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Summary

Space plays an important role in social networks, with pairs of geographically close in-

dividuals being more likely to have a connection than those far apart. However, lack of

available data has meant that larger social groups have remained less well-understood.

The availability of information about users’ fine-grained location from increasingly

geographically-aware online social services, and from the use of advanced sensing

technology, now facilitates the investigation of the role of space for groups in social

networks at various scales. The thesis of this dissertation is that the relationship be-

tween physical space and social groups at different scales can be exploited to create

or improve technological social applications. I begin by showing that in some online

social networks, communities still tend to be geographically close despite the ease of

forming long-distance online connections. In others, while geography may play a less

key role, there are still communities of friends in the online network who visit the

same real-world places. I demonstrate how such place-based groups could be useful

to location-based online social networks for improving friend recommendation. I next

study groups at the scale of a city and show that there is clustering around places in the

social network, and that some places around the city are far more likely to host meet-

ings between friends than others. I compare individual and group mobility as observed

in the datasets and find differences between the places people visit on their own and

with their friends, which can be applied to group venue recommendation in location-

based online social networks. I finally examine the role of space for groups at the scale

of a single building by studying location and face-to-face interaction traces of people

in workplace buildings, collected using ubiquitous sensing technology. I compare the

recorded interactions within and between groups of employees in two different build-

ings, and assess the impact of space on intra- and inter-group communication. These

studies demonstrate that spatial factors may be related to the interactions of groups

of employees in workplaces, but furthermore that the automatic sensing methods used

could be extended to provide applications for monitoring and maintaining beneficial

levels of communication within and between workplace groups in the future.
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Chapter 1

Introduction

Geographic distance and physical space have traditionally played an important role in

human social groups within countries, within cities, and at the level of single buildings

such as homes and workplaces. For decades sociologists have observed that spatial

proximity greatly increases the probability that two individuals will be friends [Ste41].

The advent of the Internet prompted speculation that distance could cease to influ-

ence social relationships so strongly, as people became able to communicate with

greater ease with others from all around the world [Cai01]. However, this has not

been the case and individuals continue to communicate mostly with others located

physically close to them, whether this communication is face-to-face, by telephone,

or by e-mail [MWC10]. The enormous popularity of online social networking ser-

vices in recent years has provided another means of online communication, and thus

another opportunity for geographically remote people to connect with one another.

Nevertheless, analyses of these services have shown that the probability of a connec-

tion in many online social networks also decreases with increasing geographic sep-

aration [BSM10, KKNG12, LNNK+05, SMML10]. Although strangers with shared

interests may form online friendships despite having never met, people currently tend

to use online social networks to keep in contact with people they know in the offline

world, with whom they meet in person [GWT11]. At a much smaller scale, physical

proximity has also been shown to play an important role in who communicates with

whom within buildings such as offices, university departments, and hospitals, so that

the spatial layout of working environments is important to facilitate effective contact

and communication between their occupants [SBL+09, AH06].
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Closely connected groups of friends, or communities, in online social networks

have attracted much research interest and been the subject of some study [BHKL06,

KNT10, MMG+07]. This is partly due to such groups having many potential appli-

cations in technological services and systems, such as obtaining coarse-grained visual

representations of large networks, sorting personal online contacts into manageable

groups, finding partitions to speed up system performance, and providing recommen-

dations [LVM+12, PKVS11, PES+10]. Very recently, interest has turned to the spatial

properties of social groups. For example, Onnela et al. [OAG+11] analysed the ge-

ographic properties of communities in a mobile phone communication network, and

found that small groups tend to be spatially tight, with dispersion increasing as groups

become larger. Expert et al. [EEBL11] noted how spatial proximity can foster social

interactions, and presented a technique specifically for extracting space-independent

communities from networks, by accounting for this effect during community detec-

tion. Such research into the spatial properties of groups has only now become widely

possible on a large scale, due to a previous general lack of access to suitable data con-

cerning people’s physical whereabouts as well as their social connections. For this

reason, little has been known about the role of space in social groups, and whether

this has been affected by the introduction of new social networking technologies, or,

as in the case of single connections between just two friends, has remained largely

unchanged.

Mobile Internet access is growing rapidly, and combined with the all-pervasive

‘socialisation’ of online services, location is being widely incorporated into many on-

line social networks. People use mobile phone applications to ‘check in’ (indicate

their physical whereabouts and share this information with their online friends), as

in Foursquare and Facebook [Fac12, The12]. Online content is increasingly tagged

with an associated geographic location, from tweets in Twitter, to photographs in the

image-sharing services Flickr and Instagram [Fli12, Ins12, Twi09]. The available data

about the geography of these networks could be used fruitfully in applications such as

providing personalised recommendations, improving mobile search results, or in tar-

geted advertising [CML11, RCE08, dLM13]. Given the wide variety of technological

uses of groups in online social networks, it seems promising that these groups should

also be useful in conjunction with location data, in order to create and improve social

technological applications.
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There is also benefit to be gained from studying the interactions of groups at a

smaller scale than the resolution that is provided by such online location data, that is,

studying the behaviour of groups of people within single buildings, such as workplaces.

For example, in many knowledge-based work environments, where creativity and in-

novation are key, it is intuitive that interactions between members of different groups or

teams, with complementary expertise or skill sets, can be highly beneficial as a source

of fresh perspectives, information, and ideas. Conversations between individuals who

are not necessarily part of the same group have long been judged to be essential for

team coordination, cohesiveness and productivity [Bur04, ITM96, JM00, WFDJ94].

One factor that could clearly affect the ease of such interactions is the physical spaces

of the workplace itself; for example, high-traffic areas such as coffee machines and

photocopiers may be particularly likely places for inter-group meetings [ITM96]. In

general, if spaces encourage the mixing and meeting of a diverse range of people,

meetings between individuals from different teams or social groups will occur more

readily, which could be crucial; indeed, face-to-face communication has been shown

to be more important than electronic means such as email or SMS [Pen12, SS12].

The study of the relationship between social groups and space at the building scale

has also been hindered by difficulty in acquiring suitable data, due in this case to prob-

lems observing and recording people’s behaviour accurately and reliably, and recent

technological developments have also helped to make it possible to overcome these

challenges, in this case, improvements in ubiquitous sensing technology. Studies of

workplace communication have traditionally used pen-and-paper methods from the

social sciences, with data being gathered through direct manual observations and par-

ticipant surveys. These approaches have various disadvantages and limitations: the

presence of an observer may cause people to reflect upon and change their natural

behaviour [Why43], and surveys can suffer from participants giving answers they

feel are socially desirable, or misremembering [BSBS78, vdM08]. Recently, devel-

opments in ubiquitous sensing technology have produced devices such as wearable

badges and sensors, enabling social interaction patterns to be studied in a less obtrusive

way [OOWK+09]. There is now the means to conduct experiments using technology

to monitor the interactions of groups in buildings such as workplaces, using sensors to

detect both contact between employees and the spaces in the workplace where these

contacts take place. Beyond such analysis, these advances in ubiquitous sensing also
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provide scope for new applications to improve workplace communication: one can

imagine making sensed data available to employees and their managers in order to al-

low them to assess and optimise their own interactions, as well as providing insight

into which spaces in the building promote beneficial inter-group meetings.

1.1 Thesis and research contributions

The thesis explored in this dissertation is that the relationship between physical space

and social groups at different scales can be exploited to create or improve technologi-

cal social applications. In order to examine this thesis, it is necessary to analyse the use

of space by groups at different scales, and to consider how this might be used by such

technological applications in each case. My research makes two main contributions:

1. To examine and model the use of geographical space in social groups at differ-

ent scales, through analysis of the newly available abundance of data concern-

ing people’s social connections alongside their physical whereabouts: online

location-based social networks (LBSNs) covering global and intra-city scales,

and interaction traces collected using modern ubiquitous sensing technology at

the scale of single buildings, and

2. To show how the use of space by groups can be used in social technological

applications, namely, friend recommendation in online social networks, group

venue recommendation in location-based networks, and the potential improve-

ment of workplace communication between employees through the sensing and

presentation of face-to-face interactions.

More specifically, the rest of this dissertation is structured as follows. In Chapter
2, I outline the existing work in this area and describe how my research relates to and

builds upon this.

In Chapter 3, I begin by analysing social groups at a potentially global scale, as

made possible by online social networks allowing online connections to be established

with ease between geographically remote individuals. I define measures for quanti-

fying the extent to which members of an online group visit the same places in the

physical world, and show that in some online social networks, groups are very close

geographically, but in others space plays a less important role. I then outline why, in
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these cases, it may be desirable to uncover location-based groups that do exist in the

network, but which are difficult to find using standard community detection techniques,

and present a method for performing this task. I finally show how these location-based

groups could aid the application of friend recommendation commonly seen in online

social networks.

In Chapter 4, I consider groups at the scale of single cities, and analyse the kinds

of places in the city that friends have in common. I show that city-scale social networks

show some clustering of social ties around places, and I examine the kinds of places

where people tend to meet with their friends. I find that the different kinds of places in

the city may be important for the structure of the city-level social network, including

the presence of clustering and communities. I then examine how knowledge of the

different kinds of places where people tend to meet with groups of their friends, as

opposed to the places where people go by themselves, may be exploited to improve an

important application in location-based online social networks, namely that of venue

recommendation.

In Chapter 5, I study groups at the small scale of an individual building. I analyse

the social networks and face-to-face interactions of groups of people in a workplace,

and examine the impact of the building space on these interactions, by comparing

the behaviour of the same group of people when they were working in two different

buildings. I find that different kinds of spaces could be important for different kinds

of communication within and between groups. I discuss how these results could be

used in conjunction with ongoing improvements in ubiquitous sensing technology to

help managers monitor the ‘communication health’ of their organisations, and to help

employees to manage their interactions and potentially enhance innovation and pro-

ductivity.

In Chapter 6, I review the contributions of my research and draw conclusions, as

well as outlining how future research may build on the work I have described in this

dissertation.

1.2 List of publications

Some of the research related to this thesis has been published in various peer-reviewed

journals and conferences. These publications are as follows:
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Chapter 3:
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(2013).
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Chapter 2

Related work

Social groups have been studied for a long time in the social sciences [BMBL09], but

it has traditionally been difficult to conduct large-scale studies of the geography of

communities in social networks, due to the cost and effort involved in obtaining suit-

able data concerning both the social connections of individuals and their geographic

locations. While it has recently become feasible, largely thanks to mobile phone

data [OAG+11], the prolonged existence of this constraint has limited the possibility

of studies of the spatial properties of social groups and, therefore, of potential tech-

nological applications of these groups and their geography. The relationship between

the physical space provided by a single building and the groups that occupy that space

has also been a subject of research interest, largely in the field of architecture [SP09].

However, these studies have also been affected by problems with data acquisition, in

this case caused by the high cost and inaccuracies involved in reliance on human ob-

servers to record interactions between people and the locations of those interactions.

Recently, advances in ubiquitous sensing technology have begun to make it possible

to overcome these difficulties [OOWK+09], simultaneously creating the potential to

use these sensing devices as the basis on which to build applications based around

measuring and improving group interactions in buildings such as workplaces.
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2.1 Social groups at the inter-city scale

2.1.1 Analysis

2.1.1.1 Telecoms data

Most of the previous large-scale studies of the geography of social groups have in-

volved social networks potentially at the inter-city scale; that is, social ties may con-

nect individuals based in different cities. This is unsurprising given that the datasets

that lend themselves most easily to this kind of analysis are arguably those from tele-

coms operators, namely, Call Detail Records (CDRs) from mobile phone networks. A

CDR contains, amongst other information, the mobile telephone numbers of the people

making and receiving the call, and the identities of the cell towers involved in connect-

ing the call. Therefore such datasets satisfy the requirements of containing information

about people’s social connections, in that a social network can be inferred from who

calls whom, and about physical whereabouts, given that the datasets include the iden-

tities of the cell towers involved in making mobile phone calls and can thus be used to

estimate the geographic position of the person placing or receiving a call.

One of the earliest studies concerning specifically the geography of mobile phone

networks going beyond dyads was performed in 2008 by Lambiotte et al. [LBdK+08].

They studied a dataset of billing records from a mobile phone communication network

within Belgium, containing information about phone calls and text messages over a

period of 6 months, and, while information about where calls were placed was not

available, the authors had access to home localisation information for each user at the

zip code level, giving an effective resolution of about 5km. They analysed triangles in

the social network, the first generalisation of dyads towards larger groups, and found

that shorter links are more likely to belong to triangles than are longer links, which

indicates some relationship between clusters in the network and geographic proximity.

In more detail, the authors concluded that there are two regimes of communication:

between people who are geographically close, calls tend to be short, and there tends to

be a reasonably high level of clustering of social network ties close to these pairs in the

network topology. Conversely, some connected pairs are separated by large geographic

distances. These social ties tend to be characterised by longer calls between the indi-

viduals concerned, with lower associated clustering, and more extended triangles than
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would be expected given typical models of spatial networks.

The zip codes of mobile phone users were also used in the 2007 study by Palla et

al. [PBV07] of the time dependency of k-clique communities at large scale. The study

involved a dataset from a mobile phone network concerning the communications of 4

million users over a year, and the authors showed that communities discovered using

the network topology tended to contain people living in the same neighbourhoods.

This was used as validation of community detection rather than being an objective of

the study per se, but it does suggest that clusters in these mobile phone communication

networks tend to be geographically localised. Similarly, one of the datasets used in the

2010 study by Ahn et al. [ABL10] is from a mobile phone network. The main focus of

the study is the use of link clustering, rather than the more traditional use of nodes, to

detect communities in networks. However, in the case of the mobile phone network,

the authors find that by plotting the spatial locations of clusters at a broad resolution,

the locations of several large cities can be seen to characterise some communities.

By examining clusters at a more fine-grained resolution, larger regional communities

emerge, and at a still smaller resolution communities within cities can be seen. Again,

the study of the geography of communities was not one of the objectives of this work,

but the incidental observation about community geography suggests that there could

be value in examining the spatial properties of communities more directly.

The first large-scale study specifically concerning the geographic properties of

communities in a mobile phone network was done by Onnela et al. [OAG+11] in 2011.

The authors studied a social network comprised of 3.4 million mobile phone users in

a European country, with localisation at the cell tower level, taking as the location of

each user their most frequently recorded geographic position. By running a community

detection algorithm to group the users into communities, the authors directly explored

the relationship between the topological positions in the network and the geographic

positions of community members. The key finding of this study was that small groups

were spatially tight, but that there was a disproportionate increase in the geographic

span of a community once the group size exceeded about 30.

The common theme emerging from this initial research is that space does indeed

determine network structure to a large extent, resulting in the tendency of network

communities to be geographically close. In 2011, Expert et al. [EEBL11] proposed a

method of mitigating this fact in order to discover space-independent communities in
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spatial networks. Using a modified modularity metric to incorporate and effectively

attempt to ‘neutralise’ distance effects, the authors showed that they were able to un-

cover Flemish- and French-speaking regions in the Belgian mobile phone network,

that could not be found when correcting for distance by using the modified metric.

For example, Brussels correctly appeared in the French community (80% of people in

Brussels speak French), even though it is physically located in the Flemish-speaking

region of the country.

2.1.1.2 Online social networks

There have also been a small number of large-scale studies in the past few years of

the geography of social groups making use of location data available in online social

networks. Again, this has been made possible by the combination of widespread use

of online social networking services and of mobile Internet access, so that meaningful

location data can be included in content posted to online social networks.

One of the first such studies was that by Scellato et al. [SMML10] in 2010, where

the authors analysed datasets containing social connections and locations of users of

four online social networks with geographic data: Brightkite, Foursquare, LiveJournal,

and Twitter. They defined measures specifically for studying the geographic properties

of these networks, and while the focus of the work was not communities, one of these

measures, the geographic clustering coefficient, did go beyond dyadic characteristics

to measure the tendency of users in network triangles to be located close to one an-

other, similarly to the study of mobile phone users by Lambiotte et al. described above.

The results showed that the specifically location-based social networks, Brightkite and

Foursquare, had more geographically close triangles than the other two services, which

might be due to the focus on location as opposed to content-sharing, which might en-

courage connections between users with common interests but not necessarily close

location. A follow-up study [SNLM11] involved three of these location-based social

networks: Brightkite, Foursquare, and a third, similar service, Gowalla. Again exam-

ining the socio-spatial properties of triangles in the social networks, the authors found

that, conversely to the study by Lambiotte et al., the probability that a link in each

of these networks belongs to a triangle appears to be unaffected by the geographic

proximity of the connected users, which might show that communities in online social

networks are less influenced by geography than those in mobile phone networks.
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A 2012 study of Twitter by Takhteyev et al. [TGW12] examined the geography of

the microblogging service, investigating the influence of geographic distance, national

boundaries, frequency of air travel, and language, on the existence of social ties. The

authors observed that many ties lie within the same metropolitan region, with 39% of

ties having a geographic length of less than 100km, but that there are also a substan-

tial number of very long ties spanning more than 1000km. This confirms the results

of other research that clusters in the network comprise individuals located physically

close to one another. By investigating ties between regional clusters, the authors de-

termined that the best predictor of inter-cluster ties was the frequency of airline flights

between two regions, suggesting a close link between online social ties and offline

connections, but that language differences, distance, and national borders also play a

role. While this work also did not examine the geographic properties of social groups

directly, they are arguably at least implied by the analysis of the regional clusters.

2.1.2 Applications

Since the analysis of the geography of social groups is necessary before investigation

of how it may be used in technological applications, very little work exists along these

lines owing to the recency of large-scale analysis becoming feasible. Still, there have

been some examples that, while not addressing this question directly, have touched on

the area.

In 2010, Backstrom et al. [BSM10] showed how using the user-supplied address

data and friendship network in Facebook, an algorithm can be created to predict the

location of an individual using the locations of a set of their friends, outperforming IP-

based geolocation. While this work was not concerned with social groups directly, it

implicitly exploits the idea that at least some of an individual’s friends, as a group, are

likely to be located near to that individual. Also involving Facebook, in 2010 Wittie

et al. [WPD+10] showed how the fact that there tends to be high overlap between

the sets of friends of a person making a post and friends of the recipient of a post,

and the fact that posts made my local users dominate each regional network, could

be used to partition state with geographic awareness to reduce latency and bandwidth

consumption in content delivery in the Facebook network.

More recently, and concerning mobile phone data rather than online social net-
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works, de Domenico et al. [dLM13] showed that by considering the movements of

friends, and other people with highly correlated mobility patterns, it is possible to

increase the accuracy of location prediction, and therefore the prediction of where a

person will be and whom they will meet. The authors argue that this in turn has poten-

tial applications in targeted advertising, dissemination of location-aware content, and

mobile search. In this work, the strongest definition of a social tie that the authors had

access to was the presence of two individuals in one another’s mobile phone address

book; they had no information about communication or explicit social ties of a real or

virtual nature. However, the main idea of the work was that there tend to exist groups

of individuals, including but not limited to friends, with highly correlated mobility pat-

terns, and this fact can be exploited to improve location prediction and its associated

applications in technological services.

In Chapter 3 of this dissertation, I take advantage of the abundance of data recently

made available about users of location-based online social networks, their social con-

nections, and their geographic locations, and present the results of explicit analysis

of the geographic properties of social communities in large-scale datasets from online

social networks, building on the foundation provided by the first exploratory study by

Onnela et al. Given these results, I then show a potential technological application,

namely, using geographically-based communities to improve friend recommendation

in online social networks.

2.2 Social groups at the intra-city scale

2.2.1 Analysis

The analysis of social groups within cities has largely centred around connectivity

properties of the social contact graph, without regard to exactly where the contacts that

give the graph its structure take place. One major reason for this is that much of this

research was based around the application of Delay Tolerant Networks (DTNs), the

idea being that people coming into contact with one another around a city could trans-

mit information between carried mobile devices, and so knowledge of the structure

of this contact graph would be vital for effective routing decisions [HCY11]. Some

major work in this area was done by Kostakos et al. [KNY+09], who considered a
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city in terms of its Urban Pervasive Infrastructure (UPI), made up of human, techni-

cal, and spatial components. The authors empirically collected data about the UPI of

the city of Bath, UK, and derived specific characteristics such as mobility, concerning

distance travelled, speed, and so on, and social structure, concerning groups and pat-

terns of encounter within the city. In order to map movements of people, they used

Bluetooth devices such as mobile phones, and to identify locations, WiFi and GSM

access points. Some outcomes of these studies did examine the kinds of spaces where

groups meet in the city, finding, for example, that strong clustering and close proxim-

ity characterised an office environment, while these were not seen in street and campus

networks [KOP+10].

However, these studies using mobile sensing to detect social contacts at the city

scale are limited by the constraints of managing the sensing infrastructure, and there-

fore could not be carried out across many different cities in the manner now allowed by

the widespread use of online location-based social networks (LBSNs). A 2011 study

by Pan et al. [PBB11] making use of Bluetooth data from mobile phones also used

data from the participants’ Facebook profiles, and the authors compared the k-clique

community structures of the two networks with that obtained when they are combined.

The results showed that the two networks tend to complement one another, with the on-

line network strengthening connections within cliques, but no analysis of the locations

where these contacts took place was performed.

Once again, a lack of suitable large-scale data for analysing the relationship be-

tween geography and intra-city social groups has tended to limit the research possible

in the area. Thanks to the increasingly widespread incorporation of location informa-

tion into online social networks, and their high popularity in many places around the

world, studying the use of spaces in the city by social groups has become more feasi-

ble, and my research outlined in Chapter 4 of this dissertation takes advantage of this

opportunity to build on the work described above.

2.2.2 Applications

As early as 2007, the potential for the application of the idea that social groups may

be associated with particular places was explored by Gupta et al. [GPJB07], who pro-

posed an algorithm for automatically identifying social groups from contact traces and
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discovering the associations of groups with places in the city from the community

mobility traces. The application the authors had in mind was that of the delivery of

geo-social recommendations of the kind that are provided to individuals, rather than

groups, by today’s LBSNs. However, the application itself was never explored, the

focus of this work being the algorithm for identifying the groups.

Further concerning the application of place recommendation, the first work in-

vestigating the task of venue recommendation in LBSNs was that by Berjani and

Strufe [BS11], who explored the application of recommending places to visit to users

of the LBSN Gowalla in Austin, and New York City, an idea that has subsequently

been examined by others [NSLM12a, NSLM12b, YYL10, YLL12]. None of this work

considered actually providing recommendations for groups of users, but rather made

implicit use of social groups and their geography at the city level. In particular, the fact

that social groups may like to visit certain places means that it is possible to use in-

formation about a user’s friends and the places they have visited to make personalised

venue recommendations.

As in the case of groups potentially at the inter-city scale, it has largely been the

case that analysis of the geographic properties of these groups needs to be undertaken

before associated technological applications can be investigated. I present some anal-

ysis in this direction and an associated application in Chapter 4 of this dissertation.

2.3 Social groups at the intra-building scale

2.3.1 Analysis

Difficulties facing the analysis of the geography of social groups at the scale of a

single building are generally not resolved by the availability of mobile phone data or

the widespread usage of location-based online services, because the spatial resolution

of both those kinds of data is not fine-grained enough to be able to distinguish the

different kinds of spaces occupied within a building. However, technology can again

help in such analysis, in this case with advances in ubiquitous sensing technology

allowing unobtrusive monitoring of people’s interactions with one another and their

locations within a building, without some of the pitfalls of relying on self-reports and

questionnaires, namely that people misremember or give answers that they feel are
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socially desirable rather than the truth [BSBS78], or that they change their behaviour

in response to awareness of being observed [Why43].

Some research in the field of architecture has examined the effect of the nature and

layout of spaces on behavioural patterns and group interactions, since these issues are

important to consider when designing buildings. One method used to analyse such

phenomena is that of space syntax, used by Penn et al. [PDV99] to show that the phys-

ical space of a workplace building can directly affect how often employees meet one

another and interact face-to-face. Similarly, a 2008 study by Toker and Gray [TG08]

showed that the spatial configuration of a working environment can have a strong effect

on the frequency and location of informal meetings between colleagues.

While the aforementioned studies did not explicitly concern the usage of build-

ing spaces by groups of people, work by Allen and Henn [AH06] has shown that the

architecture of a technical workplace can be crucial for communication within and

between teams, to the extent that physical space may be a management tool as impor-

tant as organisational structure for today’s technical organisations. They have studied

the interplay between these two factors and found them to have profound effects on

the process of information flow in workplace communication networks, with conse-

quences for innovation and productivity. In particular, Allen describes in his book a

study of the company Steelcase, where several departments were moved into a new

building intended to stimulate communication among its occupants. Physical space

in this building was allocated not departmentally but according to the products on

which employees were working. Interdepartmental communication increased, show-

ing the importance of physical space for enabling communication between groups, in

this case, organisational departments.

These ideas were investigated in the field of computer science by Waber et al. [WOOKP10],

who experimentally studied the effect of social group strength on productivity by us-

ing ‘sociometric badges’ to sense face-to-face interactions and perform indoor user

localisation. They found that the strength of an individual’s social group is positively

correlated with productivity, but while the focus on social groups in this case was ex-

plicit, the impact of location was left implicit; the authors demonstrated that social

group strength could be increased by allowing workers to take coffee breaks at the

same time as their team-mates, which implies interactions taking place in informal

spaces, but this was not directly studied.
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In Chapter 5 of this dissertation I build on these previous analyses by presenting the

results of a study designed to investigate directly, unlike the work thus far described,

the impact of the availability of different kinds of building spaces on contact within

and between groups in a single building, in this case a research laboratory. This study

has the unique advantages that it was conducted using automatic sensing of interac-

tions and location, rather than human observation or self-reports, at the same time as

comparing the behaviour of the same group of employees of the same organisation

across two different buildings, which is usually difficult due to the time, money, and

other resources involved in moving an organisation from one location to another. I

show that different kinds of spaces are likely to be important for different kinds of

communication that may occur within and between groups.

2.3.2 Applications

In the case of building-scale groups too, very little research exists into how the role of

physical space for groups may be used in technological applications. This is partly due

to the fact that until recently, most research in this area was done by architects whose

aims are focused around building design rather than other ways of using the results of

their analysis.

One exception to this is the ‘break-time barometer’ system presented by Kirkham

et al. [KMG+13], which is based on the idea of promoting the simultaneous use of

informal ‘break time’ spaces by people in the workplace, thus encouraging interaction

between multiple members of the group of employees in the space. The authors do not

explicitly analyse the relationship between groups, but they do discuss the importance

of spontaneous interactions and the fact that these are likely to happen in informal

spaces, as I describe in Chapter 5 of this dissertation.

Other applications of this kind of analysis involve the automatic sensing of inter-

actions between members of different groups in the workplace and the display of this

information to employees with the intention of encouraging them to be more aware of

and perhaps change their behaviour, as suggested by Kim et al. [KCHP08], who dis-

cussed the use of sociometric badges capable of sensing automatically interactions in

a group during meetings, and the subsequent indication to the participants of who was

tending to dominate conversation and who was less forthcoming. Such an application
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specifically involving the use of space by social groups in the sensing of communica-

tion has not yet been explored, and in Chapter 5 I also discuss how this might be done,

and the challenges that still need to be addressed before such an application could

be widely adopted as a technological tool in workplaces, or indeed in other kinds of

buildings where group communication is important.

33



34



Chapter 3

Social groups in global-scale networks

In today’s technologically connected world, it is easy for geographically distant indi-

viduals to communicate with one another, especially since the advent of the Internet

and its widespread use. Thanks to these technological social networks, there is much

information available about the social ties between individuals and also about their

location, and the study of these spatially embedded social networks has been a recent

topic of interest for researchers, who have mainly studied mobile phone datasets [OSH+07,

GHB08, OAG+11] and online social networks [BSM10, CS11, CCLS11, CML11,

CTH+10]. Despite the ease afforded by technology of maintaining social networks

over long distances, distance still matters for dyadic relationships: the likelihood that

two people have a connection in these networks has been shown to follow a so-called

gravity law, with the probability of a social link decreasing proportionally to the square

of the increasing distance between their locations [KCRB09, LBdK+08, SNLM11].

However, to date, little research has specifically examined the role of geographical dis-

tance and physical space for groups of three or more people, beyond the observation

that members of groups in social networks are often close to one another in space, as

described in Chapter 2.

In this chapter, I present a more detailed analysis of the spatial properties of groups

of friends in two online social networks with location information: the microblogging

service Twitter, and the online location-based social network (LBSN) Gowalla. I de-

fine some measures of the extent to which a group is connected by physical places,

extract communities from the social networks, and then examine how place-centric

these communities are. I show that in Twitter, space appears to be less important than
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in Gowalla. I then show how it is possible to find place-based communities in net-

works such as Twitter, by incorporating place information into community detection,

and illustrate one potential application of these place-based groups in the online social

networks, namely to aid friend recommendation, a common task in such services.

In relation to the thesis, this suggests that while space seems to be less important

for the global-scale communities facilitated by some online social networks than for

others, location-based communities of users still exist in the networks, and this fact

may be exploited to improve the application of friend recommendation in online social

networks.

3.1 Datasets

I first analyse the spatial properties of groups, using two datasets containing informa-

tion from online social networking services where information about the places visited

by the users is available. One of the datasets was collected from the microblogging

service Twitter; the other was collected from the online location-based social network

Gowalla. Both datasets contain a social network, and location information in the form

of ‘check-ins’.

3.1.1 Check-ins

Check-ins are a major component of today’s location-based online social networking

services. When using such services, people record their current location in terms of a

specific place such as ‘café’, ‘railway station’, and so on, rather than simply geographic

coordinates, using an application on their mobile phones. A check-in is a record of the

form (u, p, t), where u is the ID of the user who made the check-in, p is the ID of the

place where the check-in took place, and t is a timestamp. The datasets also contain

for each place p its name (e.g., ‘Starbucks Coffee’, ‘King’s Cross Railway Station’,

and so on), its geographic coordinates (latitude and longitude), and a category (e.g.,

Food, Transport, and so on).
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3.1.2 Twitter

Twitter is a microblogging service created in 2006 [KGA08]. Users can ‘follow’ other

users to receive their ‘tweets’, that is, 140-character messages, on their personal Twit-

ter pages, and it is widely used for content dissemination, for example, users with

similar interests sharing links to news articles or other pages on the web [KLPM10].

Not being a specifically location-based social network (LBSN), Twitter itself does not

have a ‘check in’ function, but many users of Foursquare, the most popular LBSN

in 2010 when the dataset was downloaded, post their check-ins from Foursquare on

Twitter [NSMP11].

The Twitter dataset I analyse here was gathered between May 2010 and September

2010, and contains all of the check-ins from Foursquare publicly posted to Twitter

during that time1. The dataset also contains the Twitter friend lists of the users (their

lists of followers and people they follow). The Twitter social graph I construct and

analyse is undirected, since I include edges between users u1 and u2 only when each of

u1 and u2 follows the other, although Twitter does allow directed edges. This is because

I intend to analyse online friendships where both users concerned have indicated that

they are friends with one another, rather than the kinds of ties that also exist on Twitter

where a celebrity may be followed by many fans, but does not know these people as

individuals [KLPM10].

3.1.3 Gowalla

Gowalla was a location-based social network launched in 2009, and closed in 2012

after the company had been bought by Facebook [TBL13]. The focus of the service

was location-sharing, so users could add friends to form a social network, and share

their check-ins with these friends. The dataset I analyse is a complete snapshot of the

service downloaded on 19th August 2010. It contains all of the check-ins that took

place prior to that time, and the entire social network.

The numbers of users, friendships, places, and check-ins contained in each dataset

are shown in Table 3.1.

1It is estimated that this constitutes about 25% of all the check-ins made on Foursquare during this
period. Some of these publicly posted check-ins may be missing if they were deleted by the user before
they could be downloaded.
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Users Friendships Places Check-ins
Gowalla 165,051 765,872 13,561,773 1,541,951
Twitter 663,198 11,959,895 34,037,471 4,274,022

Table 3.1: Number of users, friendships, places, and check-ins in the Gowalla and
Twitter datasets.

3.2 Measuring the place properties of groups

I study the properties of groups of friends in the two social networks, in terms of

the places where members of the groups have checked in. Community structure is

an important property of many networked systems, not just social networks, and so

there exist many methods for extracting meaningful groups of nodes from such net-

works [For10]. The precise definition of community employed by these methods can

differ; for example, one can require that in order to form a community a subset of

nodes in a graph should have more connections between them than expected in a null

model [New06], or alternatively that the community has more links between its own

members than from its members to other nodes in the graph [GN02].

In the following, I have used two community detection methods: the Louvain

method, proposed by Blondel et al. [BGLL08], and the DEMON algorithm, proposed

by Coscia et al. [CRGP12]. The Louvain method is a greedy agglomerative method

based on modularity optimisation, that works by first placing each node in its own com-

munity, and then repeatedly merging communities in such a way as to attempt to max-

imise the increase in modularity, which is a measure of the quality of a partition of a

graph into communities [New06]. The DEMON algorithm works by having each node

‘vote’ for the communities that are in its neighbourhood, using a label propagation al-

gorithm [RAK07], and merging these communities to form the final partition. Perhaps

the most important difference between the two methods is that the Louvain method

produces only one partition of the network into communities, meaning that each node

may be assigned to one and only one group, while DEMON allows for overlapping

communities. I chose these two methods because they are reasonably computationally

efficient and so can be used on large graphs such as the social networks I analyse here,

and because they do not require the number of communities to be specified in advance,

since this would impose unnecessary constraints on the communities extracted.
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3.2.1 Measures for place properties

I will now define the measures I use to assess the place properties of communities

extracted from the social networks. First, it is necessary to give some preliminary

definitions.

3.2.1.1 Preliminary definitions

Each social network is represented as an undirected graph G = (V,E), where the set

of nodes V = {u1, . . . , un} is the set of n users in the network, and the set of edges E

is composed of pairs of users present in one another’s friend lists.

For each online service there is a set of places P = {p1, . . . , pm}, containing all of

the m places where the users of that service in the dataset have checked in. Let Pi be

the subset of P containing the places where user ui has checked in, and let Vj be the

subset of V containing all of the users who have checked in to place pj .

A subset of the social graph GP , which I will call the placefriends graph, can also

be defined: GP = (V,EP ), where the set EP of placefriends edges is the subset of E

containing only those edges (ui, uj) where ui and uj have checked in to at least one of

the same places.

The definitions of the place properties of communities can now be given.

3.2.1.2 Placefriends edge density

Placefriends edge density measures the extent to which members of the same group

have places in common, and is defined to be the fraction of possible pairs of members

of a community C who share at least one place:

1

|C|(|C| − 1)

∑
ui,uj∈C

APij

where APij is the ijth entry in the adjacency matrix of GP (i.e., 1 if ui and uj share a

place, 0 otherwise). The value of the placefriends edge density will be close to 1 when

a community member typically shares at least one place with most other members, i.e.,

the community is largely place-based and does not exist solely online. Note that the

shared place need not be the same for all pairs; the extent to which this is the case is

captured by the next measure.
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3.2.1.3 Place focus

Place focus measures the extent to which members of a group have checked into one

particular place, and is defined to be the fraction of members in a community who have

checked in to the most-shared place of that community:

max
pi∈P

(
|Vi ∩ C|
|C|

)
The value of the place focus will be close to 1 when there is a single place where most

of the members of a community have checked in.

Together, these two measures can help to characterise communities in terms of

whether their members tend to check in to the same places, and whether they all tend

to check in to the same places, or alternatively have different places in common with

one another.

3.2.2 Results of measuring community place properties

Figure 3.1 shows the mean placefriends edge density for communities in both net-

works, giving an indication of whether communities tend to contain users who have

checked in at the same places or not. The figure shows that when communities are

extracted from the two datasets’ social networks using the DEMON method and us-

ing the Louvain method, communities in Gowalla tend to have considerably higher

placefriends edge density than do communities in Twitter. In Gowalla, communities

with fewer than 20 members have an average placefriends edge density of 0.5 or more

when extracted using the DEMON method, and of 0.7 or more when using the Louvain

method. This contrasts with Twitter communities, which have an average placefriends

edge density of 0.3 or below for both community detection methods. The noisy nature

of the right-hand side of the Louvain plots can be attributed to the fact that the commu-

nities extracted by this algorithm do not overlap, while DEMON allows overlapping

communities and therefore results in a smoother curve. The tendency of Twitter com-

munities to have lower placefriends edge density appears independent of the algorithm

chosen, however.

The place focus of communities in both networks is shown by Figure 3.2. Similarly

to placefriends edge density, communities in Gowalla show a higher average value
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Figure 3.1: Placefriends edge density of communities: fraction of possible pairs in the
community who have checked in to one or more of the same places.
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of this measure than communities of the same size in Twitter. This indicates that in

Gowalla, it is more common for many members of a community to have checked in to

that community’s most-shared place than it is in Twitter.

These results suggest that communities in Gowalla tend to be more place-centric

than those in Twitter in terms of both the measures defined for assessing the place

properties of communities in the online social networks. In the next section, I show

that place-based communities do indeed exist in the Twitter social network, but they

are more readily found when place information is incorporated into the community

detection process. Specifically, I demonstrate that by assigning weights to edges in

the social network using information from the check-ins of the users concerned, it is

possible to give place-based edges greater importance for community detection and

expose place-based groups that might otherwise be obscured by the more general edge

structure of the social graph.

3.3 Uncovering place-based communities in online so-

cial networks

The fact that the communities examined thus far in the Twitter social network did not

show a strong tendency for users in the same community to have checked in to the

same places does not necessarily mean that groups of friends who do check in to the

same places do not exist in the Twitter network. It could be the case that by using not

only the topology of the social graph, but also including the available place information

in the community detection process, it is possible to reveal such groups. One reason

for this might be that many links in the Twitter social network have nothing to do

with places, but connect users with similar interests who are located geographically far

apart [SMML10]. These links will be treated by the community detection algorithm

with equal importance to those edges that do connect friends who check in to the

same places, who should be grouped in place-based communities. In this section, I

present a method for distinguishing between these two kinds of edges in the social

graph: I assign weights to edges using values derived from information about places

where the connected users have both checked in. Later in this chapter, I will show how

the place-based groups revealed using this method could be useful to location-aware
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Figure 3.2: Place focus of communities: fraction of community members who have
checked in to the community’s most-shared place.
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technological applications.

3.3.1 Method

Given the social network G(V,E), the set of places P , and the associated user check-

ins, I define a function f that takes an edge connecting users ui and uj , eij , from the

social graph, and returns a non-negative real number. This number is a weight f(eij)

derived from the information about the check-ins made by ui and uj . The proposed

method for extracting place-based communities is then as follows:

1. Assign to each edge eij a weight f(eij) based on information about the check-ins

made by ui and uj .

2. Remove from the graph all edges with weights below some threshold t.

3. Remove from the graph all nodes with no incident edges.

4. Run a community detection algorithm that works with weighted graphs. In the

following, I have used the Louvain algorithm [BGLL08] to perform community

detection.

3.3.1.1 Labelling functions

I have experimented with a number of ways to derive weights for the edges of the social

graph from place information, as used in step 1 in the method described above. For

each way of deriving weights, a weighting function f is defined, that takes an edge of

the social graph and returns a weight based on the check-ins of the two users connected

by the edge. These weighting functions are:

• binary: This results in the subgraph of the unweighted social graph G that

contains only those edges eij where ui and uj have checked in to at least one

of the same places, that is, equivalent to the placefriends graph GP defined in

Section 3.2.1.1. The function is so named because it will return weights valued

either 1, if ui and uj have checked in to one or more of the same places, or 0, if

they have not. Note that this function forces use of the threshold t = 1, as other-

wise all edges in the graph would be removed in step 2 of the method described
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above. Formally,

fbinary(eij) =

1 if |Pi ∩ Pj| > 0

0 otherwise.

Recall that Pi represents the subset of P containing the places where user ui has

checked in.

• checkins: This function assigns to each edge eij a weight equal to the sum,

over all of the places where ui and uj have checked in, of the lower of the num-

bers of check-ins that ui and uj have made to that place. This aims to capture

the extent to which users visit the same places, since in the case of a place that

only one of the users has checked in to, the summand in question will be 0. The

definition also avoids giving undue weight to edges where one user has checked

in many times and the other very few times. Formally,

fcheckins(eij) =
∑

pk∈(Pi∩Pj)

min(cik, cjk)

where cik and cjk are the respective numbers of check-ins that user ui and user

uj have made to place pk.

• places: This assigns to each edge eij a weight equal to the number of places

where both ui and uj have checked in. Formally,

fplaces(eij) = |Pi ∩ Pj|
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• ratio: For each place, I compute the ratio of the number of all the check-ins

at a place to the number of users who have checked in there, that is, the mean

number of check-ins per user for that place. The weight assigned to an edge eij
by this function is equal to the maximum value of this ratio for the places that ui
and uj have in common, or 0 if they have no places in common. Formally,

fratio(eij) = max
pk∈(Pi∩Pj)

(
ck
|Vk|

)

where ck is the total number of check-ins made to place pk, and Vk is the set of

users who have checked in to place pk as before.

The rationale for this definition is that places where many people check in infre-

quently, such as an airport, will give low values and are not likely to indicate im-

portant place-based friendship ties. On the other hand, places with high values

are checked into by a few users many times, for example, somebody’s house,

and may indicate that the sharing of a place by those two friends is in some

sense more important [SNM11]. Thus, edges where users share such places are

weighted more highly by this function.

3.3.1.2 Thresholding

Step 3 in the method described above aim to remove users who do not belong to place-

based communities in the online social network from the social graph. After assigning

weights to edges, those edges with weights lower than a threshold value t are elim-

inated. The users left with no ties are then removed from the graph. Choice of the

threshold t is explored further in Section 3.3.2.2.

3.3.2 Assessing potential utility of extracted groups

I assess the utility of the place-based groups extracted using this method by examining

whether or not their members have been colocated, that is, not just whether they have

visited the same places, but whether or not they may have visited those places at the

same time. I argue that it is more likely that having checked in to a common place is
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more meaningful for members of a place-based group if they were checking in there

close to one another in time. Since the datasets contain no ‘check-out’ information, I

consider users to have been colocated if they have checked in to the same place within

one hour of one another, in line with previous research using online location-based

social network datasets [FVA+12, HSL11a, HSL11b].

I define a measure called colocation fraction in order to quantify how many mem-

bers of a group have been colocated according to their check-ins. First of all, define

the colocation matrix M :

Mij =

1 if ui and uj have been colocated according to their check-ins, as defined above

0 otherwise.

The colocation fraction of a community C is then defined to be:

∑
ui,uj∈CMij · Aij∑

ui,uj∈C Aij

where Aij is the adjacency matrix of the social graph G, that is, it has the value 1 when

ui and uj have a connection in the social graph, and 0 when they do not. The colocation

fraction is therefore equal to the proportion of the social ties between members of the

community C where the users concerned have been colocated.

3.3.2.1 Results

Figure 3.3 shows the mean colocation fraction for communities of different sizes, when

the threshold parameter t was set so that 90% of edges were pruned from the social

graph. The communities detected having used the places, checkins, and ratio

functions tend to have higher values of colocation fraction than communities extracted

from graphs weighted using binary, and from the unweighted graph (labelled as

‘unannotated’ in the figure). The figure shows that this effect is seen in Gowalla as well

as in Twitter, which suggests that even though communities detected in the unweighted

graph in Gowalla tend to contain users who visit the same places, as shown in the

analysis earlier in this chapter, if it is desired to find colocated groups of users, it could

still be useful to use this method to find communities.
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The functions for places and checkins give higher values of the colocation

fraction than does the function for ratio. This could be because the thresholding

step removes users who have checked in to fewer places, and it is possible that if users

check in to enough of the same places they will eventually be colocated by chance.

However, these users have declared online friendship, so the method is not simply

grouping so-called familiar strangers [Mil92] who meet regularly but who are not

friends, and I argue that colocation of these users may still be meaningful.

Note also that for places and checkins, thresholding necessarily discards

users who have checked in to fewer than t places and with fewer than t check-ins,

respectively. It may be that to detect place-based communities it is necessary to ig-

nore users for whom there is not enough location information. As location continues

to become more important to online social networking, data sparsity may present less

of a problem. For now, the verifiably place-based communities that can be detected

include the users who actively make use of location features, and these are likely to be

the users for whom applications of the detection of these communities could be most

useful.

3.3.2.2 Choice of threshold parameter

The threshold value t acts as a tuning parameter, determining how aggressively the

method excludes users from consideration for inclusion in place-based groups. To

illustrate the effect of this parameter, Figure 3.4 shows the mean colocation fraction

for communities of different sizes extracted from the Twitter network weighted using

the places function. The figure also shows the effect of removing 90% of links

from the graphs at random, rather than according to their weights, to show that it is

the weighting that produces the result rather than the removal of links from the social

network. Figure 3.4 shows that communities found using higher t are increasingly

place-based. Pruning less spatially relevant links from the graph will increase the

extent to which communities tend to be place-based, but users may be removed due to

not having highly-weighted incident links.

When choosing t the needs of the intended application must be considered: it may

be that any communities found need to be highly place-based, even if most users will

be excluded from placement in a community, in which case t should be higher than if

less place-based communities are more acceptable but it is desirable to assign as many
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Figure 3.3: Colocation fraction of communities found using the different annotation
functions.
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Figure 3.4: Effect of varying the threshold parameter.

users as possible to a group. For example, if using these communities for friend rec-

ommendation, as discussed in the next section, it might be better to have more users

available for consideration. Alternatively, if the place-based groups were being used

to sort users to aid privacy management, groups being more definitely based around

places could be more important and a more restricted group of users might be an ac-

ceptable cost.

3.4 An application: friend recommendation in a location-

based network

One common task for location-based social networking services such as Gowalla is

that of friend recommendation, that is, suggesting to users of the service other users

with whom they do not currently have ties in the social network, but to whom they

might want to connect. One study by Scellato et al. [SNM11] found that 30% of newly

placed ties in an LBSN were placed between people who had checked in to at least one

of the same places. It therefore seems likely that members of the same place-based
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Nodes Edges Clustering
May 2010 109,115 517,113 0.17
August 2010 156,495 747,771 0.16

Table 3.2: Number of nodes, number of edges, and clustering coefficient of the two
snapshots of the Gowalla social graph.

community who are not currently connected might make good candidates for friends to

recommend to a user, possibly more so than members of the same group found without

using place information. In this section, I demonstrate how place-based communities

might be used in this way, to improve the application of friend recommendation in

LBSNs.

3.4.1 Dataset

I again use the Gowalla dataset described in Section 3.1. The dataset contains two

complete snapshots of the social network, one downloaded on 4th May 2010, and the

other on 19th August 2010. Table 3.2 shows the number of nodes, number of edges, and

the clustering coefficient of the social network in each of the snapshots. In particular,

230,658 edges were formed during the 3 months between the two snapshots.

3.4.2 Methodology

I investigate the potential use of place-based communities for friend recommendation

by inspecting the edges formed in the social graph between the two snapshots, making

the assumption that one can consider that a successful friend recommendation made

using the first snapshot would be one where the user in question had indeed formed a

social tie to the friend suggested by the time of the second snapshot.

I extract communities from the first snapshot of the graph using the Louvain method [BGLL08],

both without weighting the graph, to extract ‘social’ communities, and by weighting

the graph using the binary function described in Section 3.3.1.1 to find place-based,

or ‘local’ communities. I then identify the ties formed in the period between the two

snapshots, and consider them according to whether they are within or between both

kinds of community. Note that I do not consider in this analysis nodes that were not

present in the first snapshot, and that isolated pairs of nodes, single nodes, and nodes
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with no ties are not considered to be in communities and are therefore excluded from

the analysis.

Since many community detection methods, including the Louvain method, use

heuristics in order to manage the computational complexity of the problem, they are

non-deterministic and can give different output depending on the order of the in-

put [For10]. While it was unnecessary in the analysis earlier in this chapter, because

the aim was to capture general characteristics of the graph structure, which as aggre-

gates are not greatly affected by small differences in community assignment due to

randomness in the detection method, when performing longitudinal analysis and ex-

amining the community placement of individual nodes it is necessary to account for

this effect. To this end, I use the algorithm proposed by Kwak et al. [KCE+09], which

works by running a chosen community detection algorithm able to handle weighted

graphs n times on the same network. The input is given in a randomised order each

time, thus obtaining n potentially different community partitions of the graph. In prin-

ciple, if the graph has a strong community structure then these partitions should differ

only in the community placement of a relatively small subset of nodes. The network

is re-weighted according to the frequency with which pairs of nodes have been place

in the communities of each of the n partitions. In particular, the weight wij of an

edge connecting the nodes representing users ui and uj is increased or decreased pro-

portionally to the number of times that this pair of nodes have been put in the same

community in each of the n partitions. The re-weighting procedure has the effect of re-

inforcing more robust groupings over those appearing by chance or due to a particular

input ordering. This process is iterated on the re-weighted network, until a consistent

placement of nodes into communities is obtained and all the partitions obtained in the

n runs of an iteration are identical2.

I compare the actual number of links created within or between communities after

the first and before the second snapshots, to the corresponding expected number of

links created in a null model where new links are placed both at random, with the only

constraint being that self-loops and parallel edges are avoided. Specifically, if x is the

observable of interest, i.e., the number of links created within or between communities,

and the expected value of x in the null model is denoted by x̃, I compute the ratio r:

2Although Kwak et al. noted in their paper that the convergence of their method cannot be guaranteed
for certain graphs, I did not encounter this problem with the Gowalla networks and I was able to find a
stable partition of both graphs.
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r =
x

x̃

so that if the same number of edges form as expected, r = 1, and otherwise, r indi-

cates how many times greater or smaller than expected is the number of edges actually

formed.

For example, if computing x̃ for the number of edges forming between nodes in

the same social community, then x̃ is equal to the total number of edges formed in

the social graph between the first and the second snapshots, multiplied by the frac-

tion of those edges that could be formed between nodes belonging to the same social

community. This quantity can be thought of as the number of ‘missing’ edges within

social communities, i.e., the number of pairs in the same communities that were not

connected at the time of the first snapshot. In this case, the expression for x̃ would

read:

x̃ =
Kin
◦

K◦
K+

where Kin
◦ is the number of edges missing between members of the same social com-

munity, K◦ is the total number of missing edges between members of the same social

community and members of different social communities, and K+ is the number of

edges added between the first and second snapshots.

I also compare the number of edges actually formed within or between social and

local communities to the number of such edges formed when the same total number

of edges as are actually formed between the two snapshots are placed according to

the preferential attachment model [BA99], where the probability that an edge forms

from a chosen node to a target node is proportional to the existing degree of the target

node, resulting in a ‘rich-get-richer’ effect that produces a power-law degree distribu-

tion commonly seen in online social networks [MMG+07, NRC08, ZSW+12]. This

will give an indication of how recommending members of the same social or local

community as friends could perform in relation to recommending users according to

their popularity, which is possibly a less naı̈ve approach than recommending users at
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Random PA

Social communities Between 0.62 0.37
Within 25.6 18.0

Local communities Between 0.78 0.74
Within 70.7 44.0

Table 3.3: Edges formed within and between social and local communities that actually
formed, as a proportion of those formed using random and preferential attachment (PA)
models.

random.

3.4.3 Results

The results of computing r as defined above, for edges forming within and between so-

cial and local communities, are shown in Table 3.3. The number of social ties formed

between members of the same social community, that is, communities found without

using place information, is 25.6 times greater than expected when ties are placed uni-

formly at random between disconnected users, and 18.0 times greater than when edges

are added according to the preferential attachment model. This demonstrates the po-

tential utility of communities in friend recommendation, suggesting potential benefit

in recommending disconnected users within the same community as friends for one

another, rather than suggesting users at random, or the most popular users.

The additional value that might be gained from considering place-based communi-

ties is demonstrated by the value of r for edges formed between members of the same

local community; social ties are 70.7 times more likely to form between users placed

in the same local community in the first snapshot than when placing edges at random,

and 44.0 times more likely than when using preferential attachment. The fact that these

values are higher than the corresponding values for social communities suggests that

recommending disconnected users in the same local community as friends could be

even more beneficial when performing the friend recommendation task.

3.5 Discussion

The relative unimportance of places in Twitter communities extracted without incor-

porating place information into the community detection process may reflect Twitter’s
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focus on content-sharing, which encourages users to connect based on shared inter-

ests that may not depend on location [SMML10]. In other networks such as Gowalla

where there is an explicit focus on places, geography may be inherently more impor-

tant. It might also be that this effect is seen because in online social networks based

around location-sharing, people are more willing to share their location with people

who would know where they were anyway, or those they know in person having met

them face-to-face, which requires a geographic link, than with people they have never

met [CRH11, LCW+11, PKK12]. This suggests that in these networks, geography is

important to characterise communities, despite the potential for global-scale commu-

nities afforded by easy online connections.

My research into detecting place-based communities is related to the work by Ex-

pert et al. [EEBL11], who noted the tendency for communities in spatial networks such

as the mobile phone communication network to have some local geographic basis, and

presented a method for uncovering space-independent communities by accounting for

this effect during community detection. My aim in this chapter was conceptually the

opposite: to uncover place-based communities in networks where there are place-based

ties included alongside those that may not have a geographic basis. The rationale be-

hind this was that being able to find local groups could be helpful for various appli-

cations, one example of which is the task of friend recommendation in online social

networks.

3.5.0.1 Limitations

There are some caveats that must be borne in mind when considering analysis of

datasets such as those I have examined here. One of these is that such datasets are

unavoidably biased towards representation of certain demographics, and the results

should therefore not be taken to be representative of general principles but as possibly

specific to the online services from which the datasets were taken. For example, a

study by Mislove et al. in 2011 found Twitter users in the US to over-represent densely

populated areas, to be predominantly male, and to represent a non-random sample of

the population distribution of race and ethnicity [MLA+11]. The user behaviour ob-

served in such services may be influenced by such biases. However, these inherent

data biases do not mean that results such as those I have shown cannot be useful to the

services that use the data, for example, the online social networks themselves; even
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the data may not be representative of general mobility behaviour, characteristics of the

ways that an online service’s particular users behave in relation to that service could

be used to improve that service. One example of this might be the potential utility of

local communities for friend recommendation in Gowalla that I have outlined in this

chapter. As for the general issue of data bias, it may be interesting to observe whether

the situation changes if mobile Internet access and the incorporation of location into

online services continues to become more widespread.

One must also bear in mind that check-ins of the kind analysed here are voluntary,

and therefore the places visited by users as indicated by their check-ins are an under-

estimate of the places those people have actually visited. People may not check in

everywhere they go for a variety of reasons, including not having time, getting bored,

or having privacy concerns [LCW+11]. Caution should be exercised if seeking to

draw conclusions about actual mobility patterns from check-in data, although other re-

search has shown that there are considerable similarities between the mobility patterns

observable in location-based online social networks and those seen in mobile phone

data [CML11]. Of course, mobile phone datasets also have their inherent biases, and

so the most reliable applications of results from the analysis of such data are most prob-

ably in areas directly relating to the use of those services, whether the mobile phone

network or online social networks of the kind that I have studied.

3.6 Summary

In relation to the thesis that the relationship between physical space and social groups at

different scales can be exploited to create or improve technological social applications,

I have explored in this chapter the role of space in groups in two online social networks

with location information: the microblogging service Twitter, and the location-based

network Gowalla. Both of these networks exist online, and therefore have the potential

for social ties to span between cities and even continents. In analysing communities in

these social networks, I found that members of the same community tend to check in

to the same places to a greater extent in Gowalla than in Twitter, possibly due to Twit-

ter’s focus on content-sharing in comparison to Gowalla as a location-based service.

In Gowalla, geography seems essential to characterise communities, while in Twit-

ter, space is less important but still plays some role, with place-based groups being
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revealed in the network when information about places is taken into account when ex-

tract communities. In terms of possible applications of these properties, I have showed

how the importance of geography for communities in an online social network such as

Gowalla could be used to improve friend recommendation in such a service, since peo-

ple seem more likely to connect to others within the same place-based community as

themselves than others in the same group without considering location when extracting

communities.
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Chapter 4

Social groups in city-scale networks

Before the Internet age, face-to-face meetings were generally necessary for people to

become acquainted and therefore to foster friendships. Although it was thought that

the rise of the Internet could remove this barrier posed by geography to the formation

of social networks [Cai01], so far it appears that face-to-face meetings between friends

are still an important part of the social life of an urban area [MWC10]. The importance

of the nature of the particular places in the city where friends meet is itself important,

as different kinds of space are different in their social use [CTH+10, KOP+10], but it

has been difficult until recently to study the relationship between the kinds of places

around cities where people meet and the social network structure, especially in terms of

groups of friends. Similarly to the global-scale social networks studied in the previous

chapter, one reason for this has been the lack of easily accessible, large-scale data

about social connections within a city together with the places where people go, which

is now available from online location-based social networks.

In this chapter, I study social networks with accompanying location information

at an intra-city scale. I first analyse some properties of places that friends have in

common with another, particularly in relation to the presence of triangles in the social

networks, which can be building blocks for larger communities. I also study poten-

tial face-to-face meetings at places around the city by analysing colocation between

friends, and propose a model for generating a network with some of the empirically

observed properties of the network.

I then focus on the behaviour of colocated friends in an online location-based so-

cial network and in a mobile phone communication network, and find that groups of
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colocated friends seem to visit different places from those where people go when they

are on their own. I show that this different usage of places around the city by individu-

als and by groups of friends can be helpful in venue recommendation, a common task

in location-based online social networks. By considering groups of friends as units

rather than as the sum of their parts, it could be possible to improve recommendation

performance due to the difference between solo and group mobility.

In relation to the thesis, my findings suggest that the different uses and variety

of places around a city is important for groups in the social network, in that some

locations tend to be used for social meetings far more than other kinds of places. In

other words, people go to different places for the purpose of shared activities with their

friends than they go to in general, and this behaviour could aid applications such as

venue recommendation in location-based online social networks.

4.1 Properties of city-scale social networks

I first analyse the social and spatial properties of city-level social networks constructed

using friendship and location information from a location-based social network dataset.

I examine the structural characteristics of the social graphs and show that they have

properties commonly seen in social networks. These include the high level of cluster-

ing and community structure that signify social groups, as discussed in the previous

chapter where I showed that there are such groups in online social networks that are

place-based, in that their members visit the same places as one another. In accordance

with this, I now analyse the places visited by the people in the social network, and

show that it is common that members of structural triangles have visited at least one of

the same places. I further examine the nature of the places in cities that these friends

visit, and show that some kinds of places seem more likely to host social meetings than

others.

4.1.1 Data description

The dataset I analyse in this section is comprised of all the check-ins from the location-

based social networking service Foursquare that were posted publicly on Twitter be-

tween November 2010 and September 2011, where the check-in took place in one of
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City Users Venues Check-ins
Atlanta 28,275 18,270 368,608
Boston 23,579 13,243 296,150

Chicago 42,791 33,261 715,652
Minneapolis 13,396 12,696 235,793

Seattle 16,205 15,051 260,023

Table 4.1: Number of users, number of venues, and number of check-ins in the dataset,
for each of the five cities.

five major US cities: Atlanta, Boston, Chicago, Minneapolis, and Seattle. Similarly

to the dataset described in Section 3.1, a check-in contains a user ID, a venue ID,

and a timestamp, thus identifying a user as having been in a certain place at a cer-

tain time. The dataset contains information for each venue downloaded directly from

the Foursquare venues database, which includes the venue names, geographic coordi-

nates, and categories indicating something about the usage of a place; these are defined

by Foursquare and include Arts and Entertainment, College and University, Food and

Drink, Nightlife Spot, Outdoors and Recreation, Professional, Residence, Shop and

Service, and Travel and Transport. The dataset also contains the Twitter friend lists of

all of the users present (see Section 3.1.2).

The numbers of users, venues, and check-ins present in the dataset for each of the

five cities are shown in Table 4.1.

4.1.1.1 Social networks

I study the placefriends graph for each city, as defined in the previous chapter (Section

3.2.1.1). Recall that this is a social network where users are connected by a social tie

when each is in the friend list of the other and have checked in to at least one of the

same places on Foursquare. Formally, given:

1. The set of n users: V = {u1, u2, u3, . . . , un}, and

2. The sets of places for each user ui ∈ V : Pi = {v | user i has checked in to place

v}

I define the graph GP = (V,EP ) where the n nodes V of the graph represent the users

and the graph GP has an undirected edge (ui, uj) in the set of edges EP whenever:
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Figure 4.1: Degree distributions in the city-level social graphs.

1. the users both follow one another on Twitter, and

2. |Pi ∩ Pj| > 0, i.e. the users have both checked in to at least one of the same

places during the data collection period.

I will use this graph to study in more detail, at the intra-city level, the social network

structure based around places that was revealed by my analysis in the previous chapter.

4.1.2 Structural properties

I first analyse the structures of the city-level social networks and confirm that they

exhibit well-known characteristics of standard social networks: a heavy-tailed degree

distribution, small-world properties (high clustering with respect to a random network,

and small shortest path lengths), and strong community structure.

4.1.2.1 Degree distribution

Many networks, from those in biological systems such as metabolic networks, to tech-

nological structures such as the topology of the Internet and the page structure of the
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N K NGC C Cr d dr Q Qr

Atlanta 13,011 46,756 11,476 0.16 0.0006 4.6 4.6 0.53 0.17
Boston 10,478 41,505 8,816 0.17 0.0010 4.3 4.0 0.45 0.15
Chicago 19,931 84,778 17,287 0.16 0.0004 4.6 4.9 0.47 0.14
Minneapolis 6,499 30,640 5,914 0.18 0.0016 4.4 4.2 0.41 0.12
Seattle 7,445 28,466 6,392 0.18 0.0008 4.4 4.6 0.46 0.16

Table 4.2: Structural properties of the city-level social networks: Number of nodes
N , number of edges K, number of nodes in the giant connected component NGC ,
clustering coefficient C, clustering coefficient in a random graph of the same size Cr,
average shortest path length d, average shortest path length in a random graph of the
same size dr, modularity Q, and modularity of a random graph of the same size Qr.

World Wide Web, exhibit a heavy-tailed degree distribution, and social networks are

known also to have this property [ASBS00, BA99, GN02, WF01]. Figure 4.1 shows

the degree distributions of the social networks for the cities in the dataset, which do

indeed have the common heavy-tailed shape. Essentially, this means that many indi-

viduals have only a small number of social connections, but there are some people with

a large number of friends.

4.1.2.2 Clustering

Another commonly observed property of social networks is a relatively high level of

clustering, compared to that seen in a random graph of the same size [Wat99]. In terms

of social relationships, this corresponds to the fact that many of an individual’s friends

are likely to be friends with one another. The level of clustering in a graph can be

measured by the clustering coefficient. The clustering coefficient Cn of a node n with

N neighbours is defined to be the number of links between the N neighbours, divided

by the number of possible links that could exist between the neighbours, i.e., 2N
N(N−1) .

The clustering coefficient C of a graph is then defined to be the mean cluster-

ing coefficient of all its nodes. Table 4.2 shows the clustering coefficients in the five

city-level networks, and the corresponding clustering coefficients in an Erdős-Renyi

random graph with the same numbers of nodes and edges. The values are consistent

across all the five networks, being between 0.1 and 0.2. This is much higher, on the

order of thousands of times, than the level observed in the random graphs.
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4.1.2.3 Average shortest path length

Social networks are known commonly to have a low average shortest path length,

which, together with high clustering, makes these networks ‘small-world’ networks [Wat99].

A shortest path from one node m to another n is defined to be the smallest number of

steps that are needed to reach n when starting at m and travelling along edges in the

graph. The average shortest path length is then defined to be the mean shortest path

length over all pairs in the graph. This quantity is defined only for connected graphs,

and so for these networks I consider only the giant component that always contains at

least 80% of the nodes in the graph, the presence of which is also common in social

networks [KNT10]. Table 4.2 shows that the average shortest path lengths in the giant

components of the city-level social networks and the corresponding random graphs are

roughly comparable, being between 4 and 5 hops in both cases.

4.1.2.4 Community structure

The final prominent structural characteristic of social networks I consider here is strong

community structure. One measure of the strength of community structure in a net-

work is the modularity Q of a partition of a network into its communities. Values of

0.3 or above are generally considered high, and to be indicative of the kind of com-

munity structure commonly seen in various biological, technological and social net-

works [New06]. Table 4.2 shows the values of Q for the best partitions of the city

networks found by the Louvain algorithm [BGLL08] (discussed in Section 3.2). These

values show that the place-based social networks in the five cities do indeed have strong

community structure.

4.1.3 Spatial properties

I now investigate in more detail the spatial properties of the social networks in the

dataset, to try to gain insight into the nature of place-based friendships and the places

that friends have in common.
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Figure 4.2: Proportions of triangles with a shared place in each city dataset.

4.1.3.1 Spatial clustering

I first consider the groups of three friends u1, u2 and u3 where the ties (u1, u2), (u2, u3)

and (u3, u1) all exist in the social graph, and examine the proportion of such triangles

where at least one place has been visited by all three people. Figure 4.2 shows the

proportions for each of the five cities; in each case, more than 70% of triangles in the

social network are such that the three friends have all visited at least one of the same

places. This indicates some level of clustering around places in the social networks.

4.1.3.2 Types of places

I now consider more directly face-to-face meetings between friends in the social net-

works, and examine the places where these meetings take place. Since the dataset

does not contain ‘check-out’ information, I consider a colocation to be represented by

check-ins made by each of a pair of Foursquare users within 1 hour of one another.

Figure 4.3 shows the probability that a pair of colocated users are friends according

to the type of place where the colocation occurred, as given by the Foursquare category

of that place. Some categories (Food, Nightlife and Residence) have a noticeably
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Figure 4.3: Measured probability of friendship, given the category of a shared place.

greater likelihood that colocated pairs are friends than the others do, which suggests

that some places have a greater potential for fostering or for reinforcing social ties than

others. Specifically, across the cities, the probability that a pair colocated at a Food,

Nightlife Spot, or Residence venue are friends is between 0.1 and 0.2. The probability

for the categories Professional and Other Places, and Shop and Service, is lower, being

between 0.05 and 0.1, and the other categories generally have a very low probability.

One could think of this as dividing places into three categories: ‘social’ places,

where people may tend to meet with their friends, ‘semi-social’ categories, where some

meetings between friends may take place but there may also be many meetings with

strangers, and generally ‘non-social’ places, where people may meet with strangers

over friends to a greater degree than in other kinds of places. This is consistent with

the observation of Kostakos et al. [KOP+10], in a study involving the analysis of en-

counters in one city (Bath, UK), that some places play host to rather ‘tight’ social

networks where people are likely to know most of the others present, some places may

have ‘looser’ social networks where there are often groups of friends but members

of different groups are strangers to one another, and some places are such that most

people located there together do not know one another.
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4.1.4 A model for social networks in the city

Having analysed the Foursquare dataset, I now use the above observations to define a

model for city-level social networks based around people meeting at places in the city,

which produces social networks with the same structural properties as those observed

in the datasets. I then explore how the places where people meet one another at places

around the city might affect the structure of the social network based around those

places, by running the same model without various components.

4.1.4.1 Model definition

The model takes into account three kinds of information about the places in the city:

1. The popularity of a place, i.e., the number of users who have checked in there

(Figure 4.4).

2. The geographic (latitude and longitude) coordinates of a place.

3. The semantics of a place and the activities that take place there, as indicated by

the Foursquare categories described in the previous section.

The first two kinds of information are relevant to ensure that the mobility of people

implied by the model is consistent with the mobility patterns evident in the dataset.

Previous research into human mobility patterns has shown that intra-urban mobility

tends to show certain patterns [NSL+12], and the mobility implied by the model should

not be contradictory to this. The manner in which place popularity and geographic

location are used by the model to achieve this is described below. The information

about place categories, on the other hand, is used to define how ‘social’ a place tends

to be, given the observations in the previous section, and can influence the likelihood

that social ties form within a place according to its category.

In the light of the above analysis, the main idea of the model is to generate a place-

based social network, where people visiting the same places have some probability of

forming a social tie, and there is also some level of clustering around places resulting

in the intra-place triangles seen in the dataset. The model first assigns each person to a

place, preserving the place popularity of the original dataset so that the implied visits of

people to places are not inconsistent with the patterns shown by the data (Step 1 below).
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Figure 4.4: Numbers of people checking in at a place in the dataset.

Each person is then assigned to further places, preserving the distribution of places per

person in the original data, and also the distribution of distance between places visited

seen in actual mobility traces (Step 2 below). Ties are then placed between people who

share the same place with probability dependent on the category of the shared place

as suggested by Section 4.1.3.2 above (Step 3), and finally intra-place triangles are

closed as suggested by Section 4.1.3.1 (Step 4). The specific procedure to generate a

city-level social network is thus as follows:

1. Begin with the sets V of people and M of places in the dataset for the city.

2. For each person u, consider them to have visited n places, where n is sampled

from the distribution of places per user in the dataset for the city. Assign to u an

initial place from the set M of all the places in the city, chosen with probability

proportional to the popularity of that place.

3. For each of the n− 1 additional places that u has visited in the dataset, assign to

u another place m from M , with probability qrα, where q is proportional to the

popularity ofm in the dataset, and r is inversely proportional to the rank distance

of the place from the first place of u. The rank distance of a place m2 from place
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m1, rankm1(m2), is the position of m2 in the list of places in descending order

of geographic proximity to m1. Given a set of places M in a city, the probability

of a person visiting place m1 ∈M given that they have visited place m2 ∈M is

defined to be:

r ∝ 1

rankm1(m2)

where the rank distance function for place m1, rankm1 , is defined over other

places m2 as:

rankm1(m2) = s+ 1

where s is the number of places in the city closer to m1 than m2 is to m1. This

method of place assignment is designed to reproduce observed patterns of intra-

city human mobility. I use the exponent α = 0.84 in accordance with other

research concerning human mobility in cities, which has shown that people’s

movements within a wide range of cities of varying sizes and densities tend to

follow this distribution [NSL+12].

4. For each place m in M , for each pair of people (u1, u2) who have been assigned

place m:

(a) Place a social tie between u1 and u2 with probability

p =

{
pcat(m) if pop(m) ≤ 30

0.001 otherwise

according to the category of m: pcat(v) = 0.15 for ‘social’ places (Food,

Nightlife Spot, and Residence), pcat(m) = 0.08 for ‘semi-social’ places

(Professional and Other Places, and Shop and Service), and pcat(m) = 0.01

for all other places, in the light of the analysis in the previous section.

pop(m) is the popularity of m. The choice of the threshold 30 used in this

step was found to be necessary experimentally, and is discussed in Section

4.1.4.3.

(b) For each of u1’s existing friends f in the social network who have vis-

ited m, place a link between f and u2 with probability 0.15, in line with

the ‘social’ probability. This implements an intra-place triangle closing

mechanism as suggested by the observation in the previous section that the
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City C d Q
Atlanta 0.13 4.1 0.44
Boston 0.14 4.0 0.37
Chicago 0.14 4.2 0.40
Minneapolis 0.15 4.0 0.39
Seattle 0.16 4.0 0.39

Table 4.3: Structural properties of synthetic place-based networks: average values,
over 10 runs of the model for each city, of the network clustering coefficientC, average
shortest path length d, and modularity Q.

majority of triangles in the networks have one common place shared by all

three members.

4.1.4.2 Properties of synthetic networks

I now present the properties of the synthetic networks generated using the procedure

described above. I show that the model produces networks with the structural proper-

ties observed in the real data. The results given for each city are the average of 10 runs

of the model. I study the effect of each piece of information by removing each one in

turn, running the model, and examining the properties of the resulting networks: first, I

analyse the effect of intra-place triadic closure, and then examine the effect of the place

information including distance (place location), place category, and place popularity.

The results of running the full model, incorporating information about distance,

place semantics, and including the triangles between people meeting friends of friends,

are shown in Figure 4.5 and Table 4.3. Figure 4.5 shows that the full model produces

networks with a heavy-tailed degree distribution, as seen in the actual social networks.

The average exponent across the real networks was measured as 2.28, while that for

the synthetic networks is 2.51. Table 4.3 gives the values of the clustering coefficient,

average shortest path length, and modularity of the synthetic graphs; they can be seen

to display the structural properties of the empirically observed networks: high cluster-

ing (between 0.1 and 0.2), short path lengths (around 4 hops), and strong community

structure (as indicated by a modularity value Q higher than 0.3). The values for the

synthetic networks can be seen to be similar to those for the networks constructed us-

ing the datasets that were given in Table 4.2. The first row of Table 4.4 shows the

averages of these values, and the other rows in the table show the differences that are
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Figure 4.5: Degree distributions of synthetic graphs.

Model C d Q
Full 0.14 4.0 0.40
No triadic closure 0.05 4.0 0.38
No distance 0.13 3.8 0.33
No categories 0.01 3.8 0.29

Table 4.4: Average values of the clustering coefficient C, average shortest path length
d, and modularity Q for the synthetic networks, when including all information in the
model, and when running it without one kind of information.

observed when running the model without one of its various components.

The second row of Table 4.4 shows that in the absence of the triadic closure mech-

anism, when social ties are placed only according to the probabilities of connection at

given places according to their category, clustering in the graph is unsurprisingly much

lower than in the actual networks. Triadic closure is a concept often explained in terms

of social balance theory [CH56], in that if an individual has two friends who them-

selves are not friends, more psychological stress will result than if those two friends

are also friends and the relevant triangle exists in the social graph. One can imagine

that this effect would be particularly strong if the individuals concerned were actu-

ally meeting face to face, such as would be likely when those three individuals are
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connected by the sharing of a common place.

The third row of the table shows that running the model assigning places to users

using only the popularity of the place (instead of using the popularity combined with

the rank distance) reduces the modularity value Q of the resulting networks, which

implies weaker community structure. This might be understood in terms of people

being more likely to visit, and therefore to meet with friends at, places nearby to lo-

cations they already visit. When distance is not taken into account in the model, this

additional clustering effect based on geography disappears and leaves only clustering

at single places produced by triadic closure, which weakens the community structure

of the network.

Finally, the last row of the table shows the results of running the model without

the category-based probabilities and instead using in each case a uniform probability

that will produce the same number of ties in the resulting network. This dramatically

reduces the clustering coefficient C of the resulting network, even when the triadic

closure mechanism is present. This may be because the clusters of social ties tend

to be around the more sociable places where friends tend to meet, that have higher

probabilities for intra-place ties in the full model. Even when the same number of ties

are placed, if these are not focused around ‘social’ places but spread over all the venues

with equal probability, the network does not display the high clustering characteristic

of a social network. This might suggest that the use of particular spaces around the

city for social and non-social purposes could affect, or indeed be affected by, the group

structure present in the social network. However, this is at present entirely theoretical

and further research would be required in order to determine the exact mechanisms, if

any, at work.

4.1.4.3 Discussion

The mechanism of assigning people to places based on popularity and forming intra-

place ties has much in common with the preferential attachment model [BA99], which

was proposed to produce scale-free networks by means of having new nodes connect

to existing nodes with probability proportional to their degree. That is, the graphs

grow in a ‘rich-get-richer’ fashion; the more neighbours a node already has, the more

likely it is that it acquires more neighbours, which produces graphs with a power-law

degree distribution. The model presented above can be seen as employing a version of
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preferential attachment to places: more popular places are more likely to attract more

people, and therefore more potential pairs of friends.

However, the model uses not only place popularity, but takes into account the cat-

egories of places to determine the likelihood of intra-place ties. The probabilities of

social tie formation based on the categories of places are used when the places in ques-

tion have 30 or fewer visitors, and a lower probability for all more popular places. In

experiments, I found that this was necessary in order to be able to obtain networks

with the correct community structure. This might intuitively be considered to be a

manifestation of the idea of the constraint of a place [Fel81]. A place with high con-

straint forces individuals there to interact much and often (for example, a family home)

resulting in more or stronger social ties than a place with low constraint where many

individuals may go, but will probably not encounter one another, or where visitors to

the place do not typically interact with many others (for example, a park).

The threshold of 30 is the same as that found in the study by Onnela et al. of the ge-

ographic span of communities in a mobile phone communication network [OAG+11].

The authors observed that communities of 30 or fewer members tended to be geograph-

ically tight, with a 100% increase in the geographic spread of communities occurring

as the number of members increased from 30 to 40. This might suggest that commu-

nities at the intra-city level, such as those observed in the place-based social networks

under study, are intrinsically constrained in size in order to be sustainable within the

city. This idea is related to previous studies that have found an apparent upper limit of

around 30 on the maximum number of more intense relationships that a person may

be able to maintain, with contacts who are not part of this ‘inner circle’ being com-

municated with less frequently [HD03, SDBA12]. In the city-level social networks,

one way in which this threshold could manifest is as a limit on the maximum number

of people with whom one is able to maintain regular face-to-face contact at a place,

reflected in the size of close-knit groups based around places. As suggested by the

results shown here, this might affect the community structure of the resulting social

network.
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4.2 Face-to-face meetings at places in the city

Having studied the relationship between places around the city and ties in the social

network in terms of the places that friends have in common, in this section I examine

in more detail the venues where meetings between friends take place. I examine char-

acteristics of meeting locations such as the distance from the places most frequently

visited by those users, their categories, and whether those users or their friends have

checked in at those places previously. I then expand my analysis to consider larger

groups, of three or more friends. Due to data sparsity, I am not able to analyse the

behaviour of larger groups in Foursquare, but I show that there are similarities be-

tween the behaviour of pairs seen in Foursquare and that observed for larger groups in

a dataset from a mobile phone network: users are more likely to visit places near their

usual locations when with friends, and are more likely to visit places where people in

the wider social circle of members of the group have also been. It appears that the

locations visited by people when with their friends tend to differ somewhat from those

where they go on their own, and in the last section of this chapter, I will demonstrate

an application of this behaviour that could be useful in location-based online social

networks, namely, improving the performance of the common task of venue recom-

mendation.

4.2.1 Pair meeting behaviour

I study the places visited by individuals and by pairs of friends as recorded by their

check-ins on Foursquare. The dataset was downloaded in the same way as those de-

scribed in Sections 3.1.2 and 4.1.1, and contains 2,315,350 check-ins made to 109,314

venues, by 104,266 users in New York City. The social network, constructed by taking

users to be friends when each follows the other on Twitter (as in Section 3.2.1.1), is an

undirected graph with 99,725 nodes and 821,948 edges.

I investigate social check-ins in the dataset, defined to be check-ins where the user

making the check-in can be assumed to have been colocated at a venue with one of their

friends in the social network. I employ the usual definiton of colocation discussed in

Section 3.3.2, where a pair of friends is considered to have been colocated when they

have checked in to the same venue within one hour of one another.
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Figure 4.6: Distance of social check-in venues from the checking-in user’s top loca-
tions.

4.2.1.1 Distance from frequently visited locations

I analyse the distance of the locations of check-ins from a user’s most frequently visited

location. I define a user’s top location to be the Foursquare venue where they have

previously checked in the greatest number of times, and compute the distance between

this location and the venue where a check-in takes place. In the case that a user has

more than one top location, all of those locations are taken into account, and I compute

both the mean distance from the check-in venue to those locations, and the minimum

distance from the check-in venue to one of those locations. Figure 4.6 shows the

cumulative distribution function (CDF) of the distance of a social check-in venue from

a user’s top locations, and for comparison, the distribution of the distance of the venue

of all check-ins (not just social check-ins) to the closest of the top locations of the user

making the check-in. The results show that social check-ins tend to be closer to a top

location of one of the friend pair concerned than do check-ins in general.
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Figure 4.7: Representation of social check-ins in each category, compared to all check-
ins. ‘Social’ categories have social check-ins over-represented by more than 25%,
‘neutral’ categories have social check-ins represented within 25% of the proportional
value, and ‘solo’ categories have social check-ins under-represented by more than
25%.

76



4.2.1.2 Venue categories

I next use the information from Foursquare about the categories of venues to analyse

the types of places where users tend to go with their friends. As described above,

Foursquare defines 9 broad categories1 for venues: Arts and Entertainment (e.g., cin-

emas, music venues), College and University (e.g., schools, university buildings), Food

(e.g., cafés, restaurants), Nightlife (e.g. bars, clubs), Outdoors and Recreation (e.g., parks,

nature spots), Professional (e.g., workplaces), Residence (e.g., homes), Shop and Ser-

vice (e.g., shops, hospitals, churches), and Travel and Transport (e.g., railway stations,

airports). I compute the ratio of the proportion of social check-ins in each category to

the proportion of all check-ins in that category. Formally, define:

• cat checkins(c) to be the total number of check-ins to category c in the dataset.

• cat social checkins(c) to be the number of social check-ins to category c.

• cats to be the set of all categories defined by Foursquare.

Then for each category c in cats:

proportion(c) =
cat checkins(c)∑

c′∈cats cat checkins(c
′)

That is, the proportion of all check-ins that occur in category c, and

social proportion(c) =
cat social checkins(c)∑

c′∈cats cat social checkins(c
′)

That is, the proportion of all social check-ins that occur in category c. I then quan-

tify the propensity of each category to include venues where social check-ins take place

by defining the colocation ratio:

colocation ratio(c) =
social proportion(c)

proportion(c)

That is, the ratio of the proportion of social check-ins taking place in that category

to the proportion of all check-ins taking place in that category. If this value is 1,

it means that the category in question is equally likely to host both solo and social
1There is in fact a tenth ‘Uncategorized’ category for when venues have not been assigned a category,

but these venues are excluded from the dataset.
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Figure 4.8: Social check-ins more often take place at venues new to the checking-in
user than check-ins in general.

check-ins. If the value is markedly less than 1, the category is less likely to host social

check-ins than it is to host solo check-ins, so places in this category might be less good

to recommend for visits by pairs of friends. If the value is much more than 1, the

category is more likely to host social check-ins than it is to host solo check-ins.

I compute colocation ratio(c) for each category c. Figure 4.7 shows that more than

1.5 times the proportion of social check-ins are to venues in the Arts and Entertainment

and Nightlife Spot categories than the proportion of check-ins in general that are in

these categories. Meanwhile, less than 0.7 of the proportion of social check-ins are to

Residence, Shop and Service, and Travel and Transport venues than the proportion of

check-ins in general.

4.2.1.3 Previous check-ins

I examine how likely users are to visit new places with their friends. Figure 4.8 shows

the cumulative distribution function (CDF) of the number of previous visits in the

dataset by the checking-in user to the visited venue, for all check-ins and for social

check-ins. Social check-ins are more likely to take place at new venues than check-
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Figure 4.9: Social check-ins more often take place at venues where the checking-in
user’s friends have been than check-ins in general.

ins in general; the probability that a social check-in takes place at a previously visited

venue is about 0.25, compared to about 0.38 for any check-in.

4.2.1.4 Check-ins by friends

Finally, I investigate how many social check-ins take place at venues where members

of the friends’ wider social circles have previously checked in. Figure 4.9 shows the

cumulative distribution function (CDF) of the number of a user’s friends who have

previously checked in to the venue in question, for all check-ins and for social check-

ins2. Social check-ins are more likely than general check-ins to take place at a venue

where a user’s friends have been before. About 18% of all check-ins are to a place

visited by at least one friend before, but about 43% of social check-ins being to such

venues. At first glance, this may seem contradictory to the observation that social

check-ins tend to take place at venues where the user has not been before, but in fact

it is the case that pairs of friends tend to check in together at venues that are new to

2Note that previous check-ins by friends are required to be at least an hour before the check-in in
question, to avoid counting the first social check-in in a pair constituting a colocation event.
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the pair in question, but not to their wider social circle. It tends to be not one of the

pair that has checked in to the venue before, but other friends of one or both of the

colocated friends.

4.2.2 Group meeting behaviour

I now examine the venues checked into by groups of 3 or more friends. There are

not enough such group colocations in the Foursquare dataset, due to data sparsity,

but I instead analyse a data from a mobile phone operator. Mobile phone usage is

more widespread than that of location-based social networks at present, and so this

dataset does not suffer from the same problem. Although the mobile phone dataset

does not include venue category information and does not allow unique identifica-

tion of venues, instead having localisation at the level of individual cell towers, some

of the same trends can be seen as in the Foursquare dataset for pairs. In addition,

previous research has shown that the mobility patterns apparent from LBSN check-ins

show strong similarity to those seen in other kinds of mobility data including cellphone

records [CML11].

The telecoms dataset is a large, anonymised set of billing records for over one mil-

lion mobile phone users in Portugal, gathered over a twelve month period between

2006 and 2007. The dataset contains information about mobile phone calls, but does

not contain text messages (SMS) or data usage (Internet). In order to preserve pri-

vacy, individual phone numbers were anonymised by the operator. Each user in the

anonymised dataset is identified by a hashed ID. Each entry is a CDR (Call Detail

Record), consisting of a timestamp, the IDs of the caller and the callee, the call dura-

tion, and the cell tower IDs of the caller and callee towers. The dataset also includes

the latitude and longitude of the cell towers, which allows us to study the relationship

between the social network constructed by placing edges between nodes representing

people whenever one person has called another, and the physical location of the users.

The social network has 1,954,188 nodes and 19,370,004 edges.

I extract colocated friendship groups by considering as colocated people who make

calls using the same cell tower within one hour of one another, in agreement with the

definition of social check-ins in the Foursquare dataset. Within a temporal window of

one hour, I consider as groups the connected components of the subgraph of the social
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Figure 4.10: Distance from each group member’s top locations of group colocations in
the telecoms dataset.

network that contains only edges between people colocated during that hour.

Note that while for the purpose of these analyses the telecoms data are treated

in the same way as the check-in data, the two datasets are quite different in nature,

which could result in different observed behaviour based on people’s usage of the

respective services. For example, check-ins can be considered to be entirely voluntary,

because users check make an active choice to check in and perform the action using an

application on their phones. A mobile phone call, on the other hand, while resulting

in a location record similar to a check-in, may not be voluntary to the same extent;

the location record is a side-effect of a call having a different purpose from simply

recording location as with the check-in, and calls may also be received without that

person choosing to be called, in a different manner from Foursquare users having to

choose to check in. Therefore it is important to remember that the mobile phone data

cannot be taken to be an extension of the Foursquare data, even though the analysis

performed here is the same and it is interesting to compare the findings in each dataset.
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4.2.2.1 Distance from frequently visited locations

Figure 4.10 shows the cumulative distribution function of the distance of the colocation

of a cellphone user with a group of their friends from that users top locations. The fig-

ure also shows the distribution of the distance of all calls from the caller’s top locations

(not just social colocations). Similarly to social check-ins in Foursquare, group colo-

cations are more likely to take place near to one of the group’s top locations than calls

in general. Note that the higher values of the CDF at very small distances compared to

Foursquare is due to the coarser-grained spatial resolution of the cellphone dataset; in

Foursquare we have individual venues for check-ins, giving single-building accuracy,

whereas in the cellphone dataset we are limited to the resolution of cell towers3.

4.2.2.2 Previous visits

Figure 4.11a shows the CDF of the number of times a member of a colocated group has

previously been seen at the place of colocation. Contrary to the behaviour of pairs in

Foursquare, an individual is less likely to meet a group of their friends at a new place

than at a place where they have been before. I investigate this phenomenon further

by analysing separately groups of different sizes: pairs, trios, quartets, and quintets.

Figure 4.11b shows the CDF for groups of each size. The results are in agreement with

the results from Foursquare: pairs are more likely to meet at new places than people

are to call from new places in general, but an individual is likely to meet a larger group

somewhere they have been before.

4.2.2.3 Previous visits by friends

Finally, Figure 4.12 shows the CDF of the number of an individual’s friends, exclud-

ing the group with whom they are colocated, who have been at the colocation place

before. Again in agreement with the Foursquare data, a user is likely to meet a group

at places where their wider circle of friends have been previously, compared to some-

where where none of their friends have been.

3In urban areas such as Lisbon, each cell tower covers an average of 0.13 km2.
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(a) Cumulative Distribution Function (CDF) of number of previous visits by
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(b) Breakdown of previous visits by group size.

Figure 4.11: Previous visits by group members to colocation locations in the telecoms
dataset.
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Figure 4.12: Cumulative Distribution Function (CDF) of number of previous visits by
group members’ friends to colocation locations in the telecoms dataset.

4.2.3 Discussion

In both datasets analysed in this section, it seems that friends are likely to meet closer

to one of the individuals’ familiar locations than people may go in general. This is in

agreement with the finding by Calabrese et al. [CSBR11] that as the distance between

the homes of pairs of colocated users increases, colocations take place in an area closer

to one of the homes of the pair.

The finding that meetings between friends are over-represented in some categories

such as Entertainment and Nightlife, and under-represented in others, such as Shop

and Transport, gives some indication that people are more likely to visit some cate-

gories of places with their friends than others. This could have implications for place

recommendation in online location-based social networks, as I will demonstrate in the

rest of this chapter. In both datasets, it is also the case that people are more likely to be

colocated with friends at places where their other friends not part of that group have

been before.

My analysis has also shown differing behaviour between pairs of friends (both in

Foursquare and in the mobile phone dataset) and larger groups: while an individual is
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more likely to travel to a new place with a single friend than they are on their own, the

opposite behaviour is seen where larger groups are concerned. One way to interpret this

could be in terms of research that has shown that people are more likely to take risks

when with peers [GS05], possibly including visiting a new place. Being with a friend

may increase confidence and willingness to explore. However, this must be balanced,

in a larger group situation, with the fact that the larger a group, the more difficult it is

for that group to coordinate [ILGP74]. This could be a reflection of greater ease for a

group to meet at a place familiar to all of its members, than to identify and agree on a

new meeting place.

4.3 An application: group venue recommendation

An important problem for LBSNs is that of venue recommendation: suggesting to

users places that they might enjoy visiting. Recent research has generated a variety

of systems for performing this recommendation task [BS11, NSLM12b, YZYW13,

YYL10]. However, these systems tend not to distinguish between the situations when

users intend to visit a place by themselves, and when they are looking for somewhere to

go out with a friend. Given the differences between solo and social check-in behaviour

seen in the above analysis, it seems likely that LBSNs could benefit from exploiting

information about the friend a user is with to alter venue recommendations specifically

for a social meeting place.

The task of group recommendation – that is, making recommendations for a group

of two or more people, rather than for an individual – is often addressed by computing

recommendations for the individuals in the group, and then merging the resulting lists

of items [GLRW13]. However, this approach does not consider that the behaviour and

preferences of individuals may be different in a group scenario from when they are by

themselves. In this section, I demonstrate how making recommendations for venues by

considering groups as a whole, rather than by combining recommendations made for

their individual members, could improve recommendation performance in an LBSN

when users are looking for venues to visit with their friends.
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4.3.1 Problem definition

The group venue recommendation problem can be formulated as a prediction problem

as follows: given a group of colocated friends and a list of candidate venues, using

information in the system up to the time of the colocation, produce a ranking of the

candidate venues where the first in the list is the most likely colocation venue, the

second the second most likely, and so on.

The aim is as frequently as possible to rank the actual colocation venue in the topN

predictions, for reasonably small N , making the assumption that a correct prediction

of the colocation venue would mean that having recommended that venue to the group

would have counted as a successful recommendation.

4.3.2 Datasets

I use the dataset from Foursquare described in Section 4.2.1, and the telecoms dataset

described in Section 4.2.2. In the following, I refer to ‘check-ins’ in both datasets,

even though it is only the Foursquare data that contain actual check-ins made using a

location-based social network application. In the case of the mobile phone network, a

‘check-in’ is simply the same type of information as recorded by a Foursquare check-

in, i.e., user ID, location ID, and timestamp, but with reference to a phone call rather

than an LBSN check-in. A phone call between two users is taken as equivalent to

a check-in by each of those users at their respective locations at the call start time

given by the CDR. Colocation events are inferred in the same way as described in the

previous analysis: see Sections 4.1.3.2 and 4.2.2.

4.3.3 Prediction features

I use a machine learning approach to prediction, as has been demonstrated effective

for single-user location prediction by other research [CS11, NSLM12b, NSLM12a]. I

define prediction features based on check-ins to candidate venues. These features are

of three kinds: global features, which are computed using information specific to the

candidate venue but not to any user or group of users, single-user features, which are

computed using information about check-ins by one user to the candidate venue, and

group features, which are computed by combining information about check-ins to the
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candidate venue by all of the users in a group. This last kind of feature has not been

examined by previous work in the area, and I demonstrate here the potential benefit for

venue recommendation in LBSNs of using groups in this way.

4.3.3.1 Global features

These features are defined on a candidate venue v and time t of the colocation4, but do

not take into account information about individual users:

• pop checkins: The number of check-ins to v before time t, as a measure of

venue popularity.

• pop checkins c: The number of social check-ins (Section 4.2.1) to v in the

dataset before time t.

• cat: The Foursquare category of v. This feature aims to reflect the finding in

the previous section that venues of some categories are more likely to host social

check-ins than others. Note that this feature is not defined for the mobile phone

dataset, due to lack of category information for locations.

4.3.3.2 Single-user features

These features are defined using information about a candidate venue v and time t of

the colocation, as well as further information about an individual user u. These types

of features have previously been used profitably in venue prediction in LBSNs [CS11,

NSLM12a, NSLM12b]. In the following, I will show the difference between including

in feature vectors the feature’s value for each of the users in a pair of Foursquare friends

for whom a prediction is made, and for combining this information into a group feature.

Note that this comparison is not possible for groups in the telecoms dataset since the

group size is not fixed.

• single dist closer: The distance from v to the closest of the user’s top

locations before time t (see Sections 4.2.1.1 and 4.2.2.1).

4This is taken in the case of Foursquare to be the time of the first check-in by a member of the
colocated group constituting that colocation event, and in the case of the telecoms data to be the time of
the start of the first call that is used to infer the colocation event.
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• single dist mean: The mean distance from v to the user’s top locations be-

fore time t. Together with single dist closer, this feature aims to encode

information about the distance to the locations that a user visits the most, given

that users are more likely to check in closer to places they usually visit.

• single hist total: The total number of check-ins to v by the user before

time t. This feature encodes information about which locations the user tends

to visit, which has previously been shown to perform very well in venue recom-

mendation for individual users [NSLM12b].

• single social: The total number of check-ins before time t to v by any of

the user’s friends. This feature encodes information about which locations the

user’s friends tend to visit, which has also previously been found to be helpful in

making venue recommendations to Foursquare users [NSLM12b].

4.3.3.3 Group features

These features are defined on a candidate venue v and time t of the colocation, and

also encode information about a group of friends, which aims to enable the use of

differences between social and solo check-in behaviour shown by the above analysis

to improve group recommendations over those one can make by combining single-user

recommendations.

• group dist closer: The distance from v to the closest of any of the group’s

top locations before time t.

• group dist mean: The mean distance from v to the group’s top locations

before time t. In conjunction with group dist closer, this feature aims

to characterise a target venue in terms of not only the distance from each of

the users’ top locations but in terms of a combination of the distances, since

according to the above analysis, users stay closer to frequently visited locations

when with a friend than in general.

• group hist total: The total number of check-ins to the v by users in the

group before time t.
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• pair hist min: The minimum number of check-ins to v by a user in the

group before time t. In conjunction with group hist total, this feature

aims to combine information about the users’ previous visits to a target venue.

• group social: The total number of check-ins to v before time t by friends

of the users in the group who are not also in the group. If users in the group

have a mutual friend who is not also in the group, this friend’s check-ins to v are

counted only once.

• group mutual: The total number of check-ins to the v before time t by other

users who are friends with all the users in the group, but who are not in the group

themselves. Each of these friends’ check-ins are counted only once.

In the following, I will demonstrate and quantify the benefit in using these group-

based features in group venue recommendation, over the performance provided by

using global and single-user features alone.

4.3.4 Methodology

I train an M5 model tree predictor [Qui92, WW97] to use in evaluation of the fea-

tures. I chose this method of prediction having experimented with various machine

learning algorithms provided by the WEKA machine learning framework [HFH+09]

and found that M5 model trees provided the best results of these methods5. This is in

line with the results of other research into venue recommendation as a prediction prob-

lem [NSLM12a]. M5 model trees create decision trees by dividing training examples

according to the values of the features, specifically, they split training examples on the

attribute that maximises expected error reduction. At the leaves are linear regression

models that use some combination of features to output a numeric score that can be

used to rank the candidate venues.

In the case of each dataset, I choose a time t0 corresponding to the point 90% of

the way through the data collection period for that dataset. I train prediction models
5In particular, I trained predictors based on WEKA’s implementations of M5 trees, linear regression,

random forests, and support vector machines, and tested these by training each algorithm using the
training set and assessing the correlation coefficient and root mean square error (RMSE) according to
10-fold cross-validation on the training set. The M5 trees produced the best results, giving a correlation
coefficient of 0.8405 and RMSE of 0.271, while the linear regression did the worst, with correlation
coefficient 0.0969 and RMSE of 1.2623.
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using features generated from data up to the time t0, and leave data from after t0 to be

used in testing the trained models. For each colocation event that took place before t0,

I build a training example feature vector x that encodes features of the visited venue

and the group of colocated friends, and give it the label 1. I build a corresponding

negative training example x′, with features defined on the same group of friends, but

on a randomly chosen venue where the colocation did not take place, and give this the

label 0. The training set consists of pairs of positive and negative examples, labelled 1

or 0 accordingly. This effectively reduces the ranking problem to a binary classification

task [CSS99], and the trained predictor is able to output values for an input test example

where the higher the predicted value, the more likely, according to the predictor, that

the colocation of the friends in the example took place at the example venue.

I evaluate the trained models on group colocation events not used in training. For

each colocation event I compute a feature vector x with features defined for the group

of friends in question and the colocation venue. I also compute feature vectors for

the same group and 1,000 other randomly chosen venues in the relevant dataset. The

same candidate set of venues is always used for the same colocation event when testing

different combinations of features. I present all of these feature vectors to the trained

predictor, which outputs a numeric score for each vector, with higher scores indicating

more likely colocations for the group according to the trained model, thus providing a

ranked list of the candidate venues. Given the colocation events and their associated

ranked lists of venues, I compute Average Recall @ N , that is:

AR(N) =
# correct venues in top N of ranking

# colocation events

for varying values of list size N . In the intended application scenario, reasonable

performance would be desired for small N (as a guide, perhaps 10 – 20), since users

on mobile devices do not want to have to search through large lists of recommendations

to find a venue they would like to visit.

I also train a single-user predictor to make recommendations for individual users,

in order to be able to compare recommendations made directly for groups with the

results of combining individual recommendations after ranking. To do this, I compute

feature vectors containing all of the global features except for pop checkins c (to

evaluate the results of using a predictor not specialised for colocation check-ins to
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make individual recommendations), and all of the single-user features, for individual

check-ins in the dataset up to time t0, assigning the label 1 where the user did check in

to the venue concerned and 0 when the venue has been randomly chosen from the rest

of the venues in the dataset. I take the same number of positive and negative example

pairs as were used to train the pair-based predictor, and train a model using these to

make predictions for a single user.

I quantify the extent to which the differences between solo and social check-in be-

haviour affect the performance of recommending venues to groups looking for some-

where to go together. I compare direct recommendation using the group features to the

approach of taking the two ranked lists from the single-user predictor (Section 4.3.4)

for each user of the pair and combining them, as is a common approach in group recom-

mendation [GLRW13]. I present the same lists of candidate venues to each predictor

for each of the test examples, to enable comparability of results. Specifically, I test

two methods of combining individual recommendation lists, referred to as Combined

single 1 and Combined single 2, and defined as follows:

Combined single 1: I compute Average Recall @ N for varying values of N ,

where this is defined for the combination of individual user predictions as:

AR(N) =
# correct venues in top N for all users in a group

# colocation events

Combined single 2: I take the ranked lists for all of the individual users in the

group, compute the mean rank of each candidate venue across these lists, create a new

list with the venues in order of mean rank, and compute Average Recall @ N for vary-

ing values of N as:

AR(N) =
# correct venues in top N of mean-ranks list

# colocation events

4.3.5 Results

I now present the results of testing the trained models for colocation venue prediction.

I first consider the results for pairs in Foursquare, which enables me to examine the

difference between including the single-user features for both users in a pair in feature
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vectors, and including a group feature intended to encode the same kind of information.

I also study the contribution of different kinds of features (popularity, distance, previ-

ous check-ins, and so on) to the prediction performance, and show that recommending

for pairs directly can perform better than combining individual recommendations for

each of the pair.

I then consider the results for groups in the mobile phone network dataset. I again

examine the contribution of different kinds of features to prediction performance, and

show that in this case too, recommending for groups directly can outperform the com-

bination of individual recommendations made for each of a group’s members.

4.3.5.1 Foursquare dataset

I first assess the importance of the group features defined in Section 4.3.3.3, compared

to the single-user features that can be used in single-user recommendation. I train three

models:

• Using all of the features defined, that is, each feature vector includes global

features, the single-user features computed for each of the users in a pair, and

the group features computed for this pair.

• Using the global features, and the single-user features computed for each of the

users in the pair, without the group features.

• Using the global features and the group features, without the single-user features.

Figure 4.13 shows the results of testing these three models forN < 20. This is the most

relevant range for the mobile recommendations application; mobile users accessing

applications on small screens do not want to have to scroll through a very large number

of recommendations when searching for somewhere to go.

Combining information about each of the individual users in the same feature vec-

tor does not perform as well as computing the features considering the pair directly as

a group. Furthermore, the group features together with the global features are able to

perform just as well as when the single-user features are also included. This demon-

strates that there may be benefit to be gained by exploiting the characteristics of group

behaviour that the group features encode.
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Figure 4.13: Improvement using group features over only global and single-user fea-
tures for pairs in Foursquare.
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Figure 4.14: Contribution of different kinds of group features to recommendation per-
formance for pairs in Foursquare.

93



Next, I analyse the contribution of individual kinds of group features to the trained

model. I begin with the model using only the global and single-user features, and then

assess the contribution of each kind of group features (distance, historical and social;

note that popularity features can only be global), by adding each one to the model,

showing the improvement in performance they provide. Figure 4.14 shows the value

of AR(N) for varying values of N , given models trained using:

1. Global and single-user features only: pop checkins, pop checkins c,

cat, single dist closer for each of the users, single dist mean for

each of the users, single hist for each of the users, and single social

for each of the users.

2. As 1, but with the group distance features group dist mean and group dist closer.

3. As 1, but with the group historical features group hist total and group hist min.

4. As 1, but with the group social features group social and group mutual.

5. The model with all of the global, single-user and group features in combination.

Each of the kinds of group features improves the performance of the model over

that with just the global and single-user features. The largest improvement is gained in

the addition of the social information features, group social and group mutual.

This suggests that information about friends taking into account both users as a group

is particularly useful when considering group venue recommendations, in particular

the implications for venue recommendation of the finding that for pairs in Foursquare,

social visits may be more likely to be to places where a user’s friends have been than

visits in general. The distance features also improve performance, showing the effect of

users staying closer to frequently visited locations when with a friend than in general.

In contrast, the historical visits features do not appear to be as useful. This is

in stark contrast to analysis by Noulas et al. [NSLM12a], who found that historical

visits were one of the best performing features when making venue predictions for

Foursquare users on an individual basis, and that social information, while still help-

ful, was less important. The lack of improvement from the addition of the historical

features could be explained by social check-ins in Foursquare being more likely to

be to places that are new to a user than check-ins in general. When considering only
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Figure 4.15: Improvement obtained using group recommendation over combining sin-
gle recommendations for pairs in Foursquare.

historical visits, these new venues where the friends meet are indistinguishable from

venues where the users would never go, and so these features are not as useful for

recommending venues for social visits.

Figure 4.15 shows the results of comparing recommendation made directly for

groups to those obtained by combining recommendations made for the individual users

(Section 4.3.4). Using the features computed on friend pairs directly to perform recom-

mendation achieves better performance than both methods of combining the individual

lists, with Average Recall @ 10 of 80%, compared to 67% and 62% for the combina-

tion of single-user recommendations made using the same types of features. These

results suggest that the differences between social and solo check-in behaviour mean

that combining individual recommendations may not do as well as making recommen-

dations for pairs directly.

4.3.5.2 Telecoms dataset

In the same way as for the Foursquare dataset, I assess the contribution of each kind of

information as encoded by the features to recommendation performance. I begin with
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Figure 4.16: Improvement obtained by adding kinds of group features one-by-one in
the telecoms dataset.

the model using only popularity features, and then assess the contribution of distance,

historical and social features, by adding them one at a time to the model, and examining

the improvement in performance they may provide. Figure 4.16 shows the value of

AR(N) for varying values of N , given models trained using:

1. Popularity only: pop checkins and pop checkins c.

2. As 1, but with distance features group dist mean and group dist closer.

3. As 2, but with the group social feature group mutual.

4. As 3, but with the historical features group hist total and group hist min.

5. As 4, but with the group social feature group social.

The results are similar to those for pairs in Foursquare, except for the fact that the

historical features show a large improvement over the model without them for groups

in the mobile phone network. This could be explained by the fact that, as shown by

the analysis earlier in this chapter, groups in the telecoms dataset are more likely to

meet at places that are not new to them, in contrast to pairs in Foursquare. The use of
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Figure 4.17: Improvement obtained using group recommendation over combining sin-
gle recommendations for groups in the telecoms dataset.

information only about check-ins by mutual friends can be seen to outperform the use

of information about check-ins by all friends of all members of a group; in fact the in-

clusion of that information makes performance noticeably worse. One could speculate

that this could be due to people’s social connections in the mobile phone network be-

ing more diverse than those in the Foursquare network (e.g., a wider variety of friends,

family, colleagues, and so on, all of whom might tend to meet in different places and so

whose inclusion while trying to make recommendation for a group of which they are

not part might harm performance, while people are less likely to connect to particular

kinds of acquaintances such as work colleagues in some location-based social net-

works [CRH11, LCW+11]), but this is only one possibility and further research would

be needed to determine the cause of the observed effect. Finally, Figure 4.17 shows the

results of performing recommendations for groups directly compared to the two ways

of combining individual recommendations for each member define in Section 4.3.4.

As in Foursquare, making recommendations for groups can be seen to outperform

considerably the two combination methods. This suggests that the differences between

individual and group behaviour might be used to improve venue recommendation in
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the case of groups of friends looking for somewhere to go together in location-based

social networks, and indeed possibly to improve location prediction of mobile phone

users too, which has technological applications in areas such as targeted advertising,

mobile web search, and dissemination of location-aware content [dLM13].

4.4 Discussion

The varying use of different kinds of spaces around the city for different purposes,

including meetings between groups of friends, was shown in my analysis above both

in terms of the finding that the likelihood that two people colocated in a given space

are friends appears to be connected to the nature of the place, e.g., people colocated

at a Residence venue are more likely to be friends than people at a Transport venue,

and also in terms of the finding that visits to some kinds of places such as Arts and

Entertainment venues and Nightlife venues are more likely to be made with friends

than visits to other kinds of places. This is in agreement with the observation by

Kostakos et al. [KOP+10] that some spaces, such as pubs and offices, are more likely

to host encounters between groups of people who know one another than other kinds

of places, and extends that work by analysing multiple cities and showing the same

patterns that Kostakos et al. found in their study of Bath, UK. The model presented

above for place-based social networks in cities makes use of this idea by using the

category of a place to determine the probability that people with that place in common

have a tie in the social network, and running the model without this aspect results

in a social network without the empirically observed levels of clustering and strength

of community structure. While this is not sufficient evidence to draw conclusions

about causal relationships between the spatial and community structures of city-level

social networks, it does suggest that there might be fruitful research to be done in

this direction that might be easier, with today’s easily available location data from

technological social networks than it has been in the past.

My analysis of the differences between the places where people go when with

groups of their friends and those where they go more generally showed similar patterns

for both the LBSN dataset and the telecoms dataset, with people being more likely to

stay closer to familiar locations when with friends, and being more likely to visit places

with friends where the group’s wider circle of friends have also been. However, in the
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Foursquare dataset it appeared more likely that pairs of friends visit new places than do

people on their own, while in the telecoms data the opposite behaviour was seen. Upon

further investigation, considering only pairs in the telecoms dataset the same behaviour

is observed as in Foursquare, while larger groups seem more likely to visit places they

have been to before, which might be understood in terms of the confidence to explore

new places inspired by the presence of a peer having to be balanced by the additional

difficulty in coordinating a larger group. It seems likely that these differences in the

use of urban spaces by individuals and by groups, and the characteristics group and

individual mobility, could potentially be used to improve technological applications

such as the venue recommendation task common in LBSNs that I have explored here.

4.4.0.3 Limitations

Similarly to the results for inter-city scale groups examined in Chapter 3, there are

some points that must be considered when interpreting these results and drawing con-

clusions. As mentioned in Section 3.5, the analysis of the behaviour of Foursquare

users in this chapter is only certain to be relevant to those Foursquare users it concerns,

who are by their nature as users of the service not representative of a general popu-

lation, and similarly for the mobile phone users whose behaviour is reflected by the

telecoms data. Therefore these results should not be used to draw general conclusions

about social and mobility behaviour but instead taken in the context of the technolog-

ical service concerned; as I have shown, for applications within such services, such as

venue recommendation for groups in LBSNs, the results could be useful. Additionally,

it is possible that some of the patterns seen in Foursquare check-ins do extend outside

the specifics of the services, since building on Cho, Myers, and Leskovec’s observation

of considerable similarity between the mobility patterns in some LBSN datasets and in

mobile telephone network data [CML11], I have shown similarities also between the

mobility behaviour of groups seen in the Foursquare dataset analysed in this chapter

and the dataset from the mobile network operator.

4.5 Summary

In relation to the thesis that the relationship between physical space and social groups

at different scales can be exploited to create or improve technological social applica-
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tions, I have explored in this chapter the role of space in groups at the scale of cities,

by analysing one dataset from the online location-based social network Foursquare and

one from a mobile telephone network in Portugal. The results show differences in the

use of places around a city by groups and individuals, and suggest that some kinds of

places have a greater propensity to host meetings between social groups than others. I

have showed how these differences in group and individual mobility behaviour might

have uses for applications such as venue recommendation, which is an important task

in today’s location-based online social networks; in particular, it might be beneficial to

make recommendations taking into account whether a user is looking to go somewhere

by themselves or with a group. Given that venue recommendation is just one appli-

cation that benefits from improvements in location prediction, the mobility behaviour

of social groups in cities could most likely also be used to improve other such appli-

cations such as dissemination of location-aware content or returning relevant mobile

search results.
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Chapter 5

Social groups in building-scale
networks

Having examined the role of space in social groups at inter- and intra-city scales, in

this chapter I focus on groups at the scale of a single building. In the last chapter, I

showed that some kinds of places around a city (e.g., venues in Foursquare’s Entertain-

ment, Food, and Nightlife categories) are particularly important for meetings between

friends. Is the same phenomenon observed for the different types of spaces in indi-

vidual buildings? Does more social interaction take place in informal areas such as

cafeterias than in office spaces, for example?

Research in this area tends to face difficulties not because of the lack of data that

has posed problems in the case of the study of the larger-scale networks, but more

due to the difficulties in observing people going about their daily lives without causing

them to change their behaviour [Why43], as well as indoor localisation historically

having been difficult [DCC12]. Modern ubiquitous sensing technology can now help to

address this, by enabling unobtrusive, automatic sensing of people’s social interactions

and their location within the buildings they occupy.

In this chapter, I analyse a dataset of social interaction and location traces collected

using electronic badges worn by people in a workplace environment. I study the sensed

behaviour of the same sample of employees in two different workplace buildings, and

examine how the physical spaces available may affect face-to-face communication in

such an environment. Specifically, I study in which spaces of the buildings contacts be-

tween members of different working groups take place, and likewise contacts between
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members of the same groups. I examine the types of contact taking place in different

kinds of space such as offices, meeting rooms, and cafeterias, and show how the avail-

ability of such spaces may have an impact on the numbers of intra- and inter-group

contacts in the workplace.

In relation to my thesis, the results of this study show that space at the scale of a

single building, in this case, the workplace, can play a role in the interactions within

and between members of different groups due to the different activities that mem-

bers of these groups are involved in. Informal spaces such as cafeterias and coffee

rooms afford more opportunity for contact between groups, due to workplace teams

being functionally defined according to projects or areas of expertise so that designated

workspaces are most likely to host intra-group contact. Interaction between members

of different groups can be beneficial for innovation and productivity in the work envi-

ronment [Bur04, Pen12], and so these informal spaces may play an important role in

their propensity to host unplanned encounters between employees who might not work

together. It is clear that with recent and continuing advances in ubiquitous sensing that

there is scope for new technological applications involving the automatic monitoring

of these effects, to enable managers to understand and maintain the ‘communication

health’ of their workplaces in terms of contact within and between groups of employ-

ees.

5.1 Effects of space on the communication of workplace

groups

In the field of architecture, the effect of the nature and layout of spaces on the be-

havioural patterns of people is an important factor in building design. Significant ef-

fort has been put into understanding how the physical space of workplaces can directly

affect how often employees meet one another and interact face-to-face [AH06]. Com-

munication between employees is a vital factor in the operation of an organisation, and

even in today’s technologically connected world, face-to-face interactions remain cru-

cial for the exchange of ideas and information [Pen12, SS12]. It is therefore unsurpris-

ing that building spaces that facilitate such interactions is a significant consideration in

architectural design.
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Measuring the impact of a workplace building layout on face-to-face communica-

tion is an important step, not only to validate architects’ objectives, but also to enable

the evaluation and reconsideration of traditional design principles. Studies in architec-

tural design, such as the work of Thomas Allen [AH06], consider how organisational

structure and spatial configuration of work environments combine to influence commu-

nication between employees. However, these studies suffer from a crucial shortcom-

ing: they lack reliable means of measuring face-to-face interactions in the workplace.

Traditional approaches to evaluating the use of spaces in buildings rely on ethnographic

studies where observers track employees over a period of time, or on self reports and

surveys. Both approaches can deliver biased results, either because participants alter

their behaviour when they know they are being observed [Why43], or because they

tend to offer socially desirable responses to surveys [BSBS78]. Furthermore, studying

the impact of a building’s layout on social behaviour is challenging considering the

large number of variables that can affect such behaviour. For example, different types

of organisational structure may affect social behaviour more significantly than space

layout.

In this section, I present the results of a study that addresses these two challenges:

firstly, data was collected using wearable sensing tags capable of capturing face-to-

face interactions and the actual locations of people. The tags are unobtrusive and

thus make it less likely that people will change their behaviour due to awareness of

being monitored. Secondly, the study was performed in a research institution in the

UK that moved from their old premises to a new purpose-designed building. Two

data collection deployments were performed, one in the old building and one in the

new. Considering that the set of additional variables, such as organisational structure,

remained unchanged, the results allow examination of the impact that spatial design

may have on inter- and intra-group interaction in a workplace.

The work described in this section relies on a theoretical premise established by

Thomas Allen [AH06], who defined three types of communication necessary in an

organisation. The first is communication for coordination, which takes place between

people working on the same project, in order to coordinate work activities. Second,

communication for information is necessary for people working in the same area to

keep up to date with developments in their field of expertise. It is intuitive that these

two kinds of communication should, in a typical office environment, take place in
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offices and designated meeting rooms, since the managers of most organisations tend

to be aware that these types of communication are crucial. When deciding who sits

where, they tend to arrange that people working on the same projects and in related

fields are near to one another.

The third type of communication is communication for inspiration, which, “In an

organisation that relies on creative solutions to problems,” Allen writes, “is absolutely

critical. It is usually spontaneous and often occurs between people who work in dif-

ferent organisational units, on different projects.” The criticality of these interactions

between members of different teams, who might not normally encounter one another

during their work, has been demonstrated by much other research [Bur04, Pen12].

It follows that as well as offices and meeting rooms, workplaces should include in-

formal spaces such as coffee areas, where unplanned encounters between employees

can take place, outside those meetings that would be expected given the formal or-

ganisational management structure and division into subgroups working on various

projects [KFRC90, WOOKP10]. Indeed, this idea is already being put into practice

by high-tech organisations such as Google, where “even the length of the lines inside

the cafeteria are designed to make sure Google employees talk to others they don’t

necessarily work with [. . . ] if there is no line, you won’t talk to anyone, you won’t

interact” [Hen13].

5.1.1 Dataset description

I analyse the relationship between the positions of people in a formal organisational

structure, and their interactions in the differing spaces of two different workplace build-

ings. The dataset consists of traces collected using RFID badges (Figure 5.1) worn by

the same employees in an industrial research lab for two periods of two weeks’ du-

ration each, with one data collection period in each of two different buildings. The

organisation was moving from an old building to a new, purpose-built building, which

had been designed with various aims concerning interactions between different groups

of people in mind, and so this analysis affords the opportunity to study the effect of the

spaces available in the two buildings on face-to-face interactions, and to assess whether

these aims may have been achieved.

Data collection involved the use of wearable RFID tags for the collection of face-
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Figure 5.1: One of the RFID tags used in data collection, worn on the chest as in the
deployments.

to-face interactions and location information. The aim was to use a technology that

was not obtrusive, and would not affect significantly the normal social patterns of the

participants. Measurements were captured by active RFID badges [CVdBB+10] worn

on the body. The badges are lightweight radio transceivers, programmed to transmit a

beacon periodically (every 1 second), and to listen continuously for beacons from other

badges nearby. The badges are configured to transmit low signal strength beacons

that were experimentally evaluated to have a range of 1.5m - 2m with clear line-of-

sight. When worn by participants, the beacons are shielded by the body, meaning that

successful communication can occur only when another badge is facing that of the

participant. In this way, the tags can assess continued face-to-face proximity between

users.

Data collection also involved the capture of location information. A number of

RFID tags were placed on the walls of the workplace buildings and were configured to

transmit beacons of greater signal strength than the badges worn by the participants,

achieving a range of around 3m - 5m. Location tags were deployed in each participant’s

office, in meeting rooms, in laboratory spaces, and in communal areas such as cafés,

kitchens, and common rooms. The dataset therefore also contains traces that can be

used to approximate the locations where face-to-face interactions took place.

The dataset contains location and interaction traces collected from the same sample

of 24 employees in both buildings. The first data collection deployment was performed
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in November 2012, where participants were tracked for 2 working weeks, and 59 room

tags were deployed across 3 floors of the target building. The deployment captured

1669 unique face-to-face contact occasions. The company moved to the new building

in January 2013, and the second study was conducted in June 2013, allowing enough

time for the participants to settle in the new environment. The second study again

collected traces for approximately 2 weeks, using 84 room tags covering 3 floors of

the new building, and the deployment captured 2693 unique face-to-face contact occa-

sions.

5.1.1.1 Pre-processing

Before performing the analysis, a certain amount of processing of the raw data was

necessary. I work under the assumption that continued face-to-face proximity is a good

proxy for a social interaction between users. Specifically, I consider an indication of

social interaction the presence of two individuals facing each other at a distance of no

more than 2 metres, for a duration of more than 30 seconds. Defining the distance

threshold for such matching to be 2m (the configured range of the radio transmission)

makes the likelihood of false positives in the dataset negligible. Reducing the number

of false negatives (face-to-face proximity not detected by the tags) can be controlled by

using time windows within which detected beacons can be considered as indicators of

proximity for that duration [PBC+11]. I use a 2-minute time window, having verified

that 5-minute and 10-minute windows did not significantly alter the findings presented

here. I consider as contacts only traces where at least 2 beacons are received 30 seconds

apart, thus avoiding counting very short contacts, such as when two people pass one

another in the corridor without stopping.

The short communication range of the tags means that the dataset as collected

does not include contacts between larger groups of people interacting in a larger space

(e.g., in a meeting). I compensate for this by applying a transitivity property over the

original dataset: if participant P1 is in contact with participant P2, and at the same time

participant P2 is in contact with participant P3, then P1 and P3 can be considered to

have been part of the same group interaction.

I establish the approximate location where an interaction takes place by considering

the traces of static tags received by all participants in a meeting. I apply a simple

voting scheme over the number of static tag beacons received by all interacting users
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within the specified time window. Using the ID of the static tag with the highest

number of beacons received, I assign the type of this location (office, meeting room,

cafeteria, etc.) to that interaction. In the vast majority of cases the most probable

location is clearly distinguishable in this way, with a much higher number of beacons

received from one room tag than from the others. In the remaining cases, the potential

alternative rooms are of the same type as the top one (this tends to occur with different

offices near to one another). Using the static tag with the highest number of received

beacons allows the identification of a type of location where a meeting took place, even

though in some cases it is not possible to pinpoint the exact location.

5.1.2 Aims in design of the new building

The new building was designed and built specifically for the research institution in

question, with the architects having particular intentions with respect to the use of the

space. The key design decisions focused on enabling more interaction between people

from different research groups who might not usually encounter one another: in terms

of Allen’s types of communication, communication for inspiration.

The most obvious difference between the two buildings in this respect is the pres-

ence in the new building of a central cafeteria area located away from the office spaces,

where employees can buy food at lunchtime, and meet for coffee (see Figure 5.2). The

best two coffee machines, having coffee of the same quality as in commercial coffee

houses, were deliberately placed on the ground floor, opposite to the main entrance,

so that most people would have to walk past in the morning. It was expected that

the quality factor would encourage people to gather in the cafeteria for good coffee,

where they would have a greater chance of serendipitous encounters than in the smaller

kitchens upstairs. The kitchens on the individual floors were not provided with equiva-

lent quality machines to bring this into effect. In the old building, there was no cafeteria

serving food as in the new building; instead people would commonly buy food from

elsewhere, or bring it from home, and eat it in kitchen spaces close to their offices.

There was a kitchen where many people would eat, but, as one of the participants in

the study commented, “it was not the same as having a café, as people also ate in other

spaces throughout the building.”

To a similar end, there was also a general aim in the design of the building to
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(a) New building
Office space 

Open-space desks and  
collaboration areas 

Meeting rooms 
Labs and workshops 
Kitchens, printers, mail  
rooms. 

Other (rest rooms, stairs,  
storage) 

(b) Old building

Figure 5.2: Building layouts. The figures show the ground floor (left) and first floor
(right) of the two buildings. Different colours indicate the type of space in each build-
ing, e.g. offices, meeting rooms, kitchens.
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encourage increased use of shared spaces, as opposed to individual offices. Lab spaces

were made bigger in the new building so that they might accommodate more people

from different groups. There are lots of open areas and mini conference rooms without

doors, in order to encourage groups to meet in these shared spaces, rather than in their

own offices. It is probable that most meetings in these kinds of spaces would be related

to work, and thus likely to be for the purpose of communication for information and

communication for coordination.

5.1.3 Methodology

I investigate whether these differences in the physical space of the new building are re-

flected in the patterns of interactions between its occupants. I first study whether there

is more communication between different subgroups in the organisational hierarchy in

the new building, in accordance with the aims of the architects. I then examine in more

detail the use of different kinds of spaces (offices, meeting rooms, kitchens, and so on)

in the two buildings, and which spaces might be important for interactions within and

between groups.

5.1.3.1 Impact of building space on face-to-face contacts

I use the management structure shown in Figure 5.3 to define subgroups, and consider

three such groups, one corresponding to each of the three components present in the

graph. I first quantify inter-group contact by measuring the proportion of contact pairs

that are intra- and inter-group: one would expect that there will be a higher proportion

of contact pairs inter-group in the new building, given the emphasis in the building’s

design on shared spaces to facilitate inter-group contact.

I further analyse communities in the contact graphs, since in terms of the flow of

ideas and information, a less modular structure or one with more connections between

communities would be advantageous [For10]. I first find k-clique communities in the

network, defined to be the union of all cliques of size k in the graph that can be reached

through adjacent (sharing k−1 nodes) k-cliques [DPV05], and compute the proportion

of edges in the contact graph that exist within and between communities, for varying

values of k. If the new building space promotes inter-group interaction as the architects

intended, the proportion of inter-community edges should be higher for the contact
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Figure 5.3: The structure of the subset of the organisational management hierarchy
made up of the individuals participating in the study. Circles represent the participants,
and arrows indicate the ‘is managed by’ relationship.

graph from the new building than that for the graph from the old building.

I also run the Louvain algorithm for community detection [BGLL08] on the con-

tact graph, and compute the modularity Q of the best partition found by the algo-

rithm, a measure of the strength of the community structure of the network (see Section

4.1.2.4). I choose this algorithm because, having examined the overlapping commu-

nity structure of the network using k-clique analysis, it is also interesting to examine

a single good partition of the network into communities, as is found by the Louvain

algorithm, and to have a way of quantifying the modularity of the partition, which is

in this case computed by the detection algorithm itself. If the aims of the architects

were achieved, one would expect that in the new building there would be a less strong

community structure to the contact graph due to increased mixing between different

groups of people, and therefore the value of Q would be lower than that seen in the old

building.
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5.1.3.2 Different kinds of spaces and inter-group interactions

It is well-known that areas in which people can gather together to eat and drink are

often important hubs for the kind of social contact and chance meetings that are so

beneficial for the exchanges of ideas and information [AH06, ITM96]. Therefore it is

unsurprising that the architects of the new building study envisaged that the cafeteria

would promote interaction between people in different groups who might not normally

encounter one another.

I test quantitatively the importance of food and drink spaces for inter-group inter-

actions by computing the number of contacts taking place in different kinds of spaces

(e.g., offices, meeting rooms, kitchens) within the two buildings over the course of the

working day. One would expect that in the new building, the impact of the cafeteria

would manifest as an increase in the number of contacts occurring over the lunch hour

(12-1pm). I further investigate the importance of lunchtime for inter-group contact by

comparing the proportion of contact pairs that are between individuals from different

groups in all of the data for each building, and in the same data but with the lunch hour

removed. In both cases, the proportion of communicating inter-group pairs should go

down when lunchtime is excluded from the analysis.

I then specifically investigate the proportion of inter- and intra-group contacts that

occur in different kinds of spaces in the old building and in the new building. One

would expect that in the new building, a greater proportion of inter-group contacts

would occur in kitchen areas (which include the cafeteria) than in the old building, and

also that these proportions would reflect the inclusion of more meeting rooms in the

new building to encourage colleagues to venture away from their own offices in order

to hold work-related meetings.

5.1.4 Results

5.1.4.1 Impact of building space on face-to-face contacts

In the new building, 76.1% of pairs were cross-group, increased from 58.8% in the old

building. This suggests that the aim of the architects to design the building to promote

mixing between people who might not encounter one another otherwise may have

been successful, and that there might be more opportunities for communication for

inspiration in the new building. Figure 5.4 shows a visual representation of the extent
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(a) Old building, with lunchtime (left) and without lunchtime (right)

(b) New building, with lunchtime (left) and without lunchtime (right)

Figure 5.4: Inter- and intra-group contact pairs in the old and the new buildings, with
and without lunchtime. Each row and column corresponds to an individual, and the or-
dering of individuals is by group so that adjacent rows (columns) represent colleagues
in the same group. Group boundaries are shown by the blue lines. A dark square
indicates that contact was recorded between the individuals concerned, and a white
square indicates no recorded contact. A more ‘blocky’ structure suggests less inter-
group mixing. The total duration of recorded contact is reflected by how dark a shaded
square is, with the durations normalised by the total time that the individuals concerned
were recorded as being in the building and also according to the maximum recorded
duration, so that the values shown are the proportion of their time in the building that
the corresponding individual spent in contact with another, as a fraction of the maxi-
mum such proportion. The increase in inter-group contacts in the new building is clear.
The figures on the right show fewer inter-group contacts than those on the left, which
demonstrates the importance of lunchtime for social contact in both buildings.
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Figure 5.5: Proportion of intra-community edges that are between individuals in the
same group, for varying values of k used in the k-clique algorithm for community
detection. The proportion of same-group intra-community edges is lower in the new
building than in the old building.

of this effect, in the form of netgraphs [AH06]. Each row and column corresponds to an

individual, and the ordering of individuals is by group so that adjacent rows (columns)

represent colleagues in the same group. Group boundaries are shown by the blue lines.

A dark square indicates that contact was recorded between the individuals concerned,

and a white square indicates no recorded contact. A more ‘blocky’ structure suggests a

lower level of inter-group mixing. The netgraphs make clear the extent to which more

inter-group mixing is encouraged by the design of the new building, with many more

dark squares outside the blue lines indicating contact between individuals in different

formal subgroups.

Figure 5.5 shows the results of k-clique analysis of the contact graph. Specifically,

I plot, for varying values of k, the proportion of intra-community edges in the contact

graph that are between individuals in the same subgroup. The proportion of intra-

community edges connecting those in the same group is lower in the new building

than in the old building, for all of the values of k. This implies that the community

structure of the contact graph is less constrained by the formal group structure and

therefore that the new building space may indeed encourage more opportunities for
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Old building New building
Group A Floor 1 Floor 3
Group B Floor 2 Floor 3
Group C Floor 1 Floor 1

Table 5.1: Office locations of groups in the two buildings.

mixing between individuals in different groups.

I further confirm this result by checking the modularityQ of the best partition of the

contact graphs found by running the Louvain community detection algorithm [BGLL08].

A larger value indicates a stronger community structure, with values of around 0.3 or

more being considered high.

The measured value of Q for the best partition of the contact graph in the old

building was 0.324, compared to 0.145 for that in the new building. This suggests

again that the community structure is less modular and that there are more contacts

that are outside usual meeting groups.

5.1.4.2 Different kinds of spaces and inter-group interactions

Before examining the impact that different location types may have on inter-group in-

teractions, I assess the extent to which the distribution of offices across floors may

affect communication. Previous work has indicated that splitting employees across

floors may have a significant impact in social interactions, mostly in traditional build-

ing designs [SM11]. Of the individuals involved in this analysis, each was on the same

floor as the rest of their group, but some groups shared a floor and others were on

different floors. Table 5.1 shows the allocation of groups to floors in each of the two

buildings: group pairs A and C in the old building, and A and B in the new building,

are located on the same floor.

In order to assess how this distribution may have affected interactions I calculate

the number of inter-group interactions for each pair of groups in both buildings. I

normalised the values by the product of the sizes of the groups involved, to account for

the number of possible pairs:

NAB =
CAB
|A| · |B|

whereNAB is the normalised number of inter-group contacts for groups A andB, CAB
is the absolute number of inter-group contacts, and |A| and |B| are the sizes of the two
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Figure 5.6: Inter-group contacts, by location. The labels on the horizontal axis show
the pairs of groups, in green for groups located on the same floor, and in red for those
on separate floors.
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Old building (%) New building (%)
Food 28.0 (3.7) 37.4 (9.4)
Meeting 28.8 (24.4) 12.3 (34.0)
Office 38.7 (65.5) 45.5 (51.5)
Public 3.8 (5.1) 4.3 (3.7)

Table 5.2: % of inter-group (and intra-group, in parentheses) meetings that take place
in each kind of space, in the old building and in the new building. Inter-group contacts
far exceed intra-group interactions in Food spaces.

groups. Figure 5.6 shows the normalised number of inter-group contacts in the two

buildings. The graphs show that in the old building, floor allocations were a strong

factor in inter-group interactions. Indeed, the vast majority of inter-group interactions

take place between groups A and C, with offices on the same floor. In the new build-

ing, there is an increase in inter-group interactions for all the pairs. Groups A and C

have maintained the same level of interaction although they are now located on differ-

ent floors, while groups B and C show a 7-fold increase compared to the old building,

despite being located on separate floors. This increase is higher than the 3.5-fold in-

crease in interactions between groups A and B, which are located on the same floor.

These results suggest that in the new building the distribution of offices across floors

is not such a dominant factor in determining the interactions between groups. The

graphs also suggest that interactions in food areas may be more important in the new

building. I investigate further the importance of food spaces by examining the impact

of lunchtime on inter-group interactions, by comparing the contact pairs comprising

people in different groups previously shown with the same when excluding lunchtime

(12-1pm) from the analysis. The right-hand side of Figure 5.4 shows the results; in

both buildings, inter-group contacts decrease when lunchtime is excluded, demonstrat-

ing that lunchtime, and therefore most likely contact in spaces for eating and drinking,

is indeed somewhat important for contact between people in different groups. Figure

5.7 demonstrates this effect by showing the numbers of contacts detected between par-

ticipants in different kinds of spaces (food and drink areas, meeting rooms, offices, and

public areas) during different hours of the day. The impact of the cafeteria in the new

building is clearly visible as a sharp increase in the number of contacts taking place in

Food spaces during the hours of 12-1pm.

I finally examine directly the proportion of inter-group contacts that occur in each
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Figure 5.7: Number of contacts in different kinds of spaces, by hour of the day. The
impact of the cafeteria in the new building is clearly visible, with a large increase in
contacts in Food spaces between the hours of 12-1pm.
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kind of space. Table 5.2 shows the results from each building. In the new building, a

greater proportion of inter-group contacts take place in food areas than before, which

suggests again that the intention of the architects for the cafeteria to function as some-

where where people in different groups have the opportunity to meet one another has

been realised. Furthermore, the proportions of inter-group contacts that take place in

Food spaces far exceed the proportions of intra-group interactions that take place in

Food spaces in both buildings: in the old building, while only 3.7% of intra-group in-

teractions take place in Food spaces, 28.0% of inter-group interactions happen there.

In the new building, 9.4% of intra-group contacts occur in Food spaces, compared

with 37.4% of inter-group interactions, which provides some quantification of the im-

portance of food and drink areas for inter-group encounters. The table also shows

the proportions of intra-group contacts that take place in each of the different kind of

spaces. The majority of these contacts occur in meeting rooms and offices, which is

expected given that such contacts are likely to be those comprising what Thomas Allen

refers to as communication for coordination and communication for information. More

of these contacts take place in meeting rooms in the new building than in the old build-

ing, which suggests that the architects’ aim of encouraging more meetings in shared

spaces, away from individuals’ own offices, was indeed met in the realisation of the

design.

5.2 Potential applications: encouraging effective work-

place communication

The study reported in this chapter demonstrates the use of ubiquitous sensing technol-

ogy to monitor changes in face-to-face communication patterns between employees

influenced by the spaces provided by their workplace building. It is not difficult to

see that such information could be used fruitfully to provide feedback to the employ-

ees themselves on their patterns of communication, or indeed to their managers, to

encourage people to take advantage of the possibility of encounters with those they

might not normally meet or opportunities to interact informally with their teammates.

A prototype use of sensing technology to monitor workplace communication was

the use of sociometric badges by Kim et al. [KCHP08], who discussed the use of
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electronic badges capable of sensing interactions between members of a group dur-

ing meetings, and how this information could be presented back to the group mem-

bers to make them more aware of the extent to which they dominated conversation

or perhaps did not contribute as much as they would like to. Similarly, Rachuri et

al. [RMMR11] implemented a platform for sensing interactions between colleagues

using smartphones, which made use of a web interface to present the sensed informa-

tion to the users of the application. In the light of the results that I presented above,

which suggested that the space of the new building encourages inter-group commu-

nication, it would be possible to extend these location-agnostic social sensing plat-

forms to make use of location data as well as social information. The combination

of sensed social and location information could then be presented to employees and

to their managers to help visualise where and with whom people communication, and

to use awareness of this to balance communication within and between teams in the

workplace or encourage the use of different building spaces that favour particular kinds

of communication.

To give an example of such an application, it would be possible to create maps

of workplace floor plans reflecting the extent to which each area hosts conversations

between those at different positions in the formal organisational structure, and there-

fore which kinds of communication (for coordination, information, or inspiration, in

terms of Thomas Allen’s work) are most likely to take place in which kinds of space.

Similarly, it would also be possible to monitor using the same technology the kinds

of interaction in which an individual engages over the working day, and to make

this information available to the employees, to encourage them to balance the three

kinds of communication to meet their working needs. For example, one could cre-

ate graphs showing how a research group is connecting within their own team and

also how well-connected they are with other teams, both of which have been shown

to be important in the workplace [Pen12]. It would then be possible to measure the

impact of this feedback on organisational productivity, adding to branches of research

investigating how ubiquitous computing can be used to nudge people to change their

behaviour [RHM+10].

Of course, the ability to track social interactions in the workplace and the potential

display of data from this monitoring raises further questions about privacy, how happy

employees would tend to be about being tracked in this way with the potential for
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others to see their data, and whether this in itself would cause behaviour to change.

All of these issues could be ground for further research before this type of technology

became widely deployed in workplaces, but these issues also make it difficult at present

to study on a large scale the influence and effects that such technology could have. At

present, research is ongoing into people’s willingness to share their location at any one

time [TLH+10, TCD+10, TKCS10], and it still remains to address these issues as they

might affect the day-to-day monitoring of all employees within an organisation, but in

the future, one could imagine every member of staff wearing a sensor badge, creating

what Pentland calls a ‘God’s-eye view’ of the workplace [Pen12].

5.2.1 Discussion

This particular study helps to fill a gap in the body of work involving the interaction

between physical space and formal organisational structure to influence face-to-face

encounters between individuals in the workplace. Specifically, I have used the advan-

tages of modern ubiquitous sensing technology over methods such as manual observa-

tion and self-reports to measure face-to-face encounters, in a direct comparison of the

communication behaviour of the same employees from the same organisation in two

different physical workplace buildings. It is usually difficult to obtain suitable data for

studies such as this one due to the infeasibility of simply moving an organisation from

one building to another for the purposes of an experiment, owing to the high time, ef-

fort, and financial costs, and the fact that studies comparing organisations in different

kinds of buildings cannot account for all the possible organisation-specific variables

that might affect the validity of comparisons. Furthermore, while it is possible to study

the effect of spatial configuration within a single organisation at lower cost, by simply

changing office layout, for example, a fundamental aspect of this analysis is the nature

of the spaces provided by the building (e.g. number and location of meeting rooms,

food and drink areas, etc.), which cannot be changed without altering the building

itself.

The experiment described above provides a rare example of a direct comparison of

two different workplace buildings and the impact of the space on the communication

of and potential for interaction between the same employees, in conjunction with the

formal organisational structure. The results provide evidence building on the body of
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existing work on this subject, supporting the idea that communal spaces could be im-

portant to provide opportunities for communication for inspiration between employees

who may not work together and are in different organisational subunits, and that there

is demonstrably more potential for encounters in these spaces between those who may

not otherwise meet. The results also suggest that office and meeting room spaces are

most likely still important for communication for coordination and communication for

information between members of the same team, showing directly the value of both

kinds of spaces to allow all of the forms of communication important for a thriving

innovative organisation. Furthermore, the data suggest that the aims of the architects

to encourage more use of shared spaces – both by members of the same organisational

subunits, exemplified by the provision of more meeting rooms in the new building, and

by members of different teams, as in the case of the cafeteria – were met, which also

provides evidence that such architectural considerations can be of value, and that the

role of space for groups at the level of a single building may be important to consider

in building design.

These observations that different spaces in the building tend to have greater or

lesser potential to host different kinds of interaction and communication can be seen to

parallel the findings in Chapter 4, where I showed that some places around the city are

much more likely to be meeting places for friends than are other places. In particular,

the importance of the cafeteria in the workplace building for meetings between indi-

viduals who do not work together, but who may interact on a more socially-motivated

and less work-motivated level, mirrors the social nature of food-oriented places and

recreation venues in urban areas.

5.2.1.1 Limitations

There are a few points that should be remembered when interpreting the above results

and drawing further conclusions; one is that the requirements for recording a contact

using the active RFID badges are fairly stringent, and this may mean that while it

is possible to mitigate the problem of false negatives (failing to record an encounter

when one takes place) as outlined above, levels of contact occurring may have been

underestimated. However, this issue is consistent across the two measurement peri-

ods in the two buildings, since the experiment was set up in the same way using the

same technology, and so the comparison made is still valid, despite the fact that ab-
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solute numbers of contacts should not be taken as completely accurate. One should

also bear in mind that this is just one sample of one organisation, and should not be

taken as representative. Different organisations might be affected differently under the

same conditions; many more such studies would be needed in order to draw more gen-

eral conclusions. Furthermore, since this specific organisation is a research laboratory,

there may be specific characteristics of intra-organisational communication that might

be different in other types of organisation, for example, those that are more commer-

cial. Finally, this study concerned only the short-term impact of the different physical

workplace environment on face-to-face communication. Other studies have shown that

such face-to-face interaction between employees can have important effects on produc-

tivity and innovation [Pen12, SS12], but these are phenomena that require evaluation

over a longer period. I have dealt here only with communication patterns measured

over the short term, and not their longer-term consequences, but it would be possible

in the future to examine such effects.

5.3 Summary

In support of the thesis that the relationship between physical space and social groups at

different scales can be exploited to create or improve technological social applications,

in this chapter I have studied the use of space at the level of a single building by differ-

ent groups of people, in this case, colleagues in a workplace. The results of my analysis

showed that informal spaces such as kitchens and cafeterias afford more opportunity

for contact between groups, and that office and meeting rooms were in this case, as

expected, used more for meetings between people in the same group. All of these

types of communication are important in many workplace environments to enable co-

ordination and collaboration between people involved in the same projects as well as

the exchange of ideas between people who might not normally talk to one another. The

evidence of the particular role that building space plays, as well as the demonstration

of how it can be monitored using ubiquitous sensing technology, could be beneficially

applied in the future to assess the ‘communication health’ of a workplace and help

maintain effective interaction between employees, as well as informing the design of

purpose-built workplaces. While actual implementation of large-scale systems for this

purpose still faces privacy issues that are beyond the scope of my research, it is clear
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that with recent and continuing advances in ubiquitous sensing technology that there

is scope for such applications to help improve effective communication in the modern

workplace.
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Chapter 6

Conclusions

6.1 Thesis summary and contributions

In the preceding chapters I have presented and discussed the results of my research,

in relation to the thesis: the relationship between physical space and social groups at

different scales can be exploited to create or improve technological social applications.

These results, and the contributions they represent to build on the existing body of work

outlined in Chapter 2, are summarised below.

In Chapter 3, I analysed datasets from two online social networks with location

information, which have the potential for communities in the social network to span

across cities, or even around the world, given the ease of forming an online connection.

The results showed that although in some online social networks such as Twitter, ge-

ographical space may not be a crucial factor constraining social connections, location

still plays a role in the structure of online communities, an effect which may be more

pronounced in specifically location-based services, such as Gowalla, which showed

many communities whose members visit the same places offline. I then showed how

even though space appears less important in Twitter communities, there are groups of

friends in the Twitter network who do visit the same places, and presented a method for

extracting these groups. Finally, I demonstrated that being able to find such location-

based groups could potentially be applied to improve friend recommendation in online

location-based social networks.

This research into the spatial properties of global-scale communities in online so-

cial networks builds on earlier work that analysed the geographic characteristics of
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dyads, mostly in telephone communication networks but also online. It has histori-

cally been difficult to analyse larger groups in such networks due to lack of available

data on social networks combined with fine-grained location information, but now that

mobile Internet access and the huge popularity of online social networks makes data

much more readily available, such research is feasible to conduct.

In Chapter 4, I studied groups in social networks at the intra-city scale, by analysing

location-based social network and mobile telecoms data. I investigated clustering

around places in the social network and the locations where people tend to meet their

friends, and the results showed that many triangles exist in the networks such that their

constituent friends visit common places, which suggests that groups within cities may

be based around the places their members tend to frequent. My analysis suggests that

there may be differences between the mobility of people on their own and when lo-

cated with a group of their friends; in particular, the nature of the spaces in the city

where people meet seems to be important, with people much more likely to meet their

friends at some categories of places than others. I then showed how this idea can be

used to improve the application of venue recommendation in location-based online so-

cial networks, specifically, when making recommendations for a group of friends to

meet somewhere in the city, better results may be obtained by considering the group

as a unit rather than making recommendations for individuals and trying to combine

them.

This work on groups at the intra-city scale builds on previous work largely focused

around the application of Delay Tolerant Networks, where contacts between people in

a city and the community structure of the existing network are important for efficient

routing, but the nature of spaces themselves such as the categories of venues in LBSNs

have not generally been analysed on a large scale with respect to the groups, and ex-

plicit social ties such as those declared in an online social network are not as important

as actual face-to-face contacts, even if between ‘familiar strangers’ [Mil92]. Previous

work that has taken into account the types of spaces where people meet has also tended

to be on a smaller scale than that possible with location-based social network data, due

to using WiFi and GSM access points for localisation and Bluetooth devices such as

mobile phones to detect people’s location [KNY+09, KOP+10], making data collec-

tion more difficult in the past than it is now with location-aware online social services

covering many different cities. The group venue recommendation problem has also not
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previously been studied, with prior work on LBSN venue recommendation concerning

only single users.

Finally, in Chapter 5, I focused on the role of space for groups at a much smaller

scale, that of a single building. I studied the interplay between building space and face-

to-face interactions between employees in a workplace, by directly comparing two

sets of location and interaction traces collected using ubiquitous sensing technology,

from the same sample of people but in two different workplace buildings. The results

showed that different kinds of spaces are important for different kinds of communica-

tion within and between groups: interactions between people who work together, and

which are likely to be for information and to co-ordinate work, are likely to take place

in shared office spaces and meeting rooms, while informal spaces such as kitchens

and cafeterias are more important for encounters between people who do not normally

work together.

The investigation of the two different workplace buildings represents a first study

of the interplay between building space and face-to-face interactions that used the par-

ticular unobtrusive ubiquitous sensing technology, thus overcoming some difficulties

faced by previous work relying on self-reports and human observers. Furthermore, it

made use of an opportunity to study the same group of people from the same organi-

sation in two different buildings, which allows direct comparison between interactions

in the two buildings without having to account for other variables that might affect

comparisons involving different people working for different organisations. Opportu-

nities to conduct experiments such as this are rare due to the time, effort, and financial

cost involved in moving an organisation from one building to another, and combined

with the historic lack of suitably unobtrusive technology capable of sensing reason-

ably reliably both face-to-face interactions and location, this has meant that such a

direct comparative analysis of the interplay between two different building spaces and

interactions within and between working groups has not been possible before. This

research demonstrates that, since there is evidence that the factors I have studied are

involved with communication in the workplace, which is known to be crucial for or-

ganisational productivity and innovation, such sensing technology could be applied in

the workplaces of the future to monitor employees’ communication automatically and

provide them with feedback to help improve their interaction patterns. While investi-

gation of this idea on a large scale raises many privacy issues and is beyond the scope
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of my thesis, I have shown that such applications could be viable.

In summary, my research provides evidence that at least at present, space largely

remains inseparable from social groups despite the ease of space-independent com-

munication in today’s technologically connected world, whether at the global scale of

online social networks, or at the smaller scale of individual meeting places within a

city or in the context of an office building. Different communication technologies may

emerge and become obsolete, and the applications I have discussed and demonstrated

here are necessarily linked to those specific technologies current at the present moment,

but it does not seem implausible that the principle that the role that space plays in so-

cial groups at various scales may remain useful in technological social applications for

some time into the future.

6.2 Directions for future research

The research I have presented in this dissertation builds upon the foundation of previ-

ous work, as described above, but also raises some questions and suggests directions

for future research in the area.

An ongoing branch of enquiry might concern the changing role of space for social

groups as location-based technology becomes more widely adopted; while the findings

in this dissertation provide a picture of some aspects of the use of space by groups at

different scales at the present time, technology by its nature is developing all the time

and the situation may change as new ways to communicate emerge and make long-

distance social connections even easier to maintain than they are at present.

There are other technological applications of the role of space in social groups be-

sides those that I have demonstrated here that could form the focus of further research.

For example, some research has been done into what affects with whom people wish

to share their location [CRH11, PKK12, TLH+10, WKC+11], and also into group-

based privacy management in online social networks via the automatic detection of

groups [JO10, LVM+12]. Location-based groups such as those examined in Chapter

3 could potentially be used in this way to improve privacy controls in location-based

online services.

At the scale of a city as investigated in Chapter 4, my analysis showed differences

between individual and group mobility patterns, but the reasons behind these differ-
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ences remain unclear and so in order to understand the observed phenomena further

investigation is needed. It could be that by understanding the factors that drive group

and solo mobility, new mobility models taking these effects into account could be

derived, which would enable better location prediction and the improvement of associ-

ated applications such as targeted advertising, dissemination of relevant location-aware

content, and mobile web search results.

It also still remains to investigate on a large scale the application discussed in Chap-

ter 5, where I concluded that it seems likely that spatial factors do affect communica-

tion within and between groups in the workplace, and that it would be possible to

monitor using sensing technology the interactions of employees, and their locations,

in order to be able to maintain helpful levels of different kinds of communication and

promote productivity and the exchange of information and ideas. Further research is

required into the privacy concerns that would arise from such a monitoring system,

and also of the kinds of feedback that it would be helpful to provide to employees

about their communication behaviour in order to enable them to manage their interac-

tions most effectively. Finally, it would be interesting to study the interplay between

space and social groups in buildings other than workplaces such as those I discussed

in Chapter 5, using the same methods of automatic data collection using ubiquitous

sensing technology.
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[PBC+11] André Panisson, Alain Barrat, Ciro Cattuto, Wouter Van Den Broeck,

Giancarlo Ruffo, and Rossano Schifanella. On the dynamics of human

proximity for data diffusion in ad-hoc networks. Ad-Hoc Networks,

2011.
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