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Abstract

Earables (in-ear wearables) present a new frontier in wearables. Acting both as leisure

devices, providing personal audio, and as computing and sensing platforms, earables can

collect sensory data from the head. However, earables, more than the majority of other

wearables (like smartwatches), have inherent size, shape, and usability constraints arising

from their small form factor. These restrictions inevitably limit the number, type, and

placement of the sensors that could be added to such platforms. Because of that, earables’

full potential has yet to be truly unlocked. In this dissertation, we characterize and ex-

plore three different sensors that realistically will be integrated into future earables. With

usability and feasibility constraints in mind, we investigate (i) in-ear, 9 degrees of freedom

(DoF), inertial measurement units (IMU); (ii) microphones (facing in-the-ear-canal); (iii)

photoplethysmography sensors (PPG). Data collected by earables augmented with these

sensors in and around the ear may enable several personal-scale sensing applications such

as augmented/virtual reality, improved navigation, medical rehabilitation, fitness tracking,

identification, and health condition screening. This is facilitated by the human head being

subject to fewer vibrations and random movement variations than the lower parts of the

body, thanks to the inherent damping in the musculoskeletal system.

First, we study inertial sensing for head movements tracking. However, an absolute ref-

erence is key in order to re-calibrate IMUs and track absolute rotations, thus enabling

more advanced applications. In mobile devices, this is done by coupling accelerometers

and gyroscopes with a magnetometer. Though, as of today, no earables are equipped with

a magnetometer. Hence, we investigate how to add one to an existing pair of earables

(eSense). After characterizing the source of interference that would affect a magnetome-

ter in an earable, and understanding how traditional calibrations fall short, we devise a

user-transparent magnetometer calibration for earables. This sheds light on the potential

of earables for both relative motion tracking as well for more advanced use cases such as
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navigation.

The second part of this dissertation features another commodity sensor: the microphone.

We focus on in-ear facing microphones, exploiting the unique positioning of earables. Un-

like IMUs, not yet readily available in all consumer earables, in-ear facing microphones are

already present in both high-end leisure earbuds (e.g., Apple AirPods Pro) and in hearing

aids for noise cancellation purposes. Leaning on that, we research in-ear acoustic sens-

ing for both motion sensing (step counting, hand-to-face gesture interactions, and human

activity recognition) and user-identification (based on acoustic-gait tracking). This explo-

ration paves the way to new interactions between users and earables, whilst increasing the

security of sensory earables (through identification).

Finally, we investigate ear-worn photoplethysmography (PPG) sensing. PPGs, like IMUs

and microphones, are easily integrated into an earable form factor. First, we identify the

optimal sensor placement for ear-worn PPG sensing, looking both at a resting baseline

as well as the impact of motion artifacts. Then, we focus on head movements and facial

expressions that people perform naturally when wearing earables, causing skin and tissues

displacements around the ear and inside the ear canal. Understanding such artifacts be-

comes key to the success of earables as the next wearable platform for accurate and reliable

cardiovascular health monitoring.

The prototypes developed, the data collected, the analyses performed, and the insights

drawn in this dissertation provide evidence of the potential of earables as a disruptive

platform for mobile personal-scale sensing.
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‘So it begins.’

King Théoden

Chapter 1

Introduction

Since the first smartphone hit the market, we have witnessed a rapid rise in mobile comput-

ing and mobile sensing [1]. The widespread diffusion of wearable technologies that followed

has ultimately led to the development of what is known as personal-scale sensing. Personal-

scale sensing, or the collection of fine-grained individual-scale data for sensing applications,

has become a key enabler of a number of applications to augment human perception and

enhance experience. With smartwatches and smart-rings, it is now possible to collect an

unprecedented wealth of data, at an individual-scale, from different locations on the hu-

man body. Personal-scale sensing relies on modern mobile and wearable devices to monitor

fitness, human activities, vital signs, provide context-aware information, and to augment

user experience and awareness in general.

Continuously tracking users’ behaviors enables a variety of services and applications. These

could be related to fitness, health, and mental well-being. Additionally, monitoring users

over time could also facilitate cognitive assistance (with context-aware recommendations,

navigation, and guidance), behavioral monitoring, augmented reality, seamless identifica-

tion, and life-logging [2]. Users leverage their mobile devices (e.g., smartphones, smart-

watches, smart-rings, smart-earbuds, glasses, etc.) equipped with multiple sensors (e.g.,

inertial measurement units, microphones, photoplethysmography, etc.) to measure their

vital signs, keep a record of their daily activities, and get insights on how to improve their

lifestyle.

Recent years have shown a new trend in wearables, with the steady diffusion of wireless

head-worn devices, such as helmets, glasses, brain computer interfaces (BCIs), and earbuds
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—forecasted to account for the largest share of the wearable market1. Head-worn devices

offer fascinating sensing opportunities as they are positioned at an extremely promising

vantage point on the body: the user’s head. Sensing around the human sensoria (i.e.,

brain, ears, eyes, nose, mouth) could open the door to tracking various vital functions

which could not be monitored through more conventional wearables like smartwatches. For

instance, head-worn wearables could be useful to sense vital functions such as neurological

activity [3], cardiovascular health [4, 5], hearing impairments, but also eating habits and

dietary signs [6, 7]. Inevitably, the sensing capabilities of head-worn wearables lead to

the birth of a new core component in the wearable personal-scale sensing ecosystem, thus

far mostly composed of smartphones and smartwatches (plus a few, less common, other

additions). With data coming from a new less-explored vantage point (i.e., the head), the

granularity of the information the user can benefit from dramatically increases.

This dissertation will focus on augmenting and pushing the envelope of what it is possible to

sense by leveraging earables (also known as smart-earbuds). Compared to existing devices

commonly adopted to monitor people’s health, fitness and activities, earables possess a

number of advantages:

i. unlike smartphones that do not have a location known a priori on the body (in the

hand of the user, left in whichever pocket of their jeans, etc.), earables, when worn,

have a stable position in the user’s ears;

ii. unlike smartwatches that suffer from continuous (random) wrist movements, earables

are less susceptible to motion artifacts as vibrations are naturally dampened by the

musculoskeletal system;

iii. finally, unlike other wearables worn at the extremities of the body, like smart-rings

and pulse oximeters, earables are not affected by phenomena like vasoconstriction,

which is often suffered in the fingers in cold conditions.

1.1 Challenges in earable research for personal-scale

sensing

Earables are certainly a new comer in the wearable ecosystem. Nevertheless, they have

the capability and potential to become staple platforms for personal-scale monitoring.

1https://www.statista.com/statistics/385658/electronic-wearable-fitness-devices-worldwide-shipments/

2
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To augment earables with new sensors and thus unlock their true potential for personal-

scale sensing, researchers are called to face a number of limitations. These, are further

complicated by data analysis issues, tight systems constraints, and usability requirements.

This section first surveys the general sensing and systems/data processing limitations that

arise in today’s earable research before focusing on the challenges specifically related to a

subset of sensors critical to enable personal-scale applications.

Sensing: Enabling personal-scale applications means being able to sense and aggregate

a multitude of different bio-signals simultaneously. Doing so on earables is still an open

research problem. It is still unclear which types of sensors can be integrated in earables

without altering their main functioning, i.e., audio playback. In particular, it is hard to

quantify to what extent these new modalities can provide data of high-enough-quality to

facilitate personal-scale applications. This stems from two main factors: (1) earables are

inherently small in form factor, making it hard for the manufacturers to accommodate a

set of different sensors; (2) due to the complex nature of human physiology and human

activities, bio-signals are inevitably noisy, with measurements often having poor signal-to-

noise ratio (SNR), ultimately resulting in low-quality data.

Systems/Data processing: Augmenting earables with multiple sensors opens the door

to a number of interesting scenarios, however, it also introduces the difficulty of processing

the continuous stream of data generated, without draining battery life. It then becomes key

to craft dedicated solutions that can guarantee not only low latency (often quasi-real-time)

in processing the collected data but, more importantly, ensuring minimal energy waste.

The need for low power consumption stems from the fact that augmenting user experience

through personal-scale sensing requires continuous and long-term monitoring of various

bio-markers and human activities. Doing so inevitably demands high power consumption,

quickly draining the device battery. For instance, existing commercially available wireless

earbuds can, on average, only operate continuously for 4 to 5 hours, with a full charge.

With the inclusion of more sensors, the need for more energy inevitably increases, thus

leading to even shorter operational time (i.e., duration of a battery cycle before you charge

the earbuds). Therefore, developing algorithmic pipelines which do not dramatically reduce

the battery-life of earables is yet another pressing challenge.

This dissertation deals with three specific sensing modalities, key enablers for personal-

scale applications: IMUs, microphones and PPG. The remainder of this section will break
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down the broad challenges facing earables discussed above, and relate them to the sensors

of interest in this thesis.

Inertial Measurement Unit

Research efforts are ongoing to determine the extent to which kinetic earables [2, 8, 9],

i.e., earables equipped with inertial measurement units (IMUs), can be used to track hu-

man activities. Early works have seen earables featured as a fitness tracker (e.g., step

counting [10]), as well as to monitor dietary habits (e.g., food and beverage intake and

classification [7]). Additionally, by looking at inertial data recorded from the ears, earables

have shown potential to detect medical conditions like teeth grinding or jaw clenching

(Bruxism) [11, 12]. Yet, prior to the writing of this dissertation, no one had explored the

potential of earables in tracking head movements [13]. By only being equipped with ac-

celerometers and gyroscopes, existing kinetic earables lack the presence of a magnetometer,

key to ensure the accuracy of the IMUs [14]. Besides, without an absolute reference, like

that provided by the Magnetic North, it is very hard to correctly initialize any inertial

motion tracking system [14,15]. The reason for absence of magnetometers in earables, and

the consequent little investigation around head motion tracking, mainly lies in the inherit

device form constraints of today’s earable platforms, and the consequent difficulty of en-

suring high-quality data. For instance, to embed a magnetometer in an earable, it is key

to avoid magnetic interference. Normally, this could be achieved by placing the sensor as

far as possible from, for example, sources of interference such as speakers and Bluetooth

circuitry. However, as we have discussed, the small size of earables is such that this is not

a viable option (Chapter 3).

In-ear microphone

Although limited, we have seen previous works where 6 degrees of freedom (DoF) IMUs

have been used in earables to sense motion [2,10]. Yet, interestingly, the literature lacks re-

search efforts related to exploring similar sensing opportunities with alternative modalities

that might be more commonly available in earables. For instance, earables are inherently

equipped with microphones (both external facing as well as in-ear facing) both for placing

calls and for adaptive noise canceling purposes. While embedding an in-ear microphone in

an earable is not as challenging as augmenting an earable with a magnetometer, ensuring

high-quality in-ear audio recordings presents a number of hurdles from a data process-
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ing point of view. Sound attenuation and background noise inevitably result in very low

signal-to-noise ratio (SNR), which ultimately makes sensing personal-scale motion with

external facing microphones extremely challenging. Besides, it is often very hard to dis-

cern and distinguish different types of motion from noise (as noise artifacts may appear

superimposed to the actual signal). In addition, while in-ear microphones could become

useful for motion-sensing personal-scale applications (Chapter 4 and Chapter 5), today’s

earable platforms lack application programming interfaces (APIs) to access those data. Fi-

nally, from a systems perspective, it becomes key to process the audio recordings efficiently

and often in a quasi-real-time fashion (e.g., to enable continuous step counting, activity

recognition, etc.), while trying to minimize the power consumption and preserve all the

information present in the data.

In-ear photoplethysmography:

If equipped with photoplethysmography sensors (PPG), earables can be used to contin-

uously monitor vital signs like resting heart rate and respiratory rate, as well as other

common fitness-related bio metrics (e.g., heart rate variability, blood oxygen saturation,

energy expenditure) [16–18]. Yet, as we will discuss in Chapter 6, the literature fails to

deliver systemic studies of motion artifacts experienced at different vantage points around

the ear. In particular, to facilitate earable-based photoplethysmography, there are a num-

ber of sensing challenges to overcome. First and foremost, it is not clear where is the best

location for sensing PPG in/around the ear. This has implications not only related to the

quality of the collected PPG data itself, but also on the form of the device and the overall

manufacturing of the earable. Additionally, the extent to which motion (both full body as

well as more specifically related to the head/face) affects the quality of the earable-sensed

PPG signal is still largely uncharted territory. The presence of motion induces artifacts

heavily impacting the PPG trace by altering the morphology of the PPG pulse (Chapter 6),

as well as jeopardizing the quality of the vital signs estimated from the PPG data.

1.2 Thesis and substantiation

We have seen how earables research, and specifically that for person-scale sensing, is still

an immature field under development and, as such, it is characterized by a myriad of

limitations and challenges yet to be tackled. To address the challenges and limitations in

existing earables research, our thesis is as follows: to enable earables for reliable personal-
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scale sensing applications, we need to investigate the real capabilities and limitations of a

set of sensors that could be capable of accurately monitoring different dimensions of human

activities, motion, and vital signs. To corroborate our thesis, we evaluate the performance

of three sensors that could realistically be the pillars of the next generation of earables. In

particular, we look at both their pitfalls as well as at the possible applications they would

enable. Ultimately, this dissertation answers the following research questions:

• Research Question 1: How can we track head movements with earables and how

can we improve the accuracy of the inertial tracking by adding a calibrated magne-

tometer?

• Research Question 2: How can we leverage in-ear microphones for general motion

sensing and can we exploit acoustic gait to identify users?

• Research Question 3: How can we enable in-ear photoplethysmography: where

is the best location around the ear to sense PPG and to what extent is in-ear PPG

robust to motion artifacts?

To address these questions we first assess the potential of in-ear accelerometer and gyro-

scopes for tracking head movements. Based on our findings, we explore how we can embed

a magnetometer in earables to improve the performances of continuous inertial motion

tracking. We then investigate the capabilities of in-ear microphones for an efficient gen-

eral motion sensing framework. On top of that, we devise an end-to-end system for user

identification based on acoustic gait. Subsequently, we study the quality of PPG when

collected in three different locations around the ear. Finally, after having identified the

best placement for in-ear PPG, we research the impact of a set of motion artifacts that

could particularly affect earables (i.e., head and facial movements).

1.3 Contribution and chapter outline

Acknowledging the limitations and challenges of earable sensing, in this dissertation, we

characterize and explore the potential of a set of three different sensors when embedded

in earables. We discuss the applications these new in-ear sensing modalities could en-

able. Ultimately, this Ph.D. thesis investigates in-ear, 9 degrees of freedom (DoF), inertial

measurement units (IMU), microphones facing in-the-ear-canal, and in-ear photoplethys-

mography sensors (PPG). We summarize the state-of-the-art earable sensing in Chapter 2,

while the rest of the dissertation is articulated in three main technical chapters addressing
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the research questions posed in the previous section. The three major contributions of this

work are outlined as follows:

Contribution 1: In-ear inertial sensing

In Chapter 3, we investigate earables for inertial sensing. Specifically, we look at head

tracking. Head tracking is a fundamental component in visual attention detection, which,

in turn, could be beneficial to improve the state of the art of hearing aid devices. Unfor-

tunately, earables have inherent size, shape, and weight constraints limiting the type and

position of the sensors on such platforms. For instance, lacking a magnetometer in all ear-

ables reference platforms, earables lack reference points. Thus, it becomes harder to work

with absolute orientations — key to track head rotations. We evaluate the performance

of eSense [2], a representative earable device, to track head rotations. By leveraging two

different streams (one per earbud) of inertial data (from the accelerometer and the gyro-

scope), we achieve an accuracy up to a few degrees. We further investigate the interference

generated by a magnetometer in an earable to understand the barriers to its use in these

types of devices.

Embedding magnetometers in earables is challenging, as earables heavily rely on radio

(mostly Bluetooth) communication (RF) and contain magnets for magnetic-driven speak-

ers and docking. We explore the feasibility of adding a built-in magnetometer in an earbud,

presenting the first comprehensive study of the magnetic interference impacting the mag-

netometer when placed in an earable: both that caused by the speaker and by RF (music

streaming and voice calls) are considered. We find that appropriate calibration of the

magnetometer removes the offsets induced by the magnets, the speaker, and the variable

interference due to Bluetooth communications. Further, we present an automatic, user-

transparent adaptive calibration that obviates the need for alternative, expensive, and

error-prone manual or robotic calibration procedures. Our evaluation shows how our cal-

ibration approach performs under different conditions, achieving convincing results with

errors below 3° for the majority of the experiments.

Contribution 2: In-ear microphone sensing

In Chapter 4 and Chapter 5, we explore the potential of in-ear facing microphones for

personal-scale human motion sensing. Interestingly, due to the interference from head

movements and/or background noise, commonly-used modalities (e.g., IMUs and tradi-
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tional, outward-facing microphones) fail to reliably detect both intense and light motions.

To obviate this, in Chapter 4 we propose OESense, an acoustic-based in-ear system for

general human motion sensing. The core idea behind OESense is the joint use of the occlu-

sion effect (i.e., the enhancement of low-frequency components of bone-conducted sounds

in an occluded ear canal) and an inward-facing microphone, which naturally boosts the

sensing signal and suppresses external interference. We prototype OESense as an earbud

and evaluate its performance on three representative applications: step counting, activity

recognition, and hand-to-face gesture interaction. With data collected from 31 subjects,

we show that OESense achieves 99.3% step counting recall, 98.3% recognition recall for

5 activities, and 97.0% recall for five tapping gestures on human face, respectively. We

also demonstrate that OESense is compatible with earbuds’ fundamental functionalities

(e.g. music playback and phone calls). In terms of energy, OESense consumes 746 mW

during data recording and recognition and it has a response latency of 40.85 ms for gesture

recognition. Our analysis indicates such overhead is acceptable and OESense is potential

to be integrated into future earbuds.

Building on top of the remarkable performances showed by OESense in counting steps,

in Chapter 5, we decided to investigate the potential of earables in tracking gait (i.e.,

the walking style of a person). Human gait is a widely used biometric trait for user

authentication and identification. Given the wide-spreading, steady diffusion of earables

as the new frontier of wearable devices, we investigate the feasibility of earable-based gait

identification. Specifically, we look at gait-based identification from sounds as induced

by walking and propagated through the musculoskeletal system in the body. Once again,

our system, EarGate, leverages an in-ear facing microphone which exploits the earable’s

occlusion effect to reliably detect gait from inside the ear canal, without impairing the

general usage of earphones. With data collected from 31 subjects, we show that EarGate

achieves up to 97.26% Balanced Accuracy (BAC) with very low False Acceptance Rate

(FAR) and False Rejection Rate (FRR) of 3.23% and 2.25%, respectively. Further, our

measurement of power consumption and latency investigates how this gait identification

model could live both as a stand-alone or cloud-coupled earable system.

Contribution 3: In-ear photoplethysmography sensing

In Chapter 6, we study in-ear photoplethysmography (PPG) for uncovering exciting oppor-

tunities for sensing and cardiac healthcare research with earables. Photoplethysmography
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is a simple, yet very powerful, technique to study blood volume changes by looking at

light intensity variations. PPG sensors are mechanically straightforward and have become

an important enabler to detect various vital signs (including heart rate) across a range of

wearables like smart-watches and, more recently, earables. However, it is critical to under-

stand and characterize sensory measurements’ accuracy in earables impacting healthcare

decisions.

Therefore, we report a systematic characterization of in-ear PPG in measuring vital signs:

heart rate (HR), heart rate variability (HRV), blood oxygen saturation (SpO2), and respi-

ration rate (RR). First, we explore in-ear PPG inaccuracies stemming from different sensor

placements and motion-induced artifacts. We observe statistically significant differences

across sensor placements and between artifact types, with in-the-canal placement showing

the lowest inter-subject variability. However, our study shows the absolute error climbs up

to 29.84%, 24.09%, 3.28%, and 30.80% respectively for HR, HRV, SpO2, and RR, during

motion activities (like walking and running). Our results suggest that in-the-canal in-ear

PPG is reasonably accurate in detecting vital signs but demands careful mechanical design

and signal processing treatment.

Besides common activities like walking and running, PPG signals are also severely affected

by motion artifacts caused, for example, by skin and tissue deformations, blood flow dy-

namics or movement of the sensor over the skin. Generally, motion artifacts typically

manifest as significant changes to the signal’s morphology (e.g., missing heartbeats), hin-

dering the trustworthiness of vital signs extraction. This problem is particularly important

on earables. Despite being on the head, the most stable part of the human body, head

movements and facial expressions that people perform naturally when wearing earables,

cause skin and tissues displacements around the ear and inside the ear canal. Understand-

ing such artifacts is fundamental to the success of earables as the next wearable platform

for accurate and reliable cardiovascular health monitoring. However, the lack of com-

mercially available open-source PPG-equipped earables, together with the lack of existing

in-ear PPG datasets, are preventing the research community from tackling such pressing

issue.

To this end, in this dissertation, we first report on the design of a novel ear tip which

includes a 3-channel PPG coupled with a 6-axis motion sensor (IMU) co-located on the

same tip. This enables the sensing of synchronized and spatially distant (i.e., one tip in

the left and one in the right ear) PPG data at multiple wavelengths and the corresponding
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motion signature, for a total of 18 data streams. Leveraging our device we collected data

from 30 participants while performing 16 natural motions including both head/face mo-

tions (ranging from nods/shakes to eyes and mouth movements) and full body movements

(i.e., walking, running). Preliminary analysis on the dataset show interesting differences

across the various motion artifacts, hinting that is possible to investigate automatic recog-

nition tasks. This unique dataset will greatly support research towards making in-ear vital

signs sensing more accurate and robust, hence unlocking the full potential of the next-

generation PPG-equipped earables. The research presented in Chapter 6 has been done in

collaboration with researchers at Nokia Bell Labs, Cambridge (UK).
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‘A full belly is little worth where the

mind is starved.’

Mark Twain

Chapter 2

Related Work

In the previous chapter we discussed the potential of earables for future personal-scale

sensing applications. After discussing the limitations and challenges of today’s earable

platforms, in this chapter we proceed by reviewing techniques and applications of earables

for personal-scale sensing. Specifically, we discuss prior work on kinetic earables, i.e.,

earables augmented with IMU (Section 2.1) and sensing attempts leveraging earables’

microphones (Section 2.2). We briefly discuss how inertial motion sensing differs from

audio-based motion sensing. Finally, we conclude by describing the efforts that leverage

in-ear/around-the-ear PPG for vital signs monitoring (Section 2.3).

2.1 Inertial sensing

Earables are a relatively new concept. One of the key research opportunities facilitated by

earables, is the possibility of tracking various sources of motion from a new vantage point:

the human head [27]. While off-the-self earables often do not feature inertial sensors, or at

least do not expose application programming interface (API) and data, the earable research

community has greatly benefited from the release of eSense [9]. Emerging from the efforts

of Kawsar et al., eSense is a kinetic earable research platform which allows researchers

to access accelerometer and gyroscope data [9]. The research community has leveraged

earable-based inertial sensing for activity recognition [2], as well as step counting [10].

IMU-equipped earable prototypes have also proven effective for health oriented applications

like dietary habits monitoring [6, 7, 28], jaw clenching [11] and teeth grinding (Bruxism)

detection [12]. Among these, Bedri et al. [6] and Amft et al. [28] combine IMUs and
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microphones to detect and classify eating activities. The former aims to detect in-the-wild

chewing activities, whereas the latter focused on the classification of four different types

of food through the analysis of eating activities.

2.1.1 Head motion tracking

Inertial motion tracking is a known challenge and a well explored area [14, 15, 29]. One of

the most recent works in the field, and the state-of-the-art approach when it comes to IMU-

based motion tracking, is the research presented by Shen et al. [14]. In their paper, the

authors widely discuss the 3D orientation problem (i.e., correctly estimate the object’s 3D

orientation a global reference frame) and present MUSE, a magnetometer-centric sensor

fusion algorithm for orientation tracking. According to their results, MUSE raises the

bar, outperforming all the previous state-of-the-art orientation tracking approaches. Prior

to their work, the other state-of-the-art techniques, like A3 [15], heavily relied on the

acceleration of gravity (g) to determine the object orientation in the space and leveraged

magnetometer readings to re-calibrate the system. However, as reported by Shen et al. [14],

those previous works rely on the following three assumptions:

1. slow linear motion, with accelerometer data that have g as average;

2. slow rotational motion, with Gaussian errors that preserve the linearity of the system;

3. motion with frequent, fairly long pauses, needed to reset the gravity estimation.

Yet, because of the unpredictability characterizing human motion, these assumption rarely

hold when tracking head movements. While previous work, such as that of LaValle et

al. [30], have attempted to track head movements with augmented reality (AR) headsets

(e.g., Oculus), earables-based approaches have yet to be explored. To this end, the lack

of commercially available earables equipped with a magnetometer represents a significant

hurdle. Without the aid of a global reference, like that provided by a magnetometer, it is

particularly challenging to recalibrate the inertial sensors, thus leading to poor accuracy

when tracking head movements.

2.1.2 Magnetometer calibration

As we have discussed in Section 2.1.1, as of today, earables do not feature a magnetometer.

Yet, to facilitate accurate in-ear IMU-based applications, such as head motion tracking,

it is key have a properly calibrated magnetometer to rule out drift from accelerometers
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and, most importantly, gyroscopes. However, as we will detail in the remainder of this

section, calibrating a magnetometer is a non-trivial task, especially when bearing in mind

the usability requirements of earables.

Although in-ear magnetometers are mostly affected by a static interfering component in-

duced by permanent magnets in the earables’ case, they are also impacted by a dynamic

component caused by radio frequency (RF) communications and audio playback. A possi-

ble approach to rule out the dynamic interfering component, could be to isolate the magne-

tometer with some kind of special material, preventing magnetic disturbance. Sadly, this

is not a viable option: without even considering its cost, it would also likely isolate the

magnetometer from the magnetic field we wanted to measure in the first place [31]. Simi-

larly, filtering approaches [32] do not work for perturbations generated by RF circuitry [31].

Besides, increasing the air gap between sources of interference and magnetometer [13, 31]

is also not feasible: assuming these can be modeled as magnetic dipoles, the strength of

the magnetic field they generate decreases with r3, where r is the radius of a sphere with

the magnetic dipole as its center [33]. Furthermore, this would be a questionable choice

given the inherent design constraints and the miniaturization trend of commercial ear-

ables. While it might minimize the interference caused by the earable circuitry itself, this

approach is still not enough as it does not account for those interfering components exter-

nal to the earable’s case (i.e., external magnetic disturbances) [34, 35]. Likewise, similar

arguments hold for factory calibration [34].

Sensor calibration is a well studied topic with a rich body of literature. However, only

a few works specifically tackle calibration for mobile devices [36], and, to the best of

our knowledge, none investigate calibration strategies specifically for earables, which are

affected by variable interference. The variable nature of interference affecting earables

demands frequent calibration updates. For this reason, and the fact that they are often

error prone, relying on user inputs (as most of traditional approaches do) is not a viable

option. The aim of a magnetometer calibration is to find some parameters, bias and scale

factor, such that it is possible to measure the Earth’s magnetic field, and nothing else [37].

Thus, the sensor can be used, for example, as heading source.

A magnetometer calibration can be either static or dynamic [34]; attitude dependent or

not [35].
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Static calibrations are often performed with the aid of specialized equipment (e.g. a

proton magnetometer [38], or a robot arm [39]), or by manual direction placement [40].

Historically, the most common approach is known as compass swinging [41]. Used to cali-

brate marine and aviation compasses, it consisted of leveling and rotating the ship/aircraft

through different, known, orientations. This only works for 2D-magnetometers, and re-

quires the user to be instructed to rotate the compass in specific orientations [42].

Dynamic calibrations are generally more practical for mobile devices. Usually, these

calibration approaches rely on additional information from the system (e.g. IMU or GPS).

Many are iterative and carried out at run-time, often trading accuracy for adaptation. For

this reason, they are more practical for mobile devices. Examples are ellipsoid fitting [43],

Kalman-filter-based iterative algorithms [34], and stochastic optimization approaches [35],

with the most famous being the figure 8 calibration: the user has to move the magnetometer

along an 8-shaped trajectory, to collect enough data to run an ellipsoid fitting algorithm.

However, these are cumbersome for the user, and often error-prone [36]. To cope with the

performance and the usability requirements of inertial-based applications of earables, it is

crucial to devise a completely user-transparent, adaptive, magnetometer calibration, which

specifically targets earpieces, without requiring any specialized equipment.

2.2 Acoustic motion sensing

Motion sensing is a key area of interest in wearable and earable research. While IMUs

are often the most commonly adopted sensor [2,10,11], researchers have also explored the

potential of different modalities for this purpose. For instance, Ando et al. [44] observed

that the human ear canal is deformed when subtle motion and facial expressions occur.

Building on this observation, the authors proposed an in-ear barometer to recognize facial

expressions, by capturing the pressure differentials caused by facial muscle movements in

the ear canal. Differently, Matthies et al. [45] utilized the electrodes on earbuds to capture

the electricity variations caused by muscle movements, also during facial expressions. Yet,

to date, there has been very little work around in-ear facing microphones for motion sensing.

Notably, in-ear microphones are a key component for active noise cancellation (ANC), and

therefore are available in many off-the-shelf earables and in most hearing aids.

Thanks to the proliferation of microphones and speakers in Internet of Things (IoT) de-

vices and wearable ecosystem, acoustic sensing has rapidly became crucial for a broad
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Fig. 2.2.1: Anatomy of the human ear and explanation of the occlusion effect. When the orifice
of the ear canal is occluded, sounds are trapped inside the ear canal, resulting in the amplification
of their low frequency components.

range of applications [46–49]. Various properties of audio signals, such as time-frequency

features [50–52], time difference of arrival (TDoA) [53], Doppler shift [54], phase [55], and

channel impulse response [56], have been exploited for motion sensing in the past. Based on

whether a speaker is involved in actively generating a reference audio beacon, or not, these

applications can be categorized into passive sensing and active sensing. In this section, we

focus on passive acoustic sensing as it is more relevant to our work.

2.2.1 Facilitating in-ear acoustic sensing: the Occlusion Effect

Before surveying the existing efforts related to passive acoustic motion sensing, this sec-

tion introduces a physiological phenomenon known by the name of occlusion effect. Prac-

tically, to facilitate in-ear acoustic sensing, in this dissertation, we leverage the natural

low-frequency boost provided by the occlusion effect. As measured in [57], the occlusion

effect can boost the sounds below 1000Hz by up to 40dB depending on the frequency.

Hence, the reminder of this section provides the reader with a basic understanding of what

the occlusion effect is in practice, and how it can be exploited to facilitate a number of

acoustic sensing applications.

From the physiological point of view, the occlusion effect can be defined as a dominance of

the low-frequency components of a bone-propagated sound due to the loss of relevance of
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the outer ear sound pathways whenever the ear canal orifice is sealed (i.e., occluded) [58].

For example, such phenomenon could be experienced in the form of echo-like/booming

sounds of their own voice if a person is speaking and is obstructing her ear canals with a

finger or an earplug. Essentially, sound is nothing but vibrations propagating as acoustic

waves. Usually, it travels through bones and escapes the inner-ear via the ear canal orifice.

However, if this opening is obstructed, the vibration waves are blocked inside the canal and

are bounced back to the eardrum [59], as illustrated in Figure 2.2.1. As a result of that,

the low-frequency-bone-conducted sounds are amplified [60]. A more precise definition of

what the occlusion effect entails can be denoted by the ratio between the sound pressure

inside the occluded ear canal and that in the open ear [61]. Specific to the applications

considered in this dissertation, whenever a user touches their face, or while a person walks,

the vibrations generated by the tap on the skull, or by a foot hitting the ground, as soon

as a person takes a step (e.g., basic component of a gait cycle), propagate through the

body via bone-conduction. Interestingly, these vibrations are amplified if the ear canal of

the person is occluded by, for example, an earable, ultimately facilitating in-ear acoustic

sensing.

2.2.2 Activity recognition

Passive acoustic sensing measures the sounds generated by target activities/motions with

microphones. The mobile sensing literature presents several instances where passive acous-

tic sensing is leveraged for activity recognition. For instance, Wang et al. [50] presented a

keystroke recognition system named UbiK using the smartphone microphone. Ubik calcu-

lates the amplitude spectrum density (ASD) of the clicking sound and identifies different

keystrokes using a fingerprinting-based method. Employing a dual-microphone design on

current smartphones, Liu et al. [53] proposed to discriminate keystrokes based on the TDoA

of the keystroke sound at the two phone microphones. By recording the sound during sleep-

ing, Ren et al. [51] detected human breathing rate with a correlation-based method and

recognized different events (like cough and snore) with the Mel-frequency cepstral coeffi-

cients to estimate the quality of sleep. Chauhan et al. [52] proposed to authenticate users

using the breathing sound. Yet, to date, no one has leveraged the sounds recorded from

inside the ear canal for activity recognition.

18



2.2.3 Hand-to-face interactions

In addition to classifying medium to intense motions such as walking, running, chewing,

and drinking, the natural low frequency boost enabled by the occlusion effect (Section 2.2.1)

facilitates sensing light motions like hand-to-face gestures. The human face offers a large

area for interactions with head-worn devices such as earables. In particular, hand-to-face

gestures have been explored using various modalities. Examples are the work by Serrano

et al. [62] where they proposed to detect hand-to-face gestures using a camera array. A

similar effort is the work by Kikuchi et al. [63] who devised EarTouch. Kikuchi et al.

built an earbud featuring four photo-reflective sensors to measure the deformation of the

auricle (or ear rim) caused by touching the ear with the fingers. Similarly, although with

a different form of device (head-mounted display), Yamashita et al. [64] also use photo-

reflective sensors to measure the deformation of the skin when the user touches their cheeks.

Moreover, Lee et al. [65] used an Electrooculography (EOG) sensor equipped on the nose

pad of commercial eyeglasses to detect nose touching gestures.

Closer to the work presented in this dissertation (Chapter 4), Xu et al. [66] introduced

a hand-to-face interaction system called EarBuddy using acoustic signals. However, Ear-

Buddy recognizes face-touching gestures using audible air-conducted sounds picked up by

an external-facing microphone on the main earbud body. Ultimately, this suffers from poor

signal-to-noise ratio (SNR) due to the dramatic attenuation experienced by sound-waves

propagating through the air. As a result, EarBuddy shows good performance only in rec-

ognizing gestures close to the ear. Further, it suffers from acoustic noise and can only work

in quiet environments. In contrast, no one has yet taken advantage of the occlusion effect

nor leveraged the characteristics of in-ear microphones to record bone-conducted sounds.

2.2.4 Gait tracking

The improved sensory capabilities of earables facilitated by the occlusion effect (Sec-

tion 2.2.1), suggest the potential of ear-worn devices in counting steps and tracking gait.

The walking style of a person is commonly known as their gait. Medical and physiological

studies [67] suggest the human gait has 24 different components. The differences between

the gait of distinct subjects are caused by the uniqueness in their muscular-skeletal struc-

ture. The human gait is regulated by precise bio-physical rules [68]. These, in turn, are

dictated by the tension generated by the muscle activation and the consequent movement

of the joints. As a result, the forces and moments linked to the movement of the joints
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cause the movement of the skeletal links which, therefore, exert forces on the environment

(e.g., the foot striking the ground). Hence, the human gait can be described as a gen-

eration of ground-reaction forces which are strongly correlated with the muscular-skeletal

structure of each individual. In practice, differences in the body structure of individuals

are among the factors that produce the interpersonal differences in walking patterns that

enable gait-based identification.

Gait is a well-studied human biometric, proven to be unique for each individual, and, there-

fore, often used as an identification biometric [67,68]. Traditional approaches for gait recog-

nition enumerate machine vision-based strategies [69], floor sensor-based techniques [70],

wireless fingerprinting based methods [71], and wearable sensor-based systems [72,73]. All

of these techniques have their own specific advantages (e.g., user-transparent and complete

device-free) and disadvantages (e.g., high computation cost and privacy-related issues for

vision-based method; need for deploying the wireless transceivers for wireless fingerprinting

based method, etc.), thereby complementing each other under different scenarios.

Contrary to the more traditional techniques, there are two prior works using acoustic as

the modality for gait recognition. Geiger et al. [74] exploited a microphone attached to the

user’s feet to record the walking sounds when the feet hit the ground. The main drawback

of their approach is that the step sounds might change with different ground materials

or footwear soles. In fact, in the extreme case, the microphone may not be able to pick

up any noticeable sound when walking on a carpet barefoot. Instead, as we will detail in

Chapter 5, the work presented in this dissertation leverages the occlusion effect to measure

bone-conducted sounds (essentially vibrations) in the ear canal, guaranteeing robustness

to both footwear and ground material. Wang et al. [75] proposed a fingerprinting-based

system (named Acoustic-ID) for human gait detection using acoustic signals. Specifically,

by deploying a pair of acoustic transmitter (ultrasound) and receiver, the gait pattern is

extracted by measuring the reflected acoustic variations when the user is walking within

the sensing range. Unlike Acoustic-ID, that requires to actively transmit ultrasounds, our

approach is completely passive, and does not require the deployment of any additional

hardware.

Instead of using gait, researchers have discovered other biometric traits that can be ac-

quired from the human ear for user identification. Nakamura et al. [3] proposed to identify

and authenticate users by leveraging in-ear electroencephalogram (EEG) measured using

a customized earpiece. More recently, Gao et al. devised EarEcho [76]. Their system
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leverages the uniqueness of ear canal geometry to recognize and identify the users. How-

ever, as demonstrated in [77], the geometry of the ear canal changes during different facial

expressions, which might impact the effectiveness of EarEcho in the daily life. Although a

similar counter argument could be raised for gait, which also might change over time, the

latter usually evolves over a larger time span. Moreover, the uniqueness of the ear canal

geometry has never been tested over a large-scale population (featuring only 20 subjects

involved in [76]). As of today, a reliable system to identify the wearer of a pair of earables,

through passive measurements, is still missing.

2.3 Photoplethysmography sensing

Earables have the premises to revolutionize personal health and well-being. In this section

we provide the reader with some basic notions on the anatomy of the human (Section 2.3.1)

before introducing the underlying principle of photoplethysmography (Section 2.3.2) and

some of its wearables applications (Section 2.3.3).

2.3.1 Ear anatomy

The ear is part of the human sensorium. It is the organ that enables hearing and balance. In

mammals, the ear is generally composed of three parts: the outer ear (the visible part of the

ear), the middle ear (where the sound waves, coming form the outer ear, are modulated),

and the inner ear (where the modulated sound waves are finally transmitted to the brain).

In this dissertation, we focus on the outer ear which is where earables are typically located.

In fact, unlike the middle and the inner ear, placing electronic sensors around the outer

ear does not require any invasive or uncomfortable interaction. Further, focusing on the

outer ear, we can neglect those conditions (e.g., tympanic infections, eardrum and cochlea

impairments) that might affect the middle and inner ear. Given the objective of this section

is to brief the reader on in-ear photoplethysmography, it is also key to consider a part of

the ear which is well supplied by blood vessels. The outer ear is composed by the pinna

(or auricle, it is the visible part of the ear); the concha (it is the depression in the pinna

leading to the ear canal orifice); and the ear canal itself. These three areas are all well

supplied with blood by branches of the external carotid artery (Figure 2.3.1a), one of the

most important arteries in the human body. Specifically, the pinna (on both sides), as

well as the concha, are supplied by capillaries known by the name of perforating branches ;

the ear canal, on the other hand, is adjacent to another major blood vessel, the superficial
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(a) (b)

Fig. 2.3.1: Blood vessels around the outer ear (Figure 2.3.1a). Pulsatile (AC) and non-pulsatile
(DC) components of a typical PPG signal (infrared wavelength in this example). The DC compo-
nent indicates the light absorption from the tissues, the bones, and the static blood in veins and
capillaries; the AC component reflects the pulsations of the arterial blood caused by the cardiac
activity (Figure 2.3.1b).

temporal artery.

2.3.2 Photoplethysmography primer

Photoplethysmography, more commonly known by its acronym PPG, is an optical measure-

ment technique featuring a light emitting diode (LED) and a photodetector (PD). Often

used as a more convenient (less expensive and easier to implement) alternative to electro-

cardiography (ECG), a PPG signal is the measurement of the reflected (back-scattered),

or of the transmitted light through the region of tissues under examination. By looking

at the intensity of the light at the PD, it is possible to detect variations in blood volume

which occur with each heartbeat. While in clinical settings transmissive photoplethysmog-

raphy (the light transmitted by the LED through the tissues is absorbed by the PD on the

other end of, for instance, a finger) is often employed, for practical reasons, we focus on

reflective PPG. The sensor setup of reflective PPG is analogous to that of its transmissive

counter part, with the only exception being the placement of the PD. Indeed, rather than

being on the other end of the extremity (e.g., finger, ear lobe), the photodetector is placed

next to the LED. Reflective PPG is the de facto standard for heart rate (HR) monitoring

in wearables. The wavelength of the light used in PPG sensors typically ranges between

500nm (green color) and 1100nm (infrared). Red and infrared (IR) lights are absorbed less
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by the water present in the human tissues compared to green light. As a result, depending

on the wavelength of the LED, the light is absorbed differently by the skin and, therefore,

it is possible to achieve different depths in the tissue. It is well studied how, for example,

green light penetrates the tissues less than red or infrared (IR) light [78]. This has crucial

implications: by penetrating less, green light is less susceptible to motion artifacts, whilst,

on the other hand, red and IR light provide a higher resolution of both the DC and AC

components.

A typical PPG signal is depicted in Figure 2.3.1b. The pulsatile (AC) component reflects

the pulsations from the cardiac cycle [79], while the non-pulsatile (DC) component com-

prises absorption from the tissue and bones, as well as static blood absorption (arterial,

venous and in smaller amounts, capillary) [79]. From this signal a number of clinical infor-

mation can be derived, for example heart rate and heart rate variability, respiratory rate

and blood oxygen saturation. However, whether the photoplethysmograph can provide all

of these insights, or not, depends on many factors. First and foremost, the PPG signal has

to be clean, with peaks clearly distinguishable and with systolic and diastolic waves well

visible. A PPG pulse (as those in Figure 2.3.1b) is composed of the anacrotic phase (the

rising component, also known as systolic wave) which signifies the systole of the heart and

of the catacrotic phase (the falling component, also referred to as diastolic component)

which signifies the diastole and wave reflections in the periphery. However, whenever mo-

tion (or ambient light) is concerned, it is not always possible to observe them. As a result,

PPG-extracted information often lose their clinical valence in presence of motion [80]. In

the next section we will examine the typical applications enabled by a clean PPG signal

and the corresponding features along with the impact of motion artifacts on the signal

quality.

2.3.3 Wearable applications of PPG sensors

Most consumer devices such as fitness trackers1 2 and mobile phones3 use PPG sensors for

heart rate monitoring. In recent years, accurate and real-time sensing of the three main

vital signs (HR [81], SpO2 [82], and BP [83, 84]) has been demonstrated using wrist-worn

wearables equipped with PPG sensors. In addition, explorations have been made to detect

heart rate variability [85, 86], sleep apnea [87, 88], atrial fibrillation [89, 90], respiration

1https://www.apple.com/apple-watch-series-7/
2https://www.fitbit.com/
3https://www.samsung.com/us/heartratesensor/index.html
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Table 2.3.1: Summary of PPG signal features essential for bio-markers as well as other health
sensing applications.

Applications AC Component DC Component
Time domain
signal features

Frequency domain
signal features

First order derivative
features

Second order derivative
features

Vital sign sensing
(HR [81], SpO2 [82], BP [83])

✓ ✓ ✓ ✓ ✓ ✓

Heart rate variability
(HRV) [85,86]

✓ × ✓ × × ×

Respiration rate
(RR) [91,92]

✓ × × ✓ × ×

Sleep apnea [87, 88] ✓ × ✓ × × ×
Atrial Fibrillation [89, 90] × × ✓ ✓ ✓ ✓
Arterial Stiffness [93, 94] × × ✓ ✓ ✓ ✓
Energy expenditure [95] ✓ × ✓ ✓ ✓ ✓
Dehydration [96, 97] × ✓ × × × ×

rate [91, 92], arterial stiffness [93, 94], energy expenditure [95] and dehydration [96, 97]. In

this section, we briefly summarize the most common signal processing techniques used with

PPG signals for measuring the following main bio-markers:

1. Heart rate: Peaks are detected from the AC component of the PPG signal to obtain

the number of beats per minute. Typically the raw PPG signal is band-pass filtered

between [0.4Hz, 4Hz] to obtain the AC component corresponding to the heart rate.

2. Oxygen saturation (SpO2): Oxygenated hemoglobin absorbs less red light whereas

deoxygenated hemoglobin absorbs less infrared light. Thus, the ratio between red and

infrared light intensities measured by the PPG sensor can be used to estimate SpO2

(R) as follows:

R =
Rred

Rinfrared

=
ACred/DCred

ACinfarared/DCinfrared

(2.1)

3. Heart rate variability (HRV): Heart rate variability is measured as the time

difference between adjacent peaks in a PPG signal.

4. Respiration rate (RR): A Synchrosqueezing transform (SST) [98] is applied on

the raw PPG signals to extract the respiration component (0.1-0.9Hz). The number

of peaks in the resulting respiration component of the PPG signals correspond to the

respiration rate (breaths per minute). Besides, there are other techniques [99] using

time domain and frequency domain features extracted from the PPG signal along

with machine learning to estimate respiration rate.

5. Blood pressure (BP): Blood pressure is typically computed by placing PPG sen-

sors at two locations on the same artery (say, finger and wrist) and then measuring

the time taken by the pulse wave to travel from one PPG location to the other (pulse

transit time). BP is inversely proportional to the pulse transit time obtained by
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Fig. 2.3.2: Typical time domain signal features extracted from a PPG signal.

calculating the peak time shifts between the two PPG sensors. In recent years, many

machine learning and deep learning techniques [83, 100] have also been proposed to

estimate blood pressure from the extracted PPG signal features.

As seen from the above bio-markers, the time domain signal features from the PPG signal

are essential to estimate heart rate, heart rate variability as well as blood pressure. Some of

the frequency domain features help in differentiating a normal sinus rhythm from an arterial

fibrillation (AF) signal or an abnormal heart signal. In addition to the above mentioned

features, many techniques use features extracted from the first order derivatives and the

second order derivatives of the PPG signal to compute arterial stiffness [93] and blood

pressure [83]. The second order derivative of a PPG signal provides useful information

such as dicortic notch, time at which the diastolic peak occurs which provides information

regarding the blood flow dynamics (systolic and diastolic phases).

Table 2.3.1 shows the main feature categories required for several critical health sensing

applications. In addition to the PPG signal features mentioned earlier, useful physiological

features marked in Figure 2.3.2 can also be derived from the PPG signal. The following list

describes in more detail these main features (which are also the ones we used in Chapter 6

to analyze how various head and facial expressions affect in-ear PPG signals):
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1. Systolic phase: The Amplitude of the systolic peak and the time at which the

systolic peak is located in the PPG signal.

2. Diastolic phase: The Amplitude of the diastolic peak and the time at which the

diastolic peak is located in the PPG signal.

3. Ratio between systolic and diastolic phase: An indicator of the abnormalities

in blood pressure. It is also referred to as Augmentation index or Reflection index.

4. Pulse width: The time between the beginning and end of a PPG pulse wave. It

correlates with our heart’s systemic vascular resistance.

5. Rise time: The time between the foot of the PPG pulse and the systolic peak.

6. Perfusion index (PI): PI is the ratio of the pulsatile blood flow (AC component)

to the non-pulsatile or static blood in peripheral tissue (DC component).

7. Dominant frequency: The dominant frequency of PPG signal can be useful to

give insights concerning the presence of artifacts at a different frequency outside the

heart rate frequency band [0.4,4Hz].

8. Spectral Kurtosis: Also known as Frequency Domain Kurtosis, describes the dis-

tribution of the observed PPG signal frequencies around the mean and is a very

useful indicator of the PPG signal quality.

9. Peak-to-peak magnitude variance: The variance of the difference between the

pulse wave amplitude between two adjacent pulse wave.

10. Peak-Time interval variance: The variance of the pulse width between peaks of

two adjacent PPG waves.

2.3.4 Motion artifacts on in-ear PPG

For real-time and accurate estimation of the vitals we have mentioned above, the PPG

signal needs to be free from any distortion or noise hindering the computation of the signal

features. While many works in the literature have proposed filtering techniques for PPG

sensors in wrist-worn devices [101, 102], noise and motion artifacts generated by devices

worn in or around the ear have been so far ignored. Despite the high concentration of blood

vessels in the outer ear naturally favors photoplethysmography, it also opens the door to

multiple potential placements for a PPG sensor, which have never been investigated before.
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As we will discuss in Chapter 6, collecting PPG data from inside the ear canal offers several

advantages over other potential locations around the ear (and in the rest of the body): the

natural darkness of the ear canal ensures ambient light shielding, a particularly desirable

feature when it comes to optical sensing. Further, by placing a PPG sensor on an ear-tip,

it is possible to achieve a stable positioning. In addition, the natural vibration damping

offered by human musculoskeletal system, makes the head relatively motion-resilient than

wrist [10]. On top of that, if carefully designed, a comfortable ear-tip could be worn for

prolonged amount of time, paving the way to continuous upper-body sensing. Finally, even

more importantly, in an earable panorama characterized by heterogeneous designs, shapes,

and form factors, ear-tips do not bound ear-worn devices to set form factors unlike, for

instance, if the sensor was placed behind the pinna. Nonetheless, in-ear PPG sensing is

also susceptible to a new set of artifacts, never studied before, that could dramatically

hinder the clinical valence of the vitals and bio-markers extracted from such devices.

Motion artifacts (MA) in PPG can be caused by both the mechanical sliding and rubbing

of the PPG sensor over the skin, as well as by the actual acceleration of the human body

(which changes the blood flow dynamics), and the compression/decompression of tissues

and muscles. Unlike wrist-worn devices which are mostly affected by body and hand

movements, in-ear PPG sensors will be affected the most by face and head motions. Facial

expressions serve as the primary tool to convey emotions between individuals. Common

facial expressions like smiles, disgust, or frowns, are used to express emotions such as

joy, sadness, anger or disappointment. The facial muscles play a key role in making each

and every facial expressions. The facial muscles are located around the mouth, eye, nose

and ear. Out of these locations, the muscles in the auricular group (around the ear) are

affected when facial expressions are being made – thereby causing distortions in the PPG

signals acquired by in-ear PPG sensors. Unlike dominant full-body motions affecting PPG

sensors in wrist-worn devices, the facial motions being made are very subtle and may

possess different characteristics compared to full-body motions like walking, running, hand

movements etc. For instance, a slight smile (lip puller) causes very noticeable distortions

in the PPG signal recorded by an in-ear PPG sensor (as we will show in Chapter 6).

Although the impact of full-body motion on PPG sensors has been widely studied in prior

works [101,102], the extent to which motion artifacts caused by facial and head movements

affecting in-ear PPG sensors is largely unexplored at best.

Facial expressions, and facial movements in general, are taxonomized based on the Facial

Action Coding System (FACS) [103]. First published in 1978 and updated in 2002, the
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FACS encodes a number of individual facial muscles movements which leads to changes

of expressions. These fundamental actions of individual muscles or groups of muscles are

called Action Units (AUs). In designing a representative study, it is paramount to focus

on a subset of action units, selected from the existing FACS, most of which are known to

be picked up by in-ear motion sensors [104,105].

2.4 Summary

This chapter has reviewed the state of the art in the area of personal-scale sensing with

earables. Specifically, we outlined the limitations of current motion tracking earable sys-

tems (Section 2.1) highlighting the need for a magnetometer to enable more advanced

applications. This dissertation fills these gaps by first assessing the performance of eSense,

an exemplar of kinetic earables, in tracking head movements (without the aid of a global

reference), and then by presenting a completely user-transparent, adaptive, magnetometer

calibration, which specifically targets earables (Chapter 3).

Surveying acoustic motion sensing (Section 2.2), we found that the potential of in-ear

microphone applications is greatly unexplored. To this end, in this dissertation we leverage

the occlusion effect (Section 2.2.1) to boost the SNR of sounds recorded from inside the ear

canal. Practically, this allows us to classify a number of different activities (e.g., walking,

running, chewing, drinking, and a stationary baseline), hand-to-face interactions, count

steps, and identify people from their gait (Chapter 4 and Chapter 5).

Finally, examining today’s in-ear PPG sensing systems (Section 2.3) we identified the need

for better understanding of the impact of motion artifacts (MA) on the PPG trace. By

identifying the more robust location to sense PPG in/around the ear, and by thoroughly

characterizing a number of head and facial MA, this dissertation represents a step forward

towards facilitating in-ear PPG sensing (Chapter 6).
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‘If you can keep your head when all

about you

Are losing theirs and blaming it on

you,

If you can trust yourself when all men

doubt you,

But make allowance for their doubting

too;

. . .

Yours is the Earth and everything

that’s in it,

And—which is more—you’ll be a

Man, my son!’

Richard Kipling

Chapter 3

In-ear Inertial Sensing

3.1 Introduction

In Chapter 1 we have discussed the yet-to-be-unlocked potential of earables for personal-

scale sensing and the limitations of today’s earable research. In this chapter we explore the

potential of kinetic earables (i.e., earables featuring inertial sensors such as accelerometers

and gyroscopes) in tracking head movements [13]. Facilitating a better hearing experi-

ence for future hearing-aids, delivering augmented reality (AR) functionalities to earables,

enabling spatial audio, as well as improving navigation, all these applications are all predi-

cated to earables being able to track head movements accurately. In fact, acting as a proxy

for visual attention, tracking head movements is a key enabler for a number of personal-

scale applications. Moreover, in the second half of this chapter we go one step further and,

for the first time, we investigate how to augment earables with a magnetometer to improve

the motion tracking performance [5].

As we have discussed in Chapter 1, recent years have seen the rise of wearable technologies,

both in the form of specialist devices such as pacemakers and in consumer devices, pri-

marily smartwatches. A growing trend is the use of wireless earbuds that, while designed

primarily for personal audio playback, offer a new sensing platform at an important site on

the body. For instance, earables could be used both as sensors, collecting useful data like

head movements, and actuators, enhancing the listening experience or providing feedback

to the user. Ears represent an extremely good vantage point to track both gaze and head

movements. Interestingly, sensing these behaviors can yield substantial improvements in
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personal-scale applications such as navigation [22], driving safety [106], augmented experi-

ence [107], as well as assistance to elderly people [108]. Besides, previous studies from the

medical community, have also highlighted the importance of leveraging the visual atten-

tion of the user [109,110] for improving hearing-aids. For example, Favre-Félix et al. [110]

use electrooculography data (EOG) to characterize the visual attention of the patients.

However, because of the challenging signal processing required when dealing with such

complex signals, the authors suggest that EOG might not be the best enabler for personal-

scale applications leveraging visual attention. Notably, head movements are closely linked

to eye-movements [110], and therefore they are considered a good proxy to sense visual

attention, too.

Inertial motion tracking is a well known and studied problem. Yet, due to the lack of

a reference point to re-calibrate the sensors, and to estimate the 3D orientation of the

tracked object, tracking head movements with a device without a magnetometer represents

a challenging task. To the best of our knowledge, because of the interference generated

by the magnets of the speakers and in their cases, none of the earables in the market is

equipped with a magnetometer. Indeed, like the eSense we are using in this work, the Apple

AirPods1, the Google Pixel Buds2, and the Samsung Galaxy Buds3 do not have a built-in

magnetometer. In this chapter, we focus on the evaluation of the eSense platform [2, 8]

in tracking the head movements of a user concentrating on a specific spatial point. To do

so, we ran experiments with ten volunteers. We probed and stressed the robustness of

the system by asking our volunteers to perform different activities, such as chewing and

talking, while focusing on a series of targets placed at different spatial locations.

By tracking instantaneous head movements as a proxy to track visual attention, our study

shows how a system, that relies only on accelerometer and gyroscope, can still provide

useful insights on where the visual attention of a person is. Despite the fact that head

movements are user dependent, we obtained estimations with an average error that ranges

from 5.4° for short movements done by silent subjects, to 18.7° for longer movements

carried out by subjects who are chewing. To better contextualize that, let us consider of

a 4 lanes intersection (≈10 meters wide). For instance, considering a 4 lanes intersection ,

an error of 3° on the heading would entail a displacement offset of about 10× sin(5.4/2) ≈
0.47m when looking at short movements without any particular noise source. Yet, when

1https://www.ifixit.com/Teardown/AirPods+2+Teardown/121471
2https://medium.com/@justlv/google-pixel-buds-teardown-396183cbbc18
3https://root-nation.com/audio-en/headphones-en/en-samsung-galaxy-buds-review/
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accounting for sustained, longer movements, under more challenging circumstances (e.g.,

user chewing), the errors ramp up to ≈ 1.62m. This dissertation lays the foundations

of a line of work aiming to sense and characterize human attention through earables,

wearables that are neither socially-awkward, nor cumbersome, unusable or unrealistic (e.g.,

combining an hearing-aid with a pair of eye-tracking glasses). Lastly, it sheds light on how

a magnetometer would behave if placed in an earable.

Building upon these preliminary results, in the second half of this chapter we focus on the

feasibility and value of adding magnetometers to earables. As we have discussed, today’s

consumer earables already contain inertial sensors (IMU) like accelerometers and gyro-

scopes. In other mobile devices, these are paired with magnetometers to provide movement

descriptors in a global, absolute frame of reference [14], which would be highly valuable at

the head too. Although a reasonable argument could be using the magnetometer in the

phone to provide the earbuds’ IMU with the references needed to calibrate/re-calibrate

them, in practice, this would not work. Notably, the head does not always move

according to the way the body does; besides, they often do not face the same direc-

tion. Hence, relying only on the phone would inevitably provide descriptors that do not

necessarily match those when moving the head. Beyond this, adding a magnetometer to

an earable would allow for a variety of applications including inertial navigation; magnetic-

field-based indoor localization [111]; driver monitoring systems [112]; and medical appli-

cations (i.e. intra-body localization [113,114], speech-language therapy [115], trans-cranial

stimulation [116]), to name a few. However, as we discussed in Chapter 2, the highly

constrained earable form factor and practicalities around their calibration have so far pro-

hibited the availability of magnetometers on earables. Common magnetometer calibration

techniques are cumbersome and error-prone [36], and regular manual calibration of both

earbuds (and any personal devices) is unrealistic. Instead, we leverage the heading of the

user’s phone – typically trustworthy, as we will discuss in Section 3.8 – to auto-calibrate

the magnetometers in the earbuds when the devices are believed to be pointing in the same

direction. We ensure the latter constraint by applying the algorithm only when the user

is directly interacting with the phone.

Specifically, we first explore how magnetometer signals are affected by magnetic distur-

bances expected in an earable, highlighting the need for good calibration. Based on these

findings, we propose a novel magnetometer calibration technique that leverages the user’s

phone sensors (typically well calibrated). Calibration routine that we devise can run in the

background, without user intervention, providing a semi-continuous calibration. We report
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a thorough evaluation of the performance of the calibration framework, both in terms of

accuracy and system performance during a proof of concept study with a navigation ap-

plication.. Besides, we theoretically and practically assess the computational and energy

efficiency of our algorithm, showing our approach is accurate yet computationally in-

expensive, allowing its regular execution on a constrained wearable. Our analysis shows

that our approach is extremely lightweight consuming ≈ 2.9% extra power over idle.

The techniques and the results presented in this chapter have been published in [13] and

in [5].

3.2 Platform overview

In this section we introduce the eSense platform and the challenges of performing head

motion tracking on a device that can not rely on the data from a magnetometer.

3.2.1 eSense Platform

The eSense platform consists in a pair of wireless earbuds which have been augmented with

kinetic, audio and proximity sensing options [2, 8]. The left earbud has a 6-axis Inertial

Measurement Unit (IMU) with accelerometer and gyroscope and a Bluetooth Low Energy

(BLE) interface which is used to stream data and to send periodic beacons that can be used

to detect proximity to nearby devices. Both earbuds are also equipped with microphones to

record external sounds. The benefit of eSense, contrary to other commercial earbuds, is the

availability of application programming interfaces (APIs) to access the raw data collected

by the onboard sensors, together with the complete flexibility in the configuration of the

sensors’ parameters. In addition to serve as a well established and socially acceptable

device, for example to listen to music and take phone calls, eSense allows to gather real-

time sensor data, opening the door to novel sensing applications involving the head, a part

of the body which has been mostly unexplored, so far.

3.2.2 Challenges of inertial tracking

The primary goal of this section is to understand the accuracy achievable by a device that

solely relies on accelerometer and gyroscope to track user’s head movements. The biggest

challenges we had to face while investigating that, were related to the device itself. The
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small form factor, together with the true ”wireless experience” and the relatively short

battery life altogether represent non-trivial constraints to deal with.

The presence of multiple magnets in the case compelled the hardware manufacturer to put

a 6 degree of freedom (6 DoF) IMU, instead of a 9 DoF, more complete, sensor. Practically,

as a result of this design choice, the platform ends up being bounded to the 3 DoF of the

accelerometer (xacc, yacc, zacc) and the 3 of the gyroscope (xgyro, ygyro, zgyro), lacking the

presence of a magnetometer.

Accelerometer and gyroscope provide relative movement estimates that are well known

to drift over time [14]. Without the magnetic north as a reference, we could not rely on

the state-of-the-art calibration and re-calibration techniques [14]. Besides, when tracking

the motion of an object (or of the head of a person), it is crucial to initialize the system

correctly, with the right 3D orientation of the object itself. Unfortunately, once again,

the majority of the algorithms to solve the so called 3D orientation problem rely on the

absolute direction reference provided by the magnetometer (combined with gravity and

instantaneous gyroscope readings) [14, 15]. For instance, in their work, Shen et al. [14]

widely discuss the 3D orientation problem and present MUSE, a magnetometer-centric

sensor fusion algorithm for orientation tracking. MUSE outperforms all the previous state-

of-the-art orientation tracking approaches. Prior to their effort, A3 [15] was heavily relying

on the gravity to determine the object orientation in the space, using the magnetometer

data mainly to re-calibrate the system. However, as reported by Shen et al. [14], most

previous works rely on the following assumptions:

1. slow linear motion, with accelerometer data that have gravity as average;

2. slow rotational motion, with Gaussian errors that preserve the linearity of the system;

3. motion with frequent pauses, needed to reset the gravity estimation.

Yet, because of the unpredictability of human nature and motion, none of these assumption

holds when tracking human movements.

3.3 Head tracking methodology

We leverage the eSense earbuds to collect accelerations (from the accelerometer) and rota-

tional velocities (from the gyroscope). To get an idea of where a user is paying their visual

attention to, we integrate accelerations and velocities to estimate positional displacements.
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Combining multiple IMUs: Tracking head movements from only one ear might not

give precise enough results, especially considering the absence of external reference points,

such as a the magnetic north provided by a magnetometer, to aid the tracking and recali-

brate the inertial sensors. As having more fine grained data points enhances the precision

of the estimation, we combined the streams of inertial data coming from the IMU sensors

in the two earbuds. Notably, since only the left eSense buds are equipped with the IMU

sensors [9], we had to use two left buds. In doing so, we leverage the duality of earables

relying on the assumption that the two different IMUs are recording, from different van-

tage points, the same rotations. Yet, fusing the data correctly becomes crucial. We do

so by concatenating and averaging the accelerometer and gyroscope data over a window

of 200ms. Prior to that, we resample and filter the readings from the IMU sensors. A

further challenge comes from the orientation of the IMUs themselves. We obviate that by

making our system independent from the human coordinate system. To do so, we only

consider the intensity of the rotation, rather the motion components along the 3 axis of the

accelerometer and the 3 of the gyroscope. In fact, we only leverage the motion components

to tell whether the rotation is positive (to the right) or negative (to the left). As both the

earbuds are left buds (only the left bud of the eSense platform is equipped with an IMU

sensor) the x axis of one device is inverted compared to the other one.

Quaternions and complementary filter: Euler angles, better known by their compo-

nents yaw, pitch, and roll, are the most common, and widely used, coordinate system to

represents rotations. Despite their diffusion due to their ease of interpretability, they come

with the problem known as gimbal lock [117] (Figure 3.3.1). To obviate the gimbal lock

problem, it is common to switch to a better suited coordinate system: quaternions [30,118].

Integrated gyroscope measurements are subject to short-term drift, which may be more or

less severe depending on the application. The situation worsen when we are integrating it

over time, as the error grows faster. To mitigate that, a common approach is to fuse the

gyroscope readings with the accelerometer ones, as the latter is known to be more stable

than the gyroscope, in the short-time. Therefore, when estimating the head’s motion only,

leveraging gyroscope might yield extremely poor performances.

Our angular estimation is based on a complementary filter, which allows us to fuse gyro-

scope and accelerometer data, and follows the approach proposed by LaValle et al. [30].

We derive our estimation as follows:

34



qgyro = cos(
θ

2
) + iωx sin(

θ

2
) + jωy sin(

θ

2
) + kωz sin(

θ

2
) (3.1)

where:

ω = (ωx, ωy, ωz) = (
gyrox
||ω||

,
gyroy
||ω||

,
gyroz
||ω||

)

, and

θ = ||ω||dt

with qgyro being the quaternion that describes the instantaneous rotation of the head, based

on the gyroscope data. Notably, if we were only using the gyroscope data to update the

position estimation we would have stopped by doing:

pos[t] = pos[t− 1] ∗ qgyro (3.2)

Instead, we partially account for the gyroscope drift by adding the 3D orientation estima-

tion and tilt correction of the head. To do that properly, we should rely on a combination of

magnetometer and accelerometer data [14]. Instead, because of the limitations of today’s

earables which, like eSense, do not have a 9 DoF IMU, we could only rely on the gravity

as an external reference to perform a rough orientation estimation and tilt correction.

qacc body = 0 + i accx + j accy + k accz

qacc world = pos[t] ∗ qacc body ∗ pos[t]−1

qcf = cos(ϕ
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)

(3.3)

where qcf is the implementation of the complementary filter in the space of quaternions,

and where:
ϕ = (1− α) arccos(

qacc worldy

||qacc world||
)

v = (
qacc worldx

||qacc world||
,

qacc worldy

||qacc world||
,

qacc worldz

||qacc world||
)

n = v ∗ (0, 1, 0)

We can now estimate the final rotation by doing:
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Fig. 3.3.1: Example of the Gimbal Lock: two out of three degrees of freedom collide on the same
plane (graphic credits: MathsPoetry, CC BY-SA 3.0 https://creativecommons.org/licenses/
by-sa/3.0, via Wikimedia Commons).

final position = qcf ∗ pos[t] (3.4)

Notice that for each earbud, we account for the factory offset of both accelerometer and

gyroscope by using the techniques described by Kok et al. in their work [119]. In addition,

because of the absence of the magnetometer, we only focus on relative rotations (which we

refer to as delta motions).

3.4 User study and head motion tracking performance

In this section we describe the protocol we followed to investigate head motion tracking

through earables. We detail how we collected the data, running a small (10 people) user

study, and the results we obtained by tracking the head movements of our volunteers.

Ethical approval was obtained to conduct the user study.

3.4.1 Data collection methodology

We recruited 10 volunteers to take part in our data collection campaign. Each individual

was wearing two earbuds (both eSense left bud, as discussed in Section 3.3) connected
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via BLE (Bluetooth Low Energy) to an Android application running on a smartphone4

provided by us, the investigators. The eSense earables sampled data, and streamed to the

smartphone, at 100Hz. For the sake of reproducibility we report the configuration of the

two earables. Noticeably, both earables run the same configuration:

• AccelerometerRange = ± 2g

• GyroscopeRange = ± 500 degrees/second

• AccelerometerLowPassFilter = 5Hz

• GyroscopeLowPassFilter = 5Hz

The experimental set up consisted of 4 targets (red cross) attached to the walls in an empty

room. The angle between the position of the volunteer and the targets was known and

represented ground truth. The targets were placed respectively at 30°, 45°, 60°, and −90°.
We chose 30° as the smallest angle we investigate assuming that for smaller angles people

would mostly move their eyes, barely moving their heads. With −90°, we wanted to show

how our system could capture both clockwise and counterclockwise rotations of the head.

Ultimately, we asked our volunteers to perform the following actions:

• Standing in silence and looking at different targets, and keep facing them, according

to the instructions of the investigators;

• Standing, chewing a piece of chewing gum, and looking at different targets, and keep

facing them, according to the instructions of the investigators;

• Standing, conversing with one of the researchers, and looking at different targets,

and keep facing them, according to the instructions of the investigators.

3.4.2 Baseline: silent subject

We now present the results of what we consider our baseline. In this experiment, the

volunteers were standing in silence, looking at the different targets according to a set

of instructions provided by us. For each target, the volunteers started facing an initial

reference, placed at 0°. They then rotated their heads towards the given target (delta

motion). Once there, we asked them to keep their head turned towards the target for about

5seconds (position maintenance). We estimated the movements done by the volunteers

4Google Pixel 2, https://en.wikipedia.org/wiki/Pixel 2
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(a)

(b)

(c)

Fig. 3.4.1: 3.4.1a Mean error and standard deviation of the head movements estimation of 10
silent volunteers. 3.4.1b Impact of chewing activity on the mean error and standard deviation of
the head movements estimation of 10 volunteers. 3.4.1c Impact of speech on the mean error and
standard deviation of the head movements estimation of 10 volunteers.
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processing the readings of accelerometer and gyroscope according to what described in

Section 3.3. Figure 3.4.1a respectively reports the mean errors of the motion delta and of

the position maintenance estimations when the users were rotating their heads clockwise

by 30°, 45°, and 60°, and counterclockwise towards the target at −90°. From the bar-

plot in Figure 3.4.1a, we can immediately appreciate how the position maintenance errors,

in orange, are greater than the motion delta ones, in blue. This is due to the inertial

sensors’ drift that heavily affects the integration. Because of our long term application,

i.e., tracking visual attention, we are interested in instantaneous movements. Therefore,

we mostly care about motion delta errors. Another interesting observation is how the

errors grow for longer movements (i.e., greater angles), indicating a higher precision of the

system in tracking shorter movements (i.e., small angles). Moreover, the high standard

deviation that characterizes the mean errors denotes a strong user dependency of the

motion estimation. In fact, for some volunteers, we even registered sub-degree motion

delta accuracy in some movements.

3.4.3 Impact of chewing activity

Once we evaluated our system on the simplest case, we started testing the robustness of our

motion estimation. We gave a chewing-gum to our volunteers, and asked them to repeat

the same sequence of movements performed for the baseline case. The chewing activity

generates spurious vibrations that are inevitably picked up by the inertial sensors in the

earbuds. To make our system more robust to this kind of noise, we tuned the parameter

α of our complementary filter, aiming for the best performance in all the three types of

experiments. Figure 3.4.1b depicts the mean errors of the estimation. If compared to our

baseline (Figure 3.4.1a), as expected, the errors are slightly higher. As we observed in

the previous case, because of the drift, the motion delta mean errors are smaller than the

position maintenance ones. Additionally, once again, the high standard deviation highlight

the user dependency of the experiment.

3.4.4 Impact of Speech

Lastly, we assessed how speech impacts our estimations. To do so, we asked our volunteers

to talk about a subject matter of their choice while performing the same set of head

rotations described in Section 3.3. As for the chewing experiment, speaking generates

unwanted vibrations and micro-movements that are captured by the sensors, and could
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ultimately hinder the robustness of our head motion tracking system. Figure 3.4.1c shows

how our system behaves with talking subjects. Notably, the mean errors of the estimation

in this third case are sightly higher than the ones for silent users. As in both the previous

cases, the motion delta accuracy is higher and decreases for longer movements. Comparing

Figure 3.4.1b and Figure 3.4.1c, we can observe that the chewing activity seems to have

a comparable impact on our motion estimation system as speech does. Finally, the high

standard deviation of the mean errors further remarks the findings we got from the previous

experiments.

Summary of the results: Evaluating the performance of the eSense platform, our work

investigates the potential of ears as a vantage point to sense visual attention through head

movements. Overall, we achieve estimations with an average error that ranges from 5.4°
for short movements in the least challenging situation, up to 18.7° for longer movements,

under noisier circumstances. In the reminder of this chapter, we try to further improve the

accuracy of our system, investigating whether it would be feasible add a magnetometer,

thus gaining an external absolute reference point. As we will see in Section 3.6, featuring

a magnetometer in an earable would allow us to recalibrate the IMUs and track absolute

and incremental movements, in addition to relative motion.

3.5 Why is the Magnetometer Missing?

In order to asses if we could use state-of-the-art motion tracking approaches to further

improve the precision of our motion estimation, we tried to push the boundaries of the

platform we are investigating, and more in general, of all the existing commercial earables,

by adding a magnetometer. Practically, we studied how the magnets used to hold the

earbuds into the case and the magnet in the speaker affect the readings of a magnetome-

ter. For this purpose, we initially placed a STEVAL-STLCS01V1 sensor tile5 at different

distances from one earbud, and we plotted the data captured by the magnetometer in

Figure 3.5.1.

To start off, we put down the magnetometer at a distance of 5cm from the earbud (Fig-

ure 3.5.1a). We proceeded by keeping the earbud still in the initial position, while moving

the sensor tile closer to the earable. Figure 3.5.1b shows the magnetometer readings when

3cm apart. We can immediately appreciate how the magnets start affecting the data, intro-

5https://www.st.com/en/evaluation-tools/steval-stlcs01v1.html
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(a) 5cm from the earbud. (b) 3cm from the earbud.

(c) 1.5cm from the earbud. (d) 1.25cm from the earbud.

(e) 1cm from the earbud. (f) Inside the earbud case.

Fig. 3.5.1: Magnetometer readings from a STEVAL-STLCS01V1 device at different distances
from one eSense earbud. Notice how the scale of the plots changes dramatically from top to
bottom.
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(a) No interference. (b) Inside the case.

(c) Distortion correction.

Fig. 3.5.2: We run two experiments where a volunteer was asked to shake his head while
having the a STEVAL-STLCS01V1 close to the ear. (a) We first collected data without magnetic
interference. (b) We then asked our volunteer to repeated the same movements with the STEVAL-
STLCS01V1 placed inside the eSense case. (c) This way we could observe how correcting the
offset introduced by the magnets, the magnetometer placed in the earbud is still able to record
motion data.

ducing an offset. This offset is likely caused by hard iron distortions (as we will see discuss

more in depth in Section 3.10). It is worth noticing how the offset does not fluctuate when

the magnetometer is fixed. As expected, the readings change at different distances from

the earbud. The closer we get to the earbud, the higher the influence of the magnets is.

We further moved the STEVAL-STLCS01V1 at a distance of 1.50cm, 1.25cm, and 1cm,

as respectively depicted in Figure 3.5.1c, Figure 3.5.1d, and Figure 3.5.1e. Here, we can

clearly notice how the magnetic field generated by the magnets in the earbud overtakes the

Earth’s one, flattening all the readings. Eventually, we put the sensor tile inside the case

(Figure 3.5.1f). The readings skyrockets, as the earbud’s magnetic field adds a significant

offset to the Earth’s.
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Because of the constant offset at different locations, we decided to delve deeper into the

behavior of the magnetometer, collecting more data samples while moving the device. We

repeated the same set of movements twice. At first, we moved the STEVAL-STLCS01V1

alone, without any direct external interference caused by either the earbud or by the vicinity

of a metallic source (Figure 3.5.2a). We then recorded the data, performing the very same

movements, but placing the STEVAL-STLCS01V1 inside the case of the earbud, swapping

it with the eSense’s existing PCB (printed circuit board) (Figure 3.5.2b). While in the first

instance, where there was not interference, the magnetometer was able to record the motion

events, from Figure 3.5.2b we are unable to observe any motion-related data. However,

the constant trend of the offset allows us apply a standard calibration technique to get

rid of the hard iron distortion. As a result, we managed to recover most of the motion

related information, especially along x and y (Figure 3.5.2c). These preliminary results

provide an initial indication about the possibility of integrating a magnetometer even with

the presence of strong magnets in the sensor’s vicinity. Yet, they also fuels the need for an

earable specific, hassle-free, calibration, in order to preserve the information carried by the

magnetometer readings. However, experiments with different conditions (e.g., when there

is music playback) and a more detailed analysis of the resulting data are needed to confirm

our initial exploration. Hence, in the reminder of this chapter, we further characterize the

magnetic interference experienced by a magnetometer in an earable (Section 3.7) and we

devise an user-transparent calibration routine to counteract it (Section 3.8).

3.6 Enabling in-ear magnetic sensing: motivation

After evaluating eSense as an earable platform to perform in-ear head motion tracking

we have observed that the accuracy of our estimation decreases for longer movements.

To improve the performance of our system, we build up on our preliminary study on

the magnetometer which, we believe, could represents an interesting avenue to take into

account in the development of future earables. Hence, in this section we first enumerate the

reasons why IMU data are often coupled with magnetometer readings. We then provide

the reader with a basic understanding on the possible sources of interference that may

affect a magnetometer in an earable.

Magnetometer and inertial sensing: Historically, the presence of a magnetometer

has been key to improve the accuracy of inertial based applications. Inertial sensors drift

significantly when integrated over time [120]. For this reason, IMUs are often paired
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with a magnetometer: while the former measures relative motions (i.e., linear acceleration

and rotational velocity), magnetometers sense the Earth Magnetic Field, and are used

to find the (absolute) direction of the Magnetic North in a global reference frame. This

constitutes an absolute anchor to be constantly re-calibrate IMUs. Further, magnetometers

are also coupled with IMUs for 3D-motion tracking: without a magnetometer, it becomes

extremely hard to have knowledge of the tracked object’s heading in a global reference

frame [14] (used to correctly initialize the tracking system). Unfortunately, neither IMU

calibration, nor 3D-motion tracking (e.g., of the head) are feasible with today’s earables,

which lack a magnetometer. Fusing the user’s smartphone magnetometer data and IMU

readings from their earables would naturally result in a wrong estimation, given how user’s

head and phone often face in different directions. There are many compelling use-cases

that can be unlocked from a magnetometer in earables, provided the magnetometer is

accurate enough. Concretely, an in-earable magnetometer could enable acoustic AR [47,

121,122] providing precise navigation thanks to spatial audio based on head orientation. For

instance, considering a 4 lanes intersection (≈10 meters wide), an error of 3° on the heading

would entail an offset of 10 × sin(1.5) ≈ 0.26m. Further, by leveraging head rotations to

compute the angle of arrival (AoR) of incoming sounds with higher accuracy [123], it

could provide improved noise-cancellation. To be effective, AoR estimation errors should

be < 20° [124]. This requirement becomes more stringent when using the earable for

immersive audio or speaker isolation, especially in multi-source conversations. In fact, to

vouch for real-time spatial audio features that could be used for immersive audio or speaker

isolation if the earable is being used as a hearing aid require tight tolerances in the in the

attitude estimation. Concretely, at a 2meters distance the estimation difference between 3°
and 10° error is more than 1meter, thus reducing the usability of such features, especially

in multi-source conversation setting.

Magnetic interference: There are various sources of magnetic interference which would

impact a magnetometer in an earable, all being implicitly linked to the user’s patterns.

Firstly, earbuds usually have one (to drive the speaker) or more magnets (for docking pur-

poses). These, being in close proximity to the magnetometer due to the earable’s form

factor, can interfere with its readings [33], making inference tasks unreliable at best [36].

Further, earables mostly communicate via Bluetooth (BT). Radio frequencies (RF) com-

munications, like BT, require substantial electrical current which, flowing in the circuitry,

generates an electromagnetic field, interfering with the magnetometer. Specifically with

earables, RF communications are intense while streaming and just a few beacons otherwise.
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(a)

(b)

Fig. 3.6.1: Basic system setup (Figure 3.6.1a) and setup used to isolate the interference generated
by BT streaming and speaker (Figure 3.6.1b).

Practically, BT requires variable current, thus generating variable magnetic fields [33], en-

tailing a hard-to-model electromagnetic interference, highly dependent on the users’ pat-

terns. Similarly, when playing music the speaker coil vibrations that generate sound also

result in magnetic interference. Like sound, the interference depends on the vibration

patterns, and therefore on whether the user is playing music, and what music they are

playing. To gain a deeper understanding of how this practically affects a magnetometer in

an earable, we present a thorough analysis of these interfering phenomena (Section 3.7).

We look at RF communications (i.e., music streaming form a smartphone to the earbuds),

as well as music playback. Besides the popularity of the task, music playback was selected

since we could reproduce a wide spectrum of tonal patterns playing different music gen-

res, allowing us to quantify interference in the presence of contrasting and unique tonal

patterns. We analyze the impact of voice calls, too. Contrary to the music playback,

modeling orthogonal interference patterns is limited due to the inherent frequency range

similarity of the human voice. Interestingly, these patterns, while present, are eclipsed by

the interference produced by the RF circuitry (Section 3.7.2).

3.7 Magnetometer Calibration and Interference

Proper calibration is key to obtain accurate sensor readings as we have seen in Section 3.5.

This is especially true for continuous magnetic sensing: whether we are looking for the

heading of an object [37,42], or tracking magnetic bodies [112–114], reliable sensor data is

crucial.
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3.7.1 Magnetometer Calibration

To calibrate a magnetometer, common approaches seek to estimate the bias and scale fac-

tor for each axes. Magnetometer calibrations can be grouped in static or dynamic [34]

and whether they rely on attitude information or not [35]. However, one major obstacle in

calibration is interference from other magnetic fields. Concretely, this presents two chal-

lenges during calibration, i) interference can rarely be detected thus resulting in incorrect

calibration parameters and ii) during use, where interference can result in incorrect bearing

estimations.

3.7.2 Interference Characterization

Testing device: As previously (Section 3.5), an example of earable, we chose eSense [2].

Contrary to other commercial earbuds, eSense permits access to the raw data streamed by

the IMU and BLE chips, which is used to stream data and to send periodic beacons that

can be used to detect proximity to nearby devices. Since eSense was not equipped with a

3-axis magnetometer, we attached an external one (Freescale MAG3110 [125]) on top of the

earbud (Figure 3.6.1a) to mimic a realistic position where the sensor might be placed. We

sampled the external magnetometer at 80Hz using an Arduino Uno. Similarly to what we

did with the STEVAL-STLCS01V1, this setup allowed us to collect data while the earbud

was performing operations that could interfere with the sensor (i.e., music streaming or

phone calls). Notably, we opted for the MAG3110 over the STEVAL-STLCS01V1 because

of the smaller form factor which allowed us to further experiment with it. In the remainder

of the section we describe the conditions we have explored.

Results: We initially looked at the effect of streaming audio to the earbud on the mag-

netometer. This requires both active speaker movement and significant electrical current

associated with the earbud circuitry. Figure 3.7.1a shows the effect on the y axis of a

pre-calibrated magnetometer before, during (green shaded zone), and after playing mu-

sic. Playing audio introduced an offset of 10 µT . This is a fraction of the Earth’s typ-

ical magnetic field, hence the effect on the heading estimate was minimal Figure 3.7.1b.

Nonetheless, there is a clear audio-induced change. Analogous trend was also evident in

the magnetometer signals during voice calls. Figure 3.7.2 illustrates the changes in magne-

tometer x and y signals measured during a voice call (green shaded region), overlaid with

the changes associated with playing some music in post-processing. Both signals show a

clear audio-related change. We can further observe that all of the disturbances were re-
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Fig. 3.7.1: Impact of audio streaming and consequent music playback on the magnetometers
readings.
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Fig. 3.7.2: Impact of voice calls and music playback on the magnetometer readings.

versed when the audio was stopped, but that this was not immediate. Rather, we observed

a gradual return to the pre-audio values.

From this we can conclude that audio playback in an earable affects its magnetometer

signal. While we observed a relatively small change, it is enough that a one-off calibration

procedure during audio playback is to be avoided. Besides, it may also hinder applications

that do not use the magnetometer for heading (e.g., magnetic map matching). Further-

more, magnetic fields dissipate quickly with distance and a magnetometer soldered to the

earbud board (beyond the scope of this work) might experience greater disruption and

heading errors.

To better understand the source of the interference, we examined the frequency spectrum
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of the magnetometer when playing pure tones. We observed that tones played at (even

very) low volume produced noise across all frequencies in the magnetometer. Increasing

the volume resulted in additional spikes corresponding to the tone frequency: e.g., a 20Hz

tone produces a corresponding spike at 20Hz (Figure 3.7.3). From this we infer that the

interference comes partially from the audio playback (speaker/driver circuit produces the

spikes) and partly from some non-specific part of the circuitry (giving the general noise).

The slow reversal of the audio-induced changes when the audio stops is further evidence

that the interference is not solely due to the sound reproduction.
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Fig. 3.7.5: 3.7.3 FFT of the magnetometer traces while playing (on high volume) pure tones at
20Hz. 3.7.4 Impact of the interference generated by BT streaming and by the speaker on the
heading estimated by the raw magnetometer traces. Although the magnitude of the interference
on calibrated traces is smaller, for clarity in this figure we use raw readings.

We sought to isolate the core circuitry from the speaker. We used two earbuds, A and

B. First, we unsoldered and removed the speaker from A. When streaming audio to A,

we observed wideband noise in the magnetometer, persisting beyond the end of the music

(Figure 3.7.4). In this mode, the main operational circuitry is the BT module and the

audio decoder. Since the latter is not used after the music stops, we focused on the BT

module. We used a packet sniffer to establish when BT radio was in use, finding that BT

packets continued to be sent for a period after the audio was manually stopped. This period

corresponded directly to the magnetometer recovery phase. We can therefore attribute a

substantial part of the interference to the Bluetooth circuitry being active. We then used

two wires to connect the speaker terminals on A to the speaker terminals on B. In this way

we could assess the impact caused by the speaker alone without interference introduced

by the circuitry (Figure 3.6.1b). We powered both earbuds on, and then streamed music
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to A. This caused music to be played on B, where only the core circuitry was active

(not BT or other components). The magnetometer on B exhibited a small deviation when

music was played, but significantly smaller than that observed when isolating the BT

hardware. While the interference induced by the BT is almost identical for different songs,

it changes between music players (e.g., Spotify, Apple Music, YouTube) as they adopt

different protocols.

Findings Summary: Streaming audio to a modified eSense earbud resulted in a local mag-

netic field that appeared as interference in the magnetometer readings. The magnitude

of the interference was small, but we cannot rule out a larger effect for a magnetometer

fully integrated onto the earbud. The interference came primarily from the BT circuitry

being active, with a smaller component due to the speaker. Therefore, static magnetometer

calibrations in an earbud should not be carried out while the BT radio is active.

3.8 A Novel Calibration Algorithm

The previous section established that internal components of an earbud introduce magnetic

interference during RF usage, but that it is possible to incorporate a magnetometer such

that the heading estimate is minimally affected. However, this is contingent on the magne-

tometer being either correctly calibrated prior to the interference, or having the calibration

dynamically updated, something that is impractical due to the manual calibration proce-

dures conventionally used. In this section we describe a technique to provide calibration

that does not need manual intervention and can be updated dynamically.

3.8.1 Overview

Performing user-transparent magnetometer calibration is an extremely challenging task [120].

Rather than trying to calibrate earbuds independently, we propose leveraging the user’s

smartphone to assist in the calibration. Our technique assumes the phone has itself a cali-

brated magnetometer and, therefore, can provide reliable global heading. In practice, this

assumption is justified since today’s phones are able to maintain a calibrated heading by

fusing the array of sensors, from IMU to GPS [126]. Besides, whenever a phone does not

have a calibrated magnetometer, it is typically capable to notice it and will request man-

ual intervention to the user. Our key observation is that when people interact with their

smartphones, e.g., unlocking it, their head is almost certainly facing the phone. In this
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case the smartphone and the earbuds are aligned and should report the same bearing, if

correctly calibrated (Figure 3.8.1). Our approach is to use trusted bearing of the phone to

estimate the calibration parameters for the earbuds. Any calibration routine must be done

quickly, while the user is looking at their phone. Empirically, we find that unlocking an

iPhone using the FaceID usually constitutes the perfect user head-smartphone positional

relationship. This work considers unlock interactions, but the technique could be applied

whenever phone and head align.

Fig. 3.8.1: Intuition behind the proposed calibration technique.

3.8.2 Calibration Approximation

We estimate the heading (the angle between the direction of facing and the Magnetic

North) by doing:

heading = atan2(magy,magx)
180

π
. (3.5)

This is the standard way of estimating the heading given magx, magy – the leveled (with

respect to the ground) readings of the magnetometer respectively along the x and y axis.

The sign, as well as the order, of magy and magx change depending on the magnetometer

orientation. Several commercial earables ensure the earbuds remains in a still, standard po-

sition in the users’ ears. Hence, the orientation of each earbud is likely to remain unaltered

for most of the time. We leverage this, and the fact that most of the substantial rotations

and changes of heading happen along a plane parallel to the ground, to avoid continuously
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accounting for tilt compensation. Having defined how we estimate the heading, we can lay

the foundations of our approach. Firstly, we apply a standard sensor model for magx and

magy respectively as:

magx = Sx(xearbud raw − xearbud offset)

and

magy = Sy(yearbud raw − yearbud offset),

where xearbud raw and yearbud raw are the raw, uncalibrated magnetometer readings in the xy

plane, Sx and Sy are scaling factors and xearbud offset and yearbud offset are constant offsets.

According to our key assumption (Figure 3.8.1), we can re-write the way we compute the

heading as:

hphone = atan

(
R
(yearbud raw − yearbud offset)

(xearbud raw − xearbud offset)

)
180

π
, (3.6)

where h phone is the phone’s heading estimate and R = Sy/Sx the scale factors ratio. Our

goal is to collect multiple hphone values to solve for the unknowns in this equation. We make

the assumption that R ≈ 1. We expect sensors to be factory calibrated, that should ensure

this approximate relationship (more in Section 3.10). Small perturbations from 1 have

minimal effect on the heading (arctan(x+ δx) ≈ arctan(x) for small δx). The assumption

allows us to reduce the unknowns to two (yearbud offset and xearbud offset), requiring as few

as k = 2 phone interactions to estimate a calibration. In practice, we gather as many

phone headings (k) as needed to ensure good calibration quality:

hphone 1 = arctan

(
yearbud raw 1 − yearbud offset

xearbud raw 1 − xearbud offset

)
180

π

hphone 2 = arctan

(
yearbud raw 2 − yearbud offset

xearbud raw 2 − xearbud offset

)
180

π

hphone 3 = arctan

(
yearbud raw 3 − yearbud offset

xearbud raw 3 − xearbud offset

)
180

π

. . .

hphone k = atan

(
yearbud raw k − yearbud offset

xearbud raw k − xearbud offset

)
180

π

(3.7)
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By solving the over-determined systems of equations constituted by the k-th phone’s head-

ings (Equation (3.7)), we derive xearbud offset and yearbud offset, continuously updated at

every interaction. Collecting these reference measurements from the phone can occur in

the background, without any intervention from the user. Phone readings have to be reli-

able. In a smartphone the magnetometers are assumed to be calibrated, as both Android

and Apple devices fuse the magnetometer readings with GPS (if available) [126]. A new

reference is found every time users interact with their phone (i.e., FaceID unlock), pro-

vided the phone measures an undisturbed magnetic field (i.e., trustworthy heading). This

is further borne out by the high average number of daily interaction people have with

their mobile phones [127]. While more references are good as they should lead to a better

model fit, calibrating with fewer references is valuable. A good fit depends on there being

sufficiently distinct hphonek values, and we do not have control over the users behavioral

patterns. Hence, we favor calibrating as soon as possible and refining the calibration with

extra measurements later on, without explicit user interaction.

3.8.3 Calibration Algorithm

The overall functioning of the our calibration procedure is depicted in Figure 3.8.2. At

any given time, we monitor for events (e.g. phone-pickup/unlocking) that can poten-

tially provide measurements suitable for calibration. Although not being limited to un-

lock events only, often the suitability coincides with, for example, facial unlocking, as

the phone is aligned with the earbuds. These events occur fairly frequently: to be truly

user-transparent, our calibration methodology fully leverages people’s smartphone usage

patterns [127]. Given the variability of the interference and the consequent volatility char-

acterizing magnetometer calibrations [120], rather than aiming at the perfect calibration

routine, instead we strive for the best possible approximation of it. In this way, we can

afford to calibrate as soon as possible and continuously monitor the status of the calibra-

tion, updating it when necessary. In addition, by using the phone’s heading as a reference,

there is no need to further process the heading estimated from the magnetometer data in

the earbuds by calculating the magnetic declination [128].

Phone pickups and data check: Once a phone-pickup is detected, we perform a data

check to ensure the smartphone’s data are suitable for the calibration: first, we ensure the

magnitude of the phone’s readings matches, at least in the order of magnitude, that of the

Earth’s field at the current location. This is a standard way to check the magnetometer
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readings trustworthiness. Once secured we are not in a magnetic anomaly, we make sure the

phone is in portrait mode. Although this is true for most of the interactions, to calibrate

we can not afford using a reference off by 90° (i.e., phone in landscape mode). Lastly, we

verify no sharp head movements occurred, which may result in misalignment in the phone’s

and earbuds’ heading, or if the user moved the head but not the phone. These steps are

key to ensure the reference heading is truthful and of good quality.

Calibration Execution: If the data pass this check, we store them and wait until we

have enough references to perform our calibration. At least two equations are needed to

linearly solve a system of equations with two unknowns (the offsets). Hence, we need at

least two reference headings (Section 3.9). Once satisfied the number entries to perform the

calibration, we execute it by applying a least squares fitting (eq. (3.7)). Before finalizing the

calibration, we perform a sanity check to ensure there was not any significant interference

skewing the fit: we compare, on-the-fly, the instantaneous heading recorded by the phone

and the average bearing of the earbuds. The calibration is only committed after the

freshly-calibrated earbud magnetometer successfully passes this additional step.

Calibration check and update: In an ideal scenario, we would know that after a certain

amount of time ∆t, or a certain displacement in space ∆x, there is the need for re-calibrate

our sensors. However, in reality, this is not possible. Unfortunately, accurately modeling

the life time of a magnetometer calibration (i.e., how long the calibration will last before

the sensor readings will start being off) is extremely difficult. A number of factors can

invalid the calibration of a magnetometer, such as the environment, the temperature, and

the number of people in a room [129]. We avoid faulty calibration models by regularly

checking the validity of the calibration. This is an inexpensive operation we carry out

in two ways, depending whether there is a phone unlock event, or not. If the positional

relationship between the user’s head and their smartphone is the same that satisfies our

pre-calibration checks, we compare the bearing of the phone and that reported by the

earbuds. If their difference is under a certain threshold, we assume our calibration is still

valid, otherwise we drop the existing calibration. The value of the threshold depends on

the application and the desired accuracy. Alternatively, if no phone-interaction is detected,

we cannot assume the phone’s heading is the same of the earbuds’. In this eventuality,

we compare the earbud’s magnetometer bearing with the earbud’s IMU. If there are sharp

changes in the magnetometer data, but no rotations or linear accelerations are registered

by the IMU (and vice-versa), the existing calibration is likely off. Notably, we look for the

magnitude of the motion recorded by the gyroscope and we compare it with the change in
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bearing reported by the magnetometer. Even if uncalibrated, gyroscopes are fairly precise

in measuring relative motion, while they fail in tracking sustained motion.

Fig. 3.8.2: Auto-Calibration procedure: the calibration watcher checks if the phone is picked up
(i.e., during an unlock event). If such event occurs, and the phone is unlocked in a position suitable
for calibration, then the data is collected and stored. Once we have enough data to calibrate (i.e.,
at least two), then we perform the calibration procedure as described in Equation (3.7). If
successful, before applying the updated calibration values we perform a sanity check to eliminate
any potential interference or bad measurements; which, if found present, the newly calibrated
parameters are discarded.

3.9 Calibration evaluation

In this section we provide a detailed evaluation of the proposed calibration procedure. We

evaluate our system in controlled conditions by looking at how accurate the calibration

is with respect to static angles as well as tracking angular movement. We look at a

series of variables that may affect the accuracy of the calibration. Further, we assess the

performance of our system in-the-wild with a case study. We conclude by presenting some

theoretical considerations on the proposed algorithm complexity, supporting this analysis

with power consumption experimental results of our calibration routine.

3.9.1 Micro benchmarks

We start our evaluation with a list of micro benchmarks. Figure 3.9.1a reports the setup we

used to benchmark our calibration. Once assessed how the calibration removes the interfer-

ence caused by both BT and music playback using the hardware described in Section 3.7,

we focus on benchmarking the calibration technique by using the magnetometer embedded
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(a) (b)

Fig. 3.9.1: Setup used to benchmark the proposed calibration technique (3.9.1a) and volunteer
wearing the Arduino as if they were earbuds (3.9.1b). This is the setup used for our in-the-wild
use test.
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in an Arduino Nano 33BLE [130]. For reproducibility, we build a stand (Figure 3.9.1a)

to simulate the positional relationship between the magnetometer and the smartphone

(iPhone 8Plus).

Static case

We begin assessing how different factors may affect the calibration accuracy. We look

at the impact of spacing between references, the number of references, and the number

of data points fed into the calibration algorithm. We record ground truth data, as well

as raw readings from a magnetometer, for a set of angles (30°, 60°, 90°, 180°, 200°, and
275°). All the measurements are done in static conditions with the set up described above

(Figure 3.9.1a).

Difference in heading between references: The bearing of a person (i.e., the direction

in which the subject is facing with respect to the Magnetic North) at two phone pickups

is likely to be different. This difference in heading is also likely to vary, e.g., the difference

between the first 2 pickups could be 20°, with hphone1 = 10° and hphone2 = 30°, whereas
could be 50° between the second and the third pickup, with hphone3 = 80°. We will refer to

this difference in heading as spacing between reference headings (i.e., spacing(i, i + 1) =

|hphonei−hphonei+1
|). In this set of experiments, we look at how different reference headings

spacing conditions impact calibration accuracy. We set hphone1 = 10 and we vary hphone2 .

Our results are reported in Figure 3.9.2a: we plot the average errors (aggregated per

testing angle) between the reliable smartphone heading and that computed applying our

calibration to the uncalibrated magnetometer traces, while changing the spacing between

two references. We do not observe any significant gain with larger spacing of the reference

headings. Heading spacing has far less impact than we originally thought; however, the

choice of the references affects the overall accuracy which is high for small angles (using

small references), yet decreases for bigger ones.

Number of heading references: Similarly, we evaluate the impact of multiple heading

references on the accuracy of our calibration technique. We pick hphone1 = 30 and we add

references spaced by 20° (Figure 3.9.2b). We noticed that we do not require more than

2 − 3 reference headings, without getting into the territory of diminishing returns – i.e.,

paying more in terms of energy consumption (increasing the number of reference headings

inevitably results in greater complexity – Section 3.9.3) without getting a similar accuracy

boost. This desirable property provides usability benefits, allowing us to perform the
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(a) (b) (c)

Fig. 3.9.2: Errors aggregated per testing angle when changing: 3.9.2a the spacing between two
reference headings; 3.9.2b increasing the number of references; 3.9.2c the number of data-points
fed to our algorithm.

calibration more often, as very few reference headings are required for each run, resulting

in increased stability over time and more robustness to interference variability.

Number of magnetometer data points: Of particular importance is the different trend

in Figure 3.9.2c when compared to Figure 3.9.2b as we observe higher angles, (200°, 270°)
to be more precise; this is intentional as for this particular experiment we use higher ref-

erence headings (250° and 300°).Notably, we observe that the need for only a few data

points, together with the fact we require 2− 3 reference headings to perform a calibration

precise up to few degrees (sometimes even sub-degree) makes our user-transparent calibra-

tion extremely appealing. In fact, these are key indicators of how inexpensive and easy

to perform our calibration is: concretely, calibrating becomes just a matter of solving a

system of 2− 3 equations with 2 unknowns. This being an extremely easy task for today’s

processors. Because of that, we can easily afford to calibrate more often increasing the

overall accuracy.

Dynamic case: angular movement

After testing our calibration technique under static conditions, we look at impact of ro-

tational movements. Key requirement for a calibration is to work regardless the device is

still, facing in a single, static, direction, or in motion. For instance, if we consider a person

rotating their head, their bearing would change of an angle equal to that of head rotation.

A calibration must remain valid for every direction faced during the movement. Therefore,

we evaluate whether our calibration can properly keep track of motion. We do that by us-

ing the stand in Figure 3.9.1a. This way, we can constantly record both the magnetometer

data at any given orientation, and the ground truth from the phone. Concretely, we look
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at whether the calibrated heading diverge from the ground truth whenever there is mo-

tion. We perform movements of different amplitudes, simulating head rotations, and plot

the heading and the average errors. For all the experiments, we use only two references,

collected over windows of 1/20s.

Practically, we begin by looking at small movements of a few degrees (both positive and

negative) and outline our findings in Figure 3.9.3a. The uncalibrated error is significant,

averaging 30° over the duration of our experiment (mean rolling error in Figure 3.9.3b),

being at best is 10° off ground truth and at worst 45°. Besides, the magnitude of the

motions seems not to reflect those of the real movements. Conversely, we can observe

that the calibrated heading trace is very close to the ground truth heading averaging

an error smaller than 5° at any given time, resulting in a very stable heading trace in

terms of its error, providing a significant improvement overall. Analogously, Figure 3.9.4a

reports the performance of our technique for larger movements. We expect that sharp or

large movement to induce greater errors in the magnetometer heading than subtle, smaller

ones – precisely depicted by the mean error over time (Figure 3.9.4b). The error of the

uncalibrated heading trace is at one point in excess of over 90°, providing unusable data

for most applications. On the other hand, again, we observe that the calibrated heading

trace closely follows the ground truth, with an overall mean error of just a few degrees,

with the error always smaller than 5°.

3.9.2 In-the-wild example case-study: navigation

We believe, in the case of navigation, earables could be better suited than smartphones.

The rationale behind that lays in the ability of earbuds to track head movements: a

desirable feature at complex intersections. Besides, contrary to smartphones which when

in the pocket often mess up with the person’s direction (the phone moving in the pocket

keeps changing orientation), earables, once in the ears, are in a relatively stable position,

less prone to sharp changes – unless the user is moving. Further, earables can provide

extra robustness by recording 2 independent measurements of the same heading. This can

be exploited by aggregating them to enhance accuracy or scheduling them to maximize

battery life. Notice that an end-to-end earable-based navigation system is out of the scope

of this work, instead, we use this toy example to evaluate, in-the-wild, our calibration. In

this work we focus on evaluating our calibration on a case study, rather than building a

complete end-to-end earable-based navigation system.
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(a) (b)

Fig. 3.9.3: Heading estimation (3.9.3a) and mean errors (3.9.3b) for small angles.

(a) (b)

Fig. 3.9.4: Heading estimation (3.9.4a) and mean errors (3.9.4b) for large angles.

Assessing the goodness of our calibration in-the-wild, we deal with both rotational move-

ments and human motion (i.e., linear acceleration). Concretely, a user (ethics approval

grated by the departmental ethics board) wore two Arduino (with a build-in magnetome-

ter) as earbuds (Figure 3.9.1b), while holding the phone in their hands. The volunteer was

told to walk as desired in two distinct locations the first one being indoor (in a house)

while the latter outdoor (over a block). We had no control over the potential source of in-

terference in the environment. This experiment showcases how the proposed calibration is

capable of enabling earable-based in-the-wild navigation, without constraining nor bound-

ing the user, both indoor and outdoor. Figure 3.9.5 reports our results when estimating the

heading with calibrated and uncalibrated magnetometer traces and their average errors.

Through our calibration, we are able to achieve accuracy up to few degrees (below 3° for
most of the time) for the whole duration of the experiment. Notably, considering the 4
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Fig. 3.9.5: In-the-wild heading estimation (3.9.5a) and mean errors (3.9.5b).

lanes intersection example, our ≈ 3° error on the heading would lead to a ≈ ±0.26m error.

We believe ±0.26m is an acceptable tolerance for pedestrian navigation.

3.9.3 Computational and power consumption considerations

A calibration has to be accurate, yet computationally inexpensive; however, all of the

established calibration techniques require to perform a regression to fit a model based on the

observations received. Especially, online schemes do the fitting every time the calibration

is performed; in our case, as dictated from Figure 3.8.2, we check if a calibration is needed

at every suitable phone pickup. Normally, such techniques use a form of least-squares

fitting having a formal complexity of O(c2n), where c the number of features and n the

number of vectors in Rc used when performing the fitting. However, in our case, we require

very a few vectors n < 10, all in R2, representing the readings of the magnetometer on

the xy plane. Hence, the amortised complexity of our procedure ends up being even more

affordable in practice, even if we have to run the calibration procedure often. We evaluated

this claim with a power consumption experiment with a Raspberry Pi Zero to gauge the

potential overhead of our calibration procedure. Set side by side to the overhead of radio

communications over idle (≈ 1.7% TX and ≈ 2.4% RX), our scheme imposes a comparable

low overhead, only consuming an additional ≈ 2.9% over idle, with a total of 456.38mW

(idle: 442.58mW ).
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3.10 Discussion and limitations

This dissertation proposes a method to calibrate in-ear magnetometers in a user-transparent

and efficient way and shows the feasibility of having magnetometers in earables. This sec-

tion discusses the limitations of our proposed calibration technique, further motivates the

rationale behind our choices, and sheds a light onto possible future directions.

Presence of a phone: Our technique requires the earbuds user to carry a phone. Phones

are ubiquitous and carried almost everywhere. Moreover today’s earables are not stand-

alone, requiring a companion device they are connected to – usually a phone. While this

could also be a laptop or even a smartwatch, in practice, people tend to pair their earbuds

to the phone they carry with them. With the advancements in capabilities and resources

that earables are experiencing, the hope is, in the future, they will become stand alone. We

leave as a future work devising a user-transparent magnetometer calibration for a future

stand-alone earbud.

Tilt compensation: Magnetometers usually provide a 2 degrees of freedom orientation

parallel to the ground [14]. If the sensor is not leveled, tilt compensations is needed.

Common strategies usually exploit gravity measurements from an accelerometer to compute

the sensor tilt and map it back in the correct reference frame [14]. While earables experience

less significant rotations than other devices by virtue of their attachment to the head, tilt

compensation is still required. In our work, although not explicitly stated, we always

make sure the x and y we are using are leveled with respect to the xy plane. Further,

in our system, head dips of α° can be modeled as rotations about the y axis, resulting in

(magx cos(α),magy). cos(α) ≈ 1 for small values of α, we assume little head dips (like

those when normally interacting with a phone) only marginally affect our system.

Scaling factors: Our approach does not estimate the sensor scale factors. Instead, we

assume the ratio of scale factors would be 1. This allowed us to reduce the number of

distinct headings to estimate the calibration, favoring usability and low complexity. Our

justifications for the assumption are:

(i) scale factors are used to address soft iron distortions which, although having a non-

negligible effect when looking at the intensity of the Earth’s magnetic field, are

substantially less significant than hard iron distortion when looking at the heading;

(ii) we expect earbud manufacturers to perform a factory calibration of their sensors,

which would build in compensation for any soft or hard iron biases internal to the
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earbuds themselves. Calibration parameters do of course change with environmental

factors, necessitating in-field calibrations. However, the changes are likely perturba-

tions around the factory calibration. Therefore the ratio of observed scale factors –

on which the heading computation depends – would be expected to be approximately

1. Notably, this was the case experimentally for all of the magnetometers we tested.

Perturbations to this ratio have a limited effect on the estimated heading, so our

assumption has minimal effect on the error, whilst reducing the complexity of our

calibration procedure;

(iii) assuming R ≈ 1, we do not estimate the true scale factors. While this have minimal

effect on the heading accuracy, it does mean we do not obtain a reliable estimate

of the overall magnetic field magnitude, implying we cannot use the field magnitude

to discard readings when in a magnetic anomaly. Nonetheless, we are able to accu-

rately compute the earbuds heading, key enabler to many applications, starting from

IMU calibration. In the future we hope to extend our model to scale factors, too.

In the meantime, we note that anomalies may be detected through large rotation

discrepancies between the gyroscope and the magnetometer.

Interactions with the phone: As a proof of concept, in this work, we rely on FaceID

unlocks to ensure the positional relationship phone-earbuds is what we require for our

calibration to work properly (Figure 3.8.1). However, unlocks are not the only events lead-

ing to this specific positional relationship. By reliably detecting more of such occurrences

(even during a single interaction) would be possible to further increase the granularity of

our measurements, which might be suitable for some application which need more frequent

references.

3.11 Conclusion

The ever increasing number of personal-scale applications relying on accurate head mo-

tion tracking has fuelled our research efforts towards tracking head movements from an

ear-piece. Specifically, in this chapter, we first evaluated eSense as an earable device to

perform in-ear head motion tracking. Our technique combines multiple streams of data,

and, despite the absence of a magnetometer in the inertial sensor equipped in eSense,

achieves results precise up to a few degrees, also under realistic situations (e.g., with the

subjects speaking or chewing). However, we found the accuracy of our estimation decreases
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for longer movements. A preliminary study suggests this can be attributed to the lack of

a magnetometer to recalibrate the earables’ IMUs. Hence, we went one step forward and,

for the first time, we investigated how to augment earables with a magnetometer to aid

even more personal-scale applications.

Our research shows how embedding magnetometers in earables is a challenging task, as

these rely heavily on radio (mostly Bluetooth) communication (RF) and contain magnets

for magnetic-driven speakers and docking. At first, this chapter presented a comprehen-

sive study of the magnetic interference impacting the magnetometer when placed in an

earable, showing how by RF (music streaming and voice calls) communications account for

the better part of it. We find that appropriate calibration of the magnetometer removes

the offsets induced by the magnets, the speaker, and the variable interference due to BT.

Therefore, we devise and present an automatic, user-transparent adaptive calibration that

obviates the need for alternative, expensive, and error-prone manual, or robotics, cali-

bration procedures. Our evaluation shows how our calibration approach performs under

different conditions, achieving convincing results with errors below 3° for the majority of

the experiments.

Last, regarding the application area, this chapter focused on facilitating accurate personal-

scale inertial sensing applications by (i) proposing an head tracking system that leverages

the duality of earables to track motion, and (ii) paving the way to magnetometer-enabled

earables to allow for IMU calibration. Having shown the goodness of earables as a sensing

platform, the following chapter seeks to investigate the potential of another family of

commodity sensors present in earables. To this end, Chapter 4 and Chapter 5 study

how to leverage in-ear microphones for general motion sensing and identification purposes,

respectively.
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Chapter 4

In-ear Microphone Sensing: OESense

Do or do not. There is no try.

–Yoda

4.1 Introduction

In Chapter 3 we have explored the potential of kinetic earables in tracking head move-

ments and, for the first time, we investigated how to augment them with a magnetometer

to improve the motion tracking performance. On the contrary, in this chapter, as well

as in Chapter 5, we investigate motion sensing with a different modality: in-ear micro-

phones. Indeed, historically, researchers used inertial measurement units (IMU) to sense

motion – accelerometers in particular. Some example applications are human activity

recognition [131], eating habits monitoring [132], smoking gesture recognition [133], and

gait analysis [134]. However, as we will show in Section 4.2.1, while in-ear accelerometers

can detect intense motions (e.g., walking and running) reliably, the signals recorded un-

der light motions (e.g., chewing and tapping gestures) are often compromised whenever

head movements are present. Besides accelerometers, more traditional external-facing mi-

crophones have also been adopted to detect motion events (e.g., gesture recognition [66]).

However, traditional microphone-based methods suffer from low signal-to-noise ratio (SNR)

due to the strong attenuation of sound in the air, thereby significantly limiting the sensing

range. Further, such methods are also extremely vulnerable to acoustic interference in the

environment (as shown in Figure 4.2.2).
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To achieve reliable detection of both intense and light human motions with earables, we

present OESense, a novel acoustic-based in-ear human motion sensing system. OEsense

performs robust motion sensing based on two critical design choices. First, to tackle envi-

ronmental noise, OESense relies on an inward-facing microphone to record motion-induced

sounds from inside the ear canal. As a result, most of the environmental noise is naturally

suppressed. Further, acoustic signals are inherently immune to motion artifacts like those

caused by head movements. Second, to cope with the poor SNR of traditional acoustic

approaches based on external-facing microphones, OESense exploits the physiological phe-

nomenon known as the occlusion effect to enable the detection of both intense and light

motions in human ear canal. Concretely, as we discussed in Section 2.2.1, when a motion

stimulus is applied to the human body, the occlusion effect boosts low-frequency bone-

conducted sounds when the ear canal orifice is occluded. Given most human motions are

of the order of a few Hertz, the occlusion effect yields a significant SNR gain.

In summary, we proposed the joint use of the occlusion effect and in-ear microphones for

general human motion sensing, which is robust to motion/acoustic interference and capable

of reliably sensing intense and light motion occurrences. After having prototyped OESense

using a Raspberry Pi [135] and a pair of wired earbuds, we developed the sensing pipelines

for three typical applications: step counting, activity recognition, and hand-to-face tapping

gestures recognition. To ensure the occlusion effect is present at any given time when we

are collecting acoustic-motion data, we proposed a software-based fit test to measure the

sealing quality of earbuds. With data collected from 31 subjects, we comprehensively and

thoroughly evaluated the performance of OESense under various realistic conditions. Our

results show that OESense achieves 99.3% step counting recall, 98.3% recognition recall

for 5 activities, and 97.0% recall for five tapping gestures on human face, respectively.

Finally, we assessed the system performance of OESense. We measured the system power

consumption and latency, showing that for gesture recognition OESense consumes 746mW

power and the response latency is 40.85ms. Ultimately, this offers an initial indication

of the feasibility of the idea which could be further optimized on more energy-efficient

hardware platforms.

4.2 Motivation

With this chapter, we aim at developing a general earable sensing system for human mo-

tion detection. The system should be able to accurately and reliably detect both intense
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and light (e.g., body surface vibrations) human motions. Specifically, we select three ap-

plications as the representatives of intense, light, and mixed motion detection tasks.

• Step counting (intense): human walking involves large scale movements of the

whole body and can be detected at different body positions (like foot, hip, waist, and

head).

• Human activity recognition (mixed): we select five activities including walk-

ing, running, being still, chewing, and drinking, which combines both intense body

motions and weak surface vibrations.

• Hand-to-face gesture interaction (light): vibrations generated by tapping dif-

ferent parts of the human face propagate to the ear via different paths. The received

signals present distinctive patterns, enabling the recognition of different tapping ges-

tures.

Next, we investigate the feasibility and robustness of two commonly used sensors, i.e.,

accelerometer and microphone, for these three applications.

4.2.1 Preliminary exploration: accelerometers

Accelerometers have been widely adopted for motion sensing applications due to their

capability of sensing both intensive and weak vibrations. As we have seen in Chapter 3,

accelerometers have been successfully integrated in many contemporary earbuds [9, 136].

However, as the human head has high degrees of freedom to move and rotate, and it

does not always do so accordingly with the rest of body, accelerometers on earables are

inevitably affected by head movements. To explore the severity of such interference, we

embed an accelerometer (MPU6050 [137]) into an earbud and record its readings when a

subject is performing eight activities within the scope of the three applications we consider.

Figure 4.2.1 compares the raw acceleration signals for the eight activities, with (lower row)

and without (upper row) head movements. We can observe that: (i) overall, the accelerom-

eter can detect most intense (walk and run) and light (chew and taps) activities, but fails

to capture extremely weak signals like drink-induced vibrations. (ii) head movements have

minor impacts on intense activities (walk and run). The head movement only produces

small variations on the signals whereas the overall patterns remain unchanged, i.e., each

step is clearly observable. (iii) the movement of the head completely obfuscates the ac-

celerometer readings of light activities, as the magnitude of head movement is substantially
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Fig. 4.2.1: Comparison of signals from the accelerometer without (upper row) and with head
movements (lower row).

larger. Thus, due to the fact that interference from head movements is unavoidable, we

can safely state that accelerometer-based approaches for earables can only reliably apply

to intense motion detection.

4.2.2 Preliminary exploration: traditional external microphones

Microphones are the most widely available sensors in earbuds, originally used to capture

human speech. Although microphones can measure motion-induced sounds and thereby

could be used to infer activities, traditional external microphones are vulnerable to envi-

ronmental noise. To validate this, we record microphone (external facing) data from an

earbud when a subject performs the same activities mentioned above. Figure 4.2.2 com-

pares the raw microphone signals under the eight activities, with (lower row) and without

(upper row) background noise (music playing). We can observe that: (i) compared to the

accelerometer recordings, the data collected with the external-facing microphone shows

less potential for motion detection (only run and two tapping gestures can be reliably

detected). The reason is that external microphones measure the air-conducted sounds,

which suffer from strong attenuation. Hence, only motions producing relatively high vol-

ume can be detected. For walking, the step sound also depends on the material of the

ground and shoes. (ii) the plots in the bottom row indicate that the sensing signals are

completely hidden in the background music. Given that motion sounds and background

music are both audible and share most of the frequency spectrum, it would be very chal-

lenging to filter out such interference with signal processing techniques. We will present a

more detailed performance comparison between the accelerometer-based approach and the

proposed OESense in Section 4.6.1.
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Fig. 4.2.2: Comparison of signals from the external facing microphone without (upper row) and
with background noise (lower row).

4.3 OESense: system design

In this section we discuss the working principles leveraged by OESense, we present a

preliminary exploration of the feasibility of the system, and we describe in details the

sensing pipelines we designed.

4.3.1 Overview

As discussed, accelerometer and external microphone based methods cannot be applied

to general motion sensing due to the impact of head movements and background noise,

respectively. To achieve our aim, we propose OESense, which makes joint use of the

occlusion effect and an in-ear microphone to sense human motions with earbuds. When

wearing the OESense earbuds, vibrations/sounds generated by motion stimuli applied to

human body will propagate to the ear canal through bone-conduction and be captured by

in-ear microphones. With signal processing and machine learning, the signals can be used

to infer the applied human motions.

4.3.2 Impact of the occlusion effect

In this section we cover how we envisage to leverage the occlusion effect for human motion

sensing. Notably, a more detailed description of the occlusion effect is reported in Sec-

tion 2.2.1. When vibratory stimuli are applied on the human body, the generated sound

will propagate to other parts of the body through bone conduction. Ordinarily, bone-

conducted sounds induce vibrations in the ear canal wall, which then escape through the

opening of the ear canal (ear canal orifice). However, when the ear canal is occluded, the

sounds are trapped and reflected back to the eardrum [59] (Section 2.2.1). As a result, the

acoustic impedance of the ear canal opening at low frequencies increases [58, 60].

68



100 300 500 700 900 1100 1300 1500
Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Without OE-1
Without OE-2

With OE-1
With OE-2

Fig. 4.3.1: Impact of occlusion effect on the frequency response.

0.75
0.50
0.25
0.00
0.25
0.50
0.75

Am
pl

itu
de

Walk

1.0

0.5

0.0

0.5

1.0 Run

0.6
0.4
0.2
0.0
0.2
0.4
0.6 Drink

0.6
0.4
0.2
0.0
0.2
0.4
0.6 Chew

0.6
0.4
0.2
0.0
0.2
0.4
0.6 Still

0.50

0.25

0.00

0.25

0.50

Tap Middle Forehead

0.50

0.25

0.00

0.25

0.50

Tap Left Cheek

0.50

0.25

0.00

0.25

0.50

Tap Right Temple

0 2 4
Time(s)

0.75
0.50
0.25
0.00
0.25
0.50
0.75

Am
pl

itu
de

0 2 4
Time(s)

1.0

0.5

0.0

0.5

1.0

0 2 4
Time(s)

0.6
0.4
0.2
0.0
0.2
0.4
0.6

0 2 4
Time(s)

0.6
0.4
0.2
0.0
0.2
0.4
0.6

0 2 4
Time(s)

0.6
0.4
0.2
0.0
0.2
0.4
0.6

0 2 4
Time(s)

0.50

0.25

0.00

0.25

0.50

0 2 4
Time(s)

0.50

0.25

0.00

0.25

0.50

0 2 4
Time(s)

0.50

0.25

0.00

0.25

0.50

Fig. 4.3.2: Comparison of signals from the inward-facing microphone without (upper row) and
with head movements (lower row).

Similarly to what is done by Carillo et al. [57], we also measure the impact of occlusion effect

on the ear canal frequency response. This allows us to gauge the extent of the sound boost.

We do so by using the earbud speaker to transmit a single tone between 100 − 1500Hz

(with a 100Hz step) and record the reflected sound with an inward-facing microphone.

Figure 4.3.1 compares the frequency response with and without the occlusion effect (i.e.

the complete blocking of the ear canal opening). We can immediately appreciate how the

blocked ear canal produces a stronger response at frequencies below 900Hz, whilst the open

ear canal gains much higher response at higher frequencies. We repeated the measurements

twice (removing the earbud and wearing it again) and the response is highly consistent.

Leveraging the occlusion effect for human-related sensing promises three advantages.

(i) First, due to the occlusion of ear canal orifice, the inward-facing microphone mainly

captures the bone-conducted sound in the ear canal and is less susceptible to envi-
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Fig. 4.3.3: Comparison of signals from the inward-facing microphone without (upper row) and
with background noise (lower row).

ronmental noises including traffic sounds and human speech.

(ii) Second, given that most human-produced motions are in relatively low frequencies

(a few Hertz), the amplification gain provided by the occlusion effect can improve

the SNR of the sensing signal.

(iii) Third, although earbuds are mainly used for delivery of sounds (e.g., music or phone

calls) to the human ear, these sounds are usually in higher frequencies so sound

delivery and human sensing (under 50Hz) can coexist without mutual interference.

4.3.3 Initial exploration

To demonstrate the feasibility of OESense for general motion sensing, we repeat the ex-

periments conducted in Section 4.2.1 and Section 4.2.2 with the inward-facing microphone.

Figure 4.3.2 illustrates the recordings for the eight activities, with and without head move-

ments. We observe that the signals for the same activity show similar patterns under both

cases, indicating head movements have a negligible impact on the sensing signals. Notably,

the slightly higher noise levels under head movements are due to the friction of the ear-

buds wires, which could be eliminated when a wireless earbud is used. Besides, as shown

in Figure 4.3.3, background noise has no impact on the sensing signals as it is naturally

suppressed with the occlusion of the human ear. Moreover, since the target motion signals

are in frequencies below 50Hz, any audible background noise can be easily removed with

a low-pass filter. A comprehensive evaluation of the sensing performance will be presented

in Section 4.6.
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4.3.4 Sensing Pipelines

After demonstrating feasibility, we develop a light-weight sensing pipeline for each applica-

tion. Specifically, we propose a robust step counting algorithm based on envelop extraction

and peak detection. For activity and gesture recognition, we propose an audio-based fea-

ture set and adopt machine learning based classification.

Step Counting

Human steps create a periodic sinusoidal pattern on the IMU signal, so traditional step

counting algorithms aim to calculate the frequency of the sinusoidal signal or match with

a sinusoidal template [10]. However, as shown in Figure 4.3.4, the step signals recorded

with microphone exhibit a completely different pattern. Specifically, looking at the audio

recording, each step is composed of a small chunk of spikes (corresponding to the foot strike

stage) and a relatively silent period (corresponding to the foot swing stage). Based on this

observation, we propose the following step counting algorithm for in-ear audio recorded

signals.

Given the vibrations generated by foot strikes are at a low frequency, we first apply a

low-pass filter with cut-off frequency at 50Hz on the collected audio signal to eliminate

environmental noise and human speech. Then, we feed the filtered signal f(t) to the

proposed algorithm. As described in Algorithm 1, we first apply a Hilbert transform on

f(t). This outputs the upper envelop (up evlp) and lower envelop (low evlp) of f(t), as

shown in Figure 4.3.4. We then apply another low-pass filter (cut-off 5Hz) on the two

envelops to smooth them. Afterward, we run peak detection on the smoothed envelops.

This outputs the time index (peak.x) and amplitude (peak.y) for each peak. To avoid

over-counting (i.e., false positives), we further propose two strategies to filter the detected

peaks: (1) the minimum peak interval (θ intvl) between adjacent peaks is set to 0.3s as the

normal human walking frequency is lower than 3.3Hz; (2) the minimum peak amplitude

(θ amplitude) is set to 0.3× the average amplitude of all detected peaks. Any peak that

fails to satisfy either one of the conditions will be culled. Lastly, to combat the sporadic

noise that induces either only an upper peak or a lower peak, we count a step only when

a pair of upper peak and lower peak is aligned, i.e., the time lag (refers to maximum

alignment interval δ) between them is shorter than 0.2s.
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Algorithm 1: Step counting algorithm.

Input: Low-pass filtered signal f(t), t = 1,2,...,T; minimum peak interval θ intvl;

maximum alignment interval δ

Output: Step counts N

1 N ← 0 /* initialize N */

/* obtain upper and lower envelope */

2 up evlp(t), low evlp(t)← HilbertTransform(f(t))

/* smooth envelop with low-pass filter */

3 up evlp′(t)← LowpassFilter (up evlp(t))

/* peak detection, peak={(x,y); x:time index, y:amplitude} */

4 peak up ← PeakDetection(up evlp′(t))

/* filter peak up and peak low */

5 θ amplitude← 0.3 ∗ average(peak up.y)

6 for i = 0; i < len(peak up)− 1; i = i+ 1 do

7 if peak up(i+1).x - peak up(i).x < θ intvl then

8 delete peak up(i+ 1)

9 if peak upper(i).y < θ amplitude then

10 delete peak up(i)

/* Repeat lines 3-10 for low evlp(t) */

11 peak low ← low evlp(t)

/* Align peak up and peak low */

12 for upper in peak up do

13 for lower in peak low do

14 if |upper.x− lower.x| < δ then

15 N ← N + 1

16 return N

Human activity recognition

To perform human activity recognition (HAR) on the in-ear recorded audio traces, we first

apply a low-pass filter with cut-off frequency of 50Hz on the original signal to eliminate

environmental and human sounds. We then proceed by dividing the recorded audio stream

into small segments using a sliding window technique. The window size is fixed at 1s with
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Fig. 4.3.4: A walking segment showing the performance of proposed step counting algorithm.

an overlapping ratio of 50%. Afterward, we leverage librosa [138], a widely-adopted python

package, for audio features extraction. Specifically, inspired by [139], for each instance

(samples in a window), we extract 187 features that cover frequency-based, structural,

statistical, and temporal attributes. These features are Mel-frequency cepstral coefficients

(MFCC) (40 features), first-order derivative of MFCC (40), second-order derivative of

MFCC (40), mel spectrogram (40), chroma of short-time Fourier transform (STFT) (12),

contrast of STFT (7), tonnetz (6), RMSE (Root Mean Square Error) (1), and onsets (1).

A more detailed description of these features can be found in [139].

Finally, we perform classification with five typical machine learning classifiers: Logistic

Regression (LR), Support Vector Machine (SVM), K Nearest Neighbours (KNN), Decision

Tree (DT), and Random Forest (RF). We report the results for LR and SVM only as they

achieve the best performance. We run the experiment for data from the left earbud and

right earbud individually. Notably, we also create a fused signal by concatenating the fea-

tures extracted from the two earbuds. The reason to concatenate features instead of raw

signals is to retain the authentic sequential information in the data. Specifically, since the

left and right earbud records concurrently, concatenating raw signals (and then perform-

ing feature extraction) introduces additional sequential information, while concatenating

features avoid this issue as there is no sequential information among features. The code

makes use of the Python scikit-learn package [140].
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Hand-to-face gesture recognition

Similarly to what done for HAR, in order to perform hand-to-face gesture recognition we

first apply a low-pass filter (cut-off 50Hz) for denoising. We then apply the same envelope-

based peak detector described in Algorithm 1 for gesture extraction. In detail, we obtain

the envelope of each data trace and detect its peaks, where each peak corresponds to a

tapping gesture. Then, the gesture start and end is derived by shifting 0.15s backward

and 0.25s forward from the peak, respectively. Consequently, each gesture is composed of

all samples within the 0.4s. To extract the features and run the classification, we followed

the same methodology described in Section 4.3.4.

4.4 Implementation

In this section we describe the OESense prototype as well as the fit test we designed to

guarantee the presence of the occlusion effect.

74



4.4.1 Hardware prototyping

First, we present the hardware design and the prototyping of OESense. Although inward-

facing microphones have already been integrated into existing commercially available wire-

less earbuds [136,141], they are designed for noise cancellation and developers do not have

access the raw audio data. Thus, to prove our concept, we prototype OESense by adding

an inward-facing microphone to pair of commercial (wired) earphones. We choose the

MINISO Marvel earphones [142] as the base earbuds based on two criteria: (i) their inter-

nal body is large enough to accommodate a MEMS (Micro-Electro-Mechanical Systems)

microphone as well as the original speaker; and (ii) they are equipped with silicone ear tips

(removable and interchangeable) that can serve as the occlusion device, providing good

sealing quality. To measure sounds from the ear canal, we opted for an analog MEMS mi-

crophone (SPU1410LR5H-QB [143]) due to its wide and flat frequency response between

20Hz and 20kHz. As shown in Figure 4.4.1 (within the green dashed box), we embedded

the microphone at the front-end of the earbud and moved the original speaker towards

the back-end. Such design optimizes the SNR of the microphone, although modifies the

internal structure of the earbud. We assess whether this would affect the audio quality of

music playback through user perceptions in Section 4.7.

The earbuds have been modified to collect audio signals from both ears. To minimize noise,

each microphone is connected to a differential circuit before being sampled by an audio

codec (Figure 4.4.1). We choose a ReSpeaker Voice Accessory HAT [144] as the audio

codec. The ReSpeaker is controlled by a Python program running on a Raspberry Pi 4B.

We sample the microphone data at 48kHz. The speaker is connected through the original

wires using a 3.5mm audio jack. The whole prototype is powered with a power bank to

facilitate collecting data remotely whenever the participants are moving. To avoid affecting

the subjects’ walking style, all the components are enclosed in a comfortable chest bag, as

shown in Figure 4.4.1b.

4.4.2 Earbud fit test

As we have discussed, the key working principle of OESense is the presence of the occlusion

effect. Ultimately, that requires that the ear canal orifice is completely blocked (i.e., oc-

cluded), sealing the ear canal cavity. However, through empirical assessment, we observed

the earbud might be loosely attached during the experiments, especially whenever the sub-

jects are moving, thus hindering the natural sound boost provided by occlusion effect. To
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this end, we propose a fit test to check whether the earbuds are properly sealing the ear

canal. We do so by ensuring the behavior induced by the occlusion effect is present at any

given time (Figure 4.3.1).

The test works as follows: (i) before the subject wears the earbuds in their ears, we first use

the speaker to transmit two single tones (with duration of 100ms) at 300Hz and 1500Hz,

respectively. We proceed by measuring the amplitude of the microphone measurements

(A 300base and A 1500base). (ii) Once the subject wears the earbuds, we repeat the single

tone transmission and calculate the microphone amplitude (A 300test and A 1500test). (iii)

Finally, if the amplitude ratio A 300test/A 300base > 5 and A 1500test/A 500base < 0.2, the

sealing quality is good as the occlusion effect is observed. Otherwise, the user is requested

to adjust the positioning of the earbuds and perform the fit test again.

4.5 Data collection

To experimentally compare the performance of OESense with accelerometer-based and ex-

ternal microphone-based approaches, we first asked one subject to collect data for each

application under different conditions (with and without motion and acoustic interfer-

ence). The microphone and accelerometer data were sampled simultaneously at 48kHz

and 100Hz, respectively.

We then proceeded by recruiting 31 participants (including 16 males and 15 females, with

an age of 26.6 ± 5.8) for larger-scale data collection campaign. During this second data

collection, we only recorded inward-facing microphone data 1. In the reminder of this

section we detail the procedures followed to collect the data needed to validate OESense

for step counting, activity recognition, and hand-to-face gesture recognition.

4.5.1 Step counting

Participants were asked to walk in a quiet meeting room (around 30dB noise level) at their

normal walking style and speed. The room size was 12× 6sqm, and the participants were

instructed to walk in circles along the walls. To explore the robustness of step counting

under various practical conditions, we consider 2 different ground materials (i.e., brick and

carpet), and 5 different walking scenarios (i.e., barefoot walking, walking with slippers,

1Ethical approval for carrying out all the studies has been granted by the corresponding institution.
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Fig. 4.5.1: Illustration of the designed tapping gestures (4.5.1a), gesture waveform from both
earbuds of Subject 1 (4.5.1b).

walking with sneakers, walking while speaking, and walking while chewing a gum). For ev-

ery ground material and scenario, each participant walked continuously for 1.5min, during

which they manually counted the number of steps (serving as the ground truth). Notably,

at normal walking speed, all the subjects walked between 156-176 steps within 1.5min. In

summary, each participant performed 10 sessions and all the subjects walked 52047 steps

in total.

4.5.2 Human activity recognition

The activity experiments were conducted in the same environment we described previously

for step counting. Being still, drinking, and chewing gum were performed while the subjects

sat on a chair. For drinking, participants held a bottle of water and kept swallowing as much

as they could. For walking and running, participants were asked to move in the same room

along the walls. During each session, the participants wore the prototyped earbuds (as

per Figure 4.4.1b) and performed each of the activities continuously for 1.5min. Notably,

every activity was repeated twice (2 sessions), between which a 30s break was set to avoid

user fatigue. In total, we recorded 31× 5× (2× 1.5) = 465 minutes of activity data.

4.5.3 Hand-to-face gesture recognition

As depicted in Figure 4.5.1a, we selected 12 different positions on the face: left forehead,

middle forehead, right forehead, left temple, right temple, left cheek, right cheek, left jaw,

right jaw, nose, philtrum, and chin. These are the locations on the human face we choose as
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the interaction spots for the tapping gestures. Accordingly, we crafted twelve hand-to-face

gestures by finger tapping (one-time) on each of the chosen position. Given the unique

structure of the bones and the composition of tissues, the vibration paths between the ear

canal cavity and the tapping spots are very distinct, ultimately acting as the foundation

to recognize different gestures. Figure 4.5.1b illustrates the waveforms of the 12 gestures

collected from left and right earbuds of Subject 1. Notably, we can observe how the same

finger taps on different spots indeed result in distinctive patterns. Further, the two earbuds

can be regarded as independent sensing channels.

The participants were instructed to perform each gesture for 60 times with a tapping

interval of 1s. To assist the participants in maintaining the tapping interval, a cyclic

one-second countdown timer was displayed on a laptop screen in front of them. All the

gestures were performed with the right hand for fair comparison, as it was the dominant

hand for all the participants. The data for Subject 2 and Subject 6 were omitted as they

were corrupted 2. In total, we collected 29× 12× 60 = 20, 880 gestures.

4.6 Evaluation

In this section, we first compare the performance of OESense against that of the accelerom-

eter and microphone-based approaches (with and without interference). Then, using the

data collected during our large-scale data collection, we assess the performance of OESense

under various conditions for each of the three applications considered. Finally, we discuss

the impact of music playback as well as the power consumption and latency of OESense.

4.6.1 Baselines benchmarking

As shown in Section 4.2, conventional approaches, i.e. accelerometer (Acc) and external

microphone (eMic) either fail to detect light motions or suffer from motion and/or acous-

tic interference. With data collected from one subject (single ear), we run the developed

sensing pipelines for each application to compare the final sensing accuracy (recall), as

presented in Table 4.6.1. For accelerometer data, we extract around 130 statistical and

spectral features using the TSFEL Python library [145] and use a logistic regression clas-

sifier.

2The ear tips were loosened but subjects did not report, so the occlusion effect disappeared and no
gestures was detected.
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Table 4.6.1: Performance comparison of OESense with accelerometer (Acc) and external micro-
phone (eMic) based methods. SC-Step Counting, AR-Activity Recognition, GR-Gesture Recog-
nition. The values reported for SC are the number of steps counted (ground truth is 300), whereas
for AR and GR are the recognition recall.

SC AR GR

Acc
w/o head movements 300 72.76% 59.75%

with head movements 299 53.01% 29.55%

eMic
w/o music 109 67.68% 46.53%

with music 208 27.59% 72.76%

OESense

w/o head movements 300 91.26% 83.09%

with head movements 299 88.74% 79.62%

w/o music 300 91.26% 83.09%

with music 300 90.99% 81.15%

For step counting, the subject walks 300 steps in each session. We can see that accelerom-

eter precisely counts the steps even under more challenging situations with interference.

This is because acceleration produced by the head movements is negligible if compared to

that of walking and running. Conversely, the external microphone severely under counts

the steps in both cases, as the air-conducted step sounds are very weak. OESense achieves

great performance in all cases due to its natural immunity to motion and background noise.

For activity recognition and gesture recognition, we can observe that (1) without inter-

ference, Acc and eMic have lower recall than OEsense as they cannot detect some of the

activities/gestures. (2) With interference, the recognition recall of Acc and eMic decreases

significantly. Overall, OESense achieves comparable, if not superior, performance in all

cases. The relatively big accuracy drop with head movements is actually caused by the

fraction of earbud wires and could be resolved when a wireless earbud is developed.

4.6.2 Step counting

Figure 4.6.1 depicts the step counting performance of OESense under various conditions.

Precision and recall respectively reflect the over-counting and under-counting behavior of

OESense. Overall, we can observe that for step counting, both the precision and the recall

of the system are higher than 97.5% regardless of the ground material and the walking
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Fig. 4.6.1: Step counting performance for walking on brick (4.6.1a) and on carpet (4.6.1b).

scenario, demonstrating the superior performance of OESense on the step counting task.

Notably, different walking scenarios have distinct impacts on step counting performance.

For instance, when walking with slippers, the foot contact area whenever the feet hit

the ground increases, thereby weakening the strength of the generated vibrations [146].

Ultimately, this leads to the algorithm missing some steps (false negatives), resulting in a

lower step counting recall. Conversely, when people are chewing, the vibrations generated

by the jaw movements propagate to the ear canal through bone conduction. Consequently,

we can expect to observe more spikes on the audio signal, thus leading to over-counting.

Hence the precision under the chewing scenario results to be the lowest.

For different ground materials, we can observe that brick surfaces generally yield higher

recall compared to carpet. This is because soft carpet will dampen part of the vibrations,

thus resulting in missing steps. In addition, the audio signal collected when walking on a

carpet has lower amplitude (i.e., lower SNR). As a consequence, the signal is more easily

polluted to other body movements. Remarkably, both the left and the right earbuds,

when considered individually, achieve very high accuracy, indicating the proposed step

counting approach can work well even with a single earbud. Overall, OESense achieves

an average step counting recall of 99.32% and a precision of 99.26%, which dramatically

outperforms the industrial standard for pedometers (for example, ±3% counting error set

by the Japanese Ministry of Economy Trade and Industry [147]).

4.6.3 Human activity recognition

Overall performance: After aggregating data from all the 31 subjects, we compare the
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Fig. 4.6.2: Overall activity recognition performance (4.6.2a) and confusion matrix (4.6.2b).
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Fig. 4.6.3: Activity recognition performance for leave-one-out test (4.6.3a), individual perfor-
mance with model personalization (4.6.3b), and average recognition performance with different
amounts of personal data (4.6.3c).

performance of three datasets: left earbud, right, and fused. For each task, we split the data

into training set (80%) and testing set (20%). We then proceed by training the models with

5-folds cross-validation. The results are presented in Figure 4.6.2a. We can observe that:

(i) SVM always achieves better performance than LR; (ii) the results of the classification

run on the left and right earbud (individually) are similar; (iii) the fused dataset yields the

highest recognition precision and recall both of around 98.3%. Such improvement might

arise from the fact that fused dataset benefits from two sensing channels and, therefore,

it is more resilient to the signal distortions taking place when one of the ear tips is loose.

For these reasons, in the reminder of this section, we only present the results for SVM and

with fused dataset.

Figure 4.6.2b reports the confusion matrix for the five activities considered using SVM.
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We can appreciate how the trained model recognizes walking, running, and chewing rea-

sonably well; whilst the main accuracy loss comes from the baseline still and the drinking

activity being confused. This stems from the fact that when collecting drinking data the

participants were unable to continuously swallow water for prolonged periods. As a result,

the traces are characterized by resting periods between swallowing episodes. Notably, if

the resting period is longer than 1s (length of the window size), the recorded segment

would be similar to that of someone sitting still as no action is performed, resulting in a

confusion between drinking and being still.

Leave-one-out test: To justify how a pre-trained model can be generalized to a new user,

we perform the leave-one-out (LOO) test on the fused dataset. Practically, we iteratively

select one subject for testing and we train the SVM classifier using the data from the

other subjects (30). Figure 4.6.3a shows the recognition precision and recall for the leave-

one-out test. Notably, the results vary significantly among different subjects. The pre-

trained model generalizes well to some subjects, while it appears to suffer from significant

performance degradation for other subjects. For example, when testing on Subject 5, the

model achieves approximately 98.4% recognition recall, while for Subject 2 the recall is

only 24.4%. The reason for this might arise from the fact that people perform the five

activities differently. For instance, the walking style (i.e, gait) of each person is unique.

Besides, people chew in very distinct ways, such as slow/fast chewing and gentle/ravenous

chewing. Thus, if the dataset used for pre-training the classifier does not include the style

of a new user, the model will perform poorly.

Model personalization: A simple way to address the model generalization issue is by

collecting activity data from as many as subjects as possible (e.g., hundreds or thousands).

This way, the pre-trained model covers large variations of activity styles. However, this

comes with a tremendous burden related to the data collection. In this dissertation, we

explore an alternative technique that leverages a user-specific model (model personaliza-

tion), by re-training the general model with personal data. Notably, the results show that

our system only requires a limited amount of user data to benefit from the personalization

performance boost. For each iteration in the leave-one-out tests, we include a different

amount of data from the testing subject for training and testing on the rest.

Figure 4.6.3b shows the recognition performance when 0, 10, and 60 samples from each

subject are used to re-train the model. We can observe that with 10 samples both the

recognition precision and recall are significantly improved. This is particularly true espe-
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Fig. 4.6.4: Overall gesture recognition performance on 12 gestures (4.6.4a), individual gesture
recognition performance with different gestures (4.6.4b), and impact of training data size averaged
over 29 subjects (4.6.4c).

cially for those subjects for whom the performance were lower to begin with (e.g., Subject

2 improves from 24.4% to 91.6%). As expected, with 60 samples, the performance can be

even further enhanced.

Figure 4.6.3c compares the average value with [5, 10, 15, 30, 60, 90, 120] personal samples

added for model re-training. The results indicate that higher accuracy improvement can

be achieved when more personal data is provided. The average precision reaches up to

92.1% (increasing by 9.2%) with 10 personal samples and 96.3% (benefiting from a 13.4%

enhancement) when 60 personal samples are added. Targeting 90% precision, the users

only need to provide 10 samples for each activity, which can be be easily collected within

25s (5s each) with a 50% window overlapping. The need for user intervention (providing

personal data) is socially accepted for different applications, such as user authentication

(profile registration using face or fingerprint) and IMU-based motion tracking (user-assisted

sensor calibration with magnetometers [40]).

4.6.4 Hand-to-face gesture recognition

Overall performance: Figure 4.6.4a compares the gesture recognition performance (av-

eraged across 29 subjects) among the two classifiers for the three datasets. We can see that

LR consistently achieves better results, which might be due to the fact that features from

different gestures are likely to be separated linearly. As expected, the fused dataset (93.2%

recall) outperforms the two individual datasets (80.1% and 80.5% recall for left and right,

respectively) on the 12 gestures, demonstrating the benefits of sensing with both earbuds.

We then limit the classifier to LR and, as before, we only consider the fused dataset in the

reminder of the evaluation.
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Fig. 4.6.5: The original signal (4.6.5a), the low-pass filtered signal for participant walking during
music playback (4.6.5b), the low-pass filtered signal for the same participant walking without
music playback (4.6.5c).

Gesture set optimization: Next, we perform gesture set optimization aiming to (i)

further improve the recognition accuracy and (2) reduce the overhead for users to memorize

gestures. Informed by the confusion matrix obtained when the users were performing 12

gestures, we limit the number of hand-to-face gestures to 7 and to 5 by removing those

gestures with large confusion errors and close spatial proximity. The selected 7 gestures are

{Forehead Middle, Nose, Chin, Jaw Left, Jaw Right, Cheek Left, Cheek Right}. Conversely,
the optimal 5 gestures are {Forehead Middle, Nose, Chin, Jaw Left, Jaw Right}. We then

run the experiment with LR classifier on the two new gesture sets and compare the results

for each individual in Figure 4.6.4b. Although the recognition performance varies among

subjects, most of them achieve > 90% precision and recall with 12 gestures. Notably, the

performance improves even further optimizing the gesture set. Overall, the average recall

for 12, 7, and 5 gestures is 93.2%, 96.0%, and 97.0%, respectively.

Impact of training size: The proposed hand-to-face gesture interaction is founded on

the fact that vibrations from different tapping spots experience distinct paths to the ears:

the model is actually trained to recognize these paths. Given that people have different

head size and bone structure, it is expected that the model trained on one subject cannot

be fitted to others. To confirm this, we run the leave-one-out test and obtain an average

recognition recall of 20%. As a consequence of this finding, it is clear that users should

train a personalized model with their own gesture data. To investigate the user burden

for training data acquisition, we re-train the model with different number of gesture sam-

ples. As shown in Figure 4.6.4c, the accuracies of the three gesture sets have comparable

behaviors increasing the number of training samples. With 12 samples from each gesture,

when the model is trained and tested on the 5 gestures set, it achieves a recognition recall

of 93.5%. Based on the proposed data collection protocol (one gesture per second), only
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1min of training data is required. Practically, providing user data to train the personal

model is acceptable in other input/gesture interaction systems [148], as long as the burden

on the user remains small.

4.6.5 Impact of music playback

Given that the original functionality of earbuds is to play back sounds (e.g., music and

phone calls), a fair concern would be whether these sounds (usually much higher in volume)

might pollute the audio sensing signals. We sought to investigate this by asking one

participant to walk while the earbuds are playing a song – with an appropriate volume

level. Figure 4.6.5a illustrates the original signal collected from the left earbud and, as we

can see, it appears to be dominated by the music. Conversely, Figure 4.6.5b shows the

low-pass filtered (< 50Hz) version of the signal, where the steps are clearly noticeable. We

further instructed the subject to walk without music playing, in the same condition. The

low-pass filtered signal is plotted in Figure 4.6.5c. Visually, we can immediately see that

the two filtered versions have high similarity and the step counts can be easily derived. We

also quantify the similarity of signals from frequency domain using the structural similarity

(SSIM, a well-known metric to compare similarity between two images [149]). Specifically,

we first obtain the spectrogram of each signal using short-time Fourier transform (STFT),

and then calculate the SSIM index between two spectrograms (images). The SSIM index

ranges from 0 to 1. The higher the value, the greater the similarity between the images.

Our results show that the SSIM index for {Figure 4.6.5a, Figure 4.6.5b}, {Figure 4.6.5a,

Figure 4.6.5c}, and {Figure 4.6.5b, Figure 4.6.5c} is 0.35, 0.33, and 0.95, respectively,

suggesting that music playback has an extremely limited impact.

To further confirm that OESense is robust against different types music, we analyze the

spectrum of the All-time Top 100 Songs launched by Billboard [150]. For each song,

we perform the fast Fourier transform (FFT) analysis and obtain the signal energy at
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Table 4.6.2: Power consumption of OESense for gesture recognition.

Operation Power (mW)

RasPi(Baseline) 2,340

RasPi+MicRecd 2,459

RasPi+MicRecd+GesRecg 3,086(LR), 3,106(SVM)

each frequency band. Then, we sum up the energy with frequencies below and above

50 Hz and calculate the energy ratios of the two frequency ranges, respectively. As shown

in Figure 4.6.6, the energy of all the songs are dominated by frequencies higher than 50Hz.

The average energy ratio of < 50Hz signal is only 1.5%, indicating that the impact of

music playback is indeed negligible. In terms of phone calls, the frequency range of human

voice over telephony transmission is within 300−3400Hz [151], hence it can be completely

removed after applying a low-pass filter.

4.6.6 Power and latency measurement

To the best of our knowledge, there is no open platform to instrument a stand-alone ear-

able sensing system. As a matter of fact, most of today’s earables are directly offloading

their data either to a phone or via the network. Instead, here, we wanted to explore the

system level performance of OESense as a stand-alone system, as we envisage some of the

future earables might become stand-alone. We opted for a Raspberry Pi 4B as a reference

platform. Taking hand-to-face gesture recognition as an example, we evaluate the power

consumption and latency of our system. We train the machine learning models (LR and

SVM) on a laptop and implement the gesture recognition pipeline (including low-pass fil-

tering, feature extraction, and inference) on the Raspberry Pi. As shown in Table 4.6.2,

compared to baseline (idle) power consumption (2, 340mW ), powering and recording mi-

crophone data (MicRecd) consumes an additional 119mW . This value is dramatically

higher than the power draw of the microphone (360µW ) reported in the data-sheet [143],

which indicates that most of the power is consumed by the Raspberry Pi for data sampling.

When the gesture recognition classifier is running, the Raspberry Pi consumes 746mW and

766mW overall for LR and SVM, respectively. Although at a first sight these figures may

seem substantial, it is worth noticing that: (i) unlike low-power micro-processors (especially

those designed for audio processing, like the Apple H1 chip embedded on the AirPods Pro),

the Raspberry Pi is known to be power-hungry without energy efficiency optimization; (ii)
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Table 4.6.3: Latency of OESense for gesture recognition.

Operation Latency (ms)

Low-pass Filtering 1.54

Feature Extraction 38.97

Inference 0.34(LR), 0.95(SVM)

recognition (feature extraction and inference) is run only whenever a gesture is detected

and such operation time is typically very short, so the actual energy consumption would be

much lower. Table 4.6.3 lists the latencey of the various steps of the recognition pipeline.

The majority of the time is due to feature extraction (38.97ms), while inference time is

almost negligible (0.34ms for LR and 0.95ms for SVM), granting OESense quasi-real-time

performance.

To further ground our study with practical considerations, we estimated the overhead of

running gesture recognition over any other earbud functionality. We consider the possible

worst case scenario of a user performing a gesture (0.4s long) every 2s , a very aggressive

assumption. The average energy consumption per second would be E = 119mW × 1s +

627mW × 40.85ms × 0.5 = 131.8mJ . Considering a wireless earbud with a battery like

that of an AirPod Pro (81mAh), OESense could operate for a time T = 81mAh×5V
131.8mJ

= 3.07h.

Although these are ball park figures, on a non-optimized off-the-shelf device, they give an

indication of the actual feasibility of OESense in practice. We believe the overhead would

be significantly smaller on high-performance audio chips.

4.7 Discussion and limitations

While prototyping OESense, we changed the position of the speaker to embed the mi-

crophone. Such design optimizes the SNR of the microphone, yet modifies the internal

structure of the earbud. Thus, we assessed whether the audio quality of music playback is

affected through a user study. Each participant was instructed to listen to a music segment

with unmodified and modified earbuds respectively and rated their perception towards the

audio quality. 29/31 subjects reported that no difference was perceived between the two

earbuds and 2 subjects even reported that the modified earbud has slightly better audio

quality. Hence, we can conclude the add-on sensing capability does not hinder the audio

playback quality. However, there are also several limitations.
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First, the concept of OESense is applicable to in-ear headphones only due to the require-

ment of occluding the ear canal opening. Such physical occlusion might lead to impaired

awareness of the surrounding environment (e.g., traffic sounds) and incur potential safety

issues. A viable solution would be to replicate the transparency mode on AirPods Pro

devised by Apple [136]. Practically, the external microphone can measure the outside

sounds and replay the meaningful parts (like sirens, between 725-1600 Hz [152]) through

the on-board speakers.

Second, we implemented the concept of OESense on a Raspberry Pi based data collection

and processing system, which is cumbersome and impractical for mobile scenarios. Besides,

the Raspberry Pi consumes substantial power (Section 4.6.6) as it is not optimized for

low-power applications. Thus further efforts to implement OESense in an energy-efficient

manner are required. In addition, current OESense prototype is built upon a pair of wired

earbuds, where the connection wires swing during movements and produce additional noise.

This impact is expected to disappear with wireless earbuds.

4.8 Conclusion

In this chapter we presented OESense, a novel human sensing system based on audio

signals recorded inside the ear. Leveraging the occlusion effect (described in detail in Sec-

tion 2.2.1), OESense shows great sensing potential for both intense and light human activ-

ities. We demonstrated three sensing applications (i.e., step counting, activity recognition,

and hand-to-face gesture interaction) with the developed OESense prototype. All applica-

tions achieved good performance (average recall of 99.3%, 98.3%, and 97.0%, respectively).

Further, our system analysis suggests that OESense can achieve quasi-real-time perfor-

mance with acceptable power consumption. Given the ear contains abundant information

about human vital signs and motions, OESense has the potential to be extended to other

personal-scale sensing applications like heartbeat detection, jaw movement detection, fa-

cial expression recognition, and so on. Building up on these considerations, in Chapter 5

we devise EarGate, an acoustic-gait-based identification system which leverages a similar

underlying principle to that presented in this chapter.
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‘Your eyes can deceive you; don’t trust

them.’

Obi-Wan Kenobi

Chapter 5

In-ear Microphone Sensing: EarGate

5.1 Introduction

In Chapter 4 we investigated the potential of OESense, an earable system equipped with

an in-ear microphone to sense human motion and gestures. Having seen how the occlusion

effect (Section 2.2.1) facilitates in-ear audio sensing, in this chapter we build up our ob-

servations and propose EarGate, a novel earable-based acoustic-gait identification system.

Similarly to OESense, EarGate, is built around a cheap in-ear facing microphone that is

already available on most earbuds and hearing aids (e.g., for noise cancellation purposes).

Human gait has been shown to be unique across individuals and hard to mimic [67, 68].

As such, there have been a variety of attempts to use gait as a biometric for user recog-

nition and identification. While computer vision-based gait bio-metrics are widely spread,

wearable-based gait tracking approaches are particularly attractive for continuous identi-

fication and, potentially, authentication. Wearable gait-based identification is an enabler

for various applications including: keeping mobile devices unlocked and ready for interac-

tion when on the owner’s person; identification of the device owner as the policy owner

when rewarding healthy habits sensed via the wearable for health insurers; automated en-

try systems for home, work or vehicles; automated ticket payment/validation for public

transport [153, 154]; etc. There have even been a number of instances of using wearable

gait data to generate a secure key to pair devices worn on the same body [155].

Concretely, wearable-based gait tracking methodologies leverage sensor data collected from

wearable devices worn by the user to capture their motion dynamics. Typically these are

89



facilitated by accelerometer analysis [72], or step sounds [74, 156]. To date, the focus has

been on smartphones or smartwatches as the current leaders in the mass-market wearables.

In this dissertation, instead, we look at the use of ear-based sensing (via so-called earables)

for this task. The importance of the approach we present is further highlighted by the fact

that, in the near-future, earables are likely to become stand-alone devices [5,19]. Hence, the

need for earable-based identification schemes becomes more and more crucial [27]. Being

able to seamlessly identify the earable wearer can act as an authentication accelerator for

earables or mobile devices, bypassing traditional bio-metrics such as fingerprint (requires

the integration of capacitive sensing pads on earables with limited size) and face recogni-

tion (impossible to capture front face image from an earbud). Occasionally, if the identity

is mistakenly rejected, a request for a secondary authentication can be triggered. The

secondary authentication method could be implemented on a companion device, such as

smartphone/smartwatch, that has full access to fingerprint and human face. Additionally,

once the user has been successfully identified by the earable, the earable itself can act as

a hub to authenticate the user for access control (e.g. opening their office door, validating

their ticket at the train station, etc.). Furthermore, with the increased sensing capabilities

of earables, successfully identifying the earable’s wearer becomes crucial in order to asso-

ciate the sensitive bio-medical information collected by the earable to the right user. As

we have discussed in Chapter 3, today’s earables broadly fall into two categories: advanced

playback devices (e.g., Apple AirPods) or assistive devices (e.g., advanced hearing aids).

Notably, although being useful for all earables, such continuous identification systems suit

hearing aids particularly well, as they are continuously worn throughout the day.

Here we investigate acoustic-gait as a convenient alternative to inertial-based gait tracking.

Specifically, we look at the possibility of gait-based identification from the sounds caused

by the physical act of walking and transmitted internally via the musculoskeletal sys-

tem. Similarly to OESense (presented in Chapter 4), our novel earable-based acoustic-gait

identification system, EarGate, is built around a cheap in-ear facing microphone. In Chap-

ter 4 we have shown that an earable equipped with a microphone inside the ear canal

can not only detect motion signals, but that those are also amplified by the combination

of two biological phenomena: bone conduction and the occlusion effect. Building up our

findings from Chapter 4, we conducted a second user study, with the same 31 subjects

of mixed gender, demonstrating how the acoustic-gait thus collected is a good candidate

for a privacy-preserving identification system (benefit from the in-ear facing microphone).

Further, we investigated the implications of running the identification-framework entirely
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on-device, as well as offloading the computation (either to the Cloud or to a companion

device) to show the versatility of the approach.

In summary, our approach leverages sensors (microphones) already inherently embedded

in earables for gait identification. As mentioned, previous gait identification/recognition

approaches have often relied on inertial sensors [72]. However, inertial sensors have made

reasonable penetration into the high-end leisure devices market but not as much into

cheaper earables, or the hearing aid market: the addition of inertial sensors to these devices

would entail more complex system design and form factor [157].As a consequence, inertial-

based earable solutions are likely to result in increased cost and delays in reaching the

market. This dissertation offers an investigation into an alternative to inertial sensors

through the use of microphones. Notably, while we acknowledge the merits of inertial-

based gait recognition approaches, there is great value in showing the potential of a lesser

explored modality, such as in-ear microphones. Particularly given what is suggested by

research and market trends, in the near future, miniaturized form factor will have a key

role, especially as the distinction between hearing aids and earables is likely to become less

marked. Further, in-ear microphone offer complementary advantages as a sensor to enable

noise cancellation, a must-have feature for both high-end leisure earables and in hearing

aids. While in this dissertation we focus on acoustic-gait recognition, we note this is only

one of the possible use cases for in-ear bone-conducted sounds. For instance, these could

indeed be used for activity recognition (as discussed in Chapter 4), as well as physiological

sensing [23]. Ultimately, in this chapter we describe a novel earable-based gait identification

system, EarGate, consisting of a hardware prototype and a software pipeline. EarGate not

only leverages a novel type of signal, in-ear bone-conducted sounds, to identify users based

on their gait, but also is accurate, robust, and has very low burden on the user (only a

few steps are sufficient to identify the user, without the need for them to be continuously

walking). We designed an end-to-end signal processing pipeline an techniques to guarantee

the reliable presence of the occlusion effect. We evaluate the identification performance of

EarGate under various practical scenarios, showing we can achieve up to 97.26% Balanced

Accuracy (BAC) with very low False Acceptance Rate (FAR) and False Rejection Rate

(FRR) of 3.23% and 2.25%, respectively. Furthermore, we demonstrated that EarGate

is robust to high-frequency internal (human speech) and external (music playback and

phone calls) noises. Finally, we assessed the system performance of EarGate by measuring

the power consumption and latency. We find EarGate can work in real-time (74.25ms

on-device identification latency) consuming acceptable energy (167.27mJ for one-time on-
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device identification). This confirms that EarGate could be deployed in new generation

earables which will likely be standalone from the system perspective.

5.2 Preliminaries

In this section, we first brief the reader on the rationale driving our work and then provide

evidence of the feasibility of our approach. As done when devising OESense (Chapter 4),

when conceiving EarGate, we leverage the occlusion effect (Section 2.2.1) to boost the in-

ear recorded audio. However, unlike in OESense where we detect and count steps, EarGate

aims at identifying users from their gait (i.e., the walking style of a person, Section 2.2.4).

5.2.1 Out-ear microphone vs. in-ear microphone

Compared to traditional approaches leveraging external microphones (out-ear mic) for gait

recognition [74, 156], the use of occlusion effect and an inward-facing microphone brings

the following advantages: (i) given an occluded ear canal, an inward-facing microphone,

which mostly records bone-conducted sounds, is less susceptible to external sounds and,

consequently, environmental noise. This not only means our system is more robust to

noise but, practically, it makes our approach more appealing from a privacy perspective:

potentially sensitive external sounds, such as human speech, are hardly audible from our

in-ear facing microphone. (ii) another direct consequence of the occluded ear canal is that

the body-sounds we are interested in – which are relatively low-frequency – greatly benefit

from the low-frequency amplification boost induced by the occlusion effect, thus resulting

in an improved signal-to-noise-ratio (SNR) of the desired signal (the gait of the user).

Figure 5.2.1 plots the raw signals and the corresponding spectrograms collected with the

out-ear microphone and in-ear microphone when a subject is walking, with and without

environmental noise. From these figures, we can clearly observe how the in-ear microphone

overcomes the drawbacks of traditional microphones, which capture air-conducted sounds.

Firstly, air-conduction results in large attenuation, while bone-conduction, properly cou-

pled with the occlusion effect, guarantees an excellent SNR. Secondly, the walking sounds

measured by the external-facing microphone reside in a higher frequency band (audible)

and end up being completely mixed with environmental noise (e.g., music and human

speech). Consequently, they can not be separated from each other, even after a low-pass

filter.
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Fig. 5.2.1: Walking signals collected with a traditional outward facing microphone and an in-
ear microphone under different conditions. Notably, thanks to the occlusion effect, the in-ear
microphone data shows higher gain at low frequencies (< 50Hz) and more resilience towards
environmental noise.
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Fig. 5.2.2: 5.2.2a Extracted feature vectors for four different gait cycles from the same subject,
and 5.2.2b gait cycles from four different subjects. Figure 5.2.2a clearly shows how the gait
cycles captured by EarGate are consistent for each individual (i.e. high intra-class similarity).
Figure 5.2.2b, on the other hand, shows how the gait cycles are distinguishable among subjects
(i.e. high inter-class difference).
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5.2.2 Feasibility exploration

As we have seen in Section 2.2.4, the walking style of a person is commonly known as

their gait. Medical and physiological studies [67] suggest that the human gait shows 24

different components. The differences between the gait of distinct subjects are caused by

the uniqueness in their muscular-skeletal structure. In fact, the human gait is regulated

by precise bio-physical rules [68], which in turn, are dictated by the tension generated by

the muscle activation and the consequent movement of the joints. As a result, the forces

and moments linked to the movement of the joints cause the movement of the skeletal

links which, therefore, exert forces on the environment (e.g. the foot striking the ground).

Hence, the human gait can be described as a generation of ground-reaction forces which

are strongly correlated with the muscular-skeletal structure of each individual. In practice,

differences in the body structure of individuals are among the factors that produce the

interpersonal differences in walking patterns that enable gait-based identification.

Although the in-ear microphone is capable of detecting human steps, whether it is possi-

ble to leverage acoustic gait to differentiate people remains unclear. To demonstrate the

feasibility of acoustic-based gait identification, we need to prove that (1) gait cycles be-

longing to the same individual are consistent with each other (i.e., intra-class similarity);

and (2) gait cycles belonging to different subjects show significantly different patterns (i.e.,

inter-class dissimilarity). Thus, we collected data from four subjects and we proceeded

extracting a number of features (see Section 5.3.3) to represent the user’s gait. As shown

in Figure 5.2.2, the extracted features exhibit high intra-class similarity and high inter-

class difference. Therefore, we can conclude it is feasible to identify people leveraging the

acoustic signals measured with the in-ear microphone.

5.3 System design

This section presents an overview of EarGate, illustrating its functionalities and shaping

the proposed gait-based identification pipeline, comprising of signal processing, feature

extraction, and gait authentication methodology.

5.3.1 EarGate: system at a glance

The overall functioning of EarGate is reported in Figure 5.3.1.
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Fig. 5.3.1: EarGate functioning.
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Initially, the user has to take part in an enrollment phase, a required stage during which

the system acquires the data and process them (pre-processing and feature extraction)

before training the model to recognize the acoustic-gait of the legitimate user. Notably,

as we will discuss in Section 5.5.9, a small number of steps and, therefore, little time, is

sufficient to achieve good identification performance. Once the enrollment phase is over,

the system is ready to operate. As shown in Figure 5.3.1, EarGate silently collects, and

pre-processes on-device, acoustic-gait data. The system is provisioned to either execute

the (limited) computation required to identify the user (or reject them) on-device, or to

offload it, e.g., to the cloud, a smartphone, or a remote server (Section 5.6).

Notably, there is NO need for the user to be constantly and instantly walking to be iden-

tified. Instead, EarGate can perform a one-time identification once the user wears the

earbuds and walks a couple of steps (e.g., to grab a coffee, to go to the restroom, etc.).

The identification result (either recognized as legitimate user, or not) is then considered

valid until the user removes their earbuds (i.e., the only chance the wearer has of switching

identity). Detecting such occurrence is, in practice, very simple, as the natural properties of

the occlusion effect will suddenly disappear from the in-ear microphone recordings when-

ever the user removes the earbuds. Besides, commercially available earbuds, like Apple

AirPods, already do that (i.e., to automatically stop the music whenever the user removes

their earbuds). Such a scheme significantly relieves the user burden of ”walk now to be

identified” and saves system energy as one identification could be valid for a longer time.

5.3.2 Signal processing

Our prototype records the microphone outputs in 48kHz, while the generated step sounds

are at relatively low frequencies. Notably, in this chapter, the term frequency refers to

the pitch of the step sound, rather than to the cadence/speed of walking. To minimize

the computation overhead during processing, we first down-sample the recorded data to

4KHz. Then, a low-pass filter with a cut-off frequency of 50Hz is applied to eliminate the

high-frequency noise. The choice of a 50Hz cut-off frequency is to guarantee a good signal-

to-noise-ratio of the walking signal, whilst retaining the robustness to most environmental

noise (typically higher than 50Hz). Moreover, due to the large attenuation of sound

propagating through the air, as well as the blockage of the ear canal opening, the majority

of the noise is suppressed or canceled directly in the ear canal. Figure 5.3.2 shows the

low-pass filtered signal from the left earbud when one participant is walking on tiles with
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Fig. 5.3.2: (a) The low-pass filtered signal collected when one participant is walking, (b) a
segment showing the performance of proposed gait segmentation algorithm.

sneakers. We can observe that an acoustic gait cycle is composed of two spikes (happening

when the foot hit the floor in the strike phase) and two relatively flat (silent) periods

(denoting the swing phase). This is different from sinusoidal-like patterns recorded by the

IMU [10], therefore, existing gait segmentation approaches adopted for IMU data are not

applicable. Hence, we propose a peak detection based algorithm to segment the audio

signals and extract the acoustic gait cycles.

Specifically, we first use a Hilbert transform to extract the envelopes of the filtered signal.

We proceed by applying a low-pass filter (with a cut-off frequency of 3Hz) on the envelops

to smooth them, as illustrated by the red (upper envelop) and yellow (lower envelop) curves

in Figure 5.3.2b. Then, we perform peak detection on the filtered envelops and regard the

peaks as the points when the human foot hits the ground. Whenever a pair of upper

peak-lower peak is aligned, we treat it as a step. We select the gait cycle starting points by

skipping one between every two peaks, as each gait cycle consists of two steps. Finally, we

consider a gait cycle the samples between every two consecutive starting points. Most of

the extracted gait cycles last for around one second. Therefore, we interpolate them into

the same length of 4000 samples using spline interpolation.
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5.3.3 Feature extraction

To differentiate between users, EarGate leverages a set of features that, we believe, could

reliably represent the characteristics of user gait from each cycle. For the feature extrac-

tion, we rely on librosa [138], a Python package specific for audio processing. Specifically,

the features we look at, covering the frequency, structural, statistical, and temporal char-

acteristics of the data, are:

• Mel-Frequency Cepstral Coefficients (MFCC): obtained from the short-term power

spectrum, MFCC certainly is one of the most common and known features in audio

processing [158];

• Chroma of Short-Time Fourier Transform (STFT);

• Mel Spectrogram: the signal spectrogram in the Mel-scale;

• Root-Mean-Squared Energy (RMSE): the Root-Mean-Squared (RMS) of the STFT

of the signal, which provides information about the power of the signal;

• Onsets: the peaks from an onset strength envelope, result of a summation of positive

first-order differences of every Mel-band.

Rather than only using the data recorded by either the left-earbud-microphone or those

coming from the right-earbud-microphone, separately, inspired by the positive results

achieved with OESense (Section 4.6) we instead fuse them concatenating the features we

extracted from each. As we have discussed, unlike other wearables (e.g., smartwatches)

earables inherently come in a pair and, therefore, it is possible to leverage, and fuse, their

two independent measurements of the same phenomenon.

5.3.4 Identification methodology

Like most identification systems (e.g., FaceID and TouchID), before being able to run

the online identification, EarGate requires an enrollment phase. It is during this phase

that the legitimate users provide samples of their gait to system, thus training a model

to classify the users as either legitimate users, or impostors. Notably, all the users that

have not been seen by the model in the enrollment phase will be regarded as impostors. In

this work, we consider two enrollment schemes: (i) with and (ii) without impostor data.

The former leverages a pre-trained model with benchmark impostor data, together with

some data from the legitimate user. However, given it is not always possible to assume
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the availability of benchmark impostor data, especially shortly after the release of the

system, we also look at a model solely trained on the legitimate user data. In either cases,

the system needs some walking data samples from the legitimate user and, therefore, will

instruct the user to follow an enrollment protocol (basically walking for a few steps in

order to train a classifier). For the online-identification framework we adopt: (i) a two-

class Support Vector Machine (SVM) classifier (if benchmark impostor data are available);

or (ii) a one-class SVM classifier (when we only have the data of the legitimate user), due

to its high computational efficiency and low complexity [76].

Prior work unequivocally showed that gait is a unique user fingerprint, and that it is

actually very hard for an impostor to impersonate another person’s gait [159,160]. Hence,

the aim of this chapter is to showcase the potential of earables as a personal-identification

device. First and foremost, we sought to assess whether our in-ear microphone-based

approach is capable of recognizing the user in such a way that if others (i.e. impostors)

were using the device, it would be able to spot it. We thus consider both (i) replace

attacks (a different user mistakenly tries to use the earables) and (ii) mimic attacks (a

malicious attacker deliberately tries to use the earbuds by actually impersonating the user,

i.e., simulating the user’s gait). As highlighted by our evaluation, different users can be

distinguished very clearly by our system, thus making mimic attacks even more unfeasible.

To further clarify that, for instance, let us assume there is a very well-trained impostor, who

can accurately mimic the gait of the legitimate user, generating the very same vibration

patterns whenever their feet hit the ground. However, unfortunately for the impostor,

even given all the most favorable conditions, when the vibrations propagate through their

body and bones, all the way to the impostor’s ear canal, they will inevitably be different

from those belonging to the legitimate user. This is because, as discussed in Section 2.2.1,

the human body and skeleton act as a natural modulator. Hence, in the remainder of the

paper we will focus on showing the performance of our system against the more common

replace attacks.

5.4 Implementation

This section provides the design details our prototype and describes the data collection

procedures we followed.
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5.4.1 EarGate prototype

To have full control on the data (sampling rate as well as unlimited access), we decided to

leverage the same prototype we had built for OESense (Section 4.4.1). During the whole

process, we were driven by the requirements we stated in section 5.2.2.

5.4.2 Data collection

After having obtained clearance for carrying out the studies from the Ethics Board of

our institution, we recruited 31 subjects. Out of the 31 participants, 15 of them were

females and the remainder 16 were males. The mean age of the participants was 26.6±5.8.
All the participants received a voucher in exchange of their time. After having taken

COVID-19 related precautions (i.e., face masks, hands sanitizing, etc. ), we admitted the

participants, one at a time, into the room of the experiment (a 12 × 6 square meters

room). We instructed the participants to walk in circles following the perimeter walls of

the room. The room was quiet, with a noise level of approximately 30dB. We asked

the volunteers to keep their normal pace and walking style. As a gait cycle is composed

of two consecutive steps, the subjects always started with their left foot and finished

with the right foot when walking. We considered different ground materials, as tiles and

carpet, and multiple conditions, with the participants walking barefoot, with slippers, with

sneakers, and while speaking. Factoring in all these variables allows us to further assess the

robustness, and generalizability, of EarGate. For each of these conditions, the participants

walked continuously for 1.5 minutes (a session). During every walk, each subject counted

the number of steps they took. This served as ground truth. Walking at normal speed,

all the volunteers made 156 − −176 steps per 1.5 minutes-long session. Eventually, each

participant performed 8 (2 ground material × (3 footwear + 1 speaking)) different walking

sessions, accounting for a grand total of 52046 steps (i.e., 26023 gait cycles).

5.5 Performance Evaluation

In this section, we present the data collection procedure, the training methodology, as well

as different variables we consider while assessing the performance of our system.
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Fig. 5.5.1: Training and testing data splitting scheme for 5.5.1a one-class SVM, 5.5.1b imbal-
anced binary SVM, 5.5.1c balanced binary SVM with all subjects’ data, and 5.5.1d balanced
SVM with part of subjects’ data. P : N represents the ratio between positive (legitimate) and
negative (impostor) gait.
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Fig. 5.5.2: 5.5.2a Overall performance of EarGate (averaged across 31 subjects), 5.5.2b BAC
of each individual using OC-SVM and Bi-SVM (Imbalanced), 5.5.2c Comparison of the four
proposed training-testing protocol, which also reflects the impact of data imbalance.

5.5.1 Metrics

To assess the goodness of EarGate, we rely on three metrics commonly used to evaluate

identification tasks:

• False Acceptance Rate (FAR): describes the system’s likelihood of successfully

identifying a non-legitimate-user;

• False Rejecting Rate (FRR): also known by the name of False Negative Rate

(FNR), it indicates the identification system’s likelihood of rejecting the legitimate-

user;

• Balanced Accuracy (BAC): given we also assess the performance of our system in

the case of unbalanced training and testing sets, we consider BAC to gauge the real

accuracy of our system. Specifically, BAC is defined as TPR+TNR
2

, where TPR and

TNR are True Positive and True Negative Rate, respectively. The True Positive Rate

of an identification system is its goodness in recognizing legitimate users, whilst True

Negative Rate indicates the value of the system in protecting the user from attackers.

5.5.2 Training-testing protocols

To evaluate our system, we propose four different training-testing protocols, as shown in

Figure 5.5.1. The number of gait cycles collected from each of the 31 subjects is denoted

as M . The first two schemes (5.5.1a and 5.5.1b) involve different amounts of positive

and negative data during training and testing. Such data imbalance might affect the

performance. Thus, we further propose two protocols (5.5.1c and 5.5.1d) to ensure balanced

positive and negative samples during training and testing. All the four schemes consider
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Fig. 5.5.3: Performance comparison 5.5.3a FAR, 5.5.3b FRR, and 5.5.3c BAC, of different
footwear and ground material.

adversarial attacks during testing. Notably, informed by the physiological explanation of

gait (Section 2.2.4), we did not review mimic attacks: by being so strongly correlated with

the muscular-skeletal structure of the individual, gait is extremely hard to mimic – if not

impossible. Moreover, the modulation of the in-ear (bone-conducted) audio by the skeleton

of the subject constitutes an additional barrier against mimic attacks.

• (a) One-Class SVM (OC-SVM): one subject is iteratively selected as the legitimate

user, while the rest of the users are regarded as impostors. Training dataset only

consists of 70% (0.7 ×M) data from the legitimate user, and the testing dataset is

composed of 30% (0.3 ×M) legitimate user data and all impostor data (30 ×M).

The scheme is reported in Figure 5.5.1a.

• (b) Imbalanced Binary SVM (Bi-SVM (Imbalanced)): one subject is iteratively

selected as the legitimate user, while the remainder users are regarded as impostors.

Training dataset consists of 70% legitimate user’s data (0.7×M) and 70% impostors’

data (30 × 0.7 ×M), and the testing dataset is composed of 30% (0.3 ×M) legiti-

mate user’s data and 30% (30 × 0.3 ×M) impostors’ data. The scheme is reported

in Figure 5.5.1b.

• (c) Balanced Binary SVM with all subjects’ data (Bi-SVM (Balanced-All)): one

subject is iteratively selected as the legitimate user, while the reminder are regarded

as impostors. Training dataset consists of 50% (0.5 ×M) of the legitimate user’s

data and the same number (0.5×M) of gait cycles that are randomly selected from

the 30 impostors. The testing dataset is composed of the rest 50% (0.5×M) of the

legitimate user’s data and another 0.5 ×M randomly selected impostor data. The

scheme is reported in Figure 5.5.1c.

• (d) Balanced Binary SVM with part of subjects’ data (Bi-SVM (Balanced-5)):
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one subject is iteratively selected as the legitimate user and five (5/30) subjects

are randomly selected as impostors. Training dataset consists of 50% (0.5 × M)

legitimate user’s data and 10% from each of the five impostors (5 × 0.1 ×M). The

testing dataset is composed of the rest 50% (0.5 ×M) of the legitimate user’s data

and another 10% (5 × 0.1 × M) data from each of the impostors. The scheme is

reported in Figure 5.5.1d.

In the remainder of this section, we present our experimental results under various condi-

tions.

5.5.3 Overall performance

We first evaluate the overall performance of EarGate by combining all the collected data

together, i.e., different ground materials and footwear. Figure 5.5.2a reports the results

obtained with the first two training protocols (OC-SVM and Bi-SVM (Imbalanced)), which

are averaged over the 31 subjects. We can observe that with both methods, EarGate can

achieve over 80% balanced accuracy (BAC). Notably, both the FAR and the FRR are

relatively high. This might be due to the imbalanced dataset and the variability across

the different waking conditions. We will discuss these more in depth in the following sub-

sections. Figure 5.5.2b plots the BAC of each individual with the two protocols. We can

see that although the performance varies among subjects, most of the subjects achieve

over 80% BAC. In addition, we found that the best training-testing protocol is subject-

dependent as some users obtain higher BAC with OC-SVM, while others achieve better

performance with Bi-SVM (Imbalanced). Thus, it is necessary to optimize the training

protocol for each individual.

5.5.4 Impact of data imbalance

Intuitively, Bi-SVM is expected to perform better than OC-SVM. The reason is that OC-

SVM is similar to a clustering problem and the model has to learn the correlation within the

data without information on the outliers. While for Bi-SVM, the inclusion of benchmark

(impostor) data provides additional information about the negative samples, so that the

model can learn a more accurate representation of the legitimate user. However, as observed

in Figure 5.5.2a, Bi-SVM performs worse. Specifically, the FRR is dramatically higher

than the FAR. Such phenomenon is also observed in [161] and we suspect this originates

from the imbalanced positive and negative samples during training and testing. Hence,
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Fig. 5.5.4: Impact of user speaking. We take one subject walking on tiles as an example, 5.5.4a
original signal with speaking, 5.5.4b low-pass filtered signal with speaking, 5.5.4c filtered signal
without speaking.
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Fig. 5.5.5: Impact of music playback. We take one subject walking on tiles as an example,
5.5.5a original signal with music playing, 5.5.5b low-pass filtered signal with music playing, 5.5.5c
filtered signal without music.

we decided to re-run all the experiments using the proposed two training schemes with

balanced samples (Figure 5.5.1c and Figure 5.5.1d).

As shown in Figure 5.5.2c, the large difference between the FAR and the FRR disap-

pears as soon as the positive and negative classes are balanced. As expected, Bi-SVM

(Balanced-All) and Bi-SVM (Balanced-5) yield better performance (lower FAR/FRR and

higher BAC), with the BAC significantly enhanced, from 81% to 92.5%. Notably, Bi-SVM

(Balanced-5) performs even better if the impostor data is also balanced (10% from each

impostor). Therefore, for the reminder of the evaluation, we will focus our analysis around

the results we obtained with Bi-SVM (Balanced-5).

5.5.5 Impact of walking conditions

Different walking conditions, such as different footwear or ground materials, might affect

the gait identification performance of EarGate. For instance, compared to walking on tiles,
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walking on a carpet will result in longer stance phase and weaker vibrations when hitting

the ground. These conditions inevitably introduce variations from the subject’s standard

gait and, therefore, make the identification task harder. In the next sections, we investigate

the impact of footwear and ground material.

Footwear

Figure 5.5.3 shows the FAR, FRR, and BAC with data collected when the subjects were

barefoot, wearing slippers, wearing sneakers, as well as the combination of all these data,

respectively. The results indicate that EarGate works well regardless of the footwear,

with a BAC higher than 94%. Particularly, walking barefoot yields the best identification

performance, followed by wearing sneakers. Interestingly, wearing slippers is the most

challenging case, as slippers introduce more variations during walking. This observation is

applicable to both the datasets collected on tiles as well as on carpet. In addition, when

evaluating the data collected in a single session, the BAC increased significantly, jumping

from 92.46% (Figure 5.5.2c) to 97.26%.

Ground material

We now explore the impact of ground material on the identification performance. As

reported in Figure 5.5.3, EarGate achieves good performance with users walking both on

tiles and carpet, with a BAC higher than 93%. In particular, for the same footwear (e.g.,

sneakers), tiles always yield better performance (3% improvement on BAC) compared to

carpet. This might be because soft carpet dampens part of the vibrations generated when

hitting the ground, and, therefore, the signal-to-noise ratio (SNR) is lower.

5.5.6 Impact of human speech

Human speech might also have an impact on the proposed identification system. On one

hand, the voice produced when people speak will be captured by the in-ear microphone,

thereby polluting the recorded acoustic gait data. On the other hand, while speaking,

the movement of mouth and jaw modifies the structure of human body. Consequently,

the generated vibrations will experience a slightly different propagation path, resulting in

different modulations of the gait signal. Thus, we asked the subjects to speak while walking

on tiles with sneakers (the most common case for daily walking) and we assessed whether

the performance of EarGate could be impacted.
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Fig. 5.5.6: Impact of 5.5.6a fusing data from both the earbuds, 5.5.6b different training size,
and 5.5.6c different pace and features, on FAR, FRR, and BAC.

Figure 5.5.4 plots the raw microphone data from the left earbud. It is clear that the gait

signal is polluted by high-frequency human speech. Fortunately, the actual gait signal

we are interested in can be distinguished in the frequency domain as (1) the generated

vibrations are in low frequencies and (2) the occlusion effect mainly emphasizes the low-

frequency components of the bone-conducted sound. Figure 5.5.4b illustrates the low-pass

filtered version of Figure 5.5.4a. In addition, we plot the filtered signal of the same partici-

pant walking without speaking in Figure 5.5.4c. Visually, the two filtered signals look quite

similar and the impact of human speech has been completely removed. Using the Bi-SVM

(Balanced-5) protocol, we run the experiments on the collected dataset with users speak-

ing during walking. The results are satisfactory for both tiles (FAR=7.73%, FRR=4.37%,

BAC=93.95%) and carpet (FAR=10.73%, FRR=6.98%, BAC=91.15%), denoting how hu-

man speech has little impact on EarGate.

5.5.7 Impact of music playback

The general purpose of earbuds is leisure/entertainment, particularly music playback. Due

to the vicinity (less than 1 centimeter) of the speaker and in-ear microphone, we investi-

gated whether music playback induces interference in the gait identification system. To

explore that, we asked one subject to walk when the earbud was playing music at an ap-

propriate volume. Figure 5.5.5a plots the original signal from the left earbud, where the

target gait signal is overwhelmed by the music. Similarly to human speech, these audible

sounds are in higher frequency bands and EarGate captures gait signals which are low

frequencies (< 50Hz). Thus, after applying a low-pass filter, music, as with speech, can

easily be eliminated, and the gait signal of interest can clearly be observed in Figure 5.5.5b.

As we have done previously, we plot a trace (low-pass filtered) of the same subject walk-

ing without playing the music in Figure 5.5.5c, which shows high similarity with signals
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Table 5.5.1: Identification performance improvements achieved with transfer learning.

SVM XGBoost
Tasks Type of Features

FAR FRR BAC FAR FRR BAC

VGGish embeddings 0,730 0,231 0,520 0,093 0,092 0,907
Handcrafted Features 0,081 0,023 0,948 0,077 0,070 0,927Brick Barefeet

VGGish embeddings + hancrafted features 0,069 0,017 0,957 0,065 0,067 0,934

VGGish embeddings 0,645 0,333 0,511 0,133 0,088 0,889
Handcrafted Features 0,048 0,022 0,965 0,060 0,059 0,940Brick Shoe

VGGish embeddings + hancrafted features 0,032 0,022 0,973 0,073 0,055 0,936

VGGish embeddings 0,640 0,316 0,522 0,052 0,113 0,917
Handcrafted Features 0,085 0,026 0,945 0,071 0,064 0,932Brick Slipper

VGGish embeddings + hancrafted features 0,056 0,016 0,964 0,048 0,073 0,940

VGGish embeddings 0,716 0,202 0,541 0,132 0,147 0,861
Handcrafted Features 0,096 0,034 0,935 0,089 0,101 0,905Carpet Barefeet

VGGish embeddings + hancrafted features 0,052 0,036 0,956 0,085 0,097 0,909

VGGish embeddings 0,589 0,378 0,517 0,160 0,126 0,857
Handcrafted Features 0,116 0,051 0,917 0,104 0,085 0,906Carpet Shoe

VGGish embeddings + hancrafted features 0,056 0,048 0,948 0,093 0,086 0,910

VGGish embeddings 0,548 0,404 0,524 0,129 0,141 0,865
Handcrafted Features 0,069 0,043 0,944 0,115 0,107 0,889Carpet Slipper

VGGish embeddings + hancrafted features 0,050 0,038 0,956 0,130 0,104 0,883

in Figure 5.5.5b.

To further demonstrate how EarGate is robust against different types of music and phone

calls, we conducted a similar analysis to that done for OESense in Section 4.6.5. Ulti-

mately, our analysis shows EarGate is compatible with general purpose earbuds, without

introducing any mutual interference. Moreover, given many existing earbuds already fea-

tures in-ear microphones for active noise cancellation (ANC), EarGate can be operated

concurrently. Specifically, the data from in-ear microphones can be delivered to two in-

dependent pipelines: noise cancellation algorithm to actively generate the anti-noise and

user identification framework to recognize the user.

5.5.8 Sensor multiplexing

As we have widely discussed in this dissertation, unlike other wearable devices, earbuds

possess the unique advantage of being able to sense with both the left and right earbud

simultaneously, providing a sensor multiplexing gain. Taking the data collected when

subjects walked on tiles with sneakers as an example, we study the performance of using

solely the left or right earbud, as well as the achievable gain with both earbuds. As

presented in Figure 5.5.6a, when a single earbud is used, the left and right one achieves

quite similar performance on the three metrics, suggesting both of them are effective in

detecting users’ gait. When combining the features extracted from both earbuds, the
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BAC increases from 90.5% to 96.8%, denoting a great multiplexing gain when using both

earbuds.

5.5.9 Impact of training size

To gauge the overhead of EarGate during enrollment phase, we study the impact of training

data size on the identification performance as the minimal number of gait cycles required

for training is the actual burden on users. Specifically, we select 80 gait cycles for each

subject from the tiles-sneakers dataset and run the experiment with Bi-SVM (Balanced-

5) protocol. 20% (i.e., 16) gait cycles are fixed as the testing dataset to ensure a fair

comparison. Then, we continuously increase the number of training samples from 10%

(i.e., 8) to 80% (i.e., 64). We run the experiment iteratively selecting one subject as

the legitimate user. Figure 5.5.6b shows the averaged performance over the 31 subjects.

As expected, the performance improves with the increase of training samples. The BAC

reaches 93.5% when 32 gait cycles are used for training. Based on the walking speed of

participants, the corresponding overhead for data collection is around 30s continuous walk,

which would be acceptable for most people.

In addition, EarGate can adapt its identification model by re-training it with new gait

samples. For example, if a new gait cycle is recognized as positive/negative with high

confidence, it can be added to the training set for model re-training. Thus, the performance

of EarGate is expected to improve continuously after it has been put into practical use.

5.5.10 Transfer learning

We sought to further improve the performance of EarGate by looking at more complex,

deep learning based approaches. Although the performance of traditional deep learning

techniques are hindered by the modest size of our dataset (the number of available data

points is not sufficient for the model to properly learn the weights1), transfer learning may

come handy [162]. In doing so, we leveraged VGGish, an audio-specific pre-trained model

released by Google [163]. VGGish is a convolutional neural network (CNN) that is trained

using a large-scale YouTube audio dataset. Concretely, we use VGGish to automatically

extract audio features (embeddings) from the raw in-ear audio data. At this point, we

combined the handcrafted features with the embeddings extracted by VGGish and trained

two different classifiers: SVM (as in our previously reported results) and XGBoost, an

1Considering VGGish as an example, the number of trainable parameters is 4, 499, 712.
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advanced decision-tree based machine learning algorithm [164]. We report our findings

in Table 5.5.1. As we can appreciate from Table 5.5.1, XGBoost consistently outperforms

SVM when solely using the VGGish embeddings, without any handcrafted feature. Con-

versely, by feeding handcrafted features to SVM we achieve better results (both in terms

of BAC as well as, in most cases, in terms of FAR and FRR). Notably, by combining

the embeddings extracted with transfer learning and the manually engineered features,

we can further boost the performance of EarGate, increasing the BAC and lowering both

FAR and FRR. This is due to the model learning from both the carefully selected features

as well as from the more abstract representation of the data generated by VGGish. In-

terestingly, while in terms of accuracy the benefit of transfer learning is clear, it is also

important to bear in mind the accuracy versus power consumption trade-off. The perfor-

mance achievable with only the handcrafted features are indeed only marginally lower than

those achieved by combining the transfer learning embeddings and the manually crafted

features, in face of an inevitably higher power consumption (caused by the execution of

the VGGish model). However, if a larger dataset is available, the performances associated

with transfer learning could further improve.

5.5.11 Contribution of specific features

Our classifier has been trained on a variety of features, including many related to the

frequency spectrum. For an evaluation of our scale, it might be that the walking cadence

can be distinct for all the participants and, therefore, there is the concrete risk that the

model learns to strongly weight the frequency features closely associated with people’s

cadence. Ultimately, this would be problematic because walking cadence will not be distinct

on the broader population level and, furthermore, people move at different cadences (e.g.,

when walking alongside someone).

To confirm that our classifier is not simply a cadence classifier, we asked one subject to walk

at three speeds : slow (1.59step/s), normal (1.97step/s), fast (2.13step/s). After training

the model with normal-speed walking data, we tested it on all the three instances. Fig-

ure 5.5.6c reports the BAC for normal, slow, and fast pace respectively: 99.25%, 98.30%,

and 96.97% BAC. These results clearly show that the model is not biasing towards ca-

dence as the identifier, and is instead learning something more fundamental to the user’s

movement.

Given this, we also consider the value of the different features. After training our classifier
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Table 5.5.2: Power consumption and latency measurement of EarGate.

Scheme Operation Power (mW) Latency (ms) Energy (mJ)

MicRecd 120 1000
On-device LowPassFilt 635 1.83 168.59 (All)

identification FeatExtr (All/MFCC) 655/651 71.98/23.62 136.82 (MFCC)
Inference 644 0.44

MicRecd 120 1000
Raw Data TX [OS+Air] (WiFi) 334 9.49+12.8 123.17 (WiFi)
Offloading TX [OS+Air] (BT) 478 148.41+128 190.94 (BT)

MicRecd 120 1000
LowPassFilt 635 1.83 168.91 (WiFi, All)

Feature FeatExtr (All/MFCC) 655/651 71.98/23.62 172.27 (BT, All)
Offloading TX [OS+Air] (WiFi)(All/MFCC) 332 1.81+0.59/0.39+0.26 136.67 (WiFi, MFCC)

TX [OS+Air] (BT)(All/MFCC) 457 8.66+5.94/5.74+2.56 139.26 (BT, MFCC)

individually on each of the features listed in Section 5.3.3, we plot in Figure 5.5.6c the BAC

achieved training our system with only Mel-Frequency Cepstral Coefficients (MFCC), as

well as with all the features. Notably, among all the features taken individually, MFCC

achieves the best results. Interestingly, when analyzing the computation time of different

features, we find that most of the feature extraction time (89%) is actually consumed on a

feature called ’tonnetz ’ (with 6 values). We then repeat the experiment after removing this

feature and the identification accuracy almost remains the same. Therefore, it is possible

to use a smaller set of features and reduce the overall end-to-end latency of the system.

5.6 System considerations

To gauge the system-level performance of EarGate, we conducted a power-consumption

and latency investigation using the same prototype described in Section 5.4. We assume

the model is pre-trained and only consider the real-time identification overhead. Given

EarGate can either run the identification framework on-device, or offload it, we consider

three different schemes which would impact differently power consumption and latency:

1. On-device identification: microphone data recording (MicRecd), as well as all

the gait identification procedures, including low-pass filtering (LowPassFilt), feature

extraction (FeatExtr), and inference, are performed on-device.

2. Offloaded identification (raw data offloading): the earable records microphone

data and directly transmit the raw data via WiFi or Bluetooth (BT), without any
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processing. The size of raw data is 16KB 2. The identification process would be

performed on the cloud or companion smartphones and possibly the result will be

communicated back to the device.

3. Offloaded identification (features offloading): both low pass filtering and fea-

ture extraction are carried out on the earable, right after recording the microphone

data. Only the extracted features (either all features or only MFCC features) are

transmitted via WiFi/BT and the result might be communicated back to the device.

The size of features is 0.748KB for all features and 0.16KB for MFCC features 3.

Our aim here is to show the flexibility of our system to work, irrespective of the network

architecture preferred or available.

For the offloading cases, we consider two types of radio frequency (RF) communications:

Bluetooth (BT) and WiFi, as they are (or might soon be) the most commonly available

radio chips in earables. For WiFi, we consider a typical uplink throughput of 10Mbps

(similar to that of a domestic network) to compute the transmission latency over the

air. Regarding Bluetooth, the version supported by the Raspberry Pi we use is BT 4.1.

Compared to more recent BT standards (e.g., Bluetooth 5, available in Apple AirPods

Pro), BT 4.1 offers less throughput (1Mbps instead of 2Mbps). As a consequence of that,

the over-the-air transmission time reported is longer than what it would be if a more

advanced version of BT were adopted. We measure the power consumption with a USB

power meter. Latency measurements are obtained timing the execution of the software

handling the operation of interest. The results are averaged over multiple measurements

and presented in Table 5.5.2. The baseline power consumption of our Raspberry Pi (idle) is

around 2, 325mW and the values reported in the table are additional power consumption.

The energy column computes the total energy required to perform the operations for one

gait cycle.

On-device identification performs the whole pipeline including microphone recording (Mi-

cRecd), filtering (LowPassFilt), feature extraction (FeatExtr), and inference on the device.

The power column indicates that numerical computations (LowPassFilt, FeatExtr, and

Inference) are intensive and more power-hungry than microphone recording. The latency

column shows that most of the processing time is spent on feature extraction. Regard-

2With a sampling rate of 4000Hz and gait cycle length of 1 second, the data from two microphones is
2× 4000× 2B = 16KB.

3All features includes 187 features from each microphone data and the size is 2×187×2B = 0.748 KB,
MFCC features include 40 features and the size is 2× 40× 2B = 0.16 KB.
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less of the time for data acquisition, the overall identification latency is within 100ms.

Concretely, the energy required for a one-time on-device identification is 168.58mJ (using

all the features) and 136.82mJ (using MFCC features only, the most effective features as

described in Section 5.5.11).

When offloading the raw data to the cloud, only MicRecd is performed on-device. Here,

we consider the latency as the sum of TX OS (the time that Pi requires to write the data

in the buffer of the chosen interface, either Bluetooth or WiFi) and TX Air (the time it

takes for the data to propagate over-the-air). We can observe that the latency is largely

dependent on the throughput of the network. The energy required for WiFi offloading

is 123.17mJ , whilst for BT is 190.94mJ . Conversely, when offloading the features, also

LowPassFilt and FeatExtr are done on-device. Here, following Section 5.5.11, we compare

the energy efficiency of sending all the features or just the MFCC features. Given there are

187 features in total and only 40 are MFCC features, the transmission latency for MFCC

features only is shorter, overall below 100ms.

In summary, we can conclude that (1) both on-device identification and features offloading

guarantee a time delay (after data acquisition) of less than 100 ms, showing EarGate

can work in real-time scenarios both on-device and while offloading features; (2) with

respect to the energy consumption, all the schemes consume less than 200mJ for one-

time identification; (3) the latency and energy consumption for raw data offloading are

strictly dependent on the quality of the communication link. Thus, offloading raw data

would be the best option when the network is stable. Notably, in this section we focus

on the SVM-based pipeline, only considering the case where handcrafted features are used

to train the model. We do this for several reasons. First, at the moment, deploying a

complex model like VGGish on resource-constrained devices (like earbuds) is an extremely

challenging task and there are no publicly available tools to supporting it. Second, given the

performance improvements of the transfer learning approach over the handcrafted features

one are marginal (Section 5.5.10). Third, running VGGish to extract the embeddings would

entail far more operations than simply leveraging a limited set of handcrafted features to

train SVM and, therefore, it is fair to assume that power and latency figures would be

considerably higher than those for the traditional machine learning pipeline.
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5.7 Discussion

In this section, we talk through the limitations of EarGate, the possible improvements, and

the future directions we plan on pursuing. Despite the promising results, we are aware of

some of the limitations of our approach. First and foremost, in order for our system to work,

initial user data (in the enrollment phase) are required. Concretely, this means there has to

be an enrollment phase during which the system acquires data about the legitimate user.

While we acknowledge it would be ideal if such a phase did not have to take place, most

of the well-established biometric identification schemes, like facial recognition and finger-

print, do require some initial user data. Besides, in our evaluation (Figure 5.5.6b) we show

we only need a limited amount of user data to start offering acceptable performance.

Second, whilst Figure 5.5.3 shows that the impact of different footwear is marginal, when

the model is trained on them; to maintain high performance, the model should be partially

re-trained to add new pairs of shoes to the legitimate user data. This could be done

by the user walking and manually committing the new gait cycles to re-train the model;

or it could happen in background if the user changes shoes while wearing their earables

(provided the user has been successfully identified beforehand). We believe the latter is

a reasonable assumption, especially for hearing aid users as such devices are continuously

worn throughout the day. Hopefully, this will soon be the case for leisure earables, too,

which, once the advancements in materials will guarantee better comfort, could also be

worn for a longer amount of time. Further, although gait may slightly change over the

years, continuously adapting the model (like we do for different shoes) could relieve this

issue, too. Alternatively, the impact of different footwear could be obviated by mean of

the combination of a general model and a personalized model. For instance, an auto-

encoder [165] could be trained on all the users’ data to obtain a general model.

Lastly, one other concern could be related to the obstruction of the ear canal orifice, and the

consequent impact on audible sounds (which will result muffled due to the presence of an

obstructing body). We are aware this could be a potential safety issue, therefore, similarly

to the AirPods Pro Transparency Mode, it is possible to do the same with EarGate. By

playing back the audio recorded by the external mic, the use will be able to hear as if there

were no earbuds obstructing their ear canal. Notably, this does not affect our system as

we can easily filter it out (leveraging the difference in frequency), like we did for music. In

addition, as we discussSection 4.6.6), we believe the power consumption and latency can

be further reduced when specialized audio chips (e.g., Apple H1 Chip) are used and more
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advanced engineering work (e.g., dedicated PCB design) is implemented.

5.8 Conclusion

In this chapter, we presented EarGate, an earable identification system based on user

gait. Exploiting the occlusion effect, EarGate enables detection of human acoustic gait

from an in-ear facing microphone. Experimenting with 31 subjects, we demonstrated

that EarGate achieves robust and acceptable identification performance (up to 97.26%

BAC, with low FAR and FRR of 3.23% and 2.25% respectively) under various practical

conditions. Moreover, EarGate will not affect the general functionality of earbuds and is

robust to high-frequency noises like music playback and human speech. We envision that

EarGate can be an effective and robust way of identifying (standalone or companion with

smartphone) users using earables. Particularly, its unobtrusiveness makes it an appealing

replacement for FaceID for users wearing face masks during the COVID-19 pandemic.

Having shown the power of in-ear microphones for motion sensing and identification, the

following chapter explores a new dimension of personal-scale sensing, investigating the

potential of in-ear photoplethysmography for earable-based cardiac vital sign monitoring.

To this end, Chapter 6 researches how to enable in-ear photoplethysmography (PPG),

looking for the best location around the ear where to sense PPG, as well as the extent at

which it in-ear PPG is robust against motion artifacts.
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‘Darkness took me. And I strayed out

of thought and time.

Stars wheeled overhead, and every day

was as long as the life age of the earth.

But it was not the end. I felt light in

me again.’

GandalfChapter 6

In-ear Photoplethysmography

Sensing

6.1 Introduction

After exploring the new sensing avenues opened by in-ear microphones in Chapter 4 and

Chapter 5, we sought to investigate the capabilities of earables for personal-scale health

and wellbeing applications. To this end, in this chapter, we report an exploration of

in-ear photoplethysmography (PPG) towards aiding the design of a sensory earable for

vital signs monitoring. Tracking changes in vital signs, such as cardiovascular functions,

heart rate, oxygen saturation, and blood pressure, through photoplethysmography (PPG)

is common across wearables like smartwatches [166]. As we discussed in Section 2.3.2,

photoplethysmography, better know by its acronyn as PPG, is an optical technique used

to infer blood volumetric changes in the peripheral circulation. PPG is indeed a remark-

able signal, which not only carries a wealth of clinical information (such as heart rate,

heart rate variability, blood oxygen saturation, respiration rate, blood pressure, and artery

characteristics [167–169]), but can also be used for non-medical applications such as au-

thentication [170] and drowsiness detection [171]. Our decision to study in-ear PPG draws

upon a set of technical, biological and usability-oriented observations.

Technically, PPG is relatively straightforward to implement and mechanically integrate into

an earable, requiring only LEDs and photodiodes. Next, unlike more complex modalities

like electrooculography (EOG) or electroencephalogram (EEG), PPG’s output signal is

116



easy to interpret. Finally, as we mentioned above, PPG signals can derive various vital

signs, including heart rate, heart rate variability, blood oxygen saturation, and respiration

rate, to name a few. Biologically, several blood vessels surround the human ear, and some

directly connect to main arteries (i.e., the carotid artery). This unique property is critical

and very beneficial for the goodness of an optical-based PPG sensor that measures blood

volume changes. In addition, the head is generally less susceptible to motion artifacts

due to the musculoskeletal system’s natural vibration damping. Usability-wise, modern

earables are lightweight, ergonomically comfortable, and non-invasive. These properties

are imperative to ensure continuous and longitudinal usage of earables, and PPG, due to

its mechanical simplicity, is the most appropriate sensor for seamless integration to existing

forms.

The accuracy of PPG measurements has been a subject of extensive research in recent

studies [172], as PPG is a common feature in various wrist-worn consumer-grade wearables.

In medical settings, prior research studied PPG on the tip of fingers, forehead, or ear

lobes. These efforts mainly quantified PPG signals’ inaccuracies stemmed from diverse

skin types and motion artifacts [173]. Key insights of these studies suggest PPG signal is

relatively accurate across skin tones, while its accuracy drops up to 30% in the presence of

motion artifacts. There have been several attempts to study in-ear PPG; however, these

explorations looked primarily at single sensor placement, e.g., from the ear canal [16] and

from behind the ear [18]. Moreover, these mostly explored PPG sensing in or around the

ear focusing on specific applications. To date, no studies have systematically validated in-

ear PPG under various motion conditions across a range of different positions. To this end,

we begin our investigation of in-ear PPG sensing by providing evidence towards answering

1) where is the optimal placement of an in-ear PPG sensor? and 2) what is the impact of

motion artifacts at different placements?

To address our first question, we revisit established literature on ear anatomy to identify

three plausible locations in and around the ear as sensor placement alternatives, namely,

behind the auricle or pinna (referred to as behind-the-ear, BTE); the concha (in-the-ear,

ITE); and the first part of the ear canal (in-the-canal, ITC). We then collect PPG signals

across these locations from a first cohort of 12 individuals to generate four vital signs -

heart rate and heart rate variability, blood oxygen saturation, and respiration rate. We

quantify in-ear PPG’s quality in inferring these vital signs by comparing the extracted

signals with ground truth collected with medical-grade devices. Our analysis shows that

ITC represents the best location with the least error variation. We then sought to answer
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our second initial question by analyzing the goodness of the in-ear PPG signal under the

presence of motion artifacts (speaking, walking, and running). Our results suggest that

ITC presents the smallest errors and the least inter-subject variability across the motions

under examination. However, it is nonetheless heavily impacted by motion artifacts (errors

up to 29.84%, 24.09%, 3.28%, and 30.80% respectively for HR, HRV, SpO2, and RR) due

to the signal crossover as reported in past studies, albeit for different body placements.

Ultimately, our findings (published in [4]) confirm that PPG sensing is particularly chal-

lenging in presence of either ambient light or motion. While the former can be mitigated by

ambient light rejection modules (often already implemented in-hardware), to date, there

still is no unanimously agreed technique to mitigate the latter without a considerable loss

of information. Previous work considered only motion artifacts (MA) deriving from all-

body movements, like walking or running [17, 172, 174, 175]. However, the head and face

consist of an intricate mesh of muscles and blood vessels which contract and relax with

each of their movements. This has the potential to induce unwanted noise and motion

artifacts in the PPG signals recorded from the ear. The interaction between these motions

and the signals recorded from in-ear PPG sensors is completely unexplored. Hence, after

assessing the optimal location for in-ear PPG sensing, this chapter aims at providing the

research community with a novel, multi-modal, dataset, which, for the first time, will allow

to study the impact of body and head/face movements on both the morphology of the PPG

wave captured at the ear, as well as on the vital signs estimation. To accurately collect

in-ear PPG data, coupled with a 6 degrees-of-freedom (DoF) motion signature, we lever-

aged the knowledge acquired through our preliminary investigation to prototype and build

a flexible research platform for in-the-ear data collection. The platform is centered around

a novel ear tip design which includes a 3-channel PPG (green, red, infrared) and a 6-axis

(accelerometer, gyroscope) motion sensor (IMU) co-located on the same ear-tip. This al-

lows the simultaneous collection of spatially distant (i.e., one tip in the left and one in the

right ear) PPG data at multiple wavelengths and the corresponding motion signature, for

a total of 18 data streams. Inspired by the Facial Action Coding Systems (FACS) [103], we

then consider a set of potential sources of motion artifact (MA) caused by natural facial

and head movements. Specifically, we gather data of head movements (nodding, shaking,

tilting), eyes movements (vertical eyes movements, horizontal eyes movements, brow raiser,

brow lowerer, right eye wink, left eye wink), and mouth movements (lip puller, chin raiser,

mouth stretch, speaking, chewing). Given their relevance to earables and daily life, we

also collect motion and PPG data under activities, of different intensity, which entail the

118



movement of the entire body (walking and running). Together with in-ear PPG and IMU

data we collect several vital signs including, heart rate, heart rate variability, breathing

rate and raw ECG, from a medical-grade chest device.

With ∼17 hours of data from a second cohort of 30 participants of mixed gender and

ethnicity (mean age: 28.9 years, standard deviation: 6.11 years), our dataset empowers

the research community to analyze the morphological characteristics of in-ear PPG signals

with respect to motion, device positioning (left ear, right ear), as well as a set of configu-

ration parameters and their corresponding data quality/power consumption trade-off. We

envision such dataset could open the door to innovative filtering techniques to mitigate,

and eventually eliminate, the impact of MA on in-ear PPG.

We run a set of preliminary analysis on the data, considering both handcrafted features, as

well as a DNN (Deep Neural Network) approach. Ultimately, we observe statistically sig-

nificant morphological differences in the PPG signal across different types of motions when

compared to a situation where there is no motion. We also discuss a 3-classes classification

task and show how full-body motions and head/face motions can be discriminated from a

still baseline (and among themselves). These results represents the first step towards the

detection of corrupted PPG segments and show the importance of studying how head/face

movements impact PPG signals in the ear.

To the best of our knowledge this is the first in-ear PPG dataset that covers a wide range

of full-body and head/facial motion artifacts. Being able to study the signal quality and

motion artifacts under such circumstances will serve as reference for future research in the

field, acting as a stepping stone to fully enable PPG-equipped earables.

In summary, the contributions of this chapter include:

• An investigation of the best location around the ear to sense PPG.

• A novel ear tip design with co-located multi-channel PPG and motion sensors for

in-the-canal data collection –informed by our findings.

• A first of its kind multi-modal PPG dataset under a wide range of motion artifacts in-

duced from full-body movements and, more importantly, head/facial movements. For

the first time, the PPG (and IMU) signal is collected simultaneously from spatially

distant locations (left and right ear).

• A preliminary analysis of how full-body and head/facial movements impact in-ear
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PPG.

6.2 Ear anatomy and sensor placement

As we have discussed in Section 2.3.1, the ear is the human sensorium dedicated to hear-

ing. It is composed of three regions: outer ear, middle ear (i.e., where sound waves are

modulated), and inner ear (i.e., where the modulated sound waves are transmitted to the

brain). In this dissertation, we focus our attention on the outer ear, easily accessible for

the placement of ear-worn devices.

To identify plausible placements for a PPG sensor in the outer ear, two aspects shape our

design considerations: quality of signal and device comfort. From a signal quality perspec-

tive, a PPG sensor detects changes in blood volume flow, and as such, it is essential to place

it in an area well supplied by blood vessels. The main components of the outer ear are the

auricle (or pinna), the visible part of the ear; the concha, the depression in the auricle

leading to the ear canal orifice; and the ear canal itself (Figure 6.2.1). All these three

areas are supplied with blood by branches of the external carotid artery, a major artery of

the head and neck. Several capillaries called perforating branches (Figure 6.2.1) supply

blood to the auricle (on both sides, behind, as well as, in the proximity of the ear canal

orifice) and the concha. Additionally, behind the auricle flows the superior auricular

artery. Another major blood vessel in the very proximity of the ear, particularly close to

the ear canal, is the superficial temporal artery [176]. The high concentration of blood

vessels in the outer ear naturally poses multiple alternatives for a PPG sensor placement.

To minimize our search space, we turn our attention to ergonomic comfort. Ideally, the

earable should enable continuous monitoring in natural situations while ensuring ease of

use and comfort for prolonged use. Borrowing notions from the rich literature on earables,

including hearing aid ergonomics [177], we identify three plausible alternatives: 1) behind

the auricle, 2) in the concha, or 3) inside the ear canal.

Hence, we annotate Figure 6.2.1 highlighting in green the three vantage points defined

as: behind-the-ear (BTE) leveraging the superior auricular artery; in-the-ear (ITE) for the

perforating branches and in-the-canal (ITC) for the superficial temporal artery.

We exclude other areas of the ear such as the lobe or behind it (i.e., the skin of the neck),

even if supplied by the same main artery, because placing an earable on these areas is

unnatural and potentially uncomfortable, especially for prolonged use.
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Fig. 6.2.1: Anatomy of the human ear with annotated the chosen sensor placements.

6.3 PPG and vital signs extraction

Photoplethysmogram (PPG) is an optical measurement technique consisting of an LED

and a photodetector used to derive a heart rate signal by detecting blood volume changes

in the region under examination (Section 2.3.2). There are two types of PPG sensors: one

measuring light transmission through the tissues (used on the extremities as fingertips and

ear lobes) and the other measuring the light reflected by the tissues (as in smartwatches and

wrist-worn fitness trackers). For the scope of this dissertation, we focus on light reflectance

PPG sensors given their mechanical simplicity in being integrated in an earable form, as

they do not require the placement of electronic components on two opposite sides of the

skin.

Concretely, light reflectance PPG sensors measure how light intensity varies whenever

there is a blood volume change. Bones, muscles, and tissues absorb light at a constant

rate. Therefore, arterial blood volume variations directly map into a decrease in the light

intensity (i.e., the voltage of the signal) measured at the photodetector [78]. For a more

in-depth explanation of how photoplethysmography works, refer to Section 2.3.2.

6.3.1 Vital signs estimation from PPG

PPG signals are commonly used in medical and free-living settings to extract vital signs,

i.e., reliable bio-markers to indicate health outcomes (Section 2.3.3). The most common
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types of bio-markers extracted from PPG can be grouped as those related to cardiovas-

cular activity (e.g., heart rate, heart rate variability, blood pressure, hyper and hypov-

olemia), respiration (heart rate signals are modulated by respiratory activity [178]), and

blood oxygen saturation (SpO2). These bio-markers constitute an enormous wealth of

information, allowing medical practitioners, for instance, to infer the fitness of a patient,

the presence (or absence) of respiration as well as cardiovascular conditions, and their

mental health (stress, cognitive load, and mental fatigue) [179]. In this chapter, we study

three vital signs and the respective processing pipelines we have developed to extract them

from raw PPG signals collected from different locations in, and, around the ear.

Heart rate (HR) and heart rate variability (HRV)

HR measures the heart contractions that push blood through the arteries. On the other

hand, HRV is the variation in the time interval between consecutive heartbeats (contrac-

tions). In medical settings, HR is usually measured either with a finger pulse oximeter

or with ECG and ranges between 60 and 100 bpm in healthy subjects. Contrary, HRV is

extracted from the R-peaks detected in an ECG signal and is often used when referring

to a person’s fitness and mental health. High inter-beat interval (ibi) denotes high fitness

(700-1000 ms), while lower HRV often indicates a higher stress level.

Extraction pipeline: As depicted in Figure 6.3.1a, we start by processing both the

raw infrared PPG and the raw ECG (our ground truth signal) with a band-pass and a

notch filter, respectively. This step preserves the information content at typical heart

rate frequencies and discards higher frequencies. The filtered signals are then scaled and

normalized, and the R-peaks amplitude is enhanced. From the resulting signals we detect

all the peaks corresponding to heart beats and compute the mean HR and HRV.

Reporting metrics: We use mean bpm (beats per minute) for HR, as the average HR

during a session and mean inter-beat-interval (IBI) for HRV, as the average time between

successive heartbeats (taken across a session).

SpO2

Blood Oxygen Saturation indicates the percentage of oxygen-saturated hemoglobin in the

blood. In healthy subjects, it usually is between 95% and 100%. SpO2 is commonly

measured with finger pulse oximeters.

Extraction pipeline: To extract SpO2 from PPG, we first filter the PPG readings with

122



(a) Pipeline for resting heart rate and heart rate variability.

(b) Pipeline for blood oxygen saturation.

(c) Pipeline for respiration rate.

Fig. 6.3.1: Processing pipelines used to extract vital signs.

the same band-pass filter used to pre-process the data before extracting HR and HRV.

We then sought to isolate the AC (pulsatile) and DC (non-pulsatile) components [180]

(for a more in-depth explanation of the AC and DC component of PPG, please refer

to Section 2.3.2). We adopt the window minimum approach [78] and compute R, the

ratio of the ratios of the AC and DC components of the red and infrared PPG signals

(Figure 6.3.1b):

R =

ACRED PPG

DCRED PPG

ACIR PPG

DCIR PPG

. (6.1)

We then calculate the SpO2 by applying the equation:
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SpO2 = A−BR, (6.2)

where A and B are calibration coefficients [181] we empirically set as A = 120 and B = 24.

Reporting metrics: We use mean spo2 for SpO2, as the average percentage of oxygen

saturation during a session.

Respiration Rate (RR)

Respiration rate is the number of breaths a person takes per minute. In adult subjects, it

usually varies between 10 and 20 breaths per minute.

Extraction pipeline: We extract a respiration rate (RR) following a frequency-based

approach [178] (Figure 6.3.1c). First, we extract a respiratory signal from the raw infrared

PPG signal. Considering a normal breathing range is 10−−20 breaths per minute [182],

the non-respiratory frequencies are removed with a band-pass filter. Once left with the

respiratory signal, we segment it in 30 seconds long windows, find the peaks and compute

the breath per minute value for every window.

Reporting metrics: We use mean rr for a respiration rate, as the average number of

breaths per minute within a session.

6.4 Experimental setup

To identify the optimal positioning for an in-earable PPG sensor, we run a first data

collection campaign featuring twelve subjects.

6.4.1 Study population

Twelve individuals (2 females, 24-40 years of age, mean = 30.4) were recruited to participate

in the study. None of the participants had any heart or respiratory condition and were in

good health. All participants were briefed about the study and voluntarily consented to

take part in it (no compensation was offered). The study received IRB approval before its

beginning.
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6.4.2 Devices

To collect PPG signals from the ear, we use a Cosinuss Two1 which features an infra-red

and a red PPG sensor on the same ear-tip. The raw data for both wavelengths is provided

by the device with a sampling rate of 100Hz. We modify the Cosinuss’ ear-tip to provide

better adhesion with the skin for the BTE and ITE conditions and use surgical tape for

attachment. For the ITC condition, we mount the ear-tip on an existing earable (i.e.,

eSense [2]) to mimic an off-the-shelf earbud.

For ground truth purposes, we use a portable ECG (heart’s electrical activity) chest band

(Zephyr Bioharness 3.02) and a medical grade pulse oximeter to be worn on the finger

(Masimo Health MightySat-Rx3). We use the ECG signal to derive the ground truth for

HR and HRV while RR and SpO2 are provided directly by the Zephyr and the pulse

oximeter, respectively.

The participants wore the portable ECG band and the pulse oximeter on their chest and

index finger for the whole experiment. Synchronized data from our PPG sensor and the

ground truth devices has been collected for the entire duration of the study. The devices

used during the data collection are depicted in Figure 6.4.1.

6.4.3 Data collection protocol

Given our first objective is to assess the best positioning for a PPG sensor around the

ear, and the impact of common motions, we collect PPG data from the three locations

identified earlier (ITC, ITE and BTE), first in a resting condition (without any movement)

and then under three motion conditions of increasing intensity: speaking, walking and

running. Walking and running represent typical full-body sources of motion-induced noise

for optical-based heart rate monitors, as shown by previous research [173]. Contrary, the

speaking condition is instead unique to earables. The complex muscle movements while

talking are likely to cause significant deformations of the tissues around the ear and in the

ear canal, with potential negative effect on the recorded PPG signal.

For the resting and speaking conditions we followed the wearable device validation guideline

stipulated by the Consumer Technology Association [183] and measured PPG while seated

in the upright position. Notably, during the resting condition, the participants were asked

1https://www.cosinuss.com/
2https://www.zephyranywhere.com/
3https://www.masimo.com/
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to breath normally without moving, while during the speaking condition they were asked

to read aloud an article provided by the investigators. For the motion conditions the

participants were asked to walk and run at a comfortable pace around the room ensuring the

intensity was higher for running compared to walking. We measured an average acceleration

of 0.17g (σ = 0.05g) and 1.04g (σ = 0.11g) while walking and running, respectively.

For each motion condition we recorded 5 minutes of data at the three sensor placements we

identified. The length of the sessions was chosen so that they were long enough to observe

changes in the characteristics of good-quality vital signs, without being too tedious for the

data collection volunteers.

6.4.4 Data analysis

The PPG data is processed according to the pipelines described in Section 6.3.1 in order to

extract the vitals we are considering. The PPG-derived bio-markers are then compared to

the values obtained from the ground truth devices. We compute the relative error as the

difference between the ground truth value and the PPG-derived value for each bio-marker.

We chose to look at the relative error to be able to observe whether the data present trends

(e.g., PPG consistently over/under-estimating the HR).

6.5 Benchmarks

We begin by reporting our observations concerning placement variabilities and then reflect

on the impact of motion artifacts on the accuracy of PPG-derived vital signs.

6.5.1 PPG placement

Figure 6.4.2 illustrates the inaccuracies we observed in the PPG-derived vital signs in

comparison with ground truth. We notice that all three positions show comparable perfor-

mance for different vital signs concerning accuracy. However, one-way repeated measures

ANOVA tests performed on the three locations show significant differences on the mean

error of each vital sign with test statistic F ranging from 11.0 for RR to 141.2 for HR with

p-value < 0.05.

Looking closely at Figure 6.4.2, the ITC position shows the least variability (smaller in-

terquartile range). Overall, we can observe that in-ear PPG shows acceptable performance
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Fig. 6.4.1: On the left a participant wearing the ITC PPG; and on the right the devices used in
the data collection (clockwise: Zephyr Bioharness 3.0, Masimo Health MightySat-Rx, Cosinuss
two tip on eSense for ITC, modified Cosinuss two tip used for ITE and BTE).
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(a) Resting heart rate. (b) Heart rate variability.

(c) Oxygen saturation. (d) Respiration rate.

Fig. 6.4.2: Impact of different ear-placements on the goodness of PPG-extracted bio-markers in
a resting condition.

to extract reliable HR, HRV, and SpO2 with errors ranging across ±0.5 bpm, ±5ms, and

±2%, respectively. For instance, errors of a few ms when estimating IBI for HRV are

acceptable given that they account for about 1% of the actual IBI of healthy subjects at

rest — usually being between 700 to 1000ms, depending on age and medical conditions.

Similarly, for SpO2 data, medical-grade pulse-oximeters usually have a 2% accuracy, which

is in line with what we observe for the ITC location.
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However, for the respiration rate, we notice a relatively larger error across the three loca-

tions, with a mean error around 3 breaths per minute and large variation. This represents

a 30% to 15% error on average if we consider typical breathing rates of 10 to 20 breaths

per minute at rest [182].

To further analyze the data we employ Bland-Altman (BA) plots, which depict the dif-

ference between ground truth bio-marker and PPG-extracted bio-marker on the y-axis

(ECGHR − PPGHR) and their average on the x-axis ((ECGHR + PPGHR)/2). Instead

of using the mean value of each bio-marker during the entire session, for this analysis,

we use the bio-marker values computed with a 1 second granularity. BA plots are typi-

cally employed to study the agreement between two measurement methods and allow us

to investigate how the two measurements of a bio-marker differ (i.e., y-axis) at different

magnitudes of the bio-marker (i.e., x-axis).

Figure 6.5.1 depicts the BA plots for the HR in three locations. While in the interest

of space we only report the the BA plots for HR, we observed similar patterns for the

other bio-markers. The plot shows how the mean error of HR is consistently small across

all three locations. Diversely from ITE and BTE, where the data-points are sparse and

the confidence intervals large (±1.96 of the standard deviation of the error), for the ITC

location the majority of data-points fall within the confidence intervals around the mean

error. The BTE and ITE locations show larger errors as the HR increases (i.e., in the

range 70−−100bpm), with several data points showing negative errors. This implies that

HR estimated from PPG tends to overestimate the actual value in this range. This result

suggests an overall agreement between the PPG and the ground truth readings at rest,

confirming our previous observation of less error variability for the ITC location.

Key takeaways: Our analysis suggests that, in a resting condition, while there is

marginal difference in the median error across the three locations, the in-the-canal position

represents a good placement option for in-ear PPG, as it shows consistently the least

variation. We argue that this is enabled by the in-the-canal location and the form factor of

the corresponding device, i.e., an ear-tip. We could observe that, even when participants

wear the ear-tip naturally without special care from the investigators, it automatically

ensures good sensor-to-skin contact and improved shielding from ambient light. Devices

built for the other locations instead currently provide less tight contact to the skin, thereby

resulting in higher variation across wearing events.

Our results also highlight that the PPG-extracted respiration rate has a large error margin.
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(a) Resting heart rate BTE. (b) Resting heart rate ITE. (c) Resting heart rate ITC.

Fig. 6.5.1: Difference between ground truth and PPG heart rate plotted against the mean of
the two measurements (Bland-Altman plot). In the interest of space, only data for HR is shown.
The solid black line represents the mean error, and the dashed gray lines the 1.96 SD boundaries
(95% limits of agreement).

We consider this error could be mitigated with more sophisticated processing techniques

or by leveraging other sensing modalities (e.g. IMU-based breathing detection [184]).

6.5.2 Impact of motion artifacts

The form, functions, and applications of an earable naturally imply suspected measure-

ment errors of in-ear PPG, which are typically caused by motion artifacts, i.e., sensor

displacement due to head and body movement. Consequently, we sought to understand

how the PPG sensor suffers from these artifacts. Specifically, we investigate the impact

of three motion activities that are commonly performed while wearing earables - speaking

(micro motion), walking (mild motion) and running (intense motion).

Figure 6.5.2 illustrates the box plots of the errors between ground truth and PPG-extracted

vital signs for different artifacts, across the three locations. At a glance we notice that the

median error for the ITC location tends to be lower than the other locations for the three

motion conditions. This is further confirmed when comparing the mean absolute errors

of the various bio-markers. For instance, HR extracted from the ITC location shows a

12.52%, 27.14%, and 29.84% error respectively for speaking, walking, and running. These

figures are substantially lower than those of the other two locations: 62.60%, 105.98%,

56.62% and 58.29%, 58.66%, 44.00% respectively for BTE and ITE (similar differences can

be observed for HRV and SpO2). An exception to this is the respiration rate for which ITC

shows similar or slightly higher median errors (with BTE showing a lower mean absolute

error). For the respiration rate we also notice a clear trend where the error increases with
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(a) Resting heart rate. (b) Heart rate variability.

(c) Blood oxygen saturation. (d) Respiration rate.

Fig. 6.5.2: Impact of different external artifacts (i.e. speaking, light motion, and intense motion)
on the goodness of BTE, ITE, and ITC PPG-extracted bio-markers.
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the increase of motion intensity.

ITE and BTE instead, show high median errors and large variations across all three motion

conditions, suggesting that they are less suitable locations for in-ear vital signs measure-

ment, even in presence of moderate motion (e.g., speaking and walking). This could be a

consequence of the difficulty in attaching the sensor firmly in these locations and the more

pronounced deformation of the skin and tissues during motion activities which results in

corrupted PPG signals.

Notably, the estimation of SpO2 shows similar median error across the three motions

with relatively limited variability for all three locations. We hypothesize that this relative

consistency in SpO2 measurements is due to the fact that participants’ oxygen saturation

did not change significantly during the data collection period, hence only a limited range

of values could be recorded (e.g., between 96% and 100%). We leave the investigation of

other SpO2 ranges through the use of specialized equipment to future work.

Key takeaways: Our results suggest that in-ear PPG, despite being located on a

more stable part of the body (i.e., the head compared to the wrist), is still significantly

affected by motion, with absolute errors for ITC up to 29.84%, 24.09%, 3.28%, and 30.80%,

respectively for HR, HRV, SpO2, and RR. Based on our population, ITC seems to provide

the lowest errors across the motion conditions, with ITE and BTE showing large errors

even with moderate motion. This is probably due to a poorer adhesion with the skin for

the ITE and BTE locations compared to ITC which benefits from the enclosed space of the

ear canal. These observations call for attention to sophisticated signal processing pipelines

mitigating signal cross-over issues, ideally guided by additional sensing modalities (e.g.,

co-located IMU) and advanced industrial design to ensure stability and good skin contact,

especially for the BTE and ITE placements.

6.6 Outlook: in-the-canal PPG

Our results distilled that the in-the-canal placement is a plausible design choice striking

the best trade-offs. However, we need to cater for a careful mechanical design for robust

data acquisition and signal processing to mitigate motion artifacts. We reflect on these

two aspects in this concluding section.
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6.6.1 Form factor and ear-tip design

From a mechanical construction perspective, the in-the-canal placement of a PPG sensor

uncovers interesting design challenges. On the one hand, it liberates us from a specific form

design, as ear-tip or earmold is a default feature of any earable, be it a lifestyle earbud

or a medical-grade hearing aid. Besides, in-the-canal placement ensures good skin contact

and natural shielding from ambient light –both imperative to achieve a robust sensing

performance.

However, on the other hand, designing an ear-tip with an integrated PPG sensor is ex-

ceptionally challenging. Firstly, the ear-tip has to guarantee good sealing for robust data

acquisition. Secondly, the ear-tip must have a stable and steady fit across users to en-

sure minimal sensor displacement, minimizing motion artifacts. Finally, the ear-tip must

be comfortable for prolonged use. However, this well sealed, stable, and comfortable fit

must not come at the expense of additional occlusion effects, beyond what is already mit-

igated today with state-of-the-art audio engineering, e.g., pass-through audio. Besides,

given every single human ear is different in size and shape, it is incredibly hard to design a

cost-effective and universal ear-tip with integrated PPG using existing materials, e.g., rub-

ber, silicone, or foam. Consequently, we call attention to material engineers and industrial

designers to carefully consider the facets mentioned above in developing next-generation

sensory ear-tips.

6.6.2 Signal processing pipeline

The accuracy of wrist-worn PPG under full-body motion artifacts has been extensively

studied in recent literature, with results reporting up to 30% of error rate in extracting

vital signs [173]. Even though the head is the stationary part of the human body, we still

noticed a similar error margin with in-ear PPG. This signal cross-over effect is caused by

the fact that a PPG sensor mistakenly detects the cardiovascular cycle in the presence of

a periodic signal caused by repetitive motion, for instance, walking or running. Contem-

porary mitigation strategies consider wavelet transform, independent component analysis

(ICA), template matching, and adaptive filtering techniques. While these techniques are

certainly useful, we advocate for adaptive and context-aware signal processing strategies.

In particular, we suggest using motion sensing to remove motion artifacts. Given that

the PPG signal is correlated with motion intensity and that an inertial measurement unit

(IMU) is a common feature in modern earable, we can leverage motion-awareness to trigger
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PPG operations, thus avoiding corrupted PPG segments while saving energy. However,

as of today, there is very limited availability of datasets which spatially couple PPG and

IMU.

We acknowledge that the relatively small size of the study population and the preliminary

investigation of SpO2 ranges can be regarded as limitations of this preliminary study.

Nonetheless, having characterized in-ear PPG, under various full-body motion conditions

across a range of different positions and gave us the intuitions we needed to proceed with the

development of a novel sensory earable platform. Additionally, our investigation led us to

the realization that the literature completely lacks an analysis of how more subtle motion

artifacts impact PPG. Notably, this might be a game-stopper for in-ear PPG sensing.

Hence, leveraging our custom-made earable (featuring in-the-canal PPG), we collect a

one-of-its-kind dataset to study how head movements and facial expressions affect the

quality of in-ear PPG. In the remainder of this chapter we first describe the panorama of

available in-ear PPG datasets, we then present our PPG-equipped sensory earable and the

rigorous methodology we followed to collect EarSet: a multi-modal dataset for studying

the impact of head and facial movements on in-ear PPG signals.

6.7 Existing PPG motion artifacts datasets

In the first half of this chapter, we have seen the importance of studying the effect of

motion artifacts on the PPG signal.

To this end, researchers often rely on data collected under controlled conditions which

induce motion artifacts on the PPG signals. Table 6.7.1 summarizes few of the well-known

and publicly available datasets for PPG sensor data collected at different locations.

Wrist PPG motion artifacts: Wrist is the most popular location for studying PPG

signals owing to the popularity of wrist-worn fitness trackers among the consumers. IEEE

PPG dataset [188] was one of the first publicly available PPG datasets that studies how

motion artifacts induce noise in the resulting wrist PPG signals and how different sig-

nal processing techniques can help in removing motion artifacts from full-body motions.

PPGDaLiA [186], [185] and [187] are datasets that aim to improve activity monitoring

by identifying daily activities like walking, running, sitting, cycling etc. from wrist PPG

signals. [189] released a PPG dataset consisting of wrist PPG signals collected during

walking and running to help promote motion artifact removal techniques for PPG signals.

134



Table 6.7.1: PPG datasets publicly available for motion artifact studies

Datasets PPG sensor location Motion being studied Additional sensor data Number of participants

Activity monitoring
[185]

Wrist Squat exercises, stepper exercises, and resting
3-channel PPG
3-axis accelerometer

7

PPG DaLiA
[186]

Wrist Daily life activities like sitting, walking, cycling, driving, working etc.

3-channel PPG
Electrocardiogram (ECG)
Electrodermal activity (EDA)
3-axis accelerometer
Respiration rate
Body temperature

15

Effect of exercises on PPG signals
[187]

Wrist Walking, running and biking

3-channel PPG
Chest ECG
3-axis accelerometer
3-axis low noise accelerometer
3-axis gyroscope

23

Motion artifact removal in PPG signals
(IEEE signal processing cup)

[188]
Wrist Random physical exercises without labels

3-channel PPG
Chest ECG
3-axis accelerometer

12 (training dataset)
10 (test dataset)

Motion artifact cancellation
[189]

Wrist Walking and running

3-channel PPG
Chest ECG
3-axis accelerometer
3-axis gyroscope

24

WESAD (Stress detection)
[190]

Wrist and Chest Intense physical activity and mental exercises to induce stress

Wrist PPG
Wrist accelerometer
Wrist electrodermal activity (EDA)
Body temperarture
Chest ECG
Chest accelerometer
Chest EMG
Chest Respiration

17

BIDMC dataset
[191]

Finger No exercise involved
Finger PPG
Pneumography (Respiration)

53

FatigueSet
[192]

In-Ear Running on a treadmill to induce physical fatigue

In-Ear PPG
In-Ear IMU sensor
Chest ECG
Chest Respiration sensor
Wrist PPG
Wrist EDA
Wrist IMU
Body temperature sensor

12

Motion tolerant heart rate
and Blood pressure monitoring [18]

Outside ear Exercising on a bike
Ear PPG
Ear ECG
Ambulatory blood pressure monitor

14

EarSet Stereo In-ear 16 different facial and head motions

In-Ear PPG (Both Left and right)
In-Ear IMU (Both Left and right)
Chest band ECG
Chest band Respiration sensor

30

135



In addition, WESAD [190] and BIDMC [191] datasets consists of PPG signals collected

for the purpose of stress detection and respiration rate estimation respectively. It is evi-

dent that the there are sufficient data-sets publicly available to study the effect of motion

artifacts on wrist PPG signals. However, the same cannot be applicable for PPG signals

collected from the ear since earables have been explored only during recent years unlike

wrist-worn fitness trackers.

EarSet: Very few openly available datasets include PPG data from the ear [18,192]. How-

ever, there are no publicly available datasets that explore the effect of facial expressions and

head movements on earables. Recently, [18] proposed a solution for how motion artifacts

can be removed for accurate heart rate and blood pressure estimation with PPG sensors

placed on the ear lobes. However, they only study the effect of body motion artifacts on the

acquired PPG signals. Hence, there is a strong need for an open-source dataset studying

the effect of facial motions on in-ear PPG signals.

To this aim, we propose EarSet, a unique earable dataset that provides in-ear PPG signals

as well as in-ear IMU signals acquired from both the left and right ear during 16 different

facial and head movements (plus a baseline session). We firmly believe this will help to

study and gain a thorough understanding of how artifacts arising from the face, mouth,

eye, and head motions affect in-ear PPG signals. Further, this could in turn facilitate the

development of novel filtering techniques ensuring a clean in-ear PPG signal for accurate

and real-time health sensing. EarSet is the first dataset to provide in-ear PPG signals for

both left and right ear in presence of face/head motions as well as full-body motions (i.e.,

walking and running). We also provide ground-truth ECG signals and other vital signs

collected using a chest band ECG device which could be used to support the development

of vitals estimation from in-ear PPG signals.

6.8 EarSet: methodology

In this section we detail the methodology and the devices followed to collect EarSet.

6.8.1 Study population

Thirty individuals (18 males, 12 females, 20 − 49 years of age, mean age: 28.9 years,

standard deviation: 6.11 years) were recruited and voluntarily took part in the study.

Within the population of our study, none of the participants had any underlying heart or
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ST  LSM6DSRX
IMU

MAX86161 
PPG sensor

ESP32

I2C

I2C

Right  earbudLeft earbud

(a) (b) (c) (d)

Fig. 6.8.1: (a) Flexible PCB implementation of our earbud with a MAX86161 PPG sensor and a
co-located ST LSM6DSRX IMU (b) An in-ear soft earbud was realized by embedding the in-ear
flexible PCB board into a transparent silicone mould. (c) Head-worn data acquisition device
consisting of an ESP32 micro-controller collecting data from in-ear PPG and IMU sensors in the
left and right ear. (d) A participant wearing our earbud based prototype and taking part in the
data collection protocol.

respiratory condition, and were in good health at the time of the study. Before taking

part to the study, we briefed all the participants who then gave their written consent by

completing a consent-form. Every participant received a gift card as a compensation upon

completion of the study. The study received IRB approval prior commencing.

6.8.2 Data collection devices

Given the lack of existing open-source in-ear PPG platforms, and inspired by the find-

ings we reported earlier in this chapter, we designed a custom head-worn prototype (Fig-

ure 6.8.1(c)) to collect in-ear PPG signals with well-known and affordable hardware com-

ponents. The prototype consists of an ESP32 micro-controller collecting sensor data from

both the left and right ears. To facilitate PPG signal acquisition from inside the ear,

we fabricated a flexible PCB board consisting of a MAXM86161 4 PPG sensor and ST-

LSM6DSRX 5 IMU as shown in Figure 6.8.1(a). The flexible PCB board is interfaced via

the I2C protocol to the ESP32 micro-controller for data acquisition. The MAXM86161 is

a well-known 3-channel PPG sensor (green – 520−550nm, red – 660nm, infrared – 880nm)

catered for in-ear sensing applications. The IMU continuously records 3-axis accelerome-

ter and 3-axis gyroscope data to provide motion signals for in-ear motions occurring while

making a facial expression or head movements. Both sensors are sampled at a 100Hz fre-

quency. As shown in Figure 6.8.1(b), the flexible PCB containing the PPG sensor and

4https://www.maximintegrated.com/en/products/sensors/MAXM86161.html
5https://www.st.com/en/mems-and-sensors/lsm6dsrx.html
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Table 6.8.1: PPG parameters and relative sensor current draw.

Conf.
LED

Current
(mA)

Pulse
Width
(us)

Integration
Time
(us)

Current
Draw
(mA)

1 16 21.3 14.8 1.62
2 32 21.3 14.8 1.81
3 16 123.8 117.3 2.66
4 32 123.8 117.3 3.78

the IMU was coated with soft silicone to resemble a typical ear tip to provide comfort

while wearing the device, as well as remain firm within the ear during various face/head

motions. We used a transparent soft silicone gel to prevent any distortions in the acquired

PPG signals.

PPG signal quality is not only affected by sensor motion but also by the sensor configura-

tion. Typically, sensors allow to change several parameters which affect the acquired signal

and consequently the power consumed by the sensor. Given this trade-off, often, optimal

parameters for signal quality are not the most efficient in terms of power consumption.

To explore this aspect of PPG sensing, we configured our device to change the sensor

parameters every 30 seconds. This way, by collecting data for 2 minutes for each motion

session we could cycle through 4 different set of configurations (Table 6.8.1). In particular,

the MAXM86161 allows to change three parameters: LED current which determines the

brightness of the three LEDs, pulse width which is the time each LED is kept on during

a measurement and the integration time which is the period during which the photodiode

is active and sampling the reflected light6. As shown in Table 6.8.1, we have chosen 4

configurations that offer distinct power consumption profiles and should result in diverse

SNR characteristics. To best of our knowledge this is the first PPG dataset that offers

data collected with different sensor configurations.

On the other hand, to collect vital signs from a reliable source which is not affected by

motion artifacts, as we did to determine the optimal positioning for the in-ear PPG sensor,

we rely on a Zephyr Bioharness 3.07. The participants wore the portable ECG band on

their chest for the whole experiment.

6Notice that pulse width and integration time cannot be controlled individually and only 4 combinations
of the two parameters are available in the sensor.

7https://www.zephyranywhere.com/
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Table 6.8.2: Sensor data collected from each wearable device.

Sensor Units/Range Sampling
Rate

Earable prototype (one per ear)
Accelerometer g {-2:+2} 100 Hz
Gyroscope °/s {-500:+500} 100 Hz
PPG - green, infrared, and red chan-
nels

- 100 Hz

Zephyr BioHarness 3.0 chest
band
Accelerometer bits {0-4094} 100 Hz
Breathing sensor raw output bits {1:16777215} 25 Hz
Breathing rate breaths per minute

{4:70}
1 Hz

Breath-to-breath interval ms -
ECG raw waveform bits {0:4095} 250 Hz
Heart rate beats per minute

{25:240}
1 Hz

Heart rate variability ms {0:65534} 1 Hz
RR interval ms {0:32767} -
Posture degrees from verti-

cal
{-180:180}

1 Hz
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6.8.3 Data collection protocol

Since the aim of this chapter is to provide the research community with a dataset to better

understand the impact of motion artifacts on in-ear PPG, we sampled PPG data under a

number of different conditions.

After being briefed about the study, the participants wore our in-ear data collection device

on the head placing the ear tips in the left and right ear canal (Figure 6.8.1) and the

ECG device on their chest. Starting form a resting pose (participants sitting still without

any motion), we progressively asked the participants to repetitively carry out individual

movements. We consider two main classes of motions: head/face movements and full-body

movements. By looking at the inherent nature of the motions, head/face movements can

be further categorized into one-shot and continuous movements. The selection process for

the one-shot motion artifacts was informed by both anatomy principles [103] and previous

work [104, 105]. In building our dataset, we look at AUs that entail the movement of the

head, the eyes (and the adjacent muscles), and the mouth. Specifically, we selected: (1)

nod; (2) shake; and (3) tilt as head movements. The eyes movements we considered were

respectively: (4) vertical eyes movements; (5) horizontal eyes movements; (6) brow raiser;

(7) brow lowerer; (8) right eye wink; and (9) left eye wink. Finally, we investigated: (10) lip

puller; (11) chin raiser; and (12) mouth stretch as mouth movements. These are all motions

that are not normally performed continuously, and that are often performed in normal

social interactions as well as in the form of psychosomatic tics. Notably, before performing

each and every motion, the investigator demoed the gesture to the participants. Besides,

we also accounted for head/face continuous movements caused by common activities such

as (13) chewing; and (14) speaking. Notably, together with the one-shot movements, these

are sources of noise which are unique to ear-worn devices. In fact, when performing these,

the complex mesh of facial muscles moves substantially and, therefore, these activities

are likely to cause significant deformations of the tissues in and around the ear. On the

other hand, we also considered full-body activities such as (15) walking and (16) running,

which give rise to well known sources of noise [173] in the PPG signal. The list of all the

considered motion artifacts is reported in Table 6.8.3.

Ultimately, for all the conditions but the full-body movements (walking and running), we

followed the wearable device validation guideline stipulated by the Consumer Technology

Association [183] and measured PPG while seated in the upright position. During the

resting condition, we instructed the participants to breath normally without moving. The
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Table 6.8.3: List of the considered motion artifacts.

Class Muscle Group One-Shot Artifact Name
Still n/a n/a Still

Head/Face

Head
✓ Nod
✓ Shake
✓ Tilt

Eyes

✓
Vertical Eyes
Movements

✓
Horizontal Eyes
Movements

✓ Brow Raiser
✓ Brow Lowerer

✓
Right Eye
Wink

✓
Left Eye
Wink

Mouth

✓ Lip Puller
✓ Chin Raiser
✓ Mouth Stretch
× Chewing
× Speaking

Full-Body n/a
× Walking
× Running

speaking condition consisted in a conversation with the investigator, where the participant

described a recent event to the investigator. The chewing condition was assessed recording

PPG data while the participant was chewing gum. For the full-body motion conditions, the

participants were asked to walk and run at a set pace on a treadmill. We set the speed of

the treadmill at 5kph and 8kph while walking and running, respectively. For each motion

condition we recorded 2 minutes of data, automatically changing the configuration of the

PPG parameters every 30 seconds using the values described in Section ??. The length of

the sessions was carefully chosen to be long enough to yield good-quality vital signs and

yet not too tedious/harmful to the participants. Finally, we instructed the participants to

repeat the one-shot movements roughly every 5 seconds.
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6.9 Results

In this section we present the analysis we performed to explore our dataset. Specifically, the

PPG data (3 channels: green, red, infrared) recorded from the left and the right ears are

processed independently. The data are aligned and stored in Pandas Data Frames. Each

Data Frame is then re-sampled at 100Hz to make sure the sampling rate is consistent. The

start and the end of each Data Frame is trimmed to ensure they have the same length.

Notice that our exploration focuses on the 4th set of configuration parameters (LED current

32mA; pulse width 123.8µs; integration time 117.3µs) as decribed in Section 6.8.2.

6.9.1 Dataset outlook and template matching

We begin our analysis by looking qualitatively at how the different motion artifacts im-

pact the PPG signal. In Figure 6.9.1 we can appreciate at a glance how two diverse facial

movements, such as lip puller (Figure 6.9.1a) and nod (Figure 6.9.1b), have a very dif-

ferent impact on the PPG trace when compared to a full-body movement like running

(Figure 6.9.1c) – in which the signal is dominated by the running cadence rather than by

the cardiac signal. Notably, we can observe substantial differences even among the two fa-

cial movements: while the impact of the lip puller appears very localized and aligned with

the motion (as we can see from the variations along the gyroscope axes), the nod seems to

have a more prolonged impact on the DC component of PPG trace. Manually inspecting

the data we also noticed that for some combinations [participant, motion] the PPG was

not affected by artifacts. In particular, the vertical and horizontal movement of the eyes

did not cause any artifact on the PPG signals. This is due to the limited involvement of

the facial muscles, and especially of those near the ears, during eye movements. Similarly,

for the left and right eye wink motions, some participants could not perform the motion

with both eyes or not at all. In other cases, the wink was subtle and hence did not result

in any artifact in the corresponding PPG signal. For the rest of the analysis we filtered out

these [participant, motion] combinations for which the PPG was not affected by motion.

To deepen our investigation, and gain a better visual understanding of how the various

motion artifacts affect the morphology of the PPG pulses, we relied on a template matching

analysis [80]. In doing so, we build a template pulse by taking the average of all the pulses

of each user when still. Then plot the template pulse in red and use it as a reference against

all the PPG pulses present in each motion session (plotted in gray). Figure 6.9.2 depicts

the template matching analysis for shake (Figure 6.9.2a), brow raiser (Figure 6.9.2b), lip
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(a) Lip Puller. (b) Nod. (c) Running.

Fig. 6.9.1: Samples of green PPG and IMU (gyroscope) data under different motion artifacts.
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(a) Shake.
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(b) Brow Raiser.
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(c) Lip Puller.
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(d) Mouth Stretch.

Fig. 6.9.2: Template matching of PPG pulses from user 12 for four different motions.

puller (Figure 6.9.2c), and mouth stretch (Figure 6.9.2d). The plots show how each of

the considered movement affects the morphology of the PPG pulse differently, resulting

in subtle, yet notable artifacts. As we have seen in Section 2.3.3, many applications rely

on morphological features computed on the PPG signals. Hence, such artifacts in the

morphology of each pulse could lead to erroneous vitals estimation. We believe that our

dataset represents a good resource for a more in depth study and characterization of this

issue for an emerging class of devices – earables equipped with heath-related sensors.

6.9.2 Handcrafted metrics extraction and statistical analysis

We sought to proceed our exploration of the dataset with the extraction of the set of

handcrafted features, as described in Section 2.3.3. Notably, for all of the metrics, but

Perfusion Index, we apply a 4th order Butterworth band-pass filter (low-cut = 0.4Hz, high-

cut = 4Hz) to smooth the PPG signal. To fairly compare the metrics values of different

artifacts, we normalized their values (min-max normalization). We chose to normalize

the metrics values of all the artifacts of each user. Specifically, normalizing every user

independently allows us to retain the subject-dependent characteristics of the motion and
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of the blood vessels morphology of the user.

Figure 6.9.3 reports the empirical cumulative distribution function (ECDF) of how head/face

and full-body movements impact the Peak-to-Peak Magnitude Variance (Figure 6.9.3a),

Peak-Time Interval Variance (Figure 6.9.3b), Perfusion Index (Figure 6.9.3c), and the

Spectral Kurtosis (Figure 6.9.3d) of the in-ear PPG signal. Similar patterns can be ob-

served for other metrics. For this analysis, we consider the (normalized) metrics computed

for both the left and the right PPG for all the users. We can observe how the metrics

values for still are mostly consistent across the entire population. On the other hand,

although they show a different behavior, both head/face and full-body movements appear

to have more widespread distributions. This is especially true for full-body movements.

Notably, the findings of the spectral kurtosis analysis (Figure 6.9.3d) are also aligned to

the literature [80], showing higher values for clean PPG signal. This can be explained by

the presence of sharper peaks in the Fourier spectrum of clean (still in our case) PPG.

These results suggest that different motion categories (i.e., head/face and full-body) create

diverse artifacts in the PPG signal, and therefore it might be necessary to adopt dedicated

approaches when applying signal filtering techniques. Our dataset represents a good source

of data to start exploring this avenue.

Finally, to further discern whether there exist differences between the individual motions,

we looked at the Mean Absolute Error (MAE) between all the metrics extracted form

the PPG data under the various motion artifact and the still baseline. As we can see

from Figure 6.9.4, for the majority of the PPG metrics, there are statistically significant

differences between the still baseline and most of the artifacts. As expected, more intense

head/face movements, like tilt and mouth stretch, present greater differences in the metrics

computed from the still baseline. This is even clearer when looking at full-body movements.

Besides, a comparison of data from the left (Figure 6.9.4b) and right (Figure 6.9.4a) ear

hints to differences between the PPG collected from these two locations. Multi-site PPG

signals from the ears have been largely understudied so far. We believe our dataset is the

perfect starting point to further explore this area.

6.9.3 DNN-based motion artifacts classification

An important task when working with physiological sensor data involves detecting segments

that are corrupted by noise with the intent of trying to clean them with filtering techniques

or discard them completely to avoid errors during the bio-markers estimation. In this
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(a) Peak-to-Peak Mag.
Var.

(b) Peak-Time Interval
Var.

(c) Perfusion Index. (d) Spectral Kurtosis.

Fig. 6.9.3: Empirical Cumulative Distribution Function (ECDF) of how the various classes of
motion artifacts impact some of the handcrafted metrics extracted from PPG.

(a) Left ear. (b) Right ear.

Fig. 6.9.4: Heatmaps of how the various motion artifacts impact the handcrafted metrics ex-
tracted from the green PPG signal (Figure 6.9.4a left ear; Figure 6.9.4b right ear). The values
reported in the heatmaps are the Mean Absolute Error (MAE) with respect to the still baseline.
The heatmaps’ cells are annotated with a T whenever there is statistically significant difference
between the still baseline signal and the MA-corrupted one (p < 0.05).
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Table 6.9.1: PPG classification model architecture.

Type / Stride / Padding # Filter Filter Size

Conv1D / S1 / Same 16 10

Conv1D / S2 / Valid 16 10

Conv1D / S1 / Same 32 10

Conv1D / S2 / Valid 32 10

Conv1D / S1 / Same 64 10

Conv1D / S2 / Valid 64 10

Global Avg. Pool n/a n/a

FC / S1 128 n/a

Softmax / S1 3 n/a

section we explore how our dataset can support the development of an automatic pipeline

to detect PPG segments affected by motion artifacts and classify the nature of the artifact.

For this purpose we rely on a Deep Neural Network (DNN) approach since it has been

often used for this task in recent work [193, 194]. As preliminary evaluation we aim to

distinguish clean PPG segments (i.e., when the participant is not moving) from segments

affected by head/face or full-body artifacts. We have seen in Section 6.9.2 that these

three categories (i.e., still, head/face and full-body) present distinct characteristics across

various PPG metrics, hence we want to explore if these can be learned automatically from

the PPG data. The classification of these three macro categories represents the first step

towards a more complex pipeline used to detect more motion artifacts types, potentially

using a hierarchical detection pipeline where the classification is refined at each step. We

believe our dataset can support this task and we leave it as future work.

Model: Inspired from recent research on PPG classification [193, 194], we designed a

model with 6 1-D convolutional layers with Rectified Linear Unit (ReLU) activation for

feature extraction, and a single fully connected layer as final classifier. At alternating

layers we use a stride of 2 to reduce the dimension of intermediate feature maps without

using pooling layers. Table 6.9.1 reports the details of the model. The total number of

trainable parameters is 88, 451 making it a small model that could potentially be deployed

on wearable devices running on batteries.

Data pre-processing: For this evaluation we use only the data from the green wavelength

and, similarly to our previous analysis, we focus on the 4th set of configuration parameters

and filter the signal with a 4th order Butterworth band-pass filter with cutoff frequencies

of [0.4, 4]Hz. We then split the data with 7 seconds windows with 70% overlap (i.e., 5
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seconds), this balances the need for having sufficient data in each window to correctly model

the artifact with the granularity of each classification. Each window is then associated with

the corresponding class from the three we aim to classify, i.e., still, head/face and full-body.

Similarly with our previous analysis (Section 6.9.2) we aggregate all the motions related

to the face and head into a single class, while walking and running are considered as a

separate class (full-body).

Evaluation strategy: To train and evaluate the model we adopted a 5-fold cross-

validation approach. We created 5 folds such data for each fold the training and test-

ing data would be taken from different participants, hence creating independent training

and testing sets. However, the resulting train set is skewed towards more samples for the

head/face class given that more artifacts are aggregated into a single class. For this reason

we first down-sampled the majority class and then up-sampled the minority classes with

the SMOTE techniques [195], which is a popular approach for data augmentation, in order

to balance the training set. The testing set remained imbalanced, instead.

The model has been trained and tested on each fold using the categorical cross entropy loss

function and RMSprop optimizer. Early stopping has been put in place to avoid overfitting

of the model.

Results: The model performs reasonably well with an average accuracy across the 5 folds

of 87% (σ = 3%) and average F1 score of 79% (σ = 15%), demonstrating that our dataset

can well support automatic recognition tasks on PPG data.

Figure 6.9.5 shows the cumulative confusion matrix of the test sets across the 5 folds.

We notice that the performance of the model is slightly lower for the still class. This

could be due to the fact that the still class is always the minority class and, even despite

data augmentation to re-balance the training set, there might be not sufficient data for an

accurate modeling of that class. This is our preliminary effort in this direction to assess

the quality of the dataset in supporting such tasks. We believe that a more sophisticated

data augmentation approach could improve the classification accuracy of the still class and

the overall accuracy of the model. We leave this exploration to future work.

6.10 Conclusion

In this chapter, we presented EarSet, a multi-modal (PPG, IMU, ECG) dataset for ex-

ploring and understanding the impact of head/facial and full-body movements on in-ear
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Fig. 6.9.5: Cumulative confusion matrix of the test sets across the 5 folds normalized by the
total number of instances in each class.

PPG. We run an analysis based on the data we collected from 30 participants, across

17 2-minutes-long sessions. Our results suggest different head/facial movements cause di-

verse, often hard-to-predict, artifacts. We investigate eight handcrafted PPG features to

study the differences between the still baseline and the various artifacts. Our exploration

confirms our qualitative observations. Finally, we research whether our dataset could sup-

port the development of automatic pipelines to detect motion artifacts in PPG traces. We

show it is possible to distinguish reasonably well still, head/face, and full-body movements,

demonstrating that our dataset can enable researchers to investigate automatic recognition

tasks. Ultimately, we believe there is room to develop multi-stage pipelines to detect and

classify motion types, perhaps leveraging a combination of the in-ear PPG as well as the

IMU data. Given the availability of several bio-markers from a reliable chest band, our

dataset also enables the investigation of vitals estimation from the ears, both in static and

in noisy conditions. This is a great opportunity given the rapidly growing interest in health

sensing from the ears and head.
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‘Even the smallest person can change

the course of the future.’

Galadriel

Chapter 7

Final Remarks

In this dissertation, we presented six original pieces of work investigating foundational

challenges in mobile personal-scale sensing: understanding which sensing modalities can be

integrated in earables without altering their functioning, whilst providing high-quality data

to facilitate personal-scale applications; developing dedicated pipelines that can guarantee

low latency (often quasi-real-time) in processing the collected data while, more impor-

tantly, ensuring minimal energy waste. Our premise was that emerging forms of wearables

– such as earables – had the potential to collect high quality data from the human head,

thus providing a different vantage point to perform several tasks. Ultimately, this disser-

tation demonstrated how earables can be used for personal-scale sensing: showing their

great potential in monitoring fitness and vital signs (through photoplethysmography), rec-

ognizing human activities, providing context-aware information, and augmenting the user

experience and awareness in general (e.g., by mean of inertial measurement units and

in-ear microphones). In this concluding chapter, we briefly summarize our key contribu-

tions, providing an answer to the research questions we posed at the beginning of this

manuscript (Chapter 1). Finally, we reflect on the shortcomings of the works presented in

this dissertation, and suggest potential future research directions.

7.1 Summary of contributions

This dissertation aimed to answer three fundamental research questions in mobile personal-

scale sensing.
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7.1.1 Head motion tracking and addition of a calibrated

magnetometer

In Chapter 3, we investigated earables for inertial sensing, showing how earables can be

used for accurate head motion tracking. Our inertial head motion tracking system combines

multiple streams of data (i.e., linear acceleration and angular velocity) coming from both

earbuds (left and right), achieving results precise up to a few degrees, also under realistic

situations (e.g., with the subjects speaking or chewing).

However, without continuously re-calibrating the accelerometer and gyroscope with the aid

of a magnetometer, it is extremely hard to have absolute orientations and accurate tracking

of sustained motions over time. Because of that, we sought to understand the factors that

hinder the presence of a magnetometer in commercially available earables. We found that

despite RF communications (i.e., Bluetooth) yielding unpredictable, variable interference

on the magnetometer readings, having an appropriate calibration can be leveraged to

remove the induced interference. A comprehensive evaluation of our proposed calibration

routine shows how our user-transparent approach performs well under different conditions,

achieving convincing results with errors below 3° for the majority of the experiments. By

doing so, we proved how earables can be successfully augmented with a magnetometer, thus

unlocking a number of personal-scale sensing applications, e.g., navigation and augmenting

the user experience of their surroundings.

7.1.2 In-ear microphone-based general motion sensing and user

identification

In Chapter 4 and Chapter 5, we explored the potential of in-ear facing microphones for

personal-scale human motion sensing. We showed how in-ear microphones can be used

instead of inertial sensors in sensing light motions when the latter fail. Leveraging the

occlusion effect, a natural phenomenon that boosts the low-frequency components of bone-

conducted sounds, we proposed OEsense, an acoustic-based in-ear system for general hu-

man motion sensing, and EarGate, an acoustic-gait-based user identification system.

OESense achieves promising results across three different personal-scale applications: step

counting, activity recognition, and hand-to-face gesture interaction. Specifically, thanks to

the natural boost operated by the occlusion effect, OESense reaches 99.3% step counting

recall, 98.3% recognition recall for 5 activities, and 97.0% recall for five tapping gestures
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on human face, respectively. The addition of such functionalities is compatible with the

earbuds’ fundamental functionalities (e.g., music playback and phone calls). More impor-

tantly, in terms of energy, OESense has a minimal overhead which is more than acceptable

denoting encouraging potential to be integrated into future earbuds.

On the other hand, with EarGate, we leveraged the good performance achieved by OESense

at step counting to build a system for gait-based identification. In particular, EarGate aims

at extracting acoustic gait from the sounds induced by walking and propagated through

the musculoskeletal system in the body. We showed how EarGate can achieve up to

97.26% Balanced Accuracy (BAC) with very low False Acceptance Rate (FAR) and False

Rejection Rate (FRR) of 3.23% and 2.25%, respectively. As OESense, also EarGate yield a

minimal overhead, both in terms of power consumption as well as latency. Ultimately, with

OESense and EarGate, we demonstrated how earables equipped with in-ear microphones

can be leveraged to unlock a number of personal-scale applications ranging from activity

recognition to user identification and authentication.

7.1.3 In-ear photoplethysmography: best location for in-ear PPG

sensing and robustness to motion artifacts

To answer the third of our research questions, in Chapter 6, we studied in-ear photoplethys-

mography (PPG) aiming to uncover a new domain of personal-scale sensing opportunities

to track cardiac healthcare and fitness with earables. We reported an in-depth characteri-

zation of the best placement to enable accurate vital signs measurements from in-ear PPG,

specifically looking at heart rate (HR), heart rate variability (HRV), blood oxygen satu-

ration (SpO2), and respiration rate (RR). We found that embedding a PPG sensor in the

ear-tip of an earable yields the lowest inter-subject variability. Unfortunately, our results

also suggests the absolute error increases substantially up to 29.84%, 24.09%, 3.28%, and

30.80% respectively for HR, HRV, SpO2, and RR, during motion activities.

Having identified the in-the-canal (ITC) placement as the best location for in-ear PPG

sensing, we designed a novel ear tip featuring a 3-channel PPG coupled with a 6-axis

motion sensor (IMU) co-located on the same tip. This enabled us to study the motion

signatures of a number of different motion artifacts, ranging from both full body motions

to more subtle facial expressions. In particular, understanding the latter – which are

unique to earables – is critical to the success of earables as the next wearable platform

for accurate and reliable cardiovascular health monitoring. To this end, we collected a
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unique dataset with 30 people and 18 different motion artifacts which will greatly support

research efforts towards better characterizing in-ear vital signs sensing, making it more

accurate and robust. By doing so, we paved the way to unlocking the full potential of the

next-generation PPG-equipped earables for personal-scale sensing.

7.2 Limitations and future directions

The work we presented has several potential implications impacting various communities

and stakeholders. For instance, researchers could use the methods, ideas, and datasets

collected as a starting point for their own studies, perhaps applying them to new forms of

wearable devices. At the same time, engineers could embed the algorithmic pipelines and

the models presented in this dissertation into the new generation of products, targeting

smart earbuds devices which understand the context at the user-scale, predicting mental

health issues, fitness, and metabolic health. Finally, medical practitioners could benefit

from the outputs of these new devices to gain a continuous snapshot of their patients’

health away from hospital settings. In the reminder of this section, we will detail the

major shortcomings of the works presented in this dissertation, discussing the possible

room for improvements and the new future directions this research could foster.

7.2.1 Dataset size

One of the biggest limitations of the works described in this dissertation is the modest size

of the datasets we collected. Although the results have been statistically validated, small

datasets may yield less general conclusions. Further, a small population study inevitably

affects the depth of the analysis that can be carried out on the dataset itself. However,

collecting big datasets is a remarkable challenge stemming from multiple factors. First and

foremost, the lack of commercially available earable research platforms, together with the

lack of application programming interfaces (APIs) to access raw data, forced us to pro-

totype our own custom devices most of the time. However, the intrinsic fragility of early

stage research-level prototypes introduces additional inevitable hurdles, further complicat-

ing the task. As a matter of fact, research prototypes often break, yielding poor quality

data, and often forcing the participants to redo part of the data collection. Ultimately,

this also affects the researchers, who have to look for hacks out of their comfort zone to fix

their prototypes. Secondly, because of their very time consuming nature, it is very hard

to recruit participants to take part in data collection exercises. In addition to that, most
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of the research presented in this dissertation has been done during the COVID-19 pan-

demic adding even more complexity with recruiting participants and performing intricate

data collection sessions while maintaining COVID-19 protocols. While dataset like EarSet

(Chapter 6) opens up novel opportunities in the mobile sensing and earable computing

space, when collecting data there are often confounding factors that are either hard to

take into account, or that are left behind for a number of reasons (including time con-

straints). For example, skin tone is an additional factor that could affect the data quality

of PPG [173]. EarSet offers diversity in skin tones, however without uniform distribution

among the six categories of pigmentation [196].

Future work should consider expanding the datasets presented in this dissertation in order

to include additional participants to uniformly cover different ethnic groups, genders, and

ages. Moreover, despite it being an even greater challenge in itself, it would be valuable

to collect data from people suffering from heterogeneous underlying health conditions, to

increase the diversity of the data. In fact, all the data collected for this dissertation belong

to participants who were healthy at the time of the data collection and had no known

underlying conditions.

7.2.2 Machine learning algorithms

In this dissertation we have often relied on machine learning (ML) models to fulfill complex

tasks. Examples of these are Logistic Regression (LR), Support Vector Machine (SVM),

K Nearest Neighbours (KNN), Decision Tree (DT), and Random Forest (RF) in OESense

(Chapter 4), Support Vector Machine in EarGate (Chapter 5). The choice to leverage basic

ML models like the ones listed above was dictated mostly by the limited processing capabil-

ities available on the prototype we built. At the same time, another key reason we opted

for traditional machine approaches over more advanced Deep Learning (DL) techniques

lies in the limited size of the datasets. However, relying on basic ML models such those

mentioned above, comes with a number of shortcomings. For example, traditional ML

approaches usually yield lower accuracy (and have worse generalization abilities). Addi-

tionally, unlike deep learning, traditional ML models, like SVM, do require manual feature

extraction and engineering. Ultimately, as we have seen for both OESense and EarGate,

in Chapter 4 and Chapter 5 respectively, the feature extraction phase is indeed the most

power hungry and time consuming step of the pipeline. In addition to the basic models

we discussed above, in this dissertation we also make use of transfer learning [162, 197] to
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boost the performance of EarGate Chapter 5 and of a shallow deep neural network to run

preliminary analysis on EarSet Chapter 6. However, once again, the limited amount of

data available for training hindered the performances of these approaches.

Possible future research should aim to explore data augmentation and more advanced,

low-power deep learning techniques to try further boosting the performances whilst, for

example, waiving the time spent and the power used in extracting features. Specifically

to EarGate, for instance, an auto-encoder [165] could be trained on all the users’ data to

obtain a more general model. By working in an unsupervised manner, the auto-encoder

could learn representations of the data without the need for labels. The following stage

would consist of automatically extracting a pool of features from the auto-encoder. Finally,

such features could be used to train personalized models, that would then learn even better

representations of each user. This could be done, for example, by running a k-neighbor

search on the auto-encoder space, making sure user A is the closest neighbor of themselves,

e.g., regardless the footwear. Alternatively, another interesting research direction would be

exploring teacher-student architectures [198,199] to distill complex models into constrained

devices as earables.

7.2.3 New modalities and forms

Ultimately, in this dissertation we have discussed in-depth three different modalities: iner-

tial sensors and magnetometers; microphones; photoplethysmography sensors. While these

unleash a wealth of fascinating opportunities, opening the door to numerous personal-scale

applications, there are many more modalities whose in-ear potential is well worth investi-

gating more. Examples include, but are not restricted to, in-ear EEG and EOG electrodes,

temperature sensors, as well as infrared sensors (e.g., for posture monitoring).

Besides exploring new modalities, the success of earables as sensing and computing de-

vices suggest that new forms of wearable devices should also be taken into account. To

this end, future research could transfer the methods described in, and the lessons learned

through, this dissertation on to different forms of wearables, such as smart-rings, smart

patches/plasters, 3D-printed smart-tattoos, etc.. Finally, this dissertation did not research

in-depth multi-devices collaboration paradigms, e.g., to maximize battery life and accu-

racy. Future research efforts should consider multi-modal multi-device collaboration as a

potential research avenue to boost the capabilities of earables as a personal-scale sensing

platform.
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