the assumption that the adversary is aware of the intermediate exits or unaware
of them, respectively.

Formally, given a clean signal x, an adversarial attack introduces small perturbations∇ such that
the prediction for x and xadv differs.

5.4.1 Attack Vector 1

Assumption

The adversary is unaware of the intermediate exits.

This might be because (i) they do not have access to the full model; (ii) the attack cannot
handle multiple exits (which is often the case); (iii) considering the intermediate exits is too
expensive.
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Projected Gradient Descent (PGD)

PGD (Kurakin et al., 2016) in an iterative universal first-order attack which aims to find the
adversarial perturbations by moving in the opposite direction to the gradient of the loss function
L(x, y) w.r.t. the signal (∇):

xadv
0 = x̂,xadv

n+1 = clipϵx{xadv
n + βsign

(
∇xL

(
xadv
n , y

))
}, (5.3)

where ϵ is the step size that restricts the l∞ of the perturbation, and

x̂ = x+ ϵ1 ∗ sign
(
N
(
0d, Id

))
(5.4)

(with parameters ϵ1, ϵ such as ϵ1 < ϵ) is an additional prepended random step that avoids going
towards a false direction of ascent. This represents a single attack defined to fool fθ(·) only,
without considering the intermediate exits gϕi

, expressed as:

xadv = arg max
x∈|X′−x|∞≤ϵ

|L(fθ(x′, y))|. (5.5)

Universal Adversarial Perturbation (UAP)

UAP (Moosavi-Dezfooli et et al., 2017) seeks a perturbation∇ to fool fθ(·) on most data samples:

fθ(x+∇) ̸= fθ(x) (5.6)

where perturbations are constrained to l∞ ≤ ϵ to be visually imperceptible to humans. UAP aims
at crafting a single perturbation for all data samples. The version used in this work is based on
DeepFool (Moosavi-Dezfooli et al., 2016) which crafts perturbations iteratively by updating the
gradient with respect to the model’s decision boundaries. At each iteration, the attack chooses the
perturbation direction of the minimum magnitude that is orthogonal to the decision hyperplane
with the goal of finding pseudo-minimal perturbations to fool the model.

5.4.2 Attack Vector 2
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Assumption

The adversary is aware of the intermediate exits.

This happens when (i) the adversary has access to the full model and is aware that the
intermediate exits are used, and (ii) considering the intermediate exits is seen as worth the
expensive additional computation.

PGD Average Attack (PGD-AVG)

PGD-AVG (Hu et al., 2020) considers all intermediate exits gϕi
by maximizing the average of all

losses such that the adversarial sample xadv can attack any exit in the ensemble:

xadv
avg = arg max

x∈|x′−x|∞≤ϵ

∣∣ 1
B

(
L(fθ(x

′, y)) +
B−1∑
i=1

L(gϕi
(x′, y)))

)∣∣ (5.7)

PGD Max-Average Attack (PGD-MAX)

PGD-MAX (Hu et al., 2020) emphasizes on the individual exits, not just at maximizing an all-
averaged loss like in eq. 5.7. It creates M single attacks xadv such as eq. 5.5 and denoting the
collection of single attacks as Ω:

xadv
max ← xadv

j∗ , wherexadv
j∗ ∈ Ω

j∗ = arg max
j

∣∣ 1
B

(
L(fθ(x

adv, y)) +
B−1∑
i=1

L(gϕi
(xadv

j , y)))
)∣∣ (5.8)

This attack is the strongest of the three since xadv
max not only maximally fools the individual exit

but is also transferable between exits.

5.5 Experiments

We design experiments to verify the performance of early exit ensembles in providing adversar-
ial mitigation. We, firstly, test what level of defense it can offer when presented with attacks that
are not aware of the intermediate exits and perform traditional attacks on the backbone (see Sec-
tion 5.6.1). We then further explore the scenario where the adversary is aware of the intermediate
exits and includes them when generating perturbed malign samples (see Section 5.6.2). Finally,
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in Section 5.6.2, we also explore how its orthogonality to other techniques such as adversarial
training and Monte Carlo dropout can be exploited for further mitigation.

5.5.1 Datasets & architectures

The plethora of sensors embedded in wearable and mobile devices has enabled affordable biosig-
nal collection, delivering fast solutions for monitoring physical and mental health. Biosig-
nals, such as brain electroencephalography (EEG) or heart electrocardiography (ECG), can be
non-invasively measured, allowing for automatic detection of many health conditions such as
epilepsy (Acharya et al., 2013), depression (de Aguiar Neto and Rosa, 2019) or heart fail-
ures (Konstantinos et al., 2021).

For the evaluation, two publicly-available biometric signal datasets are used: (1) electrocar-
diogram heart attack (ECG) (Dau et al., 2019), and (2) electroencephalogram eye-movement
artifacts (EEG-A) (Hamid et al., 2020). Datasets are split into 80% training, 10% validation, and
/10% testing maintaining class proportions. Each dataset is paired with a different architecture:
FCNet (Wang et al., 2017) for ECG and VGG16 (Simonyan and Zisserman, 2014) for EEG-A.

ECG (Dau et al., 2019) is a dataset of univariate time series of ECG signals of length 140
extracted from a single patient. Each signal falls into one of 5 classes combined to make two
labels: Normal (N) and Abnormal (R-on-T, PVC, SP, UB).

EEG-A (Hamid et al., 2020) consists of univariate time series of length 2000 extracted from 213
patients from the Temple University Artifact Corpus (v2.0). 21 EEG channels were retained from
all patients, and signals were resampled to 250 Hz. All EEG signals were bandpass filtered (0.3-
40 Hz) using a second-degree Butterworth filter and notch filtered at the power lower frequency
60 Hz. Segments of clean and eye movement artifact signals were used for this specific task.

FCNet (Wang et al., 2017) is a fully convolutional network (CNN) consisting of 4 blocks each
containing a 1D convolution, batch normalization (BN), and Rectified Linear Unit (ReLU) acti-
vation. The output of the fourth block is averaged over the time dimension using global average
pooling (GAP) and fed to a 1D convolutional layer with filter length 1. Convolutional layers all
have 128 filters of lengths 8, 5, 5, and 3, all with a stride of 1 and zero padding to preserve the
length of each time series input.

VGG16 (Simonyan and Zisserman, 2014) is a CNN composed of 13 blocks containing a 1D
convolution, BN, and ReLU activation. Convolutions filters are distributed across the blocks
following 2× 64, 2× 128, 2× 256, 3× 512, 3× 512 all with length 3 and stride 1. Consecutive
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blocks with different numbers of filters are interleaved with a max pooling layer of length 2 and
stride 2. The output of these blocks is fed to a GAP and 3 FC layers with dropout and ReLU
activation.

5.5.2 Baselines

We compare early exit ensembles against the undefended backbone model without any exits (No
mitigation), the backbone model trained completely with PGD adversarial attacks (PGD AT), and
combinations of early exit ensembles with orthogonal existing techniques: adversarial training
(AT) and Monte Carlo dropout (MCDrop).

No mitigation. The unchanged backbones FCNet and VGG16 represent naive deep learning
models without any mitigation or robustness techniques applied to it.

PDG adversarial training (PGD AT). The backbone model trained with adversarial samples
generated with the PGD attack.

Early exit + PGD AT. Early exit ensemble trained with adversarial examples generated with the
PGD attack, which had access to only the last exit (i.e., meaning the backbone), the averaging of
the predictions from the individual exits is applied. A total of 5 exits were used for the ensemble.

Early exit + PGD-ADV AT. Early exit ensembles trained with samples generated by the PGD
average attack. Here, the attack has access to all individual exits which form the ensemble.

Early exit + PGD-MAX AT. Early exit ensembles trained with samples generated by the PGD
max-average attack.

Early exit + MCDrop. An approximate Bayesian probabilistic approach implemented by adding
dropout layers to each of the exit blocks (including the last one of the backbone) during training
and activating them during inference. Further increases diversity and adds stochasticity to the
model. A total of 5 exits were used for the ensemble. Additionally, a total of 5 Monte Carlo
samples are taken with a dropout rate of pMC = 0.2.

Early exit + PGD AT + MCDrop. Early exit ensembles trained with samples generated by the
PGD attack and dropout in the exit blocks. At inference time, the averaging of the predictions
from the individual exits and MC samples are applied.

Early exit + PGD-AVG AT + MCDrop. Early exit ensembles trained with samples generated
by the PGD average attack and dropout in the exit blocks.
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Early exit + PGD-MAX AT + MCDrop. Early exit ensembles trained with samples generated
by the PGD max-average attack and dropout in the exit blocks.

PGD-AVG and PGD-MAX, both as attacks and adversarial training, are not applied to the back-
bone (without exit) model since they would be the same as a naive PGD since the ensemble size
is 1.

5.5.3 Hyperparameters

All models are trained using the Adam optimizer and an optimally tuned learning rate, batch size,
and epochs: FCNet (1e−2, 200, 250), and VGG16 (1e−4, 200, 200). All results for our approach
are based on a loss with αi =1 as well as a learning capacity factor and exit strategy optimally
tuned as follows: FCNet (γ=0.0, Block-wise), and VGG16 (γ=0.5, Semantic) with an ensemble
size M = 5. To prevent overfitting, early stopping is based on the best validation accuracy with
a patience of 5.

For the PGD (incl. AVG and MAX) adversarial attacks, 20 maximum iterations are used. The
perturbation strength is set at ϵ = 100mV and ϵ = 10mV for EEG and ECG, respectively,
while β = ϵ/4 for both. PGD attacks (especially on EEG data) can bring strong and percepti-
ble square-wave displacements, which would allow both experts and non-experts to distinguish
them. With the aforementioned values, we provide the strongest perturbations possible while
keeping the attack imperceptible to at least a non-expert eye. For UAP, we used the default val-
ues in the original work from Moosavi-Dezfooli et et al. (2017) where min fool rate=0.8 and a
sample size=100. For adversarial training, we use the same configurations as the attacks with 10
iterations for the PGDs.

5.6 Results

We present the results of early exit ensembles on defending against attacks from the attack vec-
tor 1 (Section 5.6.1) and 2 (Section 5.6.2) experiments and compare them to the aforementioned
baselines. Additionally, in Section 5.6.2, we analyze the power of combining early exit ensem-
bles with existing techniques for better mitigation. Performance is evaluated using class weighted
F1 and expected calibration error (ECE). While F1 indicates model accuracy, ECE measures
model calibration as the expected difference between accuracy and predicted confidence. See
Section 2.3.5 for further details.
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ECG - FCNet

No attack UAP PGD

Mitigation F1 ECE F1 ECE F1 ECE

No mitigation 0.98 0.01 0.70 0.16 0.33 0.27

PGD AT 0.92 0.07 0.93 0.03 0.73 0.13

Early exit 0.99 0.01 0.89 0.15 0.77 0.11

EEG-A - VGG16

No attack UAP PGD

Mitigation F1 ECE F1 ECE F1 ECE

No mitigation 0.81 0.11 0.76 0.05 0.18 0.66

PGD AT 0.80 0.03 0.80 0.03 0.82 0.05

Early exit 0.85 0.03 0.80 0.06 0.81 0.04

Table 5.6.1: Impact of adversarial perturbations on F1 score and ECE for undefended, PGD 5.5
adversarial training (AT) and EarlyExit. PGD: ϵ = 100mV and ϵ = 10mV for EEG and ECG,
respectively, and β = ϵ/4 (iterations=20, AT iterations=10). UAP: min fool rate=0.8 and sam-
ple size=100. The best results are in bold.

5.6.1 Attack Vector 1

Assumption

The adversary is unaware of the intermediate exits.

This scenario represents the attacks in Attack Vector 1, PGD, and UAP, described in Section 5.6.1
where the adversary is unaware of the intermediate exits either because it could not access them
or for efficiency reasons. Table 5.6.1 summarizes the accuracy (as measured by the F1 score),
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and the expected calibration error (ECE) results when the models are under adversarial attack.

As expected, Early exit provides better accuracy on clean data (no attack) compared to the unde-
fended (no mitigation) model provided by averaging results from an ensemble of models. Addi-
tionally, PGD AT shows a lower accuracy on clean data demonstrating one of the disadvantages
of adversarial training as mentioned in Section 5.2.2. As a universal adversarial attack, UAP de-
grades accuracy less than PGD; however, early exit ensembles can significantly mitigate it with
a 19pp improvement on ECG-FCNet. As we know, the PGD attack applied in this scenario is a
white box attack that can see only the output of the final exit, allowing for the intermediate exits
in the ensemble to disagree with the attacked exit and provide the desired mitigation. Compared
to the undefended model, our technique improves accuracy by 44pp and 63pp for ECG-FCNet
and EEG-A-VGG16, respectively. With the decrease in accuracy, we see an increase in ECE
when the model is attacked. This is expected behavior that adversarial mitigation techniques try
to improve on. Early exit can decrease the ECE compared to the vanilla model and, in most cases,
provides a better-calibrated model compared to PGD AT, except for the FCNet under UAP, where
PGD AT provides better accuracy and lower ECE. Nevertheless, Early exit shows that our ap-
proach can provide comparable (even better in some instances) mitigation to the state-of-the-art
adversarial training without any previous exposure to the adversarial attack presenting a general
(non-attack-specific) approach.

5.6.2 Attack Vector 2

Assumption

The adversary is aware of the intermediate exits.

In a second scenario, Table 5.6.3, shows the impact of adversarial attacks which are aware of
the intermediate exits of the model and maximize the overall loss accordingly. Here, early exit
ensembles can still provide adversarial robustness, although the more the attacker aims the indi-
vidual exits weaker the mitigation. The strength of our approach still relies on the fact that it does
not depend on a specific attack or training procedure, making it a perfect technique to combine
with adversarial training. In a real-world deployment, early exit ensembles have the potential
to have a high level of robustness provided by adversarial training of known attacks as well as

120



ECG - FCNet

No attack PGD-AVG PGD-MAX

Mitigation F1 ECE F1 ECE F1 ECE

Early exit 0.99 0.01 0.71 0.10 0.55 0.11

Early exit + PGD AT 0.92 0.11 0.95 0.06 0.94 0.06

Early exit + PGD-AVG AT 0.93 0.18 0.87 0.10 0.86 0.08

Early exit + PGD-MAX AT 0.92 0.28 0.90 0.03 0.86 0.01

EEG-A - VGG16

No attack PGD-AVG PGD-MAX

Mitigation F1 ECE F1 ECE F1 ECE

Early exit 0.85 0.03 0.76 0.04 0.48 0.24

Early exit + PGD AT 0.83 0.07 0.80 0.04 0.82 0.07

Early exit + PGD-AVG AT 0.82 0.11 0.82 0.10 0.81 0.08

Early exit + PGD-MAX AT 0.82 0.04 0.78 0.27 0.82 0.04

Table 5.6.3: Impact of adversarial perturbations on F1 score and ECE for Early exit and or
combined with traditional PGD AT and exit aware AT (PGD-AVG, PGD-MAX). The best results
are in bold.

robustness towards new and unknown attacks. As discussed in Section 5.4, PGD-MAX is the
strongest attack given its transferability characteristics. We can see this in our results too, where
early exit ensembles benefit more from the PGDs adversarial training to compensate for the ac-
curacy loss caused by PGD-MAX. However, contrary to the lightweight approach provided by
early exit ensembles, PGD-MAX is very expensive to produce, circa 10x more expensive than
PGD and PGD-AVG. Crafting a PGD-MAX attack for training purposes on a VGG16 model
(batch size of 250 samples), costs 475 seconds on an Nvidia Tesla-V100 GPU, while PGD and
PGD-AVG cost 38 and 48 seconds, respectively ?. Early exit ensembles, instead, only add a
slight memory overhead of 16% and computation overhead of 12% in the worst-case scenario
(VGG16). Another interesting observation stemming from the results is the fact that, when
combined with Early Exit, naive PGD AT can defend well against its exit aware versions while
significantly reducing the cost of training too.
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ECG - FCNet

No attack PGD-AVG PGD-MAX

Mitigation F1 ECE F1 ECE F1 ECE

Early exit + MCDrop 0.99 0.01 0.74 0.08 0.60 0.10

Early exit + PGD AT + MCDrop 0.92 0.10 0.95 0.05 0.95 0.06

Early exit + PGD-AVG AT + MCDrop 0.93 0.15 0.89 0.10 0.86 0.07

Early exit + PGD-MAX AT + MCDrop 0.92 0.26 0.90 0.03 0.86 0.01

EEG-A - VGG16

No attack PGD-AVG PGD-MAX

Mitigation F1 ECE F1 ECE F1 ECE

Early exit + MCDrop 0.85 0.03 0.77 0.04 0.55 0.22

Early exit + PGD AT + MCDrop 0.83 0.06 0.80 0.04 0.82 0.07

Early exit + PGD-AVG AT + MCDrop 0.82 0.09 0.81 0.10 0.81 0.09

Early exit + PGD-MAX AT + MCDrop 0.82 0.04 0.78 0.30 0.83 0.04

Table 5.6.5: Impact of adversarial perturbations on F1 score and ECE for Early exit combined
with MCDrop, traditional PGD AT, and exit aware AT (PGD-AVG, PGD-MAX). For MCDrop,
a dropout layer is added at each exit block (including the final). A total of 5 exits were used for
the ensemble. Additionally, a total of 5 Monte Carlo samples are taken with a dropout rate of
pMC = 0.2. Best results are in bold.

Finally, we run experiments on increasing the diversity of the early exit ensemble and adding
stochasticity to the model through the addition of Monte Carlo dropout. Our intuition is that
even if the adversary has access to the intermediate exits, it might not be aware that the dropout
is activated during inference, and even if it knows that, many queries to the model are needed
to understand the number of samples or capture the different implicit architectures created when
dropout is activated. In Table 5.6.5, we show how the introduction of MCDrop impacts the
accuracy and the calibration error in the presence of the attacks. When no attack is applied, the
addition of MCDrop does not improve the accuracy of the prediction; however, it shows a slight
improvement in ECE compared to the results in Table 5.6.3. It is when the adversary starts to
attack the individual exits that MCDrop comes into play by increasing the accuracy up to 7pp.
When using adversarial training with Early Exit, the introduction of MCDrop does not impact
the accuracy (max 1pp), suggesting that the early exit ensembles and adversarial training are
sufficient for mitigation. Nevertheless, MCDrop decreases the ECE overall, presenting better-
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calibrated models in the presence of adversarial attacks.

5.7 Discussion and conclusions

In this chapter, which concludes the empirical works of this thesis, we propose an adversarial
mitigation technique for biosignal classification tasks. Deep learning techniques are increasingly
used for decision-making in health applications; however, these can easily be manipulated by
adversarial examples across different clinical domains. Their security and privacy vulnerabilities
raise concerns about the practical deployment of these systems. The number and variety of
adversarial attacks grow continuously, making it difficult for mitigation approaches to provide
effective solutions. Current mitigation techniques often rely on expensive re-training procedures
as new attacks emerge.

The approach proposed in this chapter is based on our previous findings in Chapter 4 interpreting
early exit neural networks as an ensemble of weight-sharing sub-networks. Our experiments
on state-of-the-art deep learning models show that early exit ensembles can provide robustness
generalizable to various white-box and universal adversarial attacks. Our framework increases
the accuracy of vulnerable deep learning models up to 60 percentage points while providing
adversarial mitigation comparable to adversarial training. This is achieved without previous
exposure to the adversarial perturbation or the computational burden of re-training.

Additionally, we show that the orthogonality of early exit ensembles to existing techniques such
as adversarial training and Monte Carlo dropout can be exploited for further mitigation. The
aggregation of different adversarial mitigation techniques is well known to be a good strategy
under the condition that the single approach is a strong defense mechanism even if used sep-
arately. The strength of early exit ensembles is the ability to work well on unknown attacks,
making it a universal strategy. We envision future deep learning models to be still trained with
adversarial examples for known attacks and use attack-agnostic techniques such as early exit
ensembles to handle, to some extent, future attacks.

Finally, considering the findings in this chapter and in Chapter 4, we can conclude that early
exit ensembles are a very powerful framework that can be used for uncertainty estimation, in-
distribution calibration, out-of-distribution detection, and adversarial mitigation. These benefits
come with ease of implementation since the framework can be directly applied to the already
known early exit networks, which did not exploit the full potential of this paradigm on robust-
ness until this work. Additionally, the small computation footprint combined with the strong
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transferability across architectures and datasets positions early exit ensembles as a de facto base-
line for future work on robustness.
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Chapter 6

Conclusion and future directions

At the beginning of this dissertation, we highlighted the importance of uncertainty estimation in
health-critical scenarios. We discussed the limitations of traditional methods and current tech-
nology and focused our research efforts on investigating different techniques to efficiently and
accurately provide uncertainty aware mobile health applications. Contribution-wise, we first pro-
posed a solution to enable already trained deep learning models to output uncertainty estimates
alongside the classification prediction in mobile sensing scenarios (Chapter 3) and followed with
a new framework that proposes an efficient ensemble-based approach for uncertainty quantifica-
tion with an analysis of in-distribution calibration and out-of-distribution detection (Chapter 4).
We concluded by exploring the latter framework as an effective attack-agnostic method for ad-
versarial mitigation in biosignal classification tasks (Chapter 5). Our findings can be used better
to inform machine learning systems with respect to downstream tasks and also to yield real-world
robustness against distributional shifts and adversarial attacks. In this chapter, we summarize our
key contributions and propose several avenues for further research.

6.1 Summary of contributions

In this section, we reflect on the research questions introduced in Chapter 1 and summarize the
major contributions of this dissertation.
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6.1.1 Uncertainty aware mobile sensing for edge computing
platforms

Research Question 1: How can we provide uncertainty awareness on deep learning models

which have already been trained and deployed?

Contribution 1: In Chapter 3, we proposed an efficient framework that enables already trained
deep learning models to provide uncertainty estimates without the need for re-training or fine-
tuning strategies. Our framework is grounded on the fact that when using a neural network
trained with dropout, the network does not have a deterministic structure anymore since it is
partly described by random variables. Based on this, we enabled the convolution operations in
the stochastic network generated by dropout to apply to inputs described by probabilistic distri-
butions and generate distributions as outputs. These distributions are then propagated through the
whole network carrying and transmitting the information on the prediction and the uncertainty of
these predictions. Our framework is efficient by design and built from the ground up to generate
predictive uncertainty, in addition to the classification task, from a single forward-pass of input
data. This pipeline ensures minimal overhead, especially when compared with techniques that
rely on multiple forward passes or several models, and an equal linear rise in energy and latency
requirements, making them unfeasible for edge devices. Our performance and efficiency evalu-
ation with mobile applications datasets on Nvidia Jetson TX2 and Nano edge platforms showed
that our approach obtains not only robust and accurate uncertainty estimations but also outper-
forms state-of-the-art methods in terms of systems performance, reducing energy consumption
(up to 28–folds), keeping the memory overhead at a minimum while still improving accuracy
(up to 16%). Findings from this chapter were published at the ACM/IEEE Symposium on Edge

Computing, SEC, 2021.

6.1.2 Early exit ensembles for uncertainty quantification

Research Question 2: How can existing efficient paradigms be exploited for uncertainty quan-

tification?

Contribution 2: Chapter 4 introduced early exit ensembles, a novel framework for enabling
uncertainty quantification in any feed-forward neural network. At its core, there is a new inter-
pretation of early exit neural networks capable of capturing predictive uncertainty via an implicit
ensemble of early exits. In particular, early exit ensembles are a collection of weight-sharing
sub-networks created by adding exit branches to any backbone neural network architecture. Our
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approach facilitates training all ensemble members jointly in a single model, as well as pro-
viding uncertainty estimations in a single forward-pass. The computational efficiency of train-
ing and inference facilitated by our framework means that early exit ensembles can be applied
to a wide range of real-world applications. To showcase this, we evaluated our approach on
several classification tasks using state-of-the-art deep learning architectures applied to medical
datasets. Our experiments suggested that early exit ensembles have the potential to improve the
trustworthiness of models in high-risk medical decision-making, given their ability to provide
well-calibrated predictive uncertainty for both in- and out-of-distribution input samples. Finally,
additional empirical evaluation of the proposed solution demonstrated strong performance in ac-
curacy and uncertainty metrics as well as computation gain highlighting the benefit of combining
multiple structurally diverse models that can be jointly trained. Work associated with Chapter 4
is included in several publications at the Workshop on Human In the Loop Learning, HILL, at

ICML, 2021; Machine Learning for Health, ML4H, 2021 conference; and the IEEE Interna-

tional Conference on Acoustics, Speech, & Signal Processing, ICASSP, 2022. At ML4H’21, this
work was selected for a spotlight talk and granted Best Thematic Paper Award for best contribu-
tion to Real-world robustness and generalization in machine learning for health, validating the
relevance of this study to the research community, especially, the one working on health-related
problems.

6.1.3 Towards adversarial mitigation with early exit ensembles

Research Question 3: To what extent can the introduced ensemble-based framework mitigate

against inference time adversarial attacks? How can its orthogonality to existing mitigation

techniques be exploited for better robustness?

Contribution 3: In Chapter 5, we proposed an attack-agnostic adversarial mitigation approach
for mobile health tasks. To achieve the desired adversarial defense, we leverage our findings in
Chapter 4 interpreting early exit neural networks as an ensemble of weight-sharing sub-networks.
The number and variety of adversarial attacks grow continuously; therefore, our solution be-
comes crucial to health-critical deep learning techniques as new attacks emerge. Our intuition on
using this defense mechanism relies on the fact that the majority of adversarial attacks are built to
fool traditional feed-forward neural networks and generally discard or are unaware of the inter-
mediate exits. To test our hypothesis, we considered various white-box and universal adversarial
attacks showing that our framework increases the accuracy of attacked deep learning models up
to 60 percentage points while providing adversarial mitigation comparable to adversarial train-
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ing. When delving deeper into other scenarios, we noticed that when the adversary is aware of
the intermediate exits, our technique can still provide some level of robustness, but the mitigation
is generally weaker. To solve this, we showed that we could exploit the orthogonality of early
exit ensembles to existing techniques such as adversarial training and Monte Carlo dropout for
further mitigation. Our work on adversarial mitigation was published at the IEEE International

Engineering in Medicine and Biology Conference, EMBC, 2022; and the Workshop on Security

and Privacy for Mobile AI, MobiSys, 2021.

6.2 Future work

In this dissertation, we have answered some research questions introduced in Chapter 1; never-
theless, many future directions were naturally uncovered.

6.2.1 Framework enhancements and optimizations

Model diversity is a very important characteristic when building a strong framework that can
accurately capture predictive uncertainty. This is especially crucial in ensemble-based tech-
niques, where having diverse members leads to diverse predictions better at recognizing out-of-
distribution or adversarial samples. Therefore, new methodologies for enforcing model diversity
in order to boost ensemble performance is an interesting research direction. A limitation of early
exit ensembles, presented in Chapter 4, is the ensemble size tied to the underlying backbone
architecture. To overcome this issue, future work could add dropout layers and/or add multiple
heads to the exit blocks to further increase ensemble size and diversity between ensemble mem-
bers. Additionally, in Chapter 4 we introduced several exit placement strategies and empirically
evaluated their performance in terms of accuracy and uncertainty quality. Future work could
include other optimization strategies, such as traditional greedy search algorithms or the use of
Neural Architecture Search, to find the best performing members of the early exit ensemble.

Several performance enhancements could be developed for the framework introduced in Chap-
ter 3. Our approach, based on Gaussian approximations of the internal statistics of the network,
is a feasible solution to providing uncertainty estimates on edge devices. It is also a powerful
solution considering that the approach does not require re-training or fine-tuning; however, it
comes with some limitations too. Our approximation could be improved by considering the fact
that even if the inputs were perfectly Gaussian, the outputs of non-linear activations naturally
yield skewed distributions with values possibly in a limited subset of the domain, which are
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not perfectly Gaussian distributed. Future work, therefore, could consider other approximations
that minimize this discrepancy while simultaneously yielding uncertainty estimates for exist-
ing neural networks without increased operational costs, as is the case with our approach. In
this work, we focus on enabling convolution neural networks to generate predictive uncertainty
estimations. Our approach could be extended to recurrent neural networks. However, these al-
terations require additional effort in providing the right mathematical foundations and testing
their feasibility on real-life datasets. Additionally, our framework focuses on providing predic-
tive output distributions on models that have been trained with dropout regularization. Another
widely used technique for regularization is batch normalization which could eventually be used
to approximate the basic operations in neural networks. In this way, the networks trained with
batch normalization can get the same benefits at inference time. Nevertheless, a key advantage
of this framework is the fact that we model each layer to output predictive distributions. This
can be a very flexible instrument for many applications, e.g., early prediction models, a class
of conditional computation models that exit once a criterion (e.g., sufficient accuracy and low
uncertainty) is satisfied at early layers. Such models can be very useful in intermittent learning
systems which rely on harvested energy (Lee and Nirjon, 2019; Montanari et al., 2020).

6.2.2 Including uncertainty in the training procedure

The majority of efficient uncertainty aware approaches, including ours, only exploits uncertainty
at inference time. However, considering this valuable information during training can lead to
better performance. Current methods that incorporate this functionality tend only to be pure
Bayesian approaches that struggle with underfitting at scale and parameter efficiency (Dusen-
berry et al., 2020). For instance, unlike Monte Carlo dropout or deep ensembles, early exit en-
sembles have access for free to uncertainty within the ensemble during training. We envision that
our framework could be extended to exploit the uncertainty during training for adaptive decision-
making on joint tasks such as signal interpolation, to be included in the classification loss for
better performance, or to handle human annotation uncertainty in the downstream task (Kwon
et al., 2019).

6.2.3 End-to-end systems for adversarial mitigation

Currently, the majority of research on adversarial attacks and defense focuses on image data,
with only 5% of the work dedicated to other types of sensor data and signals (such as EEG,
ECG, IMU, etc.) (Sadeghi et al., 2020). In Chapter 5, we have presented a solution working on
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biosignal mobile tasks. We strongly believe that future work should invest more in the robustness
of mobile sensing applications since a vast majority of health-related real-world applications are
completely different from clinical settings in terms of the type of data used, noise, and efficiency
considerations.

Additionally, as we saw in Chapter 5, the more information about the model and the training data
the adversary has, the stronger the attack and the lower the mitigation effect. However, in order
to retrieve the model and underlying data distribution, for instance, the attack needs to gain ac-
cess to the hardware itself or the device-device/cloud-device communication. The same is valid
for later stages of the attack where the adversary needs access to the peripherals (camera, BCI
device, earbuds, or smartwatch) to inject the perturbed malign signal. Given this behavior, we
believe that the way forward to guarantee robustness to adversarial attacks is to provide end-to-
end systems built from the ground up to guarantee defense against adversarial attacks by using
both traditional system security functionalities and machine learning mitigation approaches. We
have already started working on this (Tarkhani et al., 2022) by providing an information flow
control mechanism to detect information flow violations in BCI applications. However, we be-
lieve that many other hybrid approaches can be introduced. A good direction is the utilization
of trusted execution environments (TEE). However, edge devices have limited computational
resources; therefore, running the whole model inside TEEs is unfeasible. Several works have
proposed running only specific layers inside the TEE; nevertheless, choosing which layers is a
difficult task (Mo et al., 2020, 2021). We believe that early exit ensembles can facilitate this
task by offering an intuitive way of choosing to run only the exit blocks inside TEEs. Therefore,
future work can further explore this direction.
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Gustav Mårtensson, Daniel Ferreira, Tobias Granberg, Lena Cavallin, Ketil Oppedal, Alessandro
Padovani, Irena Rektorova, Laura Bonanni, Matteo Pardini, Milica G Kramberger, et al. The
reliability of a deep learning model in clinical out-of-distribution mri data: a multicohort study.
Medical Image Analysis, 66:101714, 2020.

Akhil Mathur, Anton Isopoussu, Fahim Kawsar, Nadia Berthouze, and Nicholas D Lane.
Mic2mic: using cycle-consistent generative adversarial networks to overcome microphone
variability in speech systems. In Proceedings of the 18th International Conference on Infor-

mation Processing in Sensor Networks, pages 169–180. ACM, 2019.

141



Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris Demetriou, Ilias Leontiadis, An-
drea Cavallaro, and Hamed Haddadi. Darknetz: Towards model privacy at the edge using
trusted execution environments. arXiv preprint arXiv:2004.05703, 2020.

Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and Nicolas
Kourtellis. Ppfl: privacy-preserving federated learning with trusted execution environments.
In Proceedings of the 19th Annual International Conference on Mobile Systems, Applications,

and Services, pages 94–108, 2021.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep
neural networks. In International Conference on Machine Learning, pages 2498–2507.
PMLR, 2017.

Alessandro Montanari, Mohammed Alloulah, and Fahim Kawsar. Degradable inference for en-
ergy autonomous vision applications. In Adjunct Proceedings of the 2019 ACM International

Joint Conference on Pervasive and Ubiquitous Computing, UbiComp/ISWC ’19, 2019. ISBN
978-1-4503-6869-8. doi: 10.1145/3341162.3349337. URL http://doi.acm.org/10.

1145/3341162.3349337.

Alessandro Montanari, Manuja Sharma, Dainius Jenkus, Mohammed Alloulah, Lorena Qendro,
and Fahim Kawsar. eperceptive: energy reactive embedded intelligence for batteryless sensors.
In Proceedings of the 18th Conference on Embedded Networked Sensor Systems, pages 382–
394, 2020.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple
and accurate method to fool deep neural networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, 2016.

Seyed-Mohsen Moosavi-Dezfooli et, Alhussein Fawzi, Omar Fawzi, and Pascal. Frossard. Uni-
versal adversarial perturbations. In Proceedings of the IEEE conference on computer vision

and pattern recognition, 2017.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated
probabilities using bayesian binning. In Twenty-Ninth AAAI Conference on Artificial Intelli-

gence, 2015.

Feng Nan and Venkatesh Saligrama. Adaptive classification for prediction under a budget. In
Advances in neural information processing systems, pages 4727–4737, 2017.

Rajalakshmi Nandakumar, Shyamnath Gollakota, and Nathaniel Watson. Contactless sleep apnea

142

http://doi.acm.org/10.1145/3341162.3349337
http://doi.acm.org/10.1145/3341162.3349337


detection on smartphones. In Proceedings of the 13th annual international conference on

mobile systems, applications, and services, pages 45–57, 2015.

Akil Narayan, Claude Gittelson, and Dongbin Xiu. A stochastic collocation algorithm with
multifidelity models. SIAM Journal on Scientific Computing, 36(2):A495–A521, 2014.

Radford M Neal. Probabilistic inference using markov chain monte carlo methods. 1993.

Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and Dmitry P Vetrov. Structured
bayesian pruning via log-normal multiplicative noise. Advances in Neural Information Pro-

cessing Systems, 30, 2017.

Leo WT Ng and Karen E Willcox. Multifidelity approaches for optimization under uncertainty.
International Journal for numerical methods in Engineering, 100(10):746–772, 2014.

NHTSA. Nhtsa. pe 16-007. jan 2017. tesla crash preliminary evaluation report. technical report.
u.s. department of transportation, national highway traffic safety administration. Jan 2017.

Ian Osband. Risk versus uncertainty in deep learning: Bayes, bootstrap and the dangers of
dropout. In NIPS workshop on bayesian deep learning, volume 192, 2016.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin,
Joshua V Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your
model’s uncertainty? evaluating predictive uncertainty under dataset shift. arXiv preprint

arXiv:1906.02530, 2019.

Tianyu Pang, Chao Du, Yinpeng Dong, and Jun Zhu. Towards robust detection of adversarial
examples. Advances in Neural Information Processing Systems, 31, 2018.

Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. Improving adversarial robustness
via promoting ensemble diversity. In International Conference on Machine Learning, pages
4970–4979. PMLR, 2019.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as
a defense to adversarial perturbations against deep neural networks. In 2016 IEEE symposium

on security and privacy (SP), pages 582–597. IEEE, 2016.
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