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ABSTRACT

Providers such as YouTube offer easy access to multimedia
content to millions, generating high bandwidth and storage
demand on the Content Delivery Networks they rely upon.
More and more, the diffusion of this content happens on
online social networks such as Facebook and Twitter, where
social cascades can be observed when users increasingly re-
post links they have received from others.

In this paper we describe how geographic information ex-
tracted from social cascades can be exploited to improve
caching of multimedia files in a Content Delivery Network.
We take advantage of the fact that social cascades can prop-
agate in a geographically limited area to discern whether an
item is spreading locally or globally. This informs cache re-
placement policies, which utilize this information to ensure
that content relevant to a cascade is kept close to the users
who may be interested in it.

We validate our approach by using a novel dataset which
combines social interaction data with geographic informa-
tion: we track social cascades of YouTube links over Twitter
and build a proof-of-concept geographic model of a realis-
tic distributed Content Delivery Network. Our performance
evaluation shows that we are able to improve cache hits with
respect to cache policies without geographic and social in-
formation.
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1. INTRODUCTION

The amount of Internet traffic generated every day by on-
line multimedia streaming providers such as YouTube has
reached unprecedented numbers [3, 7]. These providers of-
ten rely on Content Delivery Networks (CDNs) to distribute
their content from storage servers to multiple locations over
the planet. CDN servers exchange content in a cooperative
way to maximize the overall efficiency.

Nowadays content diffusion is fostered by weblinks shared
on Online Social Network (OSN) posts, which may often
generate floods of requests to the provider through the cas-
cading across a user’s social links. For instance, more than
1 billion pieces of content are shared each day on Facebook.
This type of “word-of-mouth spreading” occurring in OSNs
may already be driving a large part of the daily requests to
content providers. Even if the proportion of traffic generated
by social spreading is difficult to estimate, on Twitter there
are more than 400 messages per minute with a YouTube
link [17]. Given the increasing size of Twitter and other
OSNs, they may generate millions of accesses to YouTube,
accounting for a consistent fraction of the total number of
daily requests. The resulting load on a CDN is exacerbated
by all those users who see the links and who might request
the content, even if not reposting it.

However, OSNs are increasingly becoming location-aware,
allowing users to share information about their geographic
locations. There are OSN services based on the idea of ad-
vertising the exact user location, such as Foursquare and
Gowalla. Similarly, Twitter has always provided its users
with the option of sharing some information about their lo-
cation, with a considerable proportion of them already doing
so. The availability of geographic information for popular
online social networks opens unprecedented opportunities to
enhance engineering of world-wide systems based on human
communication and interaction [12, 14, 2, 15].

In fact, in this paper we show how geographic information
extracted from social cascades over OSNs can be exploited
to improve the design of large-scale systems, such as CDNs.
We rely on this novel finding: social cascades are likely to
spread on geographically local distances. Users tend to share
content over short-distance social connections, despite the
presence of several long-range links: although many users
exhibit these long-distance connections, we have found that
still about 40% of steps in social cascades involve users that
are, on average, less than 1,000 km away from each others.



Our key idea is that content should be kept within servers
which are close to users that are interested in it, minimizing
the impact on network traffic. In other words, since content
servers act as caches of items, we aim to introduce geo-social
characteristics of the users that are sharing the content in
the design of large-scale systems such as CDNs, so that we
can serve more requests immediately from the closest server
rather than waiting for the content to be transferred to the
server from somewhere else.

In order to validate our approach, we use a movel and
unique geo-social dataset from Twitter containing geographic
location, follower lists and tweets for 409,093 users. Then,
we have tracked the spreading of more than one million of
YouTube videos over this network, analyzing a corpus with
more than 334 millions messages and extracting about 3 mil-
lions single messages with a video link. Finally, we have de-
signed a proof-of-concept CDN model using the geographic
properties of the commercial CDN once used by YouTube,
Limelight. We show how cache replacement policies driven
by geo-social metrics improve the system performance.

Our contributions can be summarized as follows:

e We present an extensive study of information dissem-
ination on a novel geo-social dataset gathered from a
largely popular OSN (Twitter): by taking into account
user geographic information we are able to investigate
the extent of social cascades and to characterize them
over space and time.

e We propose to enhance large-scale system design with
geo-social properties of social cascades, and we build
a proof-of-concept CDN model where content cache
replacement strategies exploit these properties.

e We validate our approach through simulation: we gen-
erate realistic workloads extracted from messages in
our dataset and we show how geo-social information
can improve cache performance with respect to stan-
dard replacement policies.

The paper is structured as follows: Section 2 motivates
the work describing the problems of current CDNs, while in
Section 3 we describe the geo-social properties of our T'witter
dataset. Section 4 illustrates how geographic social cascades
of YouTube links extracted from our Twitter dataset spread
over space. Strategies to improve content provision based
on social cascades are presented in Section 5 along with a
CDN geographic model, while Section 6 reports the results
of our evaluation of the model. In Section 7 we discuss the
implications of our results and in Section 8 we offer a review
of related work, concluding the paper with Section 9.

2. IMPROVING CDN PERFORMANCE

A Content Delivery Network (CDN) is a system of net-
worked servers holding copies of data items, placed at dif-
ferent geographic locations. The aim of a CDN is to effi-
ciently deliver content to clients: each request is served by
a geographically close server, while content is moved across
servers to optimize the quality of service perceived by users.
Modern commercial CDNs deploy numerous servers all over
the Internet, often over multiple backbones and ISPs, and
offer their services to other companies which want to deliver
content to users on a planetary scale, such as dynamic Web
pages, software updates, multimedia content, live streams
and so on [11].

2.1 Factors Impacting CDN Performance

CDNs have become progressively more important: the
number of users with broadband Internet connections is con-
stantly increasing and, along with faster connectivity, come
greater expectations for better content delivery. As an ex-
ample, requests of video content over the Web are more
than 1 billion per day. Even if exploiting additional re-
sources provided by CDNs, this demand puts a consider-
able pressure over the entire Internet. This issue becomes
even more important if we consider future trends: as the
size of distributed content keeps growing, the distance be-
tween server and client becomes more critical to the overall
performance, since longer distances increase the likelihood
of network congestion and packet loss which result in longer
transfer times [11].

In addition, the geography of the requests influences the
performance of CDNs: it would be extremely useful to un-
derstand whether an item becomes popular on a planetary
scale or just in a particular geographic area. A globally
popular content item should be replicated at every location,
since it experiences many requests from all around the world.
On the other hand, when content is only locally popular, it
should be cached only in the locations that will experience
most requests. The key to such a strategy is being able to
predict quickly whether a piece of content is becoming lo-
cally popular in order to optimize its placement over the
CDN before it undergoes the popularity surge.

2.2 Improving CDN Performance through So-
cial Cascades

The popularity of content over the Web can be driven
by public media coverage or through word-of-mouth spread-
ing [4]. The former takes place when content is advertised
by large information sources, such as search engines, news
and social aggregator websites (i.e., SlashDot, Reddit, etc.).
This type of phenomena often results in globally popular
items, which should be widely replicated throughout a CDN,
since they are likely to experience requests from all over the
world. On the other hand, content may become popular be-
cause people share it and talk about it, leading to some sort
of viral spreading along social connections. These connec-
tions may be real-life contacts or interactions on online social
networks, with the latter becoming increasingly common.

As a result, content may easily spread from a small set
of users to a vast audience through social cascades [4]. The
amount of content requests generated by these social cas-
cades is hard to estimate. In our analysis of a real Twitter
dataset, we have found that about 1% of Twitter messages
contain a link to a YouTube video. This suggests that a
potentially large number of content requests might be gen-
erated by a cascade. The combined effect of the popularity
of several online services may cause millions of such requests.

Social cascades can be tracked and analyzed: OSNs can
provide all the information, including user location, to track
items shared by users and to understand the properties of
a social cascade while this evolves over time. To exploit
these aspects for improving CDN performance, we need to
understand the key geographic properties of social networks.
For instance, we need to study and characterize how social
cascades are unrolling over space and analyze if geography
affects the spreading process. In particular, is it possible to
estimate whether cascades will spread globally or locally just



from the geo-social properties of the users participating in
the cascade?

In the next sections we will answer this question: we will
describe the geo-social properties of a geographic social net-
work and, then, we will characterize how social cascades
evolve over space. Finally, we will illustrate how we can
exploit our findings to improve CDN performance.

3. GEO-SOCIAL NETWORK METRICS

OSNSs encourage users to share personal and activity in-
formation with friends. Users are also prompted to indicate
their location: for example, they can provide details about
their hometown, home neighborhood or, more recently, their
exact location, by uploading their mobile device’s GPS read-
ings. In this section we analyze a large Twitter dataset and
we illustrate the geo-social properties of its users.

3.1 Geographic Social Networks

We adopt the representation of a Geographic Social Net-
work presented in [14], where connections between nodes
are weighted with the geographic distance between them.
Moreover, we exploit node locality to quantify the geographic
closeness of the friends of a certain node.

Let us consider a node ¢ and the set I'; of its neighbors.
The node degree k; is the number of these neighbors, that is
ki = |T';|. Then, we can define its node locality as a measure
of how much geographically close its neighbors are. The
locality of node ¢ is computed as
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where [;; is the weight of the link between nodes ¢ and j and
[ is a scaling factor. This definition can be generalized to
directed graphs to compute node in-locality and node out-
locality.

3.2 Twitter Geo-social Properties

Twitter is a social networking service where users can send
140-character short text messages called tweets. Tweets are
shown on the author’s personal page and also sent to the
author’s followers. It does not enforce reciprocity in social
connections: a user can follow another one even if the lat-
ter is not following back. As a result, the social graph is
directed.

In this work we use a Twitter dataset whose collection
and preprocessing is described in [14]. We extract a di-
rected graph from our dataset where each node represents
a user with a geographic location and a link from user A to
user B denotes that user A follows user B. This graph has
N=409,093 nodes and K=182,986,353 directed links, with
an average degree of 477. The average geographic distance
of a social link is 5,117 km, which indicates how Twitter
users tend to engage in long-range connections.

We compute node in-locality for every user in the dataset,
as given in Eq. (1) but taking into account only the set of
incoming links. This geo-social metric is equal to 1 when all
the followers of a user are in the same location as the user
and decreases to 0 when they are further away. In this work
we have chosen a network scaling factor of = 2,000 km:
this value allows us to assign two users which are about 1,000
km apart with a locality value of e™°% ~ 0.6. We report

Node in-locality

Figure 1: Cumulative Distribution Function of node
in-locality for the Twitter graph. Node in-locality is
computed using a scaling factor of § = 2000 km.

the distribution of node in-locality in Fig. 1: in the Twit-
ter dataset the node locality distribution exhibits a large
mass around 0.3, with a few nodes that have a locality value
larger than 0.6. Nonetheless, there are around 10% of users
with node locality greater than 0.6 and 20% with node lo-
cality greater than 0.5. This indicates that only a minor-
ity of Twitter users have a geographically limited audience,
whereas many other users have a set of followers which en-
compasses a much larger region. On the other hand, we will
show in the next section how users are instead spreading
content mainly over the less frequent shorter connections.

4. IDENTIFYING GEOGRAPHIC SOCIAL
CASCADES

We now describe how we extract and evaluate social cas-
cades over geographic social networks. Indeed, OSNs repre-
sent a popular way of sharing information. A piece of infor-
mation can quickly disseminate from a user to another as a
virus in an epidemics: somebody shares some new content
with its friends who might share it again and so on. We usu-
ally refer to this phenomenon as social cascade [4]. We define
two measures that quantify how a social cascade is spread-
ing over space and the extent of its propagation. Finally, we
analyze how information spreads over the geo-social struc-
ture of Twitter, focusing on traceable bits of information:
weblinks to YouTube videos contained in tweets.

4.1 Geographic Social Cascades

A cascade over a social network begins when the first user
shares some content and becomes the initiator of the cas-
cade. After this event, some of his contacts will share the
same content again, with the result that the cascade will
recursively spread over the social links.

In order to estimate the influence of the social network
on the information dissemination process, we combine the
information about social connections (i.e., list of friendships
in OSNs) with the time instants of the posts of each user.

More formally, we say that user B was reached by a social
cascade about content c if and only if:

e there is another user A which posted content ¢ and
e user A posted content ¢ before B posted it and

e there was a social connection from user A to user B
when A posted c.
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Figure 2: Complementary Cumulative Distribution
Function of the number of tweets containing a given
video link and of the number of users tweeting a
given video link.

While this does not guarantee the dependency of the posts,
in most cases we conjecture that there is a correlation be-
tween the two events. If more than one user among the social
connections of B posted ¢, we say that B was reached by the
cascade only through the user which posted it last. There-
fore, we always have only one previous user in the cascade
process. This arbitrary choice will only affect the shape of
the cascade, not its size nor its overall geographic properties.

In order to describe these social cascades we exploit the
geographic social network model defined in the previous sec-
tion. This cascade can be represented as a tree over the geo-
graphic social network, with the initiator node as the root of
the tree. For the same item there might be more than a sin-
gle cascade. Moreover, the same user may publish the same
content at different times. In order to take into account
these details, we need to annotate the cascade links with
temporal information. Each social cascade is represented as
a tree, where a link from user A to user B indicates that user
B has received some content as a result of a social cascade
from user A. A link between A and B is annotated with
the time instants ¢; and ¢2: ¢o is the time instant when B
posted content ¢ for the first time and ¢; is the time instant
of the last time user A posted content ¢ before B did, so
that t2 > t1. We define such a cascade step by using a time
threshold: consecutive steps in a cascade must be within 48
hours from each other.

In order to investigate the geographic properties of a social
cascade we define two measures:

e the geodiversity of a cascade is the geometric mean
of the geographic distances between all the pairs of
users in the cascade tree;

e the georange of a cascade is the geometric mean of
the geographic distances between the users and the
root user of the cascade tree.

We adopt the geometric mean since geographic distances
span several orders of magnitude in our dataset. For a given
social cascade these two quantities are correlated, however
they can be used to emphasize different properties of the
cascade. The geodiversity is computed among all the pairs of
users in a cascade, regardless of whether they are connected
or not, while the georange is only related to the cascade
initiator. On the other hand, the georange allows us to
understand how close the initiator of a cascade is to the
other people involved in it.
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Figure 3: Complementary Cumulative Distribution
Function of social cascade size.

4.2 Cascades of YouTube Links on Twitter

YouTube is the largest user-generated video content web-
site, which allows users to upload their own videos and then
share them on a variety of platforms and devices. Twitter
fosters the popularity of YouTube, since its users tend to
tweet about videos they like, triggering a spreading of the
video links that can be classified as a viral phenomenon [3].

Through the Twitter API we have access to the 3,200
most recent tweets for each user in our geographic Twitter
graph. We downloaded these tweets for all the users in the
graph, obtaining 334,407,185 tweets. The duration of the
data crawling was 12 days, from February 1 to February
11, 2010. For each tweet we have crawled the author, the
time when it was sent and the actual content of the message.
Among these tweets we have isolated 570,617 messages con-
taining a direct link to a YouTube video. Furthermore, we
have extracted all the messages containing a URL shortened
with URL shortener services, obtaining additional 2,332,390
messages with a YouTube link.

Thus, after removing invalid YouTube links, we extract
a total of 2,903,007 tweets containing a valid direct link
to a YouTube video. These links point to 1,111,586 dif-
ferent YouTube videos, hence some videos are contained in
more than a single tweet. The average number of tweets per
YouTube video is 2.61. In Fig. 2 we show the popularity
distribution for the video links we have extracted: both the
distribution of the number of tweets containing a given video
link and the number of different users tweeting a given video
link have heavy tails. Thus, there is a very small amount of
videos that are tweeted more than 4,000 times or by thou-
sands of different users, while the vast majority is tweeted
only 1 or 2 times by a few users. Such popularity distribu-
tion can greatly affect content delivery, since it shows how
popular items can easily dominate in terms of number of
requests. Furthermore, every tweet is potentially spawning
many more actual video requests, since all followers of the
author can view the link and follow it. While difficult to esti-
mate, this portion of additional traffic might even constitute
a large fraction of social-driven web traffic.

Then, we use the cascade definition presented in Sec-
tion 4.1 to analyze the tweets and, as a result, we extract
84,337 social cascades for 63,798 different videos. Each cas-
cade involves the initiator and at least another user. Unfor-
tunately, we have no information about when a user started
to follow another one, so we assume that all the social re-
lationships that we have in our social graph were in place
when the tweet was sent.
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Figure 4: Cumulative Distribution Function of time
delay between two consecutive tweets and total cas-
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cade step distance and of social connection distance:
social cascades take place on short-range social con-
nection.

4.3 Analysis of Social Cascades

We define the size of the cascade as the number of users
involved in it, including the initiator. In Fig. 3 we report the
distribution of the cascade size: we notice again a long-tail,
with more than 60,000 cascades involving only two nodes
and a few cascades reaching up to hundreds of users. This
measure of popularity demonstrates how it is rare to have
large cascades, but when they do take place they can be-
come extremely large. Again, it is worth noting that social
cascades include only users that have tweeted a certain video
link: however, each tweet can be viewed by all the followers
of the author, thus the potential audience that a YouTube
video may reach by means of a social cascade is much larger,
even if only few users are involved.

In Fig. 4 we illustrate the distribution of the time delay
between two consecutive tweets in a cascade. About 40%
of the tweets in cascades have a delay of about 15 minutes
from the previous message, with around 10% having a de-
lay of around 2 minutes. This result shows how YouTube
links can spread on Twitter on a time scale of some min-
utes, even though further spreading does happen even after
some hours. This indicates that links to videos can quickly
spread over the social network, potentially leading to many
views in a short period of time. In Fig. 4 we also show the
distribution of cascade duration from the first tweet to the
last tweet for each cascade with at least 2 users except the
initiator: about 80% of the cascades end within 24 hours,
with 40% ending in less than 3 hours.

In Fig. 5 we show the distribution of the geographic dis-
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Figure 6: Cumulative Distribution Function of geo-
diversity and georange for social cascades with at
least 2 users after the initiator.
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Figure 7: Average geodiversity of a social cascade as
a function of the average locality of the first nodes
in the cascade: locality of the first node (a) and of
the first two nodes (b). Error bars show standard
deviation around the average.

tance between authors of two consecutive tweets in a social
cascade. Around 10% of cascade steps are less than 1 km,
with 20% of them shorter than 100 km and more than 30%
shorter than 1,000 km. This result is in slight contrast with
the distribution of link lengths of the Twitter network, also
presented in Fig. 5: even if less than 5% of the social con-
nections are shorter than 100 km, within cascade steps this
fraction increases up to 20%. Content spreading through so-
cial cascades is more likely than expected to travel over ge-
ographically short-range social connections rather than over
the more numerous long-distance links.

Moreover, in Fig. 6 we show the distribution of geodi-
versity and georange for all the social cascades which in-
volve at least two users except the initiator. About 40%
of these cascades exhibit geodiversity lower than 1,000 km,
with around 20% of geodiversity values lower than 300 km.
Thus, even though many cascades reach a broad audience,
some of them remain geographically limited. On the other
hand, about 90% of georange values are smaller than 1,000
km, with about 30% of values smaller than 100 km. This
is an indication that a cascade may take place in a broad
region but with each user still close to the initiator.

Finally, we are interested in properties of a social cas-
cade that may help us predict its geographic spreading from
the very first messages that are tracked. Thus, we investi-
gate how the node locality of the first users that participate
in a social cascade is related to the final geodiversity and
georange values. We report in Fig. 7 the average cascade
geodiversity as a function of the average locality of the first
users involved in the cascade. We observe that even the ini-
tial locality of the first user is already correlated with the
geographic spreading of the cascade. Moreover, by including
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Figure 8: Average georange of a social cascade as
a function of the average locality of the first nodes
in the cascade: locality of the first node (a) and of
the first two nodes (b). Error bars show standard
deviation around the average.

the locality of the second user we get a stronger relationship.
A similar result can be seen in Fig. 8 for the georange: in
this case the correlation is clearer, with less variance espe-
cially for high locality values. Thus, the final properties of
a cascade can be estimated even from the users involved in
the initial stages. Also, even the geographic and social prop-
erties of the initiator are sufficient to understand whether a
cascade will spread locally or globally, and by taking into ac-
count a few more steps we are able to give a more accurate
estimate of the final outcome.

Given the importance of social cascades and their geo-
graphic properties, in the next section we will show how we
can exploit these findings to improve the design of cache
replacement strategies for CDNs.

5. GEO-SOCIAL CDN MODEL

We have described how geography can be included in the
analysis of social networks and we have presented the ge-
ographic properties of social cascades. We now show how
these findings can be exploited in the design of a proof-of-
concept CDN with improved performance.

5.1 Assumptions and System Model

We envisage a single entity able to access information
about content shared by users on social networks and control
the CDN which delivers the content that users are sharing.
This can be mapped to reality in various ways: i) assum-
ing that CDNs will have access to information from OSNs
about the dynamics of cascades, which is reasonable as they
are providing the content sharing service or ii) assuming
that, plausibly, in future OSNs and content providers might
merge into single entities or cooperate (e.g., it is not unlikely
that companies like Facebook might expand their business
and also become content providers).

We model our system as a collection of server clusters
placed around the planet. Each cluster contains a certain
number of servers: we assume that all servers within the
CDN have identical properties. The only difference among
clusters is the amount of deployed servers. We assume that
there is a central catalogue of content items: clients from all
over the world request content items to the CDN and they
are redirected to the geographically closest server. If the
server already contains the requested item, it is immediately
served. Otherwise, the item is retrieved from another por-
tion of the CDN and served. We assume that, as observed
in real systems [11], different clusters are interconnected by
a dedicated network. Then, we assume that it is faster to

[ Location [Country[Servers|| Location | Country [Servers|

Washington| USA 552 Frankfurt | Germany 314
Los Angeles| USA 523 London UK 300
New York | USA 438 ||Amsterdam|Netherlands| 199
Chicago USA 374 Tokyo Japan 126
San Jose USA 372 Toronto Canada 121
Dallas USA 195 Paris France 120

Seattle USA 151
Atlanta USA 111
Miami USA 111
Phoenix USA 3

Hong Kong|Hong Kong| 83
Changi Singapore 53
Sydney Australia 1

Table 1: Geographic distribution of the server clus-
ters in the Limelight network.

move content among servers to bring an item as close as
possible to the client, rather than redirecting the request
to another server further away which already holds a copy.
This seems plausible, even if geographic distance may not
always be the only factor influencing performance.

Server clusters act as caches: they keep copies of already
requested items for future requests but they have finite stor-
age. A cache replacement strategy is used to remove an item
from the cache when this is full. We also assume that the
servers within a cluster coordinate to act as a single large
cache. Therefore, every server can host up to k items and
if there are IV servers in a cluster, that cluster is equiva-
lent to a single cache able to host kN different items. This
simplifies the definition of the model but still captures the
heterogeneity of cluster sizes around the planet. We do not
model file size: we assume that the size of a file does not vary
much across the items, as we have observed in our specific
dataset of YouTube videos.

5.2 Model Parameters

In order to ground our model in reality we have parametrized
our CDN model with the real properties of Limelight [9]*,
the commercial CDN once used by YouTube to deliver con-
tent to users worldwide. Limelight has clusters of servers
deployed at 19 different locations around the world and each
cluster has a different number of servers. Limelight deploys
2,830 out of its 4,147 servers in the United States, where
there are 10 clusters. On the other hand, Europe and Asia
are served only by seven clusters in total and Australia only
by one, while the rest of the world does not contain any
cluster.

In our model, cache size should be interpreted with respect
to the total number of items present in the system and not
as an absolute number, since we do not have access to the
whole YouTube item catalogue. Hence, we will also express
cache size as a percentage of the total data catalogue. As
an example, since we have about 1 million videos in our
dataset, a cache size of 100 items is comparable to a cache
that can host about 0.01% of a real catalogue: in the case
of YouTube, with hundreds of thousands of videos added
every day, there are more than 100 millions videos, hence
this would represent a cache size with more than 10,000
different videos.

'We are aware that the paper has been withdrawn by Mi-
crosoft for some criticisms about the system performance re-
sults presented in it. We only use information about server
locations from this work.
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Figure 9: Fraction of video requests handled by each
cluster and fraction of servers contained in each clus-
ter. Different workloads do not significantly change
the distributions of requests.

5.3 Content Caching Policies

We now define the caching policies adopted by our model
to store and replace content within the servers. A server
cluster adopts a cache replacement strategy to remove an
item when the cache is full and a new request arrives. Each
strategy assigns priorities to the items in memory and, when
a deletion is needed because the cache is full, the item with
the lowest priority is removed. The priority of an item might
be updated whenever a request for that item is issued.

Our approach is to use standard caching policies and then
augment them with geo-social information. FEach policy
assigns a priority P(v) to a video v and, when a video
has to be removed, that with the lowest priority is chosen
for deletion. A random choice is made when more videos
have the lowest priority. We adopt three different caching
policies: Least-Recently-Used (LRU), Least-Frequently-Used
(LFU) and Mized. In LRU the priority of a video v is given
by P(v) = clock, where clock is an internal counter which is
incremented by one whenever a new item is requested. This
policy provides a simple aging effect: when an item is not
requested for a long time, it is eventually removed. How-
ever, it does not take into account item popularity. In LFU
the priority of a video v is given by P(v) = Freq(v), where
Freq(v) is the number of times video v has been requested
since it was stored in the cache for the last time. LFU fa-
vors popular content: if an item receives a large number
of requests it will stay in the cache for a long time. How-
ever, LFU is less flexible: an item which was largely popular
in the past tends to stick in the cache even if it is not re-
quested anymore. The Mixed policy combines both LRU
and LFU features and the priority of video v is given by
P(v) = clock + Freq(v), in order to balance both temporal
and popularity effects [5]. In this case clock starts at 0 and
it is updated for each replacement with the priority value of
the removed file. Thus, a video increases its priority when it
is requested many times, but, if there are no more requests,
it will eventually be removed from the cache.

Then, we define two priority weights for each video v,
based on the characteristics of the social cascades involving
this video:

e Geosocial: the weight of video v is given by the sum
of the node locality values of all the users that have
posted a message about it, even if they are not involved
in a social cascade;

e Geocascade: the weight of video v is given by the sum
of the node locality values of all the users participating
in the item’s social cascade (or cascades, if an item
happens to be posted on more than one cascade).

These weights are used to capture the idea that if a video
is tweeted many times by users with high node locality val-
ues, then it is likely that it is spreading in a local region,
thus future requests will hit the same content server. While
the first weight takes into account all the messages regard-
ing a particular content item, the second one only uses the
messages caused by a social cascade. By using two different
weights based on geo-social information we want to investi-
gate what contribution social cascades provide with respect
to using only geographic information of social ties.

The weight of every tweet with a link to a video is updated
according to whether that tweet is or is not in a cascade. For
every request, content servers get also the video weight and
multiply it to the priority of the underlying cache replace-
ment policy. Hence, for every cache replacement strategy we
have three different versions: with no weight, with a Geoso-
cial weight and with a Geocascade weight.

6. EVALUATION

In order to test whether information extracted from ge-
ographic social cascades can effectively be exploited to im-
prove the performance of CDNs we have investigated through
simulation how different cache replacement policies impact
the performance of the system. Our results show that global
system performance can be improved with respect to stan-
dard policies, which means potentially avoiding tens of mil-
lions of video file transfers per day.

6.1 Simulation Strategy

In our simulation we create a sequence of content requests
to the CDN directly from the Twitter messages within our
dataset. We assume that every video contained in a Twitter
message is requested by each follower of the author with
a certain probability p and with a random temporal delay
modeled with the same distribution of delay between cascade
steps. This assumption is simple and can be far from reality,
but we do not have information about what amount of traffic
arises from Twitter messages. However, our results show
improvements for any value of p we adopted. We generate
5 different workloads, corresponding to the values of p =
0.001,0.002,...,0.005, and we run every workload for 20
different times, averaging the results.

As said, we always route a request to the server cluster
closest to the user. However, the geographic distribution of
the requests does not change for p, since it is only influenced
by the geographic distribution of Twitter users, which does
not change for different workloads. As shown in Fig. 9, some
servers receive much more traffic than others: as an example,
the cluster in Dallas accounts for more that 11% of global
requests. Additionally, some locations hold a large fraction
of traffic even though they contain only a small number of
servers. These properties may impact the performance of
the cache replacement strategies for different locations.
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Figure 10: Percentage of total hits with respect to the infinite cache case as a function of cache size for
different combinations. Cache size is expressed as a fraction of the entire data catalogue. In the first row
LRU cache policy is shown, in the second row LFU and in the third row Mixed. In the first column no weight
is used, in the second column Geosocial weight and in the third column Geocascade weight. Every simulation

is run 20 times with randomly generated workloads; standard deviation is negligible.
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Figure 11: Performance increment (%) with the re-
spect to the case without weight as a function of the
cache size and for different workloads when the LRU
strategy is used with Geosocial weight (a) and with
Geocascade weight (b).

6.2 Global Performance

First we investigate how different policies perform with
respect to the case of infinite cache size, i.e., in conditions
where no item is ever removed from the cache: the number
of hits in this case is the maximum achievable, both on each
cluster and globally.

As a global performance metric for our system we consider
all the hits on all the clusters: every request is directed to
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Figure 12: Performance increment (%) with the re-
spect to the case without weight as a function of the
cache size and for different workloads when the LFU
strategy is used with Geosocial weight (a) and with
Geocascade weight (b).

the closest server and there it may result in a hit or a miss.
For each cache replacement strategy and for each different
workload, we compute the total number of hits obtained and
we take the ratio between this value and the performance
with infinite cache. This metric shows how different policies
react when some parameters of the system are changed, but
it does not emphasize differences in their performance.

In Fig. 10 we observe the change in system performance
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Figure 13: Performance increment (%) with the re-
spect to the case without weight as a function of
the cache size and for different workloads when the
Mixed strategy is used with Geosocial weight (a)
and with Geocascade weight (b).

as a function of cache size and for different workloads: when
the size increases, every policy steadily improves its perfor-
mance. Larger workloads have worse performance, but dif-
ferences among them disappear at larger cache sizes. More-
over, as the cache size grows larger, all workloads reach a
plateau, since increasing the cache size beyond a certain
limit provides only a diminishing performance increment.
This is due to the fact that there is a portion of content
which is requested only a few times and for which caching
policies can hardly offer advantages. In addition, we observe
that while using no weights results in the lowest hit ratio,
by adopting instead the Geosocial and Geocascade weights
we achieve noticeable improvements, because the servers are
now able to discern geographically popular items and keep
them in memory for future local requests. However, we need
a direct comparison to appreciate the different performance
achieved by using these weights.

6.3 Policy Comparison

In order to understand which policy provides better re-
sults, we evaluate the relative performance improvements
between the weighted policies and the other strategies.

We illustrate in Fig. 11 the performance increment when
we augment the LRU strategy with geo-social information.
Geosocial-LRU reaches a maximum 55% performance incre-
ment, while increasing the cache size results in a smaller in-
crement. Instead, Geocascade-LRU achieves more than 70%
increment on LRU for smaller cache sizes, while the benefit
decreases as cache size increases. In Fig. 12 we investigate
how the use of priority weights improves LFU. Geosocial-
LFU achieves a top increment of about 50% against LRU
with small cache sizes, with the increment going down as
the size increases. However, the improvement is larger in the
case of the Geocascade weight, with a maximum increment
of 70% and a smaller decrement with cache size. Finally,
in Fig. 13 we investigate the difference between the Geocas-
cade and the Geosocial weight for the Mixed cache policy.
Again, the Geosocial weight gives a maximum improvement
of 50%, while the Geocascade one improves up to 65% the
baseline performance.

Both weights improve cache performance, since they rec-
ognize content that is bound to become popular only locally
and to result in many requests to the same local servers.
Indeed, items that are popular on a global scale may see
their requests across different servers around the planet and
may not trigger cache prioritization in single CDN clusters.
Furthermore, including information about the spreading of

social cascades appears as a better predictor of local pop-
ularity, since the Geocascade weight exhibits higher perfor-
mance than the Geosocial one. It is also important to note
that the performance improvement is smaller when the cache
becomes larger. Indeed, with a cache so large that can host
0.1% of the entire data corpus, it becomes easier to accom-
modate more items and performance easily reaches a sat-
uration point, as seen in Fig. 10. Nonetheless, for a given
cache size larger workloads have a larger relative improve-
ment, since their absolute performance are smaller.

7. IMPLICATIONS

The main result of this work is that locality information
from social cascades can be extracted and used to improve
large-scale system design. We see a great potential in ex-
ploiting geographic properties of human communication over
online services. Geographic locality of online interactions
can be exploited to do pre-fetching of Web content, caching
of normal HTTP traffic, datacenter design and placement
and even to devise security mechanisms [15, 2].

In addition, our approach can be generalized to be used on
a number of different OSNs. The information needed can be
efficiently exposed by an anonymized API, which could pro-
vide only the aggregated geo-social metrics corresponding to
a given cascade of a certain shared item. Moreover, informa-
tion coming through public Twitter feeds, private Facebook
posts and emails can be anonymized and exposed in order to
classify items according to their geographic popularity and
feed this information into CDNs.

In the specific example we have discussed, improvement
largely depends on cache size: when it is possible to cache
a considerable portion of the whole item catalogue, cache
policies matter less and the improvement obtained by social
information is smaller. However, if cache size is not sufficient
to store that portion, because it is too small with respect to
item size or because the catalogue contains too many items,
geo-social properties can make a difference. Moreover, if in
the future social cascades can be tracked on a larger scale
on OSNs, the advantage given by geo-social metrics may
impact not only CDN caching policies but, more generally,
other large-scale systems.

As already mentioned, our results are obtained using a
sample from a single OSN. Although it is generally unknown
which portion of the traffic directed to CDNs is coming from
OSNs, it is not far from reality that this traffic may become
considerable: the fraction of content links among messages
in our dataset is already appreciable and the number of users
on OSNs is still increasing.

An improvement in the number of cache hits for requests
coming from these OSNs, as observed in our simulation,
would imply that millions of video daily requests could be
served locally instead of being transferred over the network.
In addition, videos are getting larger, with higher quality de-
manded by users, meaning bulkier files. Caches need to grow
larger and larger to cope with this trend. This is impacting
(and will increasingly greatly impact) on the running costs
of modern CDNs. For instance, Limelight runs a global pri-
vate fiber-optic network that avoids sending files over the
busy public Internet connections. As a result, any reduction
on the number of files sent across the network would reduce
the investments on network infrastructure, which account
for a considerable part of a CDN total expenditure [13].



8. RELATED WORK

Two research areas are related to our work: the analysis
of online social cascades and the design of large-scale CDNss.

Social Cascades. Social cascades have been studied in
sociology, economics and marketing for more than 60 years:
an eminent example is the threshold model proposed by Gra-
novetter [8]. Recently, thanks to the availability of large
datasets, many other studies have been presented. In [1]
the authors analyze the diffusion of information in blogs by
applying epidemic models of information spreading. Simi-
larly, a characterization of cascades using data from Flickr,
a photo-sharing website, is illustrated in [4].

Finding ways of harnessing the potential of information
constantly generated by users of OSNs is a key and promis-
ing research area for the networking community and it is
still largely unexplored. Our work is one of the first ex-
amples of how this information can be effectively used to
improve the performance of large-scale networked systems,
and, more specifically, of CDNs.

Content Distribution Networks. Given the success
and economic importance of CDNs, many solutions to im-
prove the performance of this class of systems have been pro-
posed with respect to the location-aware selection of servers.
Key examples of experimental systems in this area are Merid-
ian [16], a node selection mechanism based on network local-
ity, and OASIS [6], an overlay anycast service infrastructure.
WhyHigh is a system to redirect queries based on the mea-
surements of the latency of the Google’s CDN [10]. This
system is not only based on geographic proximity but also
on measurements of client latencies across all CDN nodes,
in order to identify the prefixes with inflated latencies.

While these systems have used some intelligence on geog-
raphy or request load to improve the system, we have also
taken advantage of information from OSNs interaction to
enhance the content placement decision process.

9. CONCLUSIONS AND FUTURE WORK

We have presented how geo-social properties of users par-
ticipating in OSN cascades can be exploited to improve the
efficiency of caching in CDNs. We have studied cascades of
a real OSN and have used our findings in a simulation-based
validation of a model of a CDN. While our study is limited in
scope by the choice of network and data set, our results are
more generally applicable and the impact of the approach
can be potentially high for large-scale systems whose traffic
is driven by online social services.

Our research agenda includes the generalization of the
proposed technique to deal with information from multiple
OSNs and the investigation of mechanisms for improving the
accuracy of the prediction of the size and temporal evolu-
tion of social cascades. Finally, we plan to investigate how
these techniques can be effectively implemented within real
CDNes.
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