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Abstract

In the past few years dynamic and reconfigurable systems have evolved and new strategy
and paradigms for the development of applications have been devised. In this thesis
we study mobile code based systems focusing on the importance of formalization and
investigation of the potential of code mobility. Mobile code paradigms have been used in
different systems, however, as most of these are Java based, the potential of code mobility
are some-how lost behind the Java language capabilities, and design choices related to
mobility have been conditioned by implementation choices.

In this thesis we reason on code mobility systems at the design level in order to in-
vestigate novel powerful approaches. This thesis is composed of different parts. We first
introduce a coordination based language and a model checker to reason on formalization
of mobile code based systems with automatic analysis. Properties of mobile agents, of
their interaction and behavior may be formally expressed and verified against the system
specification.

Then, in order to express code mobility potential and to formalize the basic constructs
for code migration, we describe a formal language for the specification of very fine-grained
mobility. Every line of code, and every variable declaration can be mobile, giving a very
high flexibility in the range of application. A prototype of this model implemented in Java
is also presented to validate the implementability of the model.

Finally, we show a possible incarnation of the fine-grained mobility approach based
on XML. The approach allows XML documents to be updated cutting, extending, or
replacing parts of the tree structure of the document. We exploit this idea to incrementally
update remote code. The approach can be used in different domains; we describe possible
applications in graphic user interface management, document consistency checking and

management of application on thin clients like personal digital assistants (PDAs).
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Introduction

The increasing popularity of Java and the spread of Web-based technologies are contribut-
ing to a growing interest in dynamic and reconfigurable distributed systems. The ability
to relocate code over networks of workstations, on an Internet scale, yields flexibility in the
design of new applications and shows new possible paths to be followed in the development

of the future systems.

Code mobility is viewed by many as a key element of a class of novel design strategies
which no longer assume that all the resources needed to accomplish a task are known in
advance and available at the start of the program execution. Know-how and resources are
searched for across the networks and brought together to bear on a problem as needed.
Often the program itself (or portions thereof) travels across the network in search of re-
sources. While research has been done in the past on operating systems that provide
support for process migration, mobile code languages offer a variety of constructs sup-
porting the movement of code across networks. Java [Sun95], Tcl [Gra95], and derivatives
support the movement of architecture-independent code that can be shipped across the
network and interpreted at execution time. Oblig [Car95] permits the movement of code
along with the reference to resources it needs to carry out its functions. Telescript [Whi96]
is representative of a class of languages in which fully encapsulated program units called
agents migrate from site to site. Location, movement, unit of mobility, and resource ac-
cess are concepts present in all mobile code languages. Differentiating factors have to do
with the precise definitions assigned to these concepts and the operations available in the

language [FPV98].

Language design efforts are complemented by the development of formal models. Their



main purpose is to gain a better understanding of fundamental issues facing mobile compu-
tations. Of course, such models are expected to play an important role in the formulation
of precise semantics for mobile code languages and constructs, to serve as a source of

inspiration for novel language constructs, and to uncover likely theoretical limitations.

Motivation and Contribution

The aim of this work is to achieve a deep insight in mobile code based systems and to
investigate some possible developments in this field. Mobile code has been exploited in
different technologies, however, as most of them are Java-based, the focus on the potential
of mobile code is somehow lost behind the capabilities of Java, and mobility design choices
have been conditioned by implementation constrains. The aim of the thesis is to abstract
from the current technologies investigating the real power of the migration of code across
the network. In particular, the idea is to use formalisms to achieve understanding of
mobile code systems. In this context, automatic analysis of specification can be useful in
finding conceptual mistakes in systems specifications, and prototyping of new mobile code
based paradigms can give insight into their potentials.

We will describe how a coordination language can be used to specify the dynamics of
mobile systems. On top of the language, a model checker will be used to analyze properties
of mobile code in an automatic way. We will then introduce a more programming-oriented
formalism to study the issues related with the granularity of the unit of mobility and its
decoupling from the unit of execution. In this approach we describe a prototype of the
language to give details of the implementability of the idea. The formal study succeeded
in isolating interesting future trends for mobile code. The last part of the thesis shows how
recently developed technologies and languages happen to incarnate interesting fine-grained
characteristics that other existing mobile code languages lack and that can be applied in

domains such as distributed application management and mobile computing settings.

Outline of the Thesis

Chapter 1 recalls some background concepts related to code mobility. The chapter is
intended as an introduction to the basic notions used in the rest of the thesis. We also
describe some related work in terms of both existing mobile code technologies and formal

languages. The thesis is composed of three main parts.



In Part I we show how mobile code specifications can be formalized and automatically
analyzed using a coordination languages and a model checker. The specification and the
analysis of software architectures are also described and mobility architectural styles are
specified. In particular, Chapter 2 introduces PoliS, a coordination based languages that
has already been used for the description of complex systems. PoliS has characteristics of
flexibility that permit the formalization of complex systems. In particular, we show how
software architectures can be specified in PoliS. Chapter 3 describes the logic (PTL) and
the model checker for PoliS developed at the University of Bologna. In this chapter we
use the model checker to prove properties on PoliS specification of systems. Examples
of analysis of software architectures are shown. Chapter 4 introduces the use of PoliS
for the specification of mobile code based systems. The model checker is used to perform
analysis of mobile systems. Chapter 5 contains the description of MobiS, an enhancement
of the PoliS language that is able to formalize mobile agents as first class elements in the

language. Chapter 6 contains a summary of the part.

In Part II we show how the granularity of mobility can be refined until a very fine-
grained level. Chapter 7 describes a more programming language oriented formalism, an
enhancement of Mobile UNITY [MR98] for specification of mobile code based systems. In
this model we adopt the view that every line of code and every variable can be mobile.
The unit of mobility is then decoupled from the unit of execution and dynamic system
reconfiguration is possible at a very fine-grained level. Chapter 8 contains an enhance-
ment of the model described in Chapter 7, with nested processes, while Chapter 9 shows
a design and a Java prototype of the model presented in the previous chapter, in order to
highlight the feasibility and the implementability of the approach. Chapter 10 contains

a summary of the part.

In Part ITII we show how to use XML [BPSM98a] for incremental code mobility. We
describe some applications in different domains. In Chapter 11 we describe the use of
XML (i.e., the EXtensible Mark-up Language) plus Java class loading for display of formal
notation documents on the Internet. As follow-up of this work and of work in Chapter 7,
Chapter 12 shows the incremental code mobility approach based on XML and related
technologies. The approach can be applied to different application domains, and we give

some examples. Chapter 13 contains a summary of the part.

The Conclusions chapter contains the summary of the work and a list of possible



developments. Appendix A contains the grammar for the input notation of the prototype

shown in Chapter 9, and Appendix B its Application Programming Interface.

Related Publications

Part of this thesis has been taken from published papers, in particular in [Mas99b] an
outline of the thesis is presented. Chapter 2 and Chapter 3 on the PoliS language and
specification of systems and software architectures are an evolution of different papers;
in [CM98¢| we use the language and the model checker to analyze some invoicing systems:
the invoice system was the case study offered in the International Workshop on Comparing
System Specification Techniques held in Nantes, France in 1998. [CM99, CM98a] describe
the use of PoliS and the checker for software architectures. The papers [CFM98], and
[CFMO00] introduce the use of PoliS for the specification of mobile code based systems.
Chapter 5 refines a paper presented in [Mas99a|, describing the MobiS language, an evolu-
tion of PoliS allowing first class formalization of mobile agents. MobiS has also been used
to specify software architectures with mobile components in [CM98b]. Chapter 7, 8 and 9,
where the fine-grained model and prototype is presented, refine [MPR99], and [MPRO00].
Chapter 11 extends [CMV98] and [CVM99], while Chapter 12 refines a paper published
in [EMF00] and in [MEF00].

During my Ph.D. I also published other papers, that, for sake of brevity, are not part
of this thesis. In [CCM96], and [CCM97] semantics for the Z language [Spi92] based on the
Chemical Abstract Machine is presented, and an animator of Z specification based on the
semantics given is used to test specifications. In the same context we used the approach
to analyze dynamics of systems [CM96], and to describe architectural styles [CM97].

In [CM98d] an approach to the use of formal method for teaching software engineering
is presented: the approach focuses on the use of tools to improve the generation of software

specification and design documents.



Chapter 1

Code Mobility: Technologies and Formalisms

Logical mobility is not a new concept. Data transfer have been used to exchange or
distribute information among different people on a network. For a long time data have
been transmitted across network using e-mail and ftp protocols. With the spread of the

World Wide Web, HTML documents can be sent over the Internet using the http protocol.

The increasing popularity of Java is contributing to a growing interest in dynamic and
reconfigurable systems [MDEK95]. In particular, the ability to relocate not only data
but also code over networks of workstations, on an Internet scale, yields flexibility in the

design of new applications.

From this starting point mobile code evolved, and more complicated mobile code
paradigms have been isolated [FPV98]: code on demand, remote evaluation, and mo-
bile agents. In particular it became feasible to send objects, with their status and their
code, from a location to another. Object serialization is the mechanism used for the
transmission across the network of objects in Java. When an object has some sort of
autonomous behavior and proactivity it is called a mobile agent [WPM99]. Java based
mobile code technologies developed very rapidly and many different systems based on mo-
bile agents have been built in the last years. Mobile agents are able to travel carrying their
own status and code form location to location, following a itinerary or following some sort

of pattern. We will describe most of them in Section 1.1.

On the theoretical front, the growth of languages able to express mobile code character-
istics did not have the same power of growth than technologies. However some interesting

approaches have been adopted in this direction.

Language design efforts are complemented by the development of formal models. Their
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main purpose is to gain a better understanding of fundamental issues facing mobile compu-
tations. Of course, such models are expected to play an important role in the formulation
of precise semantics for mobile code languages and constructs, to serve as a source of inspi-
ration for novel language constructs, and to uncover likely theoretical limitations. Basic
differences in mathematical foundation, underlying philosophy, and technical objectives
led to models very diverse in flavor. In Section 1.2 we give an outline of the existing

formalisms used for specifying code mobility systems.

1.1 Mobile Code Technologies

Many different technologies have been developed in the recent years based on code mobility

concepts. In this section we will introduce some of the most common technologies.

In [FPV98| a classification of mobile code technologies is given. The paper distinguish
between weak and strong mobility. Weak mobility is the ability to move code and the
status of an object, and it is the most common kind of mobility provided by the systems
we are going to describe. Strong mobility is the ability to move not only the code and
the state of an object but also the execution status, that is, the program counter and the
registers of the executing object. Strong mobility is more complicated to achieve as it

offers a higher level of complexity.

Java

The Java programming language [Sun95| is an object-oriented language that allows classes
and objects to be serialized and written into a stream of bytes in order to be transmitted.
In this section we will only focus on mobility related aspects and not on the all language

as it would go beyond the scope of this thesis.

Java objects are instances of Java classes. KEach class of object that needs to be
transferred over the network (i.e., serialized) needs to “implement” the serializable
interface. Serialization of object is a Java mechanism allowing the status of an object to
be written into a byte-stream. Once an object is serialized it may be shipped to remote
locations. The classes on which the object relies are however not serialized in the same

byte stream and therefore not implicitly transmitted with the object.
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Figure 1.1: The object shipping process in Java.

The Java class loader is responsible for the loading of classes of objects. The class
loader uses the CLASSPATH environment variable to know where to retrieve a class for an
object. Per se, the Java Class Loader throws an exception every time the needed class
cannot be found in the specified directories of the CLASSPATH . However, the class loader
can be overridden and specific class loading policies can be used to load classes, even

remotely.

Figure 1.1 shows the transmission of an object and the class loading happening on the
remote site. The default class loader looks into the local CLASSPATH environment variable

to retrieve the class for the received object.

The Java APT also provides a networking package for communication through sockets,
that is often used for migration purposes in the mobile code technologies based on Java

for mobile agents [WPM99].

Java provides weak mobility, as serialization of threads in Java is not possible. This is
one of the reasons why most of the common mobile agents systems, which are developed

on Java, are based on weak mobility.

Java Applets

Java can be used together with Web browsers in order to achieve code mobility on the
Internet. This was in fact the first use of Java for code mobility. Figure 1.2 shows the
idea. Java applets are pointed from HTML documents. After an HTML page containing
a Java applet is downloaded by a client browser, the browser class loader has to retrieve
the Java code for the applet from the location where the applet comes from, fetch it, and

load it.

Java applets are probably the most well known example of code mobility. Since Java
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1.Page Loading

) 2. Class Fetching (

HTML

Client
Browser

Figure 1.2: The object shipping process in Java.

applets began to be used over the Web, code mobility issues have pop up, and research
began to investigate on this topic, and realizing that Java code mobility could actually be

Web independent.

Java RMI

Java RMI [RMI98] is part of the Java API, however it deserves particular attention in a
mobile code context. RMI stands for Remote Method Invocation; the RMI package allows
remote invocation of methods in distributed objects. The client invoking the remote
method can introduce parameters to the calls. The calls to the methods can be done by
value or by reference. In calls by reference the object a reference to the object is passed
during the call. The object needs to implement the Remote interface in order to be passed
by reference. In calls by value the objects passed as parameters are copied remotely. In
a mobility perspectives, calls by value allow to migrate objects (by copying and deleting
them) from one location to another. A method can be invoked remotely only if extending
the interface Remote , and an object can be passed as a parameter by value only if its
class extends the serializable interface (and not remote ). To allow remote invocations,
stubs and skeletons of the object on which the invocation needs to take place are provided,

on the client and server side, respectively.

Aglets

Aglets [LO98] is probably the most well known system for mobile agents. The Aglets
system is developed on top of Java. It exploits serialization and networking with sockets
for the mobility of agents. An aglet is an object able to move across the network. In

particular an aglet moves from “place” to “place”. A place is a context in which aglets
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execute. Whenever an aglet needs to be moved, it is suspended, the Java serialization
mechanism is used to write the aglet into a byte-stream, and then the aglet is transferred.
On the other side, the aglet is received, deserialized and its execution is resumed with a
new thread of execution. Aglets, as based on Java, provides agents mobility at the weak
level, i.e., no mobility of the execution state. Whenever an aglet is received on a new host
the classes used by the agent are can be retrieved on the new host itself. The classes could
also be transferred together with the aglet itself, or retrieved from a remote server that is
supposed to store the class for that purpose. Aglets can communicate with each other on
the same place or among places in peer-to-peer or broadcast fashion. IBM’s Aglets can

be downloaded at the web site: www.trl.ibm.co.jp/aglets .

Voyager

Voyager [Obj97] is an object request broker (ORB) that also provides mobile agents fa-
cilities. A voyager is a location on which different agents can live. Agents in the same
voyager can communicate and exchange data. An agent can migrate from one voyager to
another, proactively.

Objects in voyagers have proxies that enable, like skeletons and stubs in Java RMI,
remote invocations. Voyager is again implemented in Java, and therefore provides weak
code mobility like Aglets.

A part from these mobility features Voyager is a middleware like CORBA [OMG95]
and COM [Gri97], providing a transparent and reliable communication layer on which

applications can be developed.

u-Code

p-CODE [Pic98] will be used in Chapter 9 for the implementation of a fine-grained mobility
prototype. We give here a brief description of its features.

1-CODE is a Java based system providing weak mobility; it implements agents mobility
as well as code mobility at a class level. Unlike in other systems where classes are fetched
only following an agent migration, and in order to make the agent able to execute, in u-
CODE migration of classes is an invokable operation of the system API. Groups, i.e. bags,
of objects, agents, and classes can be shipped and fetched across the network allowing a

high level of flexibility. Application developers can then use groups to send things across
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the network and the dimension of the group and the nature of the entities depends on the
application requirements. The granularity of mobility is then system independent and can

go from a class to an agent carrying its status.

u-CODE relies on Java sockets for the implementation of the communication even if its
APT hides these detail from the programmer. p-CODE is designed to be flexible, extensible
and light-weight. It is composed of less than a thousand lines of code that generate less

than 40kbytes of byte-code.

Other Technologies

Many other technologies have been developed exploiting mobile code, however we described
the most significant and the ones that we are going to mention in the following chapters.
Some other example of mobile code systems need however to be at least referenced. There
are a few interesting approaches to mobility that are not Java based: Emerald [LHM88],
Telescript [Whi96] and Agent-Tcl [Gra95]. In particular Telescript allows strong mobility,
that is, agents can move from place to place restarting execution from the exact point
they left it on the previous place. Strong mobility has also been achieved through a Java
approach in [Fru98], however the approach is quite complicated and most of the Java
based systems do not apply it. Details about other mobile agents systems are given in
[WPM99]. In [RPZ97],[RH98],[LM99], and [MKO00] the proceedings of a newly established

mobile agents conference contains the description of other mobile code systems.

1.2 Mobile Code Formalisms

Many formalisms have been used or developed to be able to express mobile code based
systems. In particular process algebra is one of the most successfully used theory in this
respect. In this section we will briefly describe some of them, as they will be compared to
the formalisms presented in this thesis later on. Formalisms have the important role to
abstract from technologies and specify characteristics of the behavior of systems, providing

useful background for investigation and analysis.
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m-calculus and Derived Formalisms

The w-calculus [Mil99] is probably the first formal language being exploited for the speci-
fication of mobility aspects. In m-calculus, as in all the process algebra based models the
process is the unit of mobility and the unit of execution. Processes can be sent around,
they can perform computations, and communicate with each other . m-calculus [Mil99] is
based on the notion of channels. Processes can move along channels. Code mobility is
exactly represented as migration of processes. m-calculus has also been extended in several
direction in order to overcome for instance the lack of notion of location (Join calculus

[FGL™96]), or to add asynchronous mechanisms to the model [Ama97].

Klaim

Klaim [NFP98] is a process algebra based language that exploits coordination primitives
a la Linda [CG92] to express the notion of location. Klaim has been implemented in Java
and the resulting APT has been called KLAVA. Klaim allows the formalization of different
paradigms of mobility, from the fetching and shipping of code to mobile agents moving

with their contexts.

Oblig

Obliq [Car95] is a lexically-scoped interpreted language. The Obliq environment consists
of sites, i.e., addresses spaces containing locations. Code and objects references can be
moved from site to site. Objects are not allowed to migrate, however they can be cloned
and put on remote sites. In addition it is possible to perform aliasing of the original

objects to redirect method invocations to the cloned objects.

Ambient Calculus

Mobile Ambients [CGO00] is a process algebra based language allowing computation to move
with their contexts. The language is quite powerful, allowing the moving of computations
together with their environment. The language relies on the notion of ambient. An ambient
can contain other ambients, and it defines the scope of computations contained in it. On

top of the ambient calculus some security mechanisms based on capabilities, i.e., access
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rights, and types have been defines. Every ambient has a name that allows capabilities to

be defined on it in order to constrain access rights.

Mobile UNITY

Mobile UniTy [MR98] will be used and refined in Chapter 7. We will give a general
outline here to leave the description of the details when we need them. Mobile UNITY
is a state based language based on UNITY [CM88]. Mobile UNITY allows the definition
of programs, and of their mobile behavior, assigning to each program a location variable.
The unit of mobility, as well as the unit of execution and of definition in Mobile UNITY is
the program. Users write programs that can be instanced an migrated over the network
re-assigning the location variable. The Interactions section of a Mobile UNITY document
defines the interactions and the movements of the components. The Components section
defines the instantiations of programs that are going to exist in the system. The set of
components is then fixed.

Mobile UNITY has a well-defined proof system based on temporal logic that allows the

specification and verification of properties on mobile systems.

Other Formalisms

As in the previous section for technologies, in this section we only described some of
the relevant approaches to formalization of mobile code systems. Other approaches have
been developed, and some of them deserve to be at least mentioned, like [VC99], [PS99]
and [WF98], and the paper in [SMT98] presents a survey of existing formal approaches to
code mobility.

The research on distributed and reconfigurable systems and evolving architectures
is not focused on mobility but has similarities and common issues, like rapid evolu-
tion and constant changes. Some relevant work on this topic deserves to be mentioned.
In IW95] the Chemical Abstract Machine [BB92] (CHAM), a formal model based a chem-
ical metaphor, is used to express software architectures. The CHAM allows to express
environment as chemical solution of molecules that evolve based on a set global rules. The
chemical metaphor allows the specification of modular components and of the interactions
among them. In [GKC99] a process algebra based approach to dynamic software archi-

tecture is presented. A model checker is used to investigate behavioral properties on the



Chapter 1. Code Mobility: Technologies and Formalisms 13

specifications such as liveness and safety. In [WF99] and [OT98] different approaches with

specific focus on reconfiguration and dynamics analysis are presented.

1.3 Summary

In this chapter we have discussed some relevant related work. The chapter focused on
existing mobile code technologies and formalisms. Technologies have been developed very
quickly in this field, exploiting some new ideas. However the role played by formalisms
is very important as they permit to discover, at an abstract level, some possible future
developments in the field. In this thesis we combine formal specification approaches and
analysis to implementation and prototyping in order to have on one hand the abstract
shape of the ideas, and on the other the validation of them with respect to the real
applicability.

In the following we will often mention the described related work presented in this
chapter and compare it with our approach in order to clarify the main contribution of this

work.
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Chapter 2

PoliS: a Coordination Approach to Formalization

This chapter describes the language, named PoliS, that we use for the specification of
mobile code systems. PoliS is a coordination language based on a multiple tuple-spaces
model. PoliS can be used to specify and analyze systems based on logical mobility: code
mobility is represented as a first class concept. PoliS [CMP98] has already been used
to specify the architectures of complex systems in the past. The coordination media in
PoliS are multiple tuple spaces, which offer a natural basis for describing mobile entities
and their dynamic reconfiguration. The pattern matching mechanism adopted to access
the tuple spaces helps in abstracting away from low level addressing issues. Code can be

explicitly moved from one PoliS space to another, duplicated, and eliminated.

In Chapter 3 we show how we can use a model checking approach to analyze properties
on PoliS specifications, and in Chapter 4 we describe how we applied the approach to

mobile code based systems.

2.1 Overview of PoliS

PoliS is a coordination language whose coordination media are nested tuple spaces [CMP98].
A tuple space, or space for short, includes as coordinables both tuples and other spaces.
PoliS specifications are modular and hierarchically structured: a PoliS specification de-
notes a tree of nested spaces that dynamically evolves over time. Figure 2.1.a shows a
structure of nested spaces (i.e., the nested circles); Figure 2.1.b shows the corresponding
tree whose nodes are the spaces in Figure 2.1.a. The two pictures represent the same con-

cept. The labels inside the spaces represent tuples. A space can contain other spaces or
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O

Figure 2.1: PoliS nested spaces (a) and the corresponding tree interpretation (b).

tuples: ordinary tuples, which are ordered sequences of values, and program tuples, which

contain the coordination rules that manage activities inside the space they belong to.

In Figure 2.1 ordered sequences of values (for example (5,6)) are ordinary tuples; the
tuples of the form (“r” : R) are program tuples. A program tuple (“r” : R) is composed
of an identifier r and rule code represented by the placeholder R. The rule code defines

which reactions can take place. The quoted notation “ ”

is used to distinguish actual
parameters from formal ones (i.e., the non quoted ones). The execution of a program tuple
is an action which can modify a space tree by removing and adding tuples. However,
an action can only handle the tuples of the space it belongs to and the tuples of its
parent space. This precisely defines both the “input” and the “output” scope of any
action, as represented by a program tuple. Figure 2.2 shows the scope of a program
tuple (“r” : R). A space is modified by reactions that transform multi-sets of tuples
into multi-sets of tuples (this is multi-set rewriting, common to most coordination models
based on generative communication [BL96]). A rule defines a reaction that reads and/or
consumes tuples in its scope, performs a sequential computation, and produces new tuples
in its scope. More precisely, a rule consists of a precondition, a local computation, and a
postcondition. The precondition is a multi-set of tuples to be found in the rule scope. The
local computation is any sequential computation which does not modify the tuple space;
it is encoded as a function that maps values of tuples of the precondition on values of
tuples of the postcondition. The postcondition is made up of a multi-set of tuples to be

produced in the rule scope. We remark that this is a very general definition; actually a
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Figure 2.2: The scope of a rule.

rule can lack of some components: a rule can have an empty precondition, can involve no
local computation, or can produce no tuples. The precondition can include formal tuples,
i.e., tuples whose fields can be identifiers (i.e., the non quoted fields). In this case actual
values for those identifiers are “matched” in the tuple space.

The tuples of the precondition must be read or consumed in the rule scope (Figure 2.2).
When a program tuple is enabled, i.e., its precondition tuples exist in the program tuple
scope, the reaction can take place: the tuples to be consumed locally are removed from
the space containing the program tuple, the tuples to be consumed externally are removed
from the parent space of the space containing the program tuple, the local computation
is performed, the tuples of the postcondition are produced. A tuple in the precondition
must be read if the symbol “?” is put in front of it and must be consumed otherwise; a
read or consume operation involves the parent space if the symbol “1” is put in front of
a tuple and involves the local space if the symbol is missing; a tuple in the postcondition
must be produced in the parent space if the symbol “ 1”7 is put in front of it and must be
produced locally otherwise.

Rules are first class entities in PoliS: in fact, they are themselves part of spaces as
(program) tuples that can be read, consumed or produced just like ordinary tuples. A
program tuple has the form ( “rule_id”: rule) where rule_id is a rule identifier and rule is
PoliS rule code. The identifier simplifies reading or consuming program tuples and allows
the existence of multiple copies of program tuples with the same code but different rule
identifiers.

Rules can also create and destroy tuple spaces. They can generate new spaces using

the primitive tsc (for tuple space creation) in the postcondition part. For example, the
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execution of a rule containing a tsc(M) operation in its postcondition causes the space
M to be added as a child space of the space where the rule is executed. Spaces can also
be destroyed by particular rules called termination rules. Whenever a termination rule
is enabled the tuple space terminates and disappears. Termination rules can read tuples
only locally (i.e., not in the parent space, as the termination condition is meant to be
local to the space configuration) and produce tuples in the parent space, as the local space
disappears. When the tuples to be read are in the space, the reaction specified by the
termination rule takes place in the usual way. Local computation and tuple production are
used to communicate possible results to the parent space and then the space terminates.
Termination rules are given by means of special program tuples whose names are replaced
by the keyword terminate. In Figure 2.3.a a new space is created upon the activation of
rule R. In Figure 2.3.b a space is destroyed when the termination rule 7' is enabled.

A simple example helps in explaining both the syntax and the semantics of PoliS.
Let us consider a client-server system. A client emits requests and a server serves them.
Such a system can be described by two distinct spaces both included in the main space
representing the client and the server.

Table 2.1 contains the specification of the system. The StartContext space is the main
space, that contains the program tuple (“create” : CREATE). The name of the tuple
is create (as it is quoted, it is the actual name of the tuple); instead CREATE acts as
a “macro”, expanded in the corresponding text below in the table. The rule denoted
by CREATE creates the spaces Client and Server that contain the tuples describing the
client and the server, respectively. The rule also consumes the program tuple (“create” :
CREATE) in order to ensure this rule is only applied once in the initialization phase.

After that, the code of CREATE will disappear and it will not be possible to apply the

Figure 2.3: Creation (a) and Termination (b) of spaces.
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| StartContext
StartContext = ﬂ (“create” : CREATE) ﬂ

CREATE = {] (“create” : CREATE) “—>ﬂ tsc(Client), tsc(Server) ﬂ

| Client
Client = {] (“idle”,0), (“req” : REQ), (“get” : GET), (terminate : END) “

REQ = 4 (“idle”, 1) “ —>ﬂ T(“request”, 1), (“wait”, i) “

GET = 3| (“wait”, ), N(“answer”, answ, i) E—W) ﬂ (“idle”, j) u
where f(z) = (z + 1)

END = { 2(vidie” 10) } ——{ 1(“done”) |

| Server

(“getreq” : GETREQ), (“idle”),
Server =
(“serve” : SERVE), (“put” : PUT)

GETREQ = ﬂ T(“request” i), (“idle”) u —>ﬂ (“request” i) u
SERVE = {] (“request”, i) E —>ﬂ (“answer” , answ, i) ﬂ

PUT = ﬂ (“answer”, answ, 1) H — ﬂ t(“answer” , answ, 1), (“idle”) u

Table 2.1: Specification of a Client-Server System in PoliS.

rule anymore.

Client is the client space and contains the tuple (“idle”,7) that indicates the state
of the client, the program tuple (“req” : REQ), (“get” : GET), and the termination
rule (terminate : END) that contains the code of the rules REQ, GET, and END

(specified below), respectively. The rule REQ emits a new request (tuple) in the main
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space: T(“request”, i), and changes the state of the client from (“idle”, i) to (“wait”, i)
where 7 is the number associated to the request. The rule GET waits for an answer in the
main space T(“answer”, answ,i) where i corresponds to the number of the request (the
rule checks if the tuple (“wait”, i) is present). It emits a new state tuple with the number i
increased by one by the function f on the arrow in the rule (specified in the where clause).
The Client space terminates as soon as it receives the 10-th answer. The termination rule
END checks if the Client space contains the tuple (“idle”, 10), that means that the client
has received ten answers from the server. The tuple (“done”) represents a termination

message sent by the consumer to the main space before dying.

Server is the server space. It contains a tuple denoting its state and three rules: the
rule GETRE(Q checks if the state is idle and if a request is present in the main space,
then moves the request in the local space. The rule SERVE generates an answer to the
request. The rule PUT resets the state of the server to idle (emitting the tuple (“idle”)

locally), and move the answer tuple to the main space.

The example above shows that the basic communication mechanisms of PoliS are
asynchronous. Rules are transactions and therefore execute in an atomic fashion. They
also offer a basic mechanism for synchronization of operations: the rules can atomically
read/consume multiple tuples allowing quite complex evolutions. Tuples representing
messages are put in the environment by entities which have to communicate. Hence,
communication is decoupled because communicating entities do not necessarily know each
other; they access tuples by pattern matching. Messages have no destination address,
so their contents determine the set of possible receivers. Thus, a space represents at the
same time both a component performing computations and a persistent, multicast channel
supporting communication among components it contains. Any space communicates with
the parent space using a pattern matching mechanism, thus minimizing the assumptions

over the the rest of the system.
In the next section we describe the formal operational semantics of PoliS.

2.2 Abstract Syntax and Operational Semantics for PoliS

We describe the semantics of a PoliS specification as the application of simple rewriting

operations on multisets. In Table 2.2 we show the abstract syntax for PoliS. A multiset
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MS

elem
tuple
program
data
datalist

value € Values

data € String

{elem } | MS & MS | MS \ MS | (MS)
tuple | MS

data | program

(“r” : Code)

(datalist)

“data” | value | “data”, datalist | value, datalist

“r” € Ruleid, the set of rule identifiers
Code € Rulecode, the set of rules code specified in Table 2.4.
In the concrete syntax, Code is usually substituted with a macro that expands

in the code itself.

Table 2.2: PoliS Abstract Syntax.

(MS) is composed of elements that are tuples or multisets, or can be built as the union or

difference of multisets. A tuple can be a data tuple or a program tuple. A data tuple is a

sequence of values and strings, whereas a program tuple is composed of an identifier and

of rule code. The semantics of PoliS is introduced in the Tables 2.3, 2.4, and 2.5. Table

2.3 shows the SOS (Structured Operational Semantics) axioms and rules:

- L is a rule describing the local computations. It formalizes the local and isolated

evolution of subspaces or subsets of tuples inside a space.

- The axioms RL, RI, and T define the semantics of PoliS rules. These axioms show

the reaction taking place when a program tuple (“r”

: R) is enabled in a space (M).

The formalization of the code macro R is shown in Table 2.4 according to the type

of R (an example of use of these macro can be found in Table 2.1). R can be a local

rule (i.e., R;), or an interactive rule (i.e., R;), or a termination rule (i.e., Rierm ). The

notation ., t,, te, tep denote the lists of tuples to be consumed locally, produced

locally, produced and consumed in the parent space, respectively. S is the list of

spaces to be created by the rule. 77 and vy are the formal parameter lists to be

substituted by Z and 7.

Table 2.3 shows these three types of semantics rules:
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— Local rules consume, test, and produce only local tuples, without involving the
parent space. The axiom RL shows the transition applied on the space M: if
the program tuple (“r” : R;) is in M and if the rule R; is enabled (condition
expressed by the predicate LocEnabled specified in Table 2.5), the space M is
updated deleting the tuples that the rule consumes and adding the tuples (and

the new spaces) that the rule produces.

Table 2.4 contains the specification of R;.

— Interaction rules interact also with the parent space. The specification of the
axiom RI shown in Table 2.3 is similar to the one of RL just described. Besides
updating the space M; it updates the space My, parent of M; as the rule acts

on it as well.

— Termination rules, when enabled, cause the termination of the space they are
in. These rules have priority over the other rules. Moreover, a termination rule

can only test internal tuples and produce external ones; other operations do

L—MS — MS'
{MS} — {MS'}

Local Rule
RL:{(“r” Rl)]}GBM —

if LocE'nabled(Rl ,“r”, M, U7, vg)

Interaction Rule

RL{{(“ry" : R)} & M1} & My —
{(({C“r” = R)} @ M) \ {Ec[vz/7]}) & {2, [05/7. 55/7). S[vz/7, 75/ F1}}
O(Ma \ {ToclT5/71}) © [T 72/7, 75/}
if IntEnabled(R;, “r;”, My, Ms, Uz, Uy)

Termination Rule
T:{{(terminate : Riery,)} ® M1} & My — My @ {t.,[Vz/Z, 735/7]}
if TermEnabled(Ricrm, M1, Uz, Uy) A 3Ry, Uz, | TermEnabled (R, My, U, Uy,)

Table 2.3: Structured Operational Semantics Rules and Axioms.
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tc,l; cee tc,nca
tp,1r-+- > lpyny,

Rl = ?ttl,... ,?tt ngy @)1 (@) ?
' ' tsc(S1),... ,tsc(Sy)

| ask(boolexpr)
where f((2)) = ((fi(2),-.. ,fn(2)))

(| N
Leseo yte,ng,
Ttec,la B aTtec,n,zc: tp,la HR tp,np:
Ri = % ?tt,17~-~ 7?tt,n“ M_) Ttep,la"' 7Tt€p,n@p7
?Ttet,l, e ;?Ttet,nt” tSC(Sl), P ,tSC(Sn)
| ask(boolezpr)
where f((z)) = (1 (), ,fm(2)))
?tt,l e ?tt’ — —
Ricrm = , ’ . M)ﬂ Ttep,l: v 7Ttepyncp7 #
ask(boolezpr)

where f((z)) = ((fi(2),-.. ,fn(2)))

Table 2.4: Classification of PoliS Rules Macro.

not make sense since the local space terminates. The axiom 7T shows how a

space terminates and how some tuples are added to the parent space.

The rule macros R;, R;, and Ry, in Table 2.3 expand as shown in Table 2.4.
The notation (f.1,..., %) denotes the tuples to be consumed locally, the nota-
tion (?¢,1,... ,?t;,n,) denotes the tuples that are tested locally, and (tp,1,... ,tpn,)
are the tuples that are produced. (tsc(Si),... ,tsc(S,)) denotes the generated sub-
spaces. In the specification of R;, and Ryepp, the notation (Tfec 1, ... , Ttec,n..) denotes
the tuples consumed in the parent space, while (? 1te;1,... ,? Ttes,n.,) are the tuples
that are only read from the parent space. Finally, the notation (Ttep1,... , Ttep,n.,)
denotes the tuples produced in the parent space. The PoliS construct ask checks the
values of tuples parameters. The general form of the ask predicate is ask(predicate)

and it is another condition to be added to the precondition set.

The predicates TermEnabled, LocEnabled, and IntEnabled used in Table 2.3 are
formally described in Table 2.5 to check if the rules are enabled. The TermFEnabled
condition is true if the rule Ry, is enabled, that is, if the program tuple (term :

Rierm) is in the same space M as the tuples to be tested. The LocEnabled condition
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LocEnabled(Ry,

{t[vz/7), ti[vz/z]} C{(“r” : R)} & M
A Ty = f(Tz)Aboolexpr([vz/T)
A VR, Uz, Uy : ((terminate: R) € M =
~TermEnabled(R, M , Uz, Uy)

IntEnabled (R;,

TermEnabled(Rierm, M , Uz, Uy)
{t:[v/7]} C {(terminate : Rigr)} & M
Aoy =Ff (vz)Aboolexpr[vz/T]

“r7 ) My, My, U, Tg) =

{Teloz/2), Tiloa/zk C {57 R} @ My

A Atec[U7/T), tet[Uz/Z]} C Mo A Ty = f(Tz)Aboolexpr [z /T]
A VR, Uz, Uy : ((terminate : R) € M; =
~TermEnabled(R, M, Uz, Uy)

A VR, Tz, Uy : ((terminate : R) € My =
~TermEnabled(R, Ma, Uz, Ty)

1)) il A
T ,M,’Uf,’l}g)—

S

Table 2.5: Precondition predicates.

is true if the rule R; is enabled, that is, if the program tuple (“r” : R;) is in the same
space M as the tuples to be consumed and tested. Furthermore, no termination
rules (which have priority) should be enabled. The IntEnabled condition is true
if the interaction rule R; is enabled, that is, if the program tuple (“r” : R;) is in
the space M; and if the tuple it has to test and consume on the local and parent
spaces are respectively in M; and in the parent of My (i.e., My). Furthermore, no

termination rules should be enabled in M; or Ms.

For sake of brevity we do not describe the semantics for operator & and \; they have

their intuitive meanings of multiset union and difference, respectively. We are now ready

to define a transition system for PoliS.

POliSTmnsitionSystem = (MS, —>MS)
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where the MS syntax is defined in Table 2.2 and — 3;6C MS x MS is the minimal relation

satisfying the rules described above.

The transition system to be associated to a PoliS specification Spec is formally defined
as a triple

(1Spec, — spec, StartContext) where:

StartContext is the initial MS (called initial state)

TSpec C MS is a minimal subset of MS such that:

_ MS, € tSpec MS; — MSy
MS; €1Spec

—spec © TSpecx 1TSpec is the restriction of — to 1Spec;

StartContext € 1Spec.

The transition system model and the operational semantics have been used for the con-

struction of a model checker for PoliS, that we present in Chapter 3.

2.3 Specification in PoliS

PoliS can be used to specify complex systems. In this section we use it to specify an “In-
voicing System”. The example was used as a case study in the International Workshop on
Comparing System Specification Techniques (Nantes, 1998). two versions of the system
are shown. The first does not take into account any interaction with the “environment”
while the second considers some possible interactions showing a more complex behavior.
An invoicing system should allow the customers to place orders. The orders are then pro-
cessed by the system, the requested products are provided and together with the invoices
sent to the customers. If a product is not available in stock in the ordered quantity, a
request is issued and the order is blocked. When the exact quantity becomes available
the order is processed. In the next chapter we will use the same example with the model

checker and we will prove properties on it.
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| Startcontext

Startcontest — Stock, (“Order”, 1, p1, g, pending), (“Order”,2, ps, ¢z, pending),

o, (“Order” | k, pi, qi., pending)

| Stock
StOCk = (“PTOdUCt” » P, Q1)’ (“PT‘OdUCt” , P2, q2)7
ey (“Product” | pp,, qn), (“invoice” : IN)
(“PTOdUCt” s Diy Qi)a B
- Product”, pi, q¢m),
IN = {| ask(q; < ¢;) (et ) )| € i» Gm)

i ; N“Order, ,j, p;, q;, invoiced)
T( “Order” »Js Dis Q5 Pendmg)

where f(q1, ¢2) = (diff (q1, q2))

Table 2.6: PoliS specification of Casel

The PoliS specification of the Invoicing System (Case 1)

In order to have a simplified version of the system we suppose to have a closed world:
updating, input of new orders, and cancellation of orders have not to be taken into account.

Then the initial space will look like the one in Figure 2.4.

The main space contains the orders to be invoiced. Every order is defined by a number
(i.e. the id), the product reference, the quantity of the product ordered, and the state of
the order (pending/invoiced).

The Stock space is a sub-space of the main space (Figure 2.4). It is specified in the
second part of Table 2.3: it contains the stocked products, their names and the stocked

quantities. The PoliS rule IN, in the Stock space, looks for an order in the parent space,

Order,1,p_1,q_1,pending

Stock -
Order,2,p_2,q2 pending
Product,1, qul

Product,2,qu2 -
Order,3.,p_3.,q3,pending
Product,3,qu3

Product 4,qu4

Figure 2.4: Structure of the Invoicing System (Casel).
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Get New Quantites
Get New Order
Send

Order,1,p_1,q_1,pending

Stock -
Order,2,p_2,q2 pending
Product,1, qul

Product,2,qu2 -
Order,3.,p_3.,q3,pending
Product,3,qu3
Product 4,qu4

Figure 2.5: Strcuture of the Invoicing System (Case2).

and, if a sufficient quantity of the stocked product exists, it updates the stocked quantity

of the product and invoices the order.

Then some questions have risen from this specification. As the rule IN checks if the
quantity of product stocked is larger than the quantity ordered (by the construct ask),
the question “What happens if an order asks for a quantity larger than the one present
in the stock?” We can ask the customer some details about this situation or proposing a
solution: adding a rule that cancel an order in case the asked quantity of product is larger
than the stocked one. This implies also the adding of the state canceled to the order states
invoice and pending. An other interesting question is “If an order asks for a non-stocked
product?”. Again, we can choose to handle this case with a rule that cancels the order

when it asks for a non-stocked product.

The PoliS specification of the Invoicing System (Case 2)

Now we specify a refinement of Casel, taking into account also the input of new orders,

the cancellation of orders and the entries of new quantities in the stock.

In this version of the Invoicing System the main space accepts input from the environ-
ment exploiting the operation () (see Chapter 2 for details on PoliS operators). Figure 2.5

shows the whole system.
Orders can now be in the state canceled, besides pending and invoiced.

The refined specification allows the system to interact with the environment: new
orders and new quantities for the stock can be accepted, orders can be canceled (they

remain in the space as canceled).
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Startcontext
Stock, (“Order”, 1, p1, @1, pending), (“Order” , 2, p2, g2, pending),

Startcontext = <| ..., (Order, py, k, qi,, pending) (“ordercounter” , n), (“getord” : GET),
(“canc” : CANC), (“newq” : NEWQUANT), (“send” : SEND)

CET — (1(“neword”, p, q), (nn)f(n) (“ordercounter” , nn),
= _ R

(“ordercounter”, n) (“Order” ,n, p, q, pending)
where f(n) = (n + 1))

T( “cancel” , Z.dorder) )

CANC = ——{ (“Order”, idopser. p. 4. canceled) }

(“Order” , idonser, p. 4, pending)
NEWQUANT = { 4(“newq”  idyro. ) |} —{ (“news” . idyroa, ) }

SEND = {] (“Order”, 4, pj, g;, invoiced) E — | T((“Order”,j,pj, g, invoiced) E

| Stock
(“Product”, p1, q1), (“Product”, pz, ¢2),
Stock =
ey (“Product” | py,, qn), (“invoice” : IN)(“update”, UPDATE)
(“PTOdUCt” s Diy Qi)a
- “Product”, p;, ,
IN = 4| ask(g; < q) et )| Pis 4m)

; : N“Order”,j, pi, q;, invoiced)
T( “Order” »Js Dis G5, Pendmg)

where f(q1, ¢2) = (diff (q1, q2))

T( “newq”, idprod; q):
(“Product”, idproa, qi)

UPDATE =

(gnew)<«f(q,q1) ﬂ (“PT‘OdUCt”, idprod, qnew) ﬂ

where f(gplus) = (plus(q1, ¢2))

Table 2.7: PoliS specification of Case2

The main space now contains new rules for the handling of these situations; the counter
tuple introduced records the number of orders accepted (it is updated by the rule GET).
The rule GET accepts a new order recording it as pending. The counter helps in assign
sequential identifier to the input orders. The rule CANC cancels an order marking it as

canceled. The rule NEWQUANT simply accept a new quantity of a product as input from
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the environment. The rule SEND communicate to the environment an invoiced order. The
Stock space is now enriched with an UPDATE rule that updates the product quantities

in the stock with the new quantity received from the main space.

Some questions have risen also from this specification. The question risen on the
specification of Casel “What happens if an order asks for a quantity larger than the one
present in the stock?” is no more a problem: the input of new quantity of product from
the environment allows an order of a larger quantity of product than the stocked one to

be invoiced in a future (i.e. when the stocked quantity is updated).

The other question on Casel (“If an order asks for a non-stocked product?”) still is a
problem, in fact an order of a non-stocked product will never be invoiced. The specification
describes the input of new quantities but not the input of new products. ”It is possible to

have input of new products?”: some rules could be added th handle these situations.

Then a related question is “If a quantity of a non-stocked product arrives?”: should
this case be considered as “input of new product” or simply “an error of non-stocked
product quantity input?”. “If the environment asks to cancel a non-present order?” is an
other question risen from the specification: the CANC rule checks if the order is present
and then cancel it. If the order is not present the CANC rule is not applied: we could
add, if needed, a rule to handle this kind of error signaling it to the environment (as an
output). In the next chapter we will analyze this specification using our model checker in
order to be able to determine new questions on the specification and to be able to reply

to some of them.

2.4 PoliS and Software Architectures

Research in the field of software architecture has led to the definition of several environ-
ments and languages for the definition and the design of architecture of software systems.
Some works face the problem of defining a general-purpose language for architectural
description, supporting system design by correct combination of given interacting subsys-
tems [ST95]. Other works aim to characterize systems design according to defined style
constraints, developing style specific environment to guide the building of specific sys-
tems [GAO94]. Other architectural description languages have been developed exploiting
well-known formalism as CSP [AG97] or 7 -calculus [MDEK95] providing also tools for
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animation and monitoring [LT95].

Software architectures specification is an important phase in the life cycle of software
systems. It is universally shared the idea that software architecture specification should be
put between the requirement definition and the design phase defining important aspects
of systems before actually going into the details of the design itself. In this phase the clear

definition of the interaction among different components should be specified.

We now show how PoliS can be used for the specification of software architectures.
The basic entity of the PoliS language is the Tuple-Space: an architectural component
is specified using a space. When necessary, a component can be seen as composition of
different sub-components. We specify this kind of compositionality in PoliS exploiting the
multiple tuple spaces structure: each composed component is specified with a PoliS space
containing other sub-spaces. For instance, a server component can be seen as a single
space (as in Table 2.1), or as composed of different entities (i.e. sub-spaces) handling
different kind of requests or providing different services: Figure 2.6 shows a server with

two handlers for Data-Base queries and WWW services.

requests

Server

DB queries
Handler

WWW Services
Handler

Figure 2.6: Architecture of a Server with two Handlers.

The coordination model is a good framework to abstract from communication details.
At the architectural level we would like to have an abstract view of the system: the tuple-
based communication mechanism let the focus be put on the structure. On the other
side, if the specification of the connection is important, it is possible to associate with the
connector a space in order to define its particular behavior. For instance, in the example
shown in Table 2.1 the client and the server communicate through the tuple space using

this coordination abstraction. We could modify the model adding an entity, with the
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function of connector (i.e. a Buffer or a Router) in order to specify its particular behavior.
This connector can also be composed of different sub-components, for instance a Layered

Router: the nested space model fits the specification of this layered structure (Figure 2.7).

Router

Figure 2.7: Architecture of a Client-Server System with a Layered Router.

The PoliS spaces model allows the specification of context-free components as inde-
pendent spaces with their active rules. The PoliS mechanism of active rules scoping (see
Figure 2.2) helps in the definition of the components assumptions on the external envi-
ronment. For instance, consider a generic rule enabled only when a particular tuple is
present in the parent space (1(tuple)): the component containing that rule should be put
in a configuration that will eventually provide that tuple, otherwise parts of the compo-
nent behavior will be unexploited (with consequences that can lead to the deadlock of the
system). In this way we can reason on the assumptions that components make on their
contexts and analyze how different assumptions can match and how components can be
interconnected. We can predict which context allows a component to behave exploiting
all its functions.

These kinds of reasoning could help in the organization of the architectural configura-
tion as also stated in [GKC99]. Furthermore, the help of automatic tools for the testing of
these properties could be devised. In this direction we propose the use of our PoliS model

checker: we introduce this topic in the next chapter.
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Chapter 3

The PoliS Model Checker

In this chapter we introduce the model checker of PoliS that we will use to analyze mobile
code systems. We recalls the specifications presented in Chapter 2 to show how systems

and software architectures can be analyzed using the model checking approach.

3.1 Model Checking a Coordination Model

Theorem proving has been the most traditional method of system analysis [Bro96]. In
theorem proving a deductive system with axioms and derivation rules is usually defined.
Starting from the axioms and using the rules it is possible to prove new theorems. Such
a method can be applied to software systems as well: if the axiom set is enriched with
a formal definition of a software system, then the properties derived from the deductive
system are the properties that the system satisfies. In [CMP98] a mapping between the
PoliS operational semantics and TLA (Temporal Logic of Action) [Lam94] has been stud-
ied. This allowed us to use a theorem prover for formal reasoning on PoliS specifications.
However, theorem provers require human interaction in order to complete proofs while
model checking techniques provide completely automatic verification frameworks. In this
paper we exploit a model checking technique to perform analysis on PoliS specification
documents. Model checking was initially used for the verification of hardware systems. A
landmark paper [CES86] suggested and studied a model checking approach for software
systems. Model checking aims at finding an assignment (model) for system variables that
satisfies the formulae describing some system properties. Given a model of a software

system (derived from its operational specification) a model checker makes an exhaustive
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analysis of variable values possible in the model. This method may seem trivial and

inefficient, but it is very powerful for systems with finite state models.

Model checkers are completely automatic. An important feature of model checking is
the ability to find counter-examples (i.e., a path that leads to a scenario where the property
is false). Abstract model checking [CGL94] and deductive model checking [SUM96] are the
most often exploited techniques to deal with infinite systems. The exponential explosion
of the number of system states can also be managed with symbolic model checking and

the use of BDD (Binary Decision Diagrams) [BCM*92].

The model checker we have built exploits PoliS modularity features (i.e., spaces defining
context boundaries) in order to reduce the space of the graphs built for a specification. The
algorithm applied for the verification of properties follows the one presented in [CES86].
The logic is based on CTL (Computation Tree Logic) [CES86]: the differences between our
logic and CTL are related to the spaces-based coordination model. We will give the details

of the graph construction, the logic and the model checking in the following sections.

3.1.1 The PoliS Graph Construction

In Section 2.2 we have described an operational semantics for PoliS. We now consider
the transition system defined by the Structural Operational Semantics (SOS); the graph
obtained from the unfolding of a transition system of a real system is something quite
similar to our model. The main difference between SOS unfolding and our model is that
in SOS a unique monolithic graph is built to represent a system, while here we associate
a graph to each sub-space definition. The nodes of the graph show how a space evolves;
instead, edges are labeled with tuples produced/consumed and tested in the parent spaces.
As an example consider the space Component in Table 3.1 and the graph built for this
space in Figure 3.1. The component can be idle or performing some critical actions (when
it obtains the token). It can also return the token (by rule PUT). The three nodes in
Figure 3.1 indicate the possible states for the space Component, namely idle, critical, and
req. The arrows show the transitions due to the application of the rules REQ, GET, or
PUT. The labels on the arrows describe the tuples tested, consumed, and produced in
each transition. Our model checker works recursively starting from the more deeply nested

spaces, up to the main space.
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state 1 state 2
IN: ("idle")
OUT: ("req")

state 3
IN: ("req")

OUT: ("critical")
CONSUMED-UP : ("token")

IN: ("critical")
OUT: ("idle")
OUT-UP: (token")

Figure 3.1: Graph for the simple space Component.

We distinguish two kinds of spaces: spaces which do not contain other spaces and spaces
which contain subspaces. From hereafter we call simple spaces the former, and compound
spaces the latter. The graph for simple spaces is built according to the SOS transition
system. In graphs for compound spaces we exploit configurations. A configuration is
a triple (graph, instance, state) that uniquely identifies a state in a graph of a space: a
configuration is a descriptor for a subspace instance. A graph for a compound space
contains a configuration for each subspace. In Table 3.2 we describe the specification for
a root space (named StartContezt) including two instances of space Component given in
Table 3.1. The graph is built according to the SOS : a labeled transition for each rule

activation is built from the initial state (defined by an initial multiset). The final state

| Component
(“idle”), (“req” : REQ),

Component =
(“get” : GET), (“put” : PUT)

REQ :ﬂ (“idle”) ﬂ—>ﬂ (“reg”) ﬂ
GET = ﬂ (“req”), 1(“token”) ﬂ—)ﬂ (“critical”) #

PUT :{] (“critical”) ”—>ﬂ (“idle”), N “token”) ﬁ

Table 3.1: Specification of a simple component.
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StartContext

StartContext = ﬂ Component, Component, (“token”) ﬂ

Table 3.2: Specification for StartContext.

represents the multiset with rewritten tuples. The transition label includes tuples to be
tested, consumed, or produced in the parent space. When a computation is performed
inside a subspace, everything in the state representing the parent space is unchanged, but
the configuration of the subspace. In Figure 3.2 we show how we exploit configurations':
the initial state of the graph corresponding to the main space (StartContext) contains
the tuple token and two configurations corresponding to the two instances of the two
components (C,1,1), (C,2,1), (C stands for Component) where the second parameter

denotes the instance id (i.e., Componentl and Component2), and the last parameter is a

pointer to the state of the graph of the Component space (i.e., the state 1 in both cases).

Our model is more useful and powerful than the SOS model mainly for two reasons:
first, we save space when there are several instances of some graph definition, as in the pre-
vious example; second, we can abstract a single space and analyze its model independently
from other spaces. However, building a graph independently from its context introduces
some problems. For example, the case in which a formal tuple has to be consumed in
the parent space has to be handled. Uninstantiated identifiers can hold any value, so for
correctness, while building the graph, all the cases have to be considered (i.e., all values
for each domain). We handled this problem making a guess on a fixed range of natural

numbers given with the specification of the system to be analyzed.

In the following we introduce the logic we use to reason on these graphs and then, the

details of the model checking tool.

1To avoid confusion the transition labels of the figure do not contain the list of the tested, consumed,

or produced tuples; instead, we label the edges with the names of the rules applied.
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Graph of StartContext

("token")

(C,1,1)
(C2,1)

("token")

(C,1,2)
(C2,1)

("token")

(C,1,1)
(C22)

("token")

(C,1,2)
(C22)

state 1 state 2

Figure 3.2: Representation of configurations.

3.1.2 The PoliS Temporal Logic

The PoliS Temporal Logic (PTL) is a CTL [CES86] dialect. The main differences between
PTL and CTL depend on the definition of our model, that is based on spaces (multi-sets).
All the formulae are evaluated in a context (a space); moreover, we assume that formulae

without an explicit context are evaluated in the StartContext. An atomic proposition

atom is a tuple. atom is true in a context C if the tuple it represents belongs to a space C.
We have also added classical logic operators and some temporal operators. In Table 3.3
we sketch the PTL syntax.

- A ptf can be a temporal, a classic, a parenthesized ptf, an atom, a ptf can be univer-

sally or existentially quantified over some variables;

- a context is a PTL formula that has a pattern like: pif € C' (space C), ptf € xC (all
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ptf = context | temporal = *Xptf |
temporal | &Xptf |
classic | *(ptf Uptf) |
(ptf) | &(ptf Uptf) |
atom | *Optf |
Vi € [min,max] (ptf) | &Optf |
31 € [min,max] (ptf) *Optf |
context = ptfe C| &Optf |
ptf € xC | ptf ~ptf
ptf € &C | classic u= ptf Aptf |
ptf € %C ptf Vptf |
atom = tuple —ptf |
ptf =ptf

Table 3.3: PTL Syntax.

C spaces ), ptf € &C (at least one C space), or ptf € % C (exactly one C space),
these because in a specification there can be more than one instance of the same
space;

a temporal is a CTL formula: the canonical operators A (for all paths) and E (at
least a path does exist) for path quantification are described respectively by symbols
* and &. X and U are PTL symbols for CTL operators Next and Until;

*Optf is defined as x(trueUptf ): it means “for all paths ptf will be eventually true”;
&Optfis defined as & (trueUptf ): it means “for at least one path ptf will be eventually
true’;

*Optf is defined as =& O— pif : it means that “for all paths ptf is always true’;
&0Optf is defined as —xO— ptf : it means that “for at least a path ptf is always true”;
ptf ~ptf’ is defined as x0O(ptf = *Optf’ ): it means that “for all paths it is always
true that ptf implies that for all paths ptf’ will be eventually true’;

a classic is a PTL formula with classical logic operators;

an atom is simply a tuple.
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3.1.3 The PoliS Model Checker

We now describe the details of our model checking tool. PoliMC is our model checker for
PoliS. The model checker gets two inputs: a system specification written in PoliS, and a
set of properties to be verified, written in PTL. PoliMC first parses the PoliS specification
and builds up a model for it as described in Section 3.1.1; then, it parses the PTL formulae
and builds syntactic trees. Finally, it starts the model checking phase.

The model checking algorithm we apply follows the guidelines given by Clarke in [CES86].
As we have shown in Section 3.1.2 all formulae can be rewritten using these operators:

X,U(preceded by & or x),A,—. Thus, the only temporal formulae to verify are of the form:
pA q, = p, &Xp, xXp, &(pUg), *(pUyq)

The quantified formulae are handled like macros. A universally quantified formula is
expanded in a logic conjunction of its sub-formulae while an existentially quantified formula

is substituted by the logic disjunction of its sub-formulae. For instance:

Viel0,3] (ptf;) = (ptfyAptfy AptfyAptfs)

34 €0,3] (ptfy) = (ptfyVptf,VpthVptf;)

The main difference with respect to the Clarke algorithm is in the handling of context
formulae. Each sub-formula is checked inside its context. When, during the checking,
PoliMC finds a context formula like p € C, it leaves the current graph and it starts check-
ing the graph bound to C. This task is performed recursively. When the checking is
finished the currently checked state of the parent graph which contains a configuration
(state, graph, instance) where graph is bound to C and state is a state of the graph satis-
fying p, is labeled with the formula p € C'.

The verification of a formula of the form p € {%,&,x}C is similar: a state of the
parent of the graph bound to C can be labeled if among all the configurations it contains,
which have the graph component bound to C, there is respectively only one configuration,
some configurations, or all the configurations satisfying the formula p.

The verification of a formula is performed bottom-up: if the length of the formula is
n, PoliMC first checks all the sub-formulae of length less than n, then it labels each state

according to the labeling of the sub-formulae.
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The verification of atom formulae is trivial: an afom is a tuple and a state will be

labeled with this formula if and only if it represents a space which contains the tuple.

The verification of formulae pAg, and —¢ depends on the verification of p and ¢q. &X p
and *X p can be easily checked too: a state s is labeled with this formulae if some or all

the states s’ in the transitions of type (s, s’) are labeled with p.

The verification of formulae that contain the until (U) operator is more complex.
The check for x(p U ¢) is done forward, while the check for &(p U ¢) is done backward,
operating recursively. According to the U definition a state s can be labeled with x(p U g)
if s is labeled with ¢, or if it is labeled with p and all its successor states are labeled with
*(p U ¢). On the contrary, a state s can be labeled with &(p U ¢) if it is labeled with ¢ or
if it is labeled with p and one of its successor states is labeled with &(p U ¢). We remark
that if a specification contains the creation of new spaces we could obtain infinite graphs,
thus we use model checking on a constrained version of the specification where we limit
the number of possible generated spaces. This implies that we cannot “prove” properties
on the model, as we do not explore all the possible paths. Therefore, we use the tool to

test the specifications, to see if formulas are satisfiable, and to find counter-examples.

3.2 Analysis of the Invoice System

The PoliS specification language allows the completely separated specification of the coor-
dination aspects of a system from the computational ones: the specification of functional
aspects is limited to functions f in the rules. For instance, the rule IN (Table 2.3) specifies
the operation of invoicing an order defining the modification of the tuple Order, and the
functional operation of calculating the difference between the quantity ¢ of the product in

the stock and the required quantity ¢l (indicated on the top of the arrow of the rule).

The multiple spaces based model encodes in a modular way the different components
of the system (e.g. the Stock is a space). If the requirements had said it, a particular

space containing all the orders (i.e. an abstraction of a commercial office) would have been

defined.
The input from the environment is seen in PoliS as inheritance of tuples by the main
space from an hypothetic external space. The parallel handling of tuples is suitable for this

study: it simulates the parallel handling of the orders (or of the updating of the product
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quantities) by different employees in a company. It is possible to modify the specification
creating different agents (the employees) that handle orders (or updates the quantities).
The agents can be modeled in PoliS as spaces where the operations of invoicing orders can
take place. In this way the process of invoicing in a company can be specified taking into
account the personnel availability and the different roles. PoliS allows also the splitting of
the stock in different sub-stocks containing different kind of products (one single product
per stock or similar products in the same stock): multiple spaces would be added and

rules would help in the search of the right stock for an order.

The parser which is part of the model checking tool helps in finding syntax errors
and wrong constructs or sentences. After having checked the specification against these
errors the model checker tries to build the graph of the possible evolutions of the system.
Obviously, while using a model checker, you have to limit the scope of the variables to a

finite set of values in order to generate finite graphs [CES86].

We have tried to verify some liveness properties on the two versions of the Invoicing
System. The model checker helped us in detecting some errors in our reasoning. The
first error we found was in the specification. The model checker revealed some difficulties
in building the graph representing the system evolutions: it tried to generate negative
numbers for the quantities ¢ of the products. The model checker helped us in debugging
the specification and we found out that we did not put the constrain ask(g; < ¢;) on the
specification of the rule IN (invoice) (Table 2.3). This condition checks that the quantity
of product in the stock is larger than the ordered one: only under this condition an order
can be invoiced. After having successfully built the graph of the two specifications we

tried to verify the property (3.1) on the first system:

Vp, q,id(“Order”,id, p, q, pending) € StartContext~ (3.1)

(“Order” ,id, p, q, invoiced) € StartContext

That is, if an order has to be invoiced, it will eventually be invoiced (~ stands for
“leads t0”). However, the model checker verified that property (3.1) is false. In fact we

have to ensure that the product requested (p) is present in the stock at least in quantity
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Vid, p, q, 3k((“Order”,id, p, q, pending) € StartContext\ (3.2)
(“Product”,p, q + k) € Stock)~~

(“Order” ,id, p, q, invoiced) € StartContext

By the way, that condition is not enough yet: the model checker still found out that
it is false. The reason is that there can be other orders for the same product that can be
invoiced before the order ¢d, and that do not leave in the stock enough quantity of product

p to let the order id be invoiced. Then, we rewrote the (3.2) as:

Vid,id', p, q, ¢ 3k((“Order”,id, p, q, pending) € StartContext (3.3)
A(“Product”, p, q + k) € StockNid # id A
(=(“Order”,id’, p, q', pending) € StartContext))~»

(“Order” ,id, p, q, invoiced) € StartContext

Then, the model checker verified (3.3). We then tried to verify a property on the
second system (Table 2.7). In this system input from the environment is accepted, so
we had to take into account the updating of the products stocked (see Table 2.7: rule
NEWQUANT):

Vid,id', p, q,q 3k ((“Order”,id, p, q, pending) € StartContext\ (3.4)
(“Product”, p, q + k) € StockAid # id' A
*x(=((“Order”,id’, p, ¢, pending) € StartContext)U
=((“Order”,id, p, q, pending) € StartContext))
~((“Order” ,id, p, q, invoiced) € StartContext

V(“Order”,id, p, q, canceled) € StartContext)

That is, if an order of product p is to be invoiced, and there is enough quantity of
product in the stock, and a new order for the same product is not accepted until (U
stands for until) the order id is to be invoiced, then, eventually the order will be invoiced

or canceled.
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In a previous proof session we tried to verify that, at these conditions, the order will
eventually be invoiced. However the model checker verified that this property was false:

we had to take into account also order cancellations.

PoliS offers a different approach with respect to languages like Z [Spi92] or VDM. These
languages are property oriented and have a declarative approach. Z is a very expressive
notation and strongly typed: type checking helps in dealing with large specification doc-
uments where type errors are more frequent. PoliS is a type-less language, the parser and
the model checker detect syntax errors and verify temporal properties, however no type
checking can be performed on the specification. On the other hand 7 language hardly
specifies dynamics of a system: many enhancements and integrations with other notations
have been tried in order to allow dynamic aspects to be specified [Eva94, CCM97]. PoliS

emphasizes the behavioral aspects of a system, highlighting the rules configuration.

The PoliS operational model helped in understanding the dynamics of the Invoicing
System: Case 1 consists of a simple specification containing a single rule (IN) that helps
in invoicing the orders decreasing the quantities of products in the stock. In Case 2 the
environment has a role and the input of new orders and new quantities of products are
considered. The specification is more complex than in Case 1: there are new rules that

handle the input and the output with the environment.

Some questions have risen from both the specifications. from the Case 1 specifica-
tion: “What happens if an order asks for a non-stocked product? Or for a quantity of
product larger than the one stocked?”. From Case 2: “What happens if a quantity of
non-stocked product arrives? Or if the environment asks to cancel a non-present order?”.
The model checking technique helped us in inferring some properties on our specifications
and in increasing confidence in the dynamics: trying to proving properties, helps in finding

comprehension errors and features of the model.

3.3 Model Checking Software Architectures

In this section we outline a technique to check the behavior of components as isolated
from the context. We can also make interesting proofs on the properties of composed
architectures, where the components analyzed before are put in relation and interact. The

configuration matching can be performed on multiple components.
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This sort of analysis is possible as the model checker works bottom-up on the spaces,
building graphs for the innermost ones and then going on recursively. Other key issues in
this sort of compositionality analysis are the assumptions that a space (i.e. component)
makes on the environment. The PoliS language provides a particular scoping mechanism:
the reactions contained in a space can make assumptions on the external space (i.e. the
parent of the local space) using the 1 operator and formal tuples (not instanced) (see

Chapter 2 for details).

A component (i.e a space) that is put in a context (i.e. an other space) uses pattern
matching mechanism to match the assumptions contained in its rules (i.e. the tuples with
“¢) with the actual tuples contained in the environment. In this way we can easily state
when a component will be able to have an useful behavior exploiting its functionalities and
when not. If the environment does not provide the tuples that the component needs, the
behavior of the component will be constrained and its capabilities will not be completely
exploited. In a previous work [CMP98] a mapping between PoliS operational semantics
and TLA (Temporal Logic of Action) has been studied. This allowed us to use a theorem
prover for formal reasoning on PoliS specifications. In this work instead we exploit a model

checking technique to perform architectural analysis on PoliS specification documents.

We show how the model checker can be used for the verification of properties on
software architectures. We first analyze single components out of their context, considering
their interactions with the environment. Then we will be able to analyze configurations
and saying if they are feasible and convenient. The study of components as isolated entities
is useful when dealing with complex architectures where components are not elementary

objects but they are composed of many parts.

We now show how a single component can be analyzed out of its context. Consider the
Server in the Client-Server example (2.1): the Server makes only one assumption on the
external context, that is, it remains idle until a request is present in its context (i.e. the
father space) (1(“request”,i)), then a GETRE(Q reaction can take place and after some
steps an answer is generated in the environment (1(answer, answ,i)). The model checker

can be used to prove this property:

Vi, a, C((“request”, i), Server) € C~(“answer”, a,i) € C (3.5)
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That is, if the context C of the Server guarantees the arrival of a request, then the
answer to the request will be provided. The Client can emit a request without checking
the context C, however it blocks if the context does not provide an answer (rule GET).
Then, if an answer is provided the Client can go on making requests till the number of

requested services is ten.

Vi, a, C(Client, (“answer”, a,4)) € C~ (3.6)
(((“request”, i+ 1) € C)V(“done”) € C)

We can put together the assumptions of the two components and try to check if our

Client-Server configuration is feasible.

(Client, Server, (“request” , 1) A(i < 10)) € C~» (3.7)
(“answer”, a,i) € C~» (3.8)
((“request”, i+ 1) € CV(“done”) € C) (3.9)

We can trivially reach a state satisfying (3.7) in fact the Client can emit a request
(with ¢ < 10). The first “leads to” (~) property is satisfied by (3.5) as just shown, and
the second “leads to” property is satisfied by (3.6). Hence, we conclude that the two
components form a feasible configuration and that the corresponding assumptions match.

The Client-Server is a simple example without reconfiguration problems due to mobility
of components. The introduced approach of analysis can be very useful to know if a mobile
component could be introduced or not in a particular sub-architecture. For instance, if
we introduce an agent in our Client site (space) and want to send it to the Server site in
order to avoid heavy communication due to exchanging of requests-replies messages, we
could analyze the Agent space and its assumptions on the environment and see if they
match with the Server space contents.

In the next chapter we show how systems containing mobile components can be spec-

ified and analyzed using PoliS and the model checker.
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Chapter 4

PoliS Specification and Analysis
of Mobile Code Systems

Modern network technologies including mobile computers and devices, and the program-
ming languages for the Internet, like Java, require novel software design techniques. An
important feature in network applications is mobility; however, it is still unclear which
entities can be mobile and especially why and when they should move over the network.
Mobility can range from mobility of data, as in client-server architectures, to mobility of
code, as in Java based applications, to mobility of agents, as in some applications for elec-
tronic commerce, to mobility of whole operating environments, as in platforms including
mobile hardware.

In this section we show how PoliS can be used for the specification of systems containing
mobile components, and in the next sections we illustrate how we use our model checker
to analyze mobile systems.

The PoliS language allows the specification of both data and code mobility as first
class operations. Mobility of data is denoted by rules able to consume tuples locally and
to produce tuples outside the local space (or vice versa). Code mobility is denoted by
rules able to consume and produce tuples containing code, i.e., other rules. The ability of
moving code and data and the creation/destruction operations acting on spaces allow the
specification of mobility of complex agents carrying code and data as well.

Agents in this context are represented by spaces containing tuples and rules. Agent
mobility is coded by a combination of code and data mobility. In order to show how agent
mobility can be expressed in PoliS we modify the example in Table 2.1 by adding an agent

that is sent from the client to the server to perform some computations (Figure 4.1). The
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Server

Figure 4.1: A simple Client-Server system with a Mobile Agent.

example shows how we specify mobility of data, code, and agents. Tables 4.1 and 4.2

contains the PoliS specification of the system.

| StartContext
StartContext = ﬂ (“create” : CREATE) H

CREATE = ﬂ (“create” : CREATE) “—4] tsc(Client), tsc(Server) u

| Client
Client = {] Agent, (“get_ready”), (“send” : SEND) E

SEND = {] (“frozen”, t), (“agent” : a) E —>ﬂ 1(“agent” : a), T(“frozen”, t), (“wait”) E

| Server
Server = {] (“getag” : GET), (“data”, “d”) “

GET = ﬂ 1(“frozen”, t), T(agent : a) H —>ﬂ (“frozen”  t), (agent : a), (“unfreeze”) H

Table 4.1: Specification of a Client-Server System with a Mobile Agent: first part.

Client is the client space. It contains the subspace Agent, the tuple (“get_ready”), and
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| Agent
Avent (“start” : START), (“resume” : RESUME), (“job” : JOB),
gent =
(terminate : READY), (“agent” : AGENT)

START = ﬂ N “get_ready”) ﬂ —>ﬂ (“state”, “readytogo”,0) u

ask(s = “readytogo” or s = “afterjod”) M “agent” : AGENT)

READY — ﬂ ?(“state”,s,r),?(“agent” : AGENT), “ () f (o) ﬂ N “frozen”, t),

where f(state, result) = (freeze(state, result))
RESUME:ﬂ (“frozen”, t) kw_)ﬂ (“state”, s, ) “
where f(tuple) = (“beforejob”, result(tuple))
“state”, s, r), T (“data”, d), S s
go =1 ¢ )1 b\ _oshesars) { Cstater, 5100 )
ask(s = “beforejod”)
where f(data, oldresult, “beforejob”) = (calculate(data, oldresult), “afterjod”))

AGENT = ﬂ (“unfreeze”), (“agent” : AGENT) u —>ﬂ tsc(Agent) u

Table 4.2: Specification of a Client-Server System with a Mobile Agent: second part.

the program tuple (“send” : SEND). The data tuple (“get_ready”) tells the agent to get
ready to be sent. The code of the rule SEND actually sends the agent (once ready), i.e.,
the tuple frozen and a program tuple (“agent” : a), where a is a formal parameter that is
matched with a piece of code (in this case the code AGENT when present).

The Agent space is described in the same table. The rule START consumes the data
tuple (“get_ready”) from the client space (i.e., the parent space) and produces the tuple
(“state”, “readytogo”, 0) into the agent local space enabling the rule READY for execution.
The termination rule READY terminates the space saving the status of the agent, i.e., the
frozen tuple, and the activation rule (“agent” : AGENT) in the client space. The predicate
ask checks if the value of s (contained in the state tuple) is either readytogo or afterjob, i.e.,
the agent is ready to be sent, or it has finished a job. This enables the client’s rule SEND,
already described. The Agent space also contains the program tuples (“agent” : AGENT),
(“resume” : RESUME), and (“job” : JOB). The first acts as an “unfreeze” for the agent
space whenever the agent is “frozen” (i.e. it generates the new space). The rule RESUME

reacts when the agent space has been created, getting the frozen status of the agent

G
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and emitting the status tuple in the agent space. The rule JOB denotes the real code
for executing a job: it is used when the agent is at the server site and the “data” are
available. The where clause is abstractly specified as a function f because in the spirit
of most coordination languages (which separate computation from coordination) we omit
computation details, however it could be refined defining the exact mechanism for the
computation of the result. The Server space contains the data that will be used by the
agent code JOB to compute a result, and the program tuple (“getag” : GET), to gather
an agent from the environment. The rule GET gathers the frozen agent and the activation
code (i.e.,(“agent” : a), with the formal parameter ¢ matching the real code), and emits

the tuple (“unfreeze”) so that the agent can unfreeze itself.

As the example shows, code mobility can be modeled in PoliS consuming and producing
tuples representing code (i.e., containing rules). For instance, the rule SEND consumes
locally and produces in the environment the program tuple containing the activation code
for the agent, i.e., (“agent” : a), where a is a formal parameter matched with the code
AGENT when available. Agent mobility is depicted in Figure 4.2. An agent is “frozen”
and the code for the re-activation of the agent is moved together with its frozen status to

another location, where the agent will be reactivated.

This approach to agent mobility has several advantages. PoliS shows clearly that code
and state mobility are orthogonal concepts. For instance, we can specify the movement
of several agents sharing the same code simply using as many status tuples as agents and
a single code tuple. Another example is that we can redefine the behavior of an agent
changing its code but keeping its state. Another advantage is related to the performance
of the model checker we have implemented for the language (see Section 3.1): the con-
sideration of space (i.e., agent) mobility as first class in the language on one hand would
allow rules to consume and produce spaces as normal tuples. On the other this would lead
to an explosion in the number of states to be considered by the tool. Nevertheless, we are
exploring the possibility of enhancing the language with space mobility and studying how

we can still reason automatically on such a model.

The basic mobility mechanism we have in PoliS is constrained to be “step by step”,
that is no general visibility on all the possible locations is considered. Agents can be
either “pushed” to known locations, or “pulled” inside a space by the space itself. A tuple

of data or code can be moved from one space to the parent, or pulled from the parent
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Figure 4.2: Agent Mobility in PoliS.

to the local space and a complex path composed of these steps can be generated. This
abstraction models a general network architecture including layered routers, hierarchical
LANSs structure, and fire-walls [CG00]. The ability to dynamic re-arrange the hierarchy
of spaces allows a strong control on agent interactions. Moreover, from a model checking
perspective the “step by step” mobility mechanism permits a more constrained space

explosion than with a general “move to location” mechanism.

4.1 Specification of an Architecture with Mobile Agents

We use PoliS to specify a “Meeting Scheduler System” including mobile agents. This prob-
lem was proposed as a case study in mobility for the International Workshop on Software
Specification and Design [FFFv97]. We first give an informal description (Sect. 4.1.1),
then a PoliS specification (Sect. 4.1.2).

4.1.1 The Meeting Scheduler System: an Informal Description

An organization manages meetings as follows. A meeting initiator asks all potential at-

tendees for the following information to be included in their personal agendas:

- a set of dates on which they cannot attend a meeting (exclusion set);

- a set of dates on which they would prefer a meeting to take place (preference set).
For simplicity, and without loss of generality, we assume that all days outside the
exclusion set and not yet fixed for a meeting are free and represent the preference

set.
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The proposed meeting date should belong to none of the exclusion sets and to as many
preference sets as possible. A date conflict occurs when no date can be found. Conflicts

can be resolved in two ways:

- some participants remove some dates from their exclusion set;

- some participants withdraw from the meeting.
The system should assist users in the following activities.

- Plan meetings consistently, using the constraints expressed by participants.

- Re-plan a meeting dynamically (to offer flexibility). Participants should be allowed
to modify their exclusion and preference sets before a meeting date is decided. A
meeting date initially found may need to be modified; sometimes the meeting may
even be canceled.

- Support conflict resolution according to some arbitrary resolution policies.

The meeting scheduler system must in general handle several meeting requests in
parallel. Meeting requests can compete by overlapping in time: concurrency must thus be

managed.

Admittedly, this problem can be solved with more conventional technologies: there is
no need of mobile agents if we centralize all data in some “meeting server”. The main
advantage of using mobile agents is that an agent can exploit reliable links to travel and
perform local computations on a site avoiding movement when, for instance, the net is
congestioned. We use this case study only to show how PoliS can be used to deal with a

solution based on mobile agents.

4.1.2 A Specification including Mobile Agents

The “Meeting Scheduler System” specification document in PoliS is organized as follows:
every initiator of a meeting is associated to a multi-set of tuples representing a mobile
agent. Several agents (one for each meeting) can run in parallel. Each initiator agent
moves among the sites of participants collecting preferences and trying to decide a date
(see Fig. 4.3). For simplicity we assume that a meeting can take place only if all potential
attendees will participate. An agent collects information inside a participant space, then

it is frozen and moved outside the space:
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Figure 4.3: Agents System Architecture.

Tables 4.3, 4.4, and 4.5 show the specification of three kinds of spaces. The StartContext
(Table 4.3) is the initial space: it includes p participants and n agents, one for each meet-
ing. Each Participant space (Table 4.4) has an initial state consisting of tuples representing
its agenda: some days are marked “free” and others are marked “exclusion”, meaning that
these dates are in the participant exclusion set (we implicitly assume that the number of
meetings (n) is less or equal to the number of days in the agenda (m)). Agendas are repre-
sented by the multi-sets after the @ operator in the StartContext definition of Table 4.3.
Tuples (“start”,n) are consumed by agents to prepare themselves for the shipping, get a
self identifier n and start migrating (see rule START in the Agent space).

The StartContext space includes just the program tuple (“end” : END): the code of
the rule END associated to the program tuple checks that all the potential attendees will
participate, that is the condition for the meeting to take place (the function fe,4 checks if
the number of participants has reached a given number and outputs a date).

Each Participant space can accept incoming agents. It contains some program tu-
ples to activate the following rules. The rule GETAG allows the agent to enter in a
space. It consumes the tuples (“frozen”,h,s) and (“agent” : a) from the main space

and generates them locally. It also consumes the (“accept”) tuple locally and generates
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StartContext
Participant ® {(“day”, 1, “free”), ... ,(“day”, m, “exclusion”)},
Participant & {...},. ..

StartContest — Participant & {(“day”, 1, “exclusion”), ..., (“day”, m, “free”)},
Agent, ..., Agent,

(“start”, 1),...,(“start”, n),
(“end” : END)

END:{] (“frozen” k. s) #M—)ﬂ (“end”, day, k) &

where f(z) = (fena(z))

Table 4.3: The Meeting Scheduler: the Main Space.

| Participant
. (“get” : GETAG), (“push” : PUSHAG),
Participant =
(“extend” : EXTEND), (“accept”)
| |
I |
CETAG — 1(“frozen”, h, s), (“frozen”, h, s),
P(“agent” : a), (“accept”) (“agent” : a), (“agent”)
PUSHAG — (“frozen”, h, s), P(“frozen” h,s),
(“agent” : a),(“go”) (“agent” : a), (“accept”)
(“day”, d, “exclusion”),
EXTEND — ; ﬂ (“day”, d, “free”) #

?(“accept”)

Table 4.4: The Meeting Scheduler: the Participant Space.

the tuple (“agent”), meaning that the frozen agent has been entered in the local space.
The rule PUSHAG moves the agent out of a space. It moves the tuples (“agent”) and
(“frozen”, h, s) to the main space. Fig. 4.3 shows the actions of the two rules. Participants
can extend the set of possible dates using the rule EXTEND, to solve conflicts that can

arise. This rule simply decides to free a date removing the tuple (“day”, d, “exclusion”)
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Agent
(“resume”), (“start” : START), (“resume” : RESUME),
Agent = <| ("update” : U), (terminate : EXIT), (“withdraw” : WITHDRAW),

(“agent” : AGENT)

(“done”), (“self”, me),

START = ﬂ N “start”, me), (“resume”) “ —
(“M”, ]'7 0), ) (“M”7 m,o)

(“agent” : AGENT),
?(“agent”)

AGENT = —>ﬂ tsc(Agent) u

(“M”,1,dy),...
(“M”, m’ dm)’
(“self”, i), 1(*90")

)

1(“frozen” i, s), (dis-esdin) = f(8)

(“resume”), N(“agent”)

RESUME =

where f(z) = (unzipi (), ... , unzip,(z))

Neday’,1,dy),. .., | 1(“day”,1,e1),..., |
1(“day”, m, ), 1(“day”, m, em),

U=4 (“M",1,m),..., EDAE@Tme ) (<7 1, wy), .
(“M”, m,vp,), (“M”,m, wy,),
?(“self”, me) | (“done”) J

where f(f Y, 2) = (if (Vjz; # 2Ak = min{j|z; = “free” })then (E‘x,‘;z,y‘yk:yﬁl)
)

else (T,7)

WITHDRAW — T “day”,h,me),(“M”, h,ny), (na)f (n) N “day”, h, “free”),

self” me),ask(n; > 0) (“M”, h,ns),(“done”)
where f(z) = (z —
?(“M”;]-,Ul)"" “f y - )
rozen” i, ),
EXIT = Q| ?(“M”,m, vy,) (o)t neeva) )| T
N “agent” : AGENT)
?(“done”), (“self”, 1)

where f(z1,...,%y) = (zip(z1,... ,Zm))

Table 4.5: The Meeting Scheduler: the Agent Space.
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and emitting (“day”, d, “free”).

The Agent space (Table 4.5) contains some rules and a termination rule to make the
agent to freeze. The rule START fires an agent to build a calendar (i.e. the tuples
(“M”,d,v) where d is a day and v is the number of potential attendees for day d, initially
all days are free then for all these tuples v is 0. The rule AGENT generates (by tsc) a new
agent space inside the participant space (Fig. 4.4). The first rule enabled in a new agent
space, inside a participant space, is RESUME: this rule is used to get and restore the
frozen state of the agent. It emits a tuple (“go”) enabling rule PUSHAG for a next move.
An agent contains also rule U (Update) and rule WITHDRAW . The rule U updates
the agenda of a participant using the following policy: a participant takes the first free
date, if it exists, and books it; a participant cannot book more than one date. Rule U
also updates the internal agent table!, represented by tuples like (“M”, d, v) as explained
above. In Fig. 4.4 an updating is shown: the participant agenda is updated booking day
“1” with the name of the meeting (i.e. the name of the agent): “Z”, and increasing by 1
the counter of the meeting potential attendees for day “1” (that now is 2) in the Agent
Table. The rule WITHDRAW models a withdrawing from a meeting by a participant.
It consumes the tuple (“day”, h, me) and emits a tuple (“day”, h, free) in the Participant
space. It also decreases the number of supposed participants to the meeting h (i.e., it
consumes the tuple (“M”, h,ny) and emits the tuple (“M”, h, ny) where ng = n; — 1. The
rule EXIT is a termination rule (see Section 2.1 for its semantics). It terminates the
agent space, by freezing the agent and moving it outside: this is performed producing a
tuple that represents the frozen state (“frozen”, i,s) and a tuple (“agent” : AGENT) for

regenerating an Agent space.

The model of mobility of the meeting agents is exactly the one specified in Figure 4.2.
The meeting agent space is frozen when the agent has finished collecting informations in the
participant site. Then, some tuples are emitted in the main space and other participants
can get the agent tuples and the agent is regenerated inside another participant site. When
the meeting agent has finished, a tuple with the decided meeting date is emitted and the
agent is destroyed (by the rule END).

!Each agent tries to establish a single meeting and the table contains, for each date, the number of

participants that would accept that date.
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Figure 4.4: Agent performing update.

4.1.3 Analysis of the Meeting Scheduler System

We have used PoliMC to analyze some liveness properties of this system. We use the
model checker on finite versions of the specification. The properties we prove for these
versions are satisfiable on the abstract specification but we cannot say that such properties
are verified in general. Since some components can move we are interested in studying the
dynamic behavior of the system. For instance, we would like to prove that an agent will
be able to establish a meeting date, or that some properties on the migration of an agent

inside/outside the components are true. Formally we can write:

End = (Vagent(3day((“end”, day, agent) € StartContext)))

Move = (((“done”) € & Agent) € & Participant)

End states that each agent finds a date for its meeting (i.e., all the meetings are arranged).
Mowe states that an agent is in a participant site (i.e., an agent space is inside a participant
space) and it has performed some actions (i.e., the tuple (“done”) is produced). We study
a configuration where the number of meetings to be arranged, namely the number of
agents, is smaller than the available days, otherwise, trivially, some agents will never find

a date. We would like to verify the following:
*0OxO End (4.1)

That is: the End property (i.e., each agent finds a date for its meeting) will be valid for

all the execution (i.e., all the execution paths lead to a state where the End condition is
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verified). However, PoliMC shows that (4.1) is false. To understand this we can think of a
scenario where agents are not able to agree, choosing the same date and then withdrawing

it. Nevertheless, PoliMC also verifies the falsity of:

*0xO Move (4.2)

Property (4.2) states that the Move property will be valid (i.e. agents move indefinitely)
for all executions. The falsity of (4.2), verified with the model checker, guarantees that
this cannot happen, so we are sure to have a scenario where all meetings are arranged.
PoliMC verifies that this property is not true if the number of meetings (agents) is greater
than the number of the available days.

As (1) and (2) are proved false we can verify the following formula:
*OxO(EndV Mowve) (4.3)

That is, in all the executions it is true that some agents move or all the meetings are ar-
ranged. This shows that the system cannot deadlock. In this example however, properties
(4.1) and (4.2) above cannot help us to guarantee progress. Therefore, to ensure that all

the meetings will be arranged we need a fairness condition in the form:
*0& O End=(4.1) (4.4)
that is:
*0&O End=*0xO End (4.5)

Property 4.5 states that if from all the states of all paths we can find at least one path in
which End is eventually valid, then End will be valid in all the paths. In other words if
we are always in a state that allows to arrange all the meetings, then this will eventually

happen. PoliMC verifies successfully the hypothesis of Property 4.5:
*0& <O End (4.6)

hence, Property (4.6) in conjunction with (4.5) leads to the verification of (4.1).
Finally we remark that if we remove some rules used to resolve conflicts (like rule

WITHDRAW or rule EXTEND), (4.6) is not verified, that is, there are some states where
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no path leads to End. In other words, sometimes a system can reach a state in which it is
impossible to arrange some meetings, and some agents move indefinitely. To avoid these
situations the withdrawing or the extension of the free dates by some participants should
be considered.

In order to verify properties using the model checker we have instantiated the specifica-
tion of the Meeting Scheduler System. Here we show a part of the specification instantiated
with two possible meeting days (i.e. two agents), and two participants. The model checker
accepts as input two files containing respectively the PoliS specification of the system and
the formulae to be verified. What follows is a part of the specification file for the Meeting
Scheduler:

startcontext={
Participant,Participant,
Agent,Agent, ("start",1),("start",2),
("end" :END)

}

rule END={
("frozen",k, (dayl,numl,day2,num?)),
ask (num1=PART \/ num2=PART)

b
[(d)<--f(dayl,numl,day2)]-->
{

("end",k,d)
b

where f(x,y,z)=(if (y=PART) then (x) else (2));

PART is a constant defining the number of participants. Notice that the state s of the frozen
agent (“frozen”, k,s) consumed by the rule END (Table 4.3) has been expanded in order
to express the conditions on the where clause, (dayl, numl, day2, num2): dayl and
day?2 indicate the two possible meeting dates while numl and num2 indicate respectively

the number of the participants to the two meetings.
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The check (ask) on the expanded state of the meeting agent has also been inserted:
it checks if one of the two dates has been chosen by both the participants. Here is the
specification of property (4.3):

*[]%<> (
(forall agent in [1,2] (
exists day in [1,2] (
("end",day,agent) ))) \/
((("done") in & Agent) in & Participant))

The range of the agents and the days is explicitly set ([1,2]). At the moment the textual
specifications input for the model checker have to be written by the specifier, but an
interface tool that translates PoliS-IATEX specifications into textual ones can easily be
designed. As the model checker works on finite instances of the specification, the user has
to define the range of the parameters. Furthermore, she has to declare the abstract PoliS
functions after the where clause (i.e., where f(x,y,z)=(if (y=PART) then (x) else
(z)).

In order to further constrain the state explosion, we are researching techniques of con-
text constrains for compositional reachability analysis (CRA) [GS90, CK96]. As in PoliS
the components (namely the spaces) make assumptions on their external environment
(namely their parent space) using the rule scope (see Figure 7.1), this kind of analysis
can be applied in order to drastically reduce the number of states of the graph. An other
approach that could be followed to further reduce the state explosion is symbolic model
checking. In [EFT92] a technique for building BDD of parallel processes from basic BDD
is exploited. The bottom-up fashion of this approach is similar to our technique of building

compound spaces from simple spaces.



Chapter 5

MobiS: an Enhancement of PoliS

PoliS allows the specification of mobile code systems. However, as shown in Chapter 4,
agent mobility has to be encoded using rules mobility plus removal and creation of spaces.
MobiS is an enhancement of PoliS allowing mobility of agents to be encoded in the language
as a first class operation. Agent mobility is encoded as mobility of a “space tuple”, that
can be consumed and produced as regular tuples. The language therefore allows all ranges
of mobility, data, code, and agents to be formalized as basic primitives exploiting the
language constructs.

In this chapter we introduce MobiS, the semantics modification needed for enhancing

PoliS to MobiS, and some examples.

5.1 MobiS

MobiS is an enhancement of PoliS. In MobiS not only data tuples and program tuples
can be contained in a tuple space but also spaces themselves are represented as tuples in
the parent spaces. This means that spaces become first class entities and that they can
be produced and consumed (i.e. also moved) by rules as regular tuples. When a space
is moved to an other place, all the sub-spaces it contains are moved too. This encodes
the movement of a component and of its sub-components. MobiS allows us to specify the
movement of agents in a software architecture and the reconfigurability of the system.
The following example shows a Client-Server system: the Client and the Server ex-
change requests and replies. However the architecture is reconfigurable and as the network
is supposed to be sometimes busy, the Client sends an Agent to the Server in order to

avoid continuous and maybe expensive communication on the link. Then, the Agent and
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the Server communicate in the local Server site. When the Agent has finished it goes back
to the Client site. MobiS can model the behavior of the mobile agent and the dynamics
of the system.

In order to give the idea of how MobiS specifications can be written we show the
formalization of the Client component in Table 5.1. The notation looks very much like

PoliS except from the new “space tuples”.

| Client
(“name” k), (“put” : PUT), (“reqlist”, r), (“get” : GET),
(“move” : MOVE), (“create” : CREATE), (“servername”, s)

Client =

PUT = 1| ?(“reqlist”, ), ?((“name”, k), (“idle”) u—_ut%—f(ﬂ ﬂ 1(“req”, k, t), (“wait”) u

“reply”,i,r), (“reglist”, t), (ei(t) (“requlist”,j), (“reply”, i, r),
“name”, i), (“wait”) (“idle”)

where f(z) = (diff (z, head(z)))

CREATE = 4 t(“networkbusy”),?(“name”, i), (“reqlist”, r) #M%ﬂ (a * Agent) u
where f(z,y) = (2)

MOVE = ﬂ (a * Agent),?(“servername” , k) ﬂMﬂ (4 * Agent) ﬂ

where f(z,y) = (concat(z, y))

GETAG = {] a * Agent),?(“name”, k), ask(prefiz(a, k) “ —>ﬂ (a x Agent) ﬁ

Table 5.1: Specification of the Client component

The Client space contains an ordinary tuple indicating the name of the client (“name”, k)
where k is the formal parameter containing the name. It also contains the tuple (“reglist”, r)
of the list of the requests for the server, the name of the server (“servername”,s), and

some program tuples that refer to rules specified below in the table.

The rules PUT and GET handle the communication with the server when the network
is not busy. The rule PUT emits in the external space (the network) a request extracting

it from the requests list. The rule GET gets the reply from the Server (i.e. it checks if
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a reply directed to the Client is present on the network), and stores it in the local space
updating the requests list (it throws the first request in the queue as it has already been
served).

When the network is busy the rule CREATE generates an Agent space storing the
requests in it.

The difference with PoliS can be seen at this point. Space tuples are represented with
the “*”. The symbol is put between the name of the space and the type of it. The type
represents the list of things in the space. For instance, the space tuple (“a” x Agent)
represents a space named ¢ with content represented by the type Agent (that for brevity
we do not define here but that looks similar to the definition of the type Client).

The rule MOVE moves the Agent into the network. It also changes the name of the
Agent appending the name of the Server to it in order to indicate the destination of the
Agent.

The last rule is GETAG that gets the Agent from the network when it come back after
having finished its work on the Server site.

The Client can choose the communication protocol depending on its context: when
the network is not congestioned it sends requests and wait for replies, while when the
network becomes busy it builds an Agent and sends it to the Server site to exploit local

computation.

5.2 The semantics and the difference with PoliS

We now define the semantics of MobiS. As the model is largely derived from PoliS we will
make references to the tables shown in Chapter 2 containing the semantics of PoliS and

illustrate the differences.

The differences with PoliS

MobiS spaces are represented as tuples in the form (spacename * §), where spacename is
the space name and § is the shortcut for the the contained space. Every space contains
a mandatory tuple (“name”,n), where n is the space name and is semantically bound to
spacename. In PoliS spaces do not have names. The names on top of the spaces definition

tables are only the shortcut used for the substitution in the code.
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Environment 2nd Step Environment 3rd Step Environment

d@f% Q%ﬁ Q/qo\m

Agent Host1 Host2
Agent

Figure 5.1: The movement of a space.

With the additional space names, nothing prevents the shipping of space names across
the network allowing remote spaces to have knowledge on what is here.

PoliS operators such as tsc (tuple space creation) and terminate (space termination)
are not necessary anymore as spaces can be consumed and produced in the same way as
regular tuples are. MobiS spaces therefore can be mobile as code was mobile in PoliS.
Figure 5.1 shows the idea.

A space (that we can call an agent) can be moved from one host to another is three
steps. PoliS and MobiS rules have a specific scope that drives the movement of tuples
(Figure 7.1). The first step of the movement of a space that needs to be transferred from
Host1 to Host2 is to be moved up in the common environment and then be picked up by a
rule in Host2. We already showed a small example of MobiS specification. In Section 5.3

we show a more complex example.

MobiS Semantics

The differences outlined in the previous section between PoliS and MobiS lead to a set
of modification both in syntax and in the semantics. In Table 5.2 we show the syntax of
MobiS. The main syntactic difference with PoliS is the introduction of space tuples and
the mandatory binding of the name to a tuple name inside the space.

Table 5.3 show the modified rules with respect to Table 2.3. The terminate rule does
not exist in MobiS and the space are added and consumed as the other tuples.

In Table 5.4 the terminate rule is not shown unlike in Table 2.4 as it does not exist
anymore and the tsc operators to generate space are abolished.

Table 5.5 shows the enabling conditions for the rules defined in Table 5.4. The condition

check that the name of the spaces are not consumed.
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MS m=  {tuple } | MS & MS | MS \ MS | (MS)
tuple = data | program | space

space == (sname* ((“name” ,sname) & MS)
program = (rname : Code)

data == (datalist)

datalist = data | value | data, datalist | value, datalist

sname € Spaceid, the set of space identifiers

rname € Ruleid, the set of rule identifiers

Code € Rulecode, the set of rules code specified in Table 5.4.

In the concrete syntax, Code is usually substituted with a macro that expands
in the code itself.

value € Values

data € String

Table 5.2: MobiS Abstract Syntax.

Local Rule

RLACr” : R)b @ M — (({(*r” - R} & M)\ {t:[v5/Z]}) @ {¢,[v5/%, o5/ 7]}
it LocEnabled(Ry, “r”, M, Uz, Uy)

Interaction Rule

RE{(“r” : R} & Ma} & My — {(({(“rs” : Ro)} & M) \ {Ec[v5/7]}) & {Ep]
B(Mo \ {Eec[vz/7]}) © {Eep[V2/7. v5/1}
if IntEnabled(R;, “r;”, My, My, Uz, Uy)

/

5
<
<|

/v1}}

<
8|

)

Table 5.3: MobiS Structured Operational Semantics Rules and Axioms.

5.3 Using MobiS for Agent Mobility across a Network

In this section we show how MobiS can be used to specify a scenario where agents move
over a network. The hierarchical organization of spaces in MobiS reflects a real network
organization, composed of layered domains. Figure 5.2 shows the structure of the network.

The main space we consider is a WAN and it is an abstraction of a wide area network
in which LANs (local area networks) are contained. The LANs are composed of many

Hosts that represent the different sites. We can imagine that different agents move on the
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_ tC,l,'” 7t6ync7?tt,1,'~' ,?ttﬂln (Y)+f (@)
Rl — —— tpyl,... ,tpmp
ask(boolezpr)

where f((Z)) = ((fi(2),-..,fn(?)))

tc,l; R tc,nc, Ttec,ly s 7Ttec,ntc, " "
7 = p,ly-++ 3 tp,n,,
Ri = ?tt,l, ey ?tt,ni N ?Ttet,l, ey ?Ttet,nt,; —>(y)<ff(z) Tt Ttp
BERRRN M
ask(boolexpr) v oter

where f((2)) = ((fi(2),-..,fn(?)))

Table 5.4: Classification of PoliS Rules Macro.

LocEnabled(Ry, “r;”, M, Uz, Uy) =

{tc[vz/7), t:[vz/T]} C{(“r” : R))} & M

A Ty = f(Tg)Nboolexpr[vz/T) A Vn : (“name”, n) & t.[vz/7]
IntEnabled(R;, “r;”, My, Mo, Uz, Uy) =
{Eeloz/7), Lloz/7l CA(r s Ri)} @ My A {ecl/7), Tu[o7/7]} C Mo
A Ty = f(Uz) Nbooleapr([vz/T] A Vn : (“name”, n) ¢ (tc[Vz/T]V Te[0z/7))

Table 5.5: Precondition predicates.

Figure 5.2: The Network.

network from host to host, not necessarily in the same LAN.
Hosts can generate agents and send them over the network in order to perform compu-
tations remotely. We now describe in details the MobiS specification contained in Tables

5.6, 5.7, and 5.8. Table 5.6 contains the specification of a wide area network (WAN): it
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| WAN
WAN = ﬂ (“name”,id), (“I1” x LAN),...,(“In” x LAN) ﬂ

: LAN
LAy - )| (name?,id), (“h1” « HOST), ..., (“hm” « HOST),
(“g” : GETAG), (“m” : MOVEAG)

MNax AGENT), (“name”, k),

GETAG = ﬂ
ask(prefiz(k, a))

G—>{] (ax AGENT) |

(a x AGENT), (“name”, k),

MOVEAG = ﬂ
ask(—prefiz(k, a))

ﬁ—q] fa x AGENT) }

Table 5.6: Specification of the Network with Agents System: the WAN and LAN spaces.

contains some spaces tuples that refer to space LAN ((li * LAN)). It also contains its

name (i.e a domain identifier).

A LAN space contains its identifier, some hosts ((hi * HOST)), and some program
tuples referring to the following rules. The rule GETAG gets an agent from the WAN
space if the destination address of the agent is a host in its domain. The check is performed
considering the names of the spaces as hierarchically structured: we check if the LAN ID
is a prefix of the destination name. The rule MOVEAG moves the agent space out of the

LAN space in case the destination of the agent is not in the LAN domain.

Table 5.7 contains the specification of the HOST space. The HOST space contains an
identifier tuple (“name”,id), and a program tuple that refers to a rule able to generate
agents ((“g” : GENERATE)). Tt also contains the tuple (“resources”,r) indicating the
resources of the host. The rule GENERATE, when applied generates a new agent in the
local space. It tests the identifier of the host (?(“name”, id)) and generates a space tuple
(a * AGENT) that refers to the specification of the space AGENT shown in table 5.8.
The name o of the agent space refers to the host ID with an appended random ID (it is
computed by the function specified on the rule arrow and defined after the clause where).

The rule RECOGN gets the agent id-tuple emitted by the agent (see table 5.8), performs
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HOST
(“name”,id), (“g” : GENERATE), (“resources”,r),
HOST = 4| (“rec” : RECOGN), ("kill” : KILL),
(“get” : GET), ("m” : MOVE)

GENERATE = { 2(“name”,n) } 2105 { (0« AGENT) |
where f(i) = (concat(i, random(i)))
RECOGN = { (“idagent” ), ask((k < 100) | — { (“90)
KILL = { (“idagent”, k), ask((k > 100), (a » AGENT) } — {}
A E'NT 113 2
cpr - )| T(ax AGENT), (“name”, k),
ask(k = a)
where f(id) = (concat(id, random(id)))
(ax AGENT), (“dest”, addr),
MOVE =

(“move”)

G—M”H(“ { (b« acenT) |

“—4] Haddr » AGENT) }

Table 5.7: Specification of the Network with Agents System: the Host Space.

some checks (we only check that the tuple-id is a number smaller than 100), and emits
the tuple (“go”). This rule is used whenever an agent arrives to the destination host and
has to be authorized to execute. If the agent tuple-id emitted is a number larger than 100

the rule KILL kills the unauthorized agent.

The rule MOVE, when enabled (by the tuple (“move”) put in the local space by the
agent), moves the agent out of the host space. It also changes the agent space name into

its destination address.

The rule GET simply gets the agent when it corresponds to its destination space
consuming it from the parent space and producing it locally. It checks by the ask clause

if the name of the agent is its name.

The AGENT space contains a name tuple, the code, the state and the store. The
rule EXFE performs some computations emitting a result tuple. It is enabled when the
authorization phase in the destination site is finished: the tuple (“go”) is emitted by the
Host.
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| AGENT
AGENT — (“name”, k), (“idle”), (“code”, ¢), (“state”, s), (“store”, st),
("r” : READY), (“exe” : EXE), (“aut” : AUTHORIZE)
| |
I |
READY M(“dest”, addr), 1(“move”), (“name”, addr),
= —
(“idle”) (“moving”)
13 : d” , . N
avrrorize = J| Ut IOt idagent”, ) )

(“name”, k)
where f(k) = (get;d(j))
H4go"), (“code” ),
EXE = (“state”, 8), (“store”, st), (res)+f(c,s,st,r) >{] (“result”, 7‘68) ﬁ

1(“resources”, r)

where f(cod, state, store, resou) = (result)

Table 5.8: Specification of the Network with Agents System: the Agent space.

The AUTHORIZE rule emits the id-tuple of the agent in the host space letting the
rule RECOGN of the host to do its job.

When the agent is ready to move it gets its destination address from the host space
and emits in the host space the tuple (“mowve”), enabling the rule MOVE, by the rule
READY . This rule also changes the state of the agent from idle to mowving, and its name

to the name of the destination.

In the specification shown the agent is generated by an host, that also assigns to it a
destination (a site to reach). The mobility imposed by the model is “controlled”: when
the agent wants to move it signals this intention to its host that moves the agent space
out of its site. The exit from a LAN (when the destination host is in an other domain), is
specified in a similar way: a rule of the LAN space expels the agent when its destination
address is not one of the hosts addresses contained in the LAN. When an agent is in the
general WAN, special rules in the contained LAN spaces check for agents in the WAN
with destination address members of their domains. If they find these kind of agents,

they move them in their local spaces. The host itself does the same: when an agent
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destined to its site is found in the LAN it moves it into its local space. This controlled
mobility can simulate the autonomous mobility where the object simply moves, exploiting
the mechanisms of synchronizations among rules. By the way, controlled mobility also
allows an host to move an object without its willing (it is not the case of our specification
but it could be possible).

We think that many security aspects can be analyzed on the basis of this kind of
controlled mobility. The fact that a parent space cannot look into its sub-spaces is, on
one hand an advantage: an object inside an host is secure, the host cannot, for instance,
modify its code. On the other hand, the agent can lie to the host and get an authorization

to execute exploiting and damaging the resources of the host.

5.4 Specification of Architectural Styles for Mobility

MobiS ability to specify data, code and agent mobility as first class allows the formal
definition of different mobility paradigms that can be reused in the design of applications.
In this section we show the formalization of the paradigms and the use of them to define
an architecture.

An architectural style is an abstract skeleton which helps in designing, understanding,
and analyzing actual software architectures, said instances of such a style.

There are at least three reasons why it is important and useful to systematically study

architectural styles:

- to help designers to choose a specific style in a given design situation; the defini-
tion and classification of common architectural styles with clearly defined properties
supports both design and code reuse;

- to build a library of styles, so that software designers can choose the most appropriate
one;

- to support analysis methods and tools suitable to deal with style instances, namely

concrete software architectures, understanding and reasoning on their properties.

We have defined a basic set of architectural styles for mobility. We catalog these mobile
architectural styles in terms of what is moving, namely which entities move with respect to
an infrastructure including at least two immobile entities: a requester entity and a supplier

entity. The requester asks the supplier for a service, and the supplier provides the service.
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These two entities are actually part of the styles as they characterize the structure of
the environment. Both these immobile entities can be thought of as two Internet sites

connected by some channel able to transport mobile entities from a site to another.

1. Data Style: This is the simplest kind of mobility to understand. The mobile
entities are data from a supplier to a requester. A typical example is a client-server
architecture based on a protocol like HTTP: HTTP servers send to HT'TP clients
data in form of HTML pages (HTML being a not Turing complete language).

2. Code Style: in this case some executable code can move from a site to an other.

Java applets are based on code mobility.

3. Ambient Style: this style describes the moving of the whole ambient involved in
a computation. Ambients can contain other ambients that are moved too. In this
way it is possible to model, for instance, the moving of a set of programs from a
workstation to a laptop. At the moment no languages exist allowing this kind of
mobility. However, Cardelli and Gordon have proposed a programming language

based on this paradigm [CGY8].

MobiS allows the specification of architectural styles for mobility. Architectural styles
are abstractions including components, connectors [SG96]. Components are computation
loci, while connectors define the interactions among components. In MobiS components
can be specified as spaces (that can also be nested): new components can be generated
(i.e. spaces can be created), eliminated (i.e. spaces can be consumed), or can migrate
(i.e. spaces can be consumed and recreated elsewhere). The way in which MobiS models
software architectures [CM98b] is similar to the one described in IW95] where the CHAM
coordination model is used. The coordination allows flexible moving of components and
extensibility of the model. Our model, where rules and spaces as first class entities, pro-
vides a framework in which encoding all the different styles listed above. The concept of
connector in MobiS is in some sense implicit (as in [MK96, IW95]): components interac-
tions are defined by the coordination model, whereas communication is specified using the
asynchronous mechanism of multiset rewriting.

We now specify some mobility styles using MobiS. Table 5.10 contains the specification

of the Data style. The main space contains two spaces, a “Requester” and a “Supplier”.
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| Environment

Environment = {] (“R” * Requester), (“S” x Supplier) E

| Requester
(“name”, k), (“codereq”, req), (“request” : CODEREQ),
(“get” : GET), (“store”, st), (“state”, s)

Requester =

CODEREQ = ﬂ ?(“codereq”, req) & —>ﬂ (“codereq”, req) #

GET = ﬂ N “serializedcode” , sc), (“codereq”, req) ﬂwﬂ (“code”, c) u
where f(z) = (feode())

| Supplier
Supplier = ﬂ (“name”, k), (“c” : CODE), (“put” : PUT), (“getreq” : GETREQ) ﬂ

GETREQ = {] 1(“codereq”, req), 7(“code”, c) ﬂ —>ﬂ (“codereq” , req) E

PUT = ﬂ (“codereq”, req),?(“code”, c) uw—)ﬂ N “serializedcode” , sc) u

where f(z) = (serialize(z))

!
CODE - ?(“store”, st), (5" 58) 1 (5,5t) (“state”,s'),
?(“state”, s), (“store”, st")

where f(store, state) = (nstate(store, state))

Table 5.9: MobiS specification of Code Paradigm

The Requester space contains a data reference request tuple, the code, and the state. The
rule DATARE(Q sends a data request to the main space. The rule GET gets from the
main space the data. The rule CODE formalizes the execution of the requester code using
the data. Notice that as the spaces are organized in a tree it is quite easy to specify the

access to the data: spaces have names in form of paths.

Table 5.9 contains the formalization of the Code style: The Requester space contains

a code-request tuple, the state, and the store. The rule CODERE( sends a code request
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| Environment

Environment = {] (“R” * Requester), (“S” x Supplier) u

| Requester
(“name”, k), (“datareq” , req), (“request” : DATAREQ),
(“get” : GET)(“code” : CODE), (“data”, d), (“state”, s)

Requester =

DATAREQ = ﬂ ?(“datareq”, req) # —>ﬂ (“datareq” , req) #

GET = ﬂ M “data”, rd), (“datareq”, req) “ O ﬂ (“data”, rd) ﬂ

]

CODE:ﬂ ?(“data”, rd),?(“state”, s), &M%ﬂ (“state”, s") u
where f(data, state) = (nstate(data, state))

| Supplier
Supplier = ﬂ (“name”, k), (“data”, d), (“put” : PUT), (“getreq” : GETREQ) u

GETREQ = ﬂ N “datareq” , req),?(“data”, d) # —>ﬂ (“datareq”, req) G

PUT = {] (“datareq”, req),?(“data”, d) ﬂ —>{] t(“data”, d) “

Table 5.10: MobiS specification of the Data Paradigm.

in the main space. The rule GET gets from the main space the serialized code sent by the
supplier. The rule CODE formalizes the execution of code updating the values of the state
and the store. The Supplier space contains the code and two rules. The rule GETRE(Q
accepts a request of code from the main space, and the rule PUT emits the serialized code

in the main space.

Table 5.11 contains the specification of the Ambient style. The Supplier space
contains two rules and an Ambient subspace. The rule PUT transfers the ambient space
outside. It changes the location of the ambient as in the Closure style. The Ambient space

contains the code, the state, the store, and some resources.The rule CODE executes the
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| Environment

Environment = {] (“R” * Requester), (“S” x Supplier) E

| Supplier
Supplier = ﬂ (a x Ambient), (“name”, k)(“put” : PUT) E

1(“req”, req), 2(“name” )
(a x Ambient)

where f(z,y) = (diff (z,y))

PUT = Mﬂ Nz * Ambient) ﬂ

| Ambient
) (“name” k), (“data”, d), (“state”, s),
Ambient =
(“c” : CODE), (“resources”,r)

| |
[ I

CODE — ?(“store”, st), (5" 5t Yoot (125.5t) (“store”, st'),

?(“state”, s), (“resource”, r) (“state”, s")

where f(res, store, state) = (nstate(res, store, state), nstore(res, store, state))

| Requester

Requester = ﬂ (“req”, req), (“request” : REQ), (“get” : GET), (“name”, k) #

REQ = ﬂ ?(“req”, req) “ —>ﬂ T(“req”, req) “

A b t [43 » .
GET = Ta x Ambient), (“req”, req), —Wefza) ﬂ (j * Ambient) ﬂ
?(“name”, 2)

where f(z,y) = (concat(z,y))

Table 5.11: MobiS specification of the Ambient style

code using the local resources to the ambient, no matter where the ambient is located.

The Requester rule GET gets the Ambient space from the parent space and updates its
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location name. This last paradigm can be used to model agent mobility where the agent

is identified with an ambient.

5.5 Application of the Styles to the Architecture of a Mobile
System

We consider the software architecture of a system and apply these styles to see how these
paradigms can be used.

As a case study we consider an electronic commerce application. With the advance-
ments in the network technology new kinds of applications are now possible. A purchaser
is trying to buy items at the best available prices on the network. The purchaser travels on
the network looking for the best selling-price. We have simplified the problem supposing
that the purchaser is looking for the best price of a single object. We exploit the mobility

styles defined in Section 5.4 to specify the software architecture of the Purchasing System.

Using the Data style the purchaser can be seen as a requester that asks for the items
prices from different stores. The stores send prices of the items to the purchaser that can
remotely check the prices and choose the lower one. The purchaser still does not move, and
it can remotely check the prices on the catalogs. In the Code style solution we imagine
the purchaser migrating from a store site to an other moving its code. Every store puts
an advertisement request tuple, (“newsellingprice”, regselling), in the main space. The
store containing the code of the purchasing agent emits the code tuple in the main space
and the store that puts the advertisement can obtain the purchasing code. However this
solution is not suitable for the purchasing system, because the purchaser has to remember
the best price found every time it moves. This solution fits better the purchasing system
than the one with the Code style, in fact it allows the store (the best price found) to
be moved with the code, letting the purchaser do its job. The new CODE rule (that has
to instance the rule CODE of the code&store style) updates the store of the purchaser,
with a new best price, if the price offered by the local space is better than the one in the
previous store. Using the Ambient style we imagine a mobile “agent” traveling with all
its data and exploiting its resources (printer, modem, cellular phone, ... ) on different

selling-stores looking for the best price for an item. The purchaser could, for example, use
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| Environment

Environment = ﬂ (“s1” % Shop), (“s2” % Shop), (“agent” x Ambient) E

| Shop
(“name”, k)(“put” : PUT), (“req”, req),
(“request” : REQ), (“get” : GET)(“catalog”, 1)

Shop =

N

PUT = 3| t(“req”, req),?(“name”, 1), (a x Ambient) #M—)ﬂ Mz x Ambient) H
where f(z,y) = (diff (z,y))

REQ = 4 ?(“req”, req) “ — ﬂ 1(“req”, req), (“wait”) ﬂ

M a x Ambient), (“wait”),

?(“name”, 2),?(” catalog”, 1)

GET = Mﬂ (j * Ambient) ﬂ

where f(z,y) = (concat(z,y))

| Ambient
) (“name”, k), (“state”, s), (‘bestpricefound”, b),
Ambient =
(“printer” | p), (“update” : UPDATE), (“print” : PRINT)
| |
I |
?(“bestpricefound” , b),
UPDATE — ?(“state”, s), (/') —f (s,0) (“bestpricefound”, b'),
1(“catalog”, 1), (“state”, s")
ask(l < b)

where f(s,1) = (compute(s',1),1))

PRINT = {] ?(“bestpricefound”, b), 1(“printer”, p) “ — ﬂ (“outonprinter”, b) “

Table 5.12: Specification of the Purchasing Architecture in the Ambient Style

its printer to print the temporary best price found till that moment.

We give the specification of the architecture of the Purchasing System in the Ambient
style in table 5.12. The Shops are Requester and Supplier at the same time. The resources

in the Ambient Style shown in Table 5.11 are now portable resources (i.e. a printer, a
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scanner, ... ). The rules PUT, REQ, and GET do the same operations. The Ambient
stores the best price found and contains two rules refining the CODE rule in Table 5.11:
the rule PRINT prints the best price temporary found on the portable printer.

These paradigms could also be composed. For instance in Table 5.11 we allows the
agent to read from the shop catalog (i.e to access to some external resources). Therefore,
the resulting architecture is a mixture among Code,State&Store style and Ambient style.
The UPDATE rule updates the best price found if the catalog of the shop offers a better
price. These architectures offer different advantages and some of them are better than the
other for particular requirements. The designer knows the requirements of the systems
that she wants to implement and can choose on the basis of these requirements the most
suitable style of mobility. The resulting architecture could also be an integration among

different paradigms.



80

Chapter 5. MobiS: an Enhancement of PoliS




Chapter 6

Summary

Traditional languages, models, and methods used to specify and design applications on a
single computer usually lack of abstractions to appreciate and understand the problems
raised when the computing platform is a “network computer”. Mobility is an obvious
example: even if admittedly we could define “mobile code” an application going around
on a floppy disk, it is a concept that is especially interesting and complex when a networked

programmable infrastructure is available, like an intra-net or even the whole Internet.

In this chapter we have studied how a coordination language can be used to specify and
analyze systems including mobile components. The idea consists of having a coordination
language that can express a dynamic topology of components and the mobility of code

and data.

PoliS and MobiS are not the first formal language used to study systems including
mobile entities, as we mentioned in Chapter 1. With PoliS and the model checker, we
have built an automatic framework to analyze properties on specifications of mobile code
based systems. With MobiS we also offer the ability to model agent mobility as first class

in the language so that different mobility paradigms can be specified.

In general, process algebra based languages, like the ones presented in Chapter 1
focus on the notion of process, and do not provide the notion of “environment” of the
computation. More sophisticated languages offer a concept of environment that we provide
with tuple-spaces.

The Chemical Abstract Machine (CHAM) [BB92] has membranes that are very similar
to our spaces, however the CHAM does not support code mobility as the rules are globally

defined outside the “chemical solution” (i.e., the global tuple space).



82 Chapter 6. Summary

The ambient calculus [CG98] (briefly described in Chapter 1) provides the notion of
ambient, which is the mobility unit of the language. Ambients are like our spaces, and, like
in MobiS, their mobility is first class in the language. The ambient calculus introduces a
concept of “step by step” mobility as well. The complexity due to the first class ambients
mobility make it quite difficult to reason, in particular with tools, on the specifications.
We also have to cope with this problem in the case of MobiS, however it is in our future

work list the idea of extending the model checker to try to deal with spaces mobility.

Mobile UNITY [MR98] has been used for the specification of physical and logical
mobility. It provides a temporal logic that allows reasoning. However no automatic tools
exist supporting Mobile UNITY. In [PRM97] Mobile UNITY has been used to formalize
some common mobile code paradigms (i.e., Code on Demand, Remote Evaluation, and
Mobile Agents). All these paradigms can be also encoded in PoliS and MobiS, and we are
looking in the possibility of reason with our automatic tool on them (in the case of PoliS).
Furthermore, in Mobile UNITY the dynamic replication of components is not allowed.
Therefore, in the Code on Demand paradigm the used code needs to be sent back to the
server to be sent again. In PoliS and MobiS the dynamic cloning of code is allowed and

the Code on Demand paradigm can be formalized more directly.

Security issues are important in a mobile code setting. Languages such as Klaim
[NFP98] and the Ambient calculus [CG98] use “capabilities” on operations, or type systems
to face security aspects. Ambient calculus and Seal calculus are based on a “step by step”
movement mechanism where components only can move from one domain to another
crossing one boundary at a time, instead of on a global location name oriented mobility
strategy. Security features are based on this constrained mobility mechanism. Klaim
[NFP98] relies on a type system added on top of the model in order to perform static
checks on access rights and operations of the system components. In term of language
interface improvements we are studying a visual notation for PoliS/MobiS in order to
simplify the impact on the users. We are interested in the development of an XML-
based abstract syntax [BPSM98b] in order to make PoliS specifications more portable and
possibly to be able to be integrated with other XML-based frameworks, like the UML
notation [BJR99].

Model checking can be successfully used applied to dynamics of software architectures

as proven in [GKC99]. In our approach with PoliS we investigated the use of a model
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checker tool for studying mobility aspects of systems. We believe the use of the tool on
specifications for mobile code based systems can help in understanding the dynamics of
these systems and to avoid mistakes in the design and implementation phase.

In the next parts of this thesis we will take a different perspective on mobile code
systems trying to reason on minimal unit of mobility, unit of execution, and basic mo-
bile primitives. This approach will lead us to a prototype system and to the use of

XML [BPSM98a] for incremental code mobility.
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Chapter 7

A Fine-Grained Model

The work reported in this part is closely aligned with the investigative style of the for-
mal models community but directed towards identifying opportunities for novel mobility
constructs to be used in language design. We are particularly interested in examining the
issue of granularity of movement and in studying the consequences of adopting a fine-
grained perspective. Simply put, we asked ourselves the question: What is the smallest
unit of mobility and to what extent can the constructs commonly encountered in mobile
code languages be built from a given set of fine-grained elements? Proper choice of mobil-
ity operations, elegant and uniform semantic specification, formal verification capabilities,
and expressive power are several issues closely tied into the answer to the basic question
we posed.

In the model we explore here the units of mobility are single statements and variable
declarations. Location is defined to be a site address and units can move among sites, can
be created dynamically, and can be cloned. Complex structures can be constructed by as-
sociating multiple units with a process. The process is the unit of execution in our model.
In the simplest terms, a process is merely a common name that binds the units together
and controls their execution status—more complex structures can be built but they are
outside the scope of this paper. All the mobility operations available for units are also
applicable to processes. In addition, processes have the means to share code and resources
via a referencing mechanism limited strictly to the confines of a single site. A reference
can be thought of as a name that allows one process to access some code or data in some
other process. References across sites are not permitted but they survive movement, e.g.,

access is restored when the two processes meet again. As such, unit reference and unit
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containment have distinct semantics with respect to both scoping rules and mobility.
Mobile UNITY provides the notational and formal foundations for this study. The new
model can be viewed to a large extent as a specialization of Mobile UNITY. This enables
us to continue to employ the coordination constructs of Mobile UNITY and its proof logic.
The result is a small set of macro definitions that map the fine-grained model proposed
here to the standard Mobile UNITY notation, and a semantics specification of the mobility
constructs in terms of the coordination language that is at the core of Mobile UNITY.
This application of Mobile UNITY is novel. Mobile UNITY has been used previously in
the definition of high level transient interactions (e.g., transiently and transitively shared
variables) in both a physical and logical mobile setting [MR98], in formal specification and
verification of Mobile IP [MR99], and in the specification and verification of mobile code

paradigms (e.g., code on demand, remote evaluation, and mobile agents) [PRM97].

7.1 Model Overview

We now give an informal overview of our model. We consider a network composed of sites.
They are the physical locations on which computations take place. Sites may represent
physical hosts or separate logical address spaces within a host, e.g., an interpreter. Sites
may contain units that represent code or data. A code unit need not contain a complete
specification of a code fragment, it may even be a single line of code. The variables used
in the code units are considered “placeholders” and they do not carry a value (i.e., their
value is undefined). Units representing data contain a single variable declaration and they
carry the actual value of the variable. The model provides a sharing mechanism between
values of variables with the same name in code and data units, thus code can change
values of variables in data units during execution.

Because code and data can be split across units, we need to include some notion of
composition and scoping. For this purpose we introduce the concept of process. Processes
are unit containers that reside on the sites. Processes define restricted scopes for the units

on the sites. Units can be placed inside a process, i.e., in its “private space”. Such units
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Figure 7.1: Processes, units, and scoping rules.

1. The scope of a unit contained by a process is

are said to be contained by the process
the private space of that process, i.e., the space on which the unit is located. The binding
mechanisms defined by the model allow sharing among variables with the same name in
the same scope. The scope of a unit that is not contained in any process (i.e., located
directly on the site space) is restricted to the unit itself. In Figure 7.1.a we show an exam-
ple?. The scope of unit v contains also unit w, and vice versa, as they are both contained
in process P, while unit u is not contained in any process and its content is not shared
with anyone else.

Because it is often necessary to have sharing of units among processes at the same
location (e.g., to specify the sharing of a common resource), we allow a process to reference
a unit contained in another process at the same location. In such a case, the referenced
unit is considered to be in the scope of both processes. Processes can also reference units
not contained in any process (i.e., located directly in the site). These units can be thought
of as library classes or resources provided by the site to all processes located there. Fig-
ure 7.1.b shows an evolution of the system from Figure 7.1.a: here unit u is referenced by
process P, and units u, v, and w are in the same scope. Unit w is referenced by process
(): since units z, y, and w are in the same scope, sharing applies. Notice that units z and
y are not in the scope of unit v.

A process is a unit of execution in the sense that its status constrains the execution
of the code belonging to units inside its scope. A process has an activation status that

can be manipulated by specific operations. The code units inside the scope of the process

!The model presented in this paper is kept simple by not allowing processes to contain other processes.

We are investigating this enhancement at the present.
2Solid lines represent the containment relation among sites, processes, and units, while dotted lines

represent references to units. Dashed rectangles represent a common scope for units.
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can only be executed when the process is active. Processes constrain the mobility of units
as well: the movement of a process implies the movement of all the units contained in it.
Referenced units however, are not moved along with the process that refers to them as
they are not part of its private space. Furthermore, the binding mechanism inhibits the
access to referenced units whenever the referencing process and the referenced unit are
not on the same site. It is important to notice, however, that references to units are not
discarded at the time of the move; when a referenced unit and the corresponding process
become colocated on any site the binding is re-established.

The model also provides mechanisms to generate and duplicate components, to ex-
plicitly terminate processes, and to establish or sever a reference between a process and a

unit. In the next section we present the structure of the model in some detail.

7.2 Mobile Unity

In this section we provide a more formal treatment of the manner in which the model
is built. Along the way, we also describe the Mobile UNITY notation. A Mobile UNITY
specification consists of several programs, a Components section and an Interactions
section. The program is the basic unit of definition and mobility of the Mobile UNITY
system. Figure 7.2 shows a Mobile UNITY solution for the leader election problem. N
nodes are arranged in a ring each holding a value z. A mobile agent moves around the
ring carrying a token that it is used to compute the lowest value of the variables z stored on
each node. The token value is updated at each node by comparing it with the local value
of z. The algorithm is guaranteed to find the leader in exactly one round but for simplicity
we allow the agent to circulate indefinitely around the ring. Distribution of components
is taken into account through the distinguished location attribute A associated to each
program. Changes in the value of A denote movement.

The system shown in Figure 7.2 contains two programs, NodeValue and Agent. The
declare section of each program contains the declaration of its program variables. The
symbol || acts as a separator. The initially section constrains the initial values of the
variables. In program NodeValue of Figure 7.2, z is initialized using an abstract function
id which, given an index i, returns a unique value less that 1000. In the program Agent

two variables (token, and z) are declared. The variable token is initialized to 1000 and
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System ElectionAgent
Program NodeValue(i) at A
declare
z: integer
initially
z =id(z) < 1000
assign
skip
end
Program Agent(i) at A
declare
z: integer [| token: integer
initially
z = L [| token = 1000
assign
poll: token := min(z, token) if x # L A token # L || X := next(X)
end
Components
(] ©:0<i< NAN <1000 :: NodeValue(i).A = location(z)) [| Agent(1).A = location(0)

Interactions
NodeValue(i).z ~ Agent(j).z when NodeValue(i).\A = Agent(j).\
engage NodeValue(i).z
disengage NodeValue(i).z, L
end
Auxiliary definitions: next(n) = THE NODE FOLLOWING n IN THE RING

Figure 7.2: A Mobile UNITY system :distributed computation of the minimal value of z.

z is left undefined, i.e., L. In the assign section of program Agent the statement named
poll sets the value of token to the minimum between its value and that of z (if z is not
1) and moves the agent to the next node by changing the value of the location attribute
A. The function next returns the next node of the ring, and the symbol || makes the two
statements on its left and right to be executed synchronously.

The Mobile UN1TY Components section defines the components existing throughout
the life of the system. Mobile UNITY does not allow dynamic creation of new components.
In Mobile UNITY a program definition may contain an index (i.e., i) after the name of
the program (i.e., NodeValue, or Agent). This allows for multiple instances of the same
program to be defined in the Components section. In Figure 7.2, for instance, N different

instances of program NodeValue are instantiated and placed at various initial locations
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based on their index value?, initialized using the function location, while only one instance
Agent(1) of program Agent is created.

All the variables of a Mobile UNITY component are considered local to the component.
No communication takes place among components in the absence of interaction statements
spanning the scope of multiple components. The Interactions section contains statements
that provide communication and coordination among components. In this example, the
Interaction section allows the sharing of values between the two variables named z in the
programs NodeValue(i) and Agent(j) when they happen to be at the same location: the
“” notation is used here to address the variable in the program, and the index 7 and j are
supposed to be universally quantified. Only some of the program instances end up sharing
the values of variables z, depending upon their initial location (see function location and
subsequent moves). The Mobile UNITY construct = defines transient sharing of variables
for as long as the when condition holds. The engage statement defines a common value
to be assigned (atomically) to both variables as the when condition transitions from false
to true. In this example the value assumed by the two variables is the value of the z on the
node (NodeValue(i).z). Tt contains the actual value to be used for computing the leader
. It is possible to specify also a disengage statement that defines the values assumed by
the two variables, respectively, the when predicate transitions to false. If no disengage is
specified the variables retain the values they had before the when condition became false.
In the example, the disengagement value for the 2 variable on the node (NodeValue(i).z)
is its current value, while the value of the z carried by the agent (Agent(j).x) is set to L
as it has to carry no value.

The Mobile UNITY execution consists of a fair interleaving of statement executions,
including the statements present in the Interactions section. The sharing constructs
have higher priority and are executed any time a change in the values of the variables

involved in sharing happens.*

3The three-part notation (op quantified_variables : range :: erpression) will be used throughout the
paper. It is defined as follows: The variables from quantified_variables take on all possible values permitted
by range. If range is missing, the first colon is omitted and the domain of the variables is restricted by
context. Each such instantiation of the variables is substituted in ezpression producing a multiset of values

to which op is applied.
“This is not true for all Mobile UNITY coordination constructs in general but it holds for transient

variable sharing, (i.e., for ~).
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7.3 Reinterpretation of the Mobile Unity syntax

Mobile UNITY considers a program to be the smallest unit of mobility. In Mobile UNITY
every program has a location attribute and the modification of this attribute is denotes
the movement of all the code and data in the program. We seek to introduce a finer
granularity, one that allows the movement of lines of code or variables as isolated entities.
For this purpose we set out to reinterpret the syntax of a standard Mobile UNITY program
such that every variable declaration and every labeled statement is interpreted as a stand-
alone program, henceforth called a unit. A program now becomes only a static unit of
definition. Statements and declarations become units of mobility. The Mobile UNITY
syntax of a system is preserved. Units generated from the system are formalized using the
Mobile UNITY syntax as well. Figure 7.3 shows a possible syntactic transformation for
the Mobile UNITY program in Figure 7.2. The small programs shown in Figure 7.3 are,

from now on, called units.

Some of the variables declared in Figure 7.2 are interpreted as data units in Figure 7.3.
One can imagine adding a tag var in the Mobile UNITY code of Figure 7.2 to specify
which variables should be interpreted as data units and which should not. Let us suppose,
for instance, that variable z in program NodeValue(i) and variable token in program
Agent (i) of Figure 7.2 are treated as data units, i.e., tagged by the keyword var. The data
unit p(’x,’NodeValue, i) in Figure 7.3 is generated from the declaration of z in program
NodeValue(i) (Figure 7.2). The name of all the units is now the constant p, while the
three indices after p characterize the unit. Each unit is indexed by its name, the name of
the program in which it is defined, and by its instance discriminator. This representation
is designed to facilitate the search for units present at some location using the name
and/or place of definition. We use a quote to distinguish the actual components from
their names, in particular for the first two indices which range over finite enumerations.
This notation allows the same names to be present in different program contexts. It is
possible, for instance, to define two statements labeled poll in two different programs of
the same system. The two code units derived will have the same name (i.e., poll, the
first index), but the second index would be instantiated to different program names. The
declaration of z in program Agent(i) of Figure 7.2 is assumed not to denote storage, i.e.,

it is not tagged by var. It is only a placeholder needed to accompany the code in the
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System ElectionAgent
Program p(’x,’NodeValue, i) at A
declare
z: integer
initially
z =id(¢) < 1000
assign
skip
end
Program p(’token,’Agent, i) at A
declare
token: integer
initially
token = 1000
assign
skip
end
Program p(’poll,’Agent, i) at A
declare
z: integer [| token: integer
initially
z=_11[ token = L

assign

end

Components

Interactions
p(’x, i, j).z ~ p(’poll,h, k).z

p(’token,i, j).token ~ p(’poll,h, k).token

end

token := min(z, token) if x # L A token # L || X := next(X) ||
p('token, find("token, ) 1 1, find(' token, \) 1 2).X = next(\)

(] ¢:0<4%< NAN <1000 :: p(’x,’NodeValue, i).A = location(z))
[ p(’token,’Agent, 1).X = location(0) [| p(’poll,’Agent,1).X = location(0)

when p(’x,i, j).A = p(’poll,h, k).\
engage p(’x,i, j).z

disengage p(’x,i, j).z, L

when p(’token,i, j).A = p(’poll,h, k).\
engage p(’token,i, j).token
disengage p(’token,i, j).token, L

Auxiliary definitions:

next(n) = THE NODE FOLLOWING n IN THE RING

Figure 7.3: Fine-grained restructuring of the ElectionAgent System.

statement poll. Therefore, the declaration of the z in Agent(i) is not translated as a data

unit in Figure 7.3. The computation in poll will actually use the data in the z variable

located on each node. This is made possible by the sharing mechanism defined in the

Interactions section. Notice that a unit capturing a variable declaration also contains
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the corresponding initialization statement for the declared variable. The assign section of

a data unit does not contain any statement as the unit only declares a variable.

In order to overcome the difficulty of dynamically creating components in Mobile
UNITY we assume to have a sufficiently large number of instances of components ini-
tially located in a sort of “ether”. We formalize this by saying that they reside at an
undefined location A\ = €. In this manner, whenever we need to duplicate or instantiate
a new component, we simply change the location of some component in the ether from
undefined to an actual location.

The code unit p(’poll,’Agent, i) of Figure 7.3 is generated from the statement poll in
Figure 7.2. The first index of the code unit is the label of the statement. The second index
is instantiated, like in data units, i.e., the name of the program the unit comes from, and
the third is the index that allows multiple instances of the same unit. The code of the
poll statement is part of the assign section. All the variables used in the statement are
declared (in the declare section) and initialized as unbound, i.e., L. This initialization
underlines the fact that this unit only contains code and that the variables are merely
placeholders (i.e., they do not contain real values until placed in a context that provides
sharing with data units).

As we want the token unit and the poll unit to move together, like in the example
in Figure 7.2 where they move within the program context, we now have to modify the
poll code by adding an explicit command for the movement of the unit token as well.
The function find returns, given the first index of a unit, the last two indices for a unit
present at a given location (the notations 1 1 and 1 2 are used to address the first and
second field of the returned value of find). The search can be done in two ways, by name
or by name and place of definition: looking for the last two indices (i.e., the name of the
program the unit is derived from and the index for multiple instances), or only on the last
index giving the name of the program containing the unit. The example shows a generic
find that returns both last indices (as the system contains only one definition of the data
unit token). The semantics of find will be defined in Section 7.5. The statement in unit
poll uses the value of the z present at each site to perform its computation. The sharing
mechanism in the Interactions section allows the sharing of the value of z (and of token)
between the data unit carrying the value and the placeholder variable in the code unit

p(’poll,’Agent,i). The Components section in Figure 7.3 places the units in the same
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location as those of Figure 7.2.

The re-interpretation of the Mobile UNITY system as a fine-grained mobile system
allows units to move as separate entities and code and data to be stored in different com-
ponents. In the resulting model we lose the notion of scoping previously associated with
the individual programs. It may appear that since, data and code are separated, their
simultaneous movement and value sharing among variables have to be programmed ex-
plicitly, in the code and in the Interactions section. These difficulties can be avoided,
however, if we introduce the notion of a container which can be constructed dynamically,
can move its entire contents of data and code units as a whole, and provides for auto-
matic sharing of like-named variables appearing in data and code units placed inside the
container. We will refer to this kind of container as a process because we intend to use
such components not only as dynamically structured programs but also as basic units of
execution. As a matter of fact, as shown in the next section, code units will be prevented
from executing whenever they reside outside the confines of a process. A process is seen as
a program and therefore formalized as p(name,prog,i), where the first index is the name
of the process, the second is the name of the program from which the initial contained

units are defined into, and the third index is the one allowing multiple instances.

The three indices defining a process are also used as a location name and used in the
definition of location for units inside the processes: while the location attribute of a process
is always set to a name of a host (as processes reside directly on the hosts), units location
attributes can be strings composed of the concatenation of the name of the host they reside
on and of the three process indices they are in (if they are in a process). In this model
processes cannot contain other processes while in Chapter 8 we show an enhancement of
the model that allows process and unit locations to be complex concatenation of strings

(a host and several process indices tuples).

With the introduction of processes we are now able to move lines of code, single vari-
ables, or complex groups of units and not only programs like in the example in Figure 7.2.
The notion of scope introduced by processes also helps in the simplification of the sharing
mechanisms between variables. Variables with the same name in the scope of the same
process may be considered as sharing their values. The explicit sharing mechanism avail-
able in Mobile UNITY can then be avoided by exploiting scoping. By providing a standard

set of sharing rules designers do not need to touch the Interactions section. For instance,
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Node Node

Agent @ Agent

Figure 7.4: A node in the leader election solution with processes.

the sharing among the token variable in the data unit token and the same variable in the
code unit poll had to appear explicitly in Figure 7.3. Further refinement of our new model
will allows binding by name to be established automatically between two variables within
the same scope.

The explicit sharing between the variable z on the node and its counterpart in the
poll code can also be eliminated if somehow we are able to pull within the scope of poll
the variable z residing on the same node. This can be accomplished in two ways. First,
we can explicitly move the variable 2 (on the node) within the scope of the process P
(Figure 7.4.a) embodying the agent. Second, we can add a new construct called external
reference (or simply reference), which extends the scope of the agent process to include
z without moving it (Figure 7.4.b). In the next section we introduce the use of these

constructs for the specification of the leader election problem.

7.4 Mobility Constructs

The previous section hinted at the key points of departure from Mobile UNITY, and at
the manner in which we will ultimately reduce a notation for fine-grained code mobility
back to the essence of Mobile UNITY. Central to our model is the interplay among the
notions of execution, scoping, containment, and location. Mobility not only determines
the set of resources that are available at a given location, but also allows the dynamic
reconfiguration of the code and data associated with a given process. In this section we
describe in more detail the set of constructs available in our model. In the next section,

we will use Mobile UNITY to provide formal semantics to these constructs.



98 Chapter 7. A Fine-Grained Model

In Section 7.3 we have shown a mobile agent solution for the leader election prob-
lem. We used the example to explain the re-interpretation of the Mobile UNITY system
in terms of units. In this section we refine the solution to the leader election problem
given in Section 7.3 exploiting more fully than before the features and the constructs of
our model: code, data and agents mobility, as well as built-in scoping rules. The solution
assumes that no nodes are initially able to take part in a leader election. The distributed
algorithm is started by injecting into the ring a process that contains the necessary knowl-
edge about the distributed computation—a woter. This process clones itself repeatedly
until the whole ring is populated with voters. Interestingly, voters do not contain the
logic associated with the token, i.e., they do not know how to compare the node’s value
with the token’s value—the poll strategy. The knowledge about this key aspect of the
algorithm is injected into the ring in a separate step of the computation in the form of a
code unit which is placed on an arbitrary node of the ring. Each voter is able to detect the
presence of the poll code unit on its node and move it into its own scope, thus effectively
enabling the execution of the unit. The poll code unit has access to a node-level data unit
that contains the node value. This enables the comparison needed to vote. Again, a self
replicating scheme is employed, where each voter passes on a copy of the unit to the next
node in the ring. This structure of the system, where the poll strategy is kept separate
and is loaded dynamically into the voter, enables the dynamic reconfiguration of the ring.
This happens when a new code unit that contains a different poll strategy is injected in
the ring. Again, voters detect its presence on their sites and replace the old strategy with
the new one. Finally, when the token is injected into the ring the actual leader election
starts.

Our example, despite its simplicity, highlights many of the leitmotifs of mobile code:
simultaneous migration of the code and state associated with a unit of execution, dynamic
linking (and upgrade) of code, and location-dependent resource sharing. For instance, our
solution can be easily adapted to an active network scenario where a new service (in our
case the ability to perform leader election) is deployed in the network, and some of its
constituents (in our case the poll strategy) are dynamically upgraded over time.

A formal specification of our leader election algorithm is shown in Figure 7.5, while
Figure 7.6 shows its graphical representation. The specification uses the fine-grained mo-

bile code constructs of our model.
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System LeaderElection
Program NodeDefinition
declare
z: var integer
end
Program TokenDefinition
declare
token: var integer
end
Program PollActions
declare
token: integer [| z: integer [| voted: boolean
assign
poll: token,voted := min(z, token), true
end
Program VoterActions
declare
voted: var boolean [| startup: var boolean [| token: integer [| z: integer [| k: integer
initially
voted = false || startup = true
assign
startVoter: ( put(wvoter,thisNode, next(thisNode)) if next(thisNode) # node(0)
|| reference(z, thisNode) || startup := false) if startup
[ linkCode: ( move(poll, thisNode, here)
|| put(poll, thisNode, next(thisNode)) if next(thisNode) 7# node(0)
|| destroy(poll, here)) if exists(poll, thisNode)
[| passToken:  move(token,thisNode, here) if exists(token, thisNode)
|| ( move(token, here, next(thisNode))

|| voted := false) if voted A exists(token, here)
end

Components
([ ©:0< i< N :: newData(NodeDefinition, z,node(3), 7))
[| newData(TokenDefinition, token, node(0), L)
[ newCode(PollActions, poll,node(0))

[ newProcess(VoterActions, voter,node(0), ACTIVE)

end
here = A
Auxiliary definitions: thisNode = head()\)
next(n) = THE NODE FOLLOWING n IN THE RING

Figure 7.5: Leader Election in Mobile UNITY extended with fine-grained mobililty con-

structs.
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.

g A

Figure 7.6: Leader election with mobile code.

The upper part of the specification contains three program definitions. The programs
in Figure 7.6 are not indexed with an ¢ unlike in Figure 7.2 as with the introduction of
processes programs are only units of definition and they are not instantiated.

NodeDefinition specifies a single data unit z associated with a node. The type decla-
ration for this integer variable is prepended by the keyword var which characterizes the
variable as a data unit. The initialization of the variable is not defined here: the predicate
newData, used in the Components section will provide the initial value to be assigned
when the unit is instantiated. In this way we allow different instances of the same unit to
be initialized with different values. The first parameter of newData is the name of the
variable, the second is the name of the program in which the unit is defined, the third
is the location where the unit has to be placed, and the forth is the initial value. The
program TokenDefinition specifies a data unit associated with the variable token. The
values of these two variables are accessed (through sharing) by code units specified by
the program PollActions. The latter contains a single statement poll, which describes
the polling strategy. As discussed in the next section, the formal semantics of the model
prescribes the execution of this statement to be prevented when the corresponding code
unit is not within the scope of any process. Thus, the comparison in poll is performed only

when the corresponding code unit is co-located in a voter process that also contains the
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data unit corresponding to token. In this case, the binding rules of the model, expressed
using the transient variable sharing abstraction provided by Mobile UNITY, effectively
force the same value in both token variables, hence enabling the comparison specified by
poll. Simultaneously, an additional auxiliary boolean variable voted is set to signal to the
enclosing voter, again by means of sharing of the variable voted, that the token needs to
be passed along the ring.

Voters are specified by the program VoterActions, that declares the variables men-
tioned so far and an additional boolean startup that is used to determine whether it is
necessary to perform some initialization tasks, i.e., cloning the voter itself on the next node
to perform the initial deployment of processes in the ring, and acquiring a reference to
the node’s value. These tasks are performed simultaneously by the statement startVoter,
which also resets startup to prevent the creation of multiple clones of the voter.

In startVoter, cloning is performed by the put operation. It executes only if the voter
that is invoking the operation does not immediately precede in the ring node(0) where
the whole computation started. This guarantees that each node hosts a single voter. The
statement uses some of the auxiliary definitions shown at the bottom of the figure. In
particular, here and thisNode are just renamings of the location variable A in the voter
and of the head function that operate on it, respectively. They serve the sole purpose
of improving readability. While the location of a process is always set to the name of a
site (as processes reside directly on the site), unit location can refer to sites or to pro-
cesses. In the latter case, the location is defined as the concatenation of the name of the
site the unit reside on and of the name of the process that holds it. This is useful in
invoking the put operation whose most general form is put(name, prog, id, locationges; )
where the first three parameters are the three indices of the component to be copied
and locationges 18 a location that represents the destination of the copy. Another form,
put(name, locationcy,, locationges; ), is also provided. It is actually used in the example to
“query” the scope defined by location.,, for the second and third indices of the component
given the name (i.e., first index).

As will become clear in the next section, copying takes place behind the scenes by
picking a fresh component from the ether and setting its location to the one passed as
a parameter. Like most of the operations provided in our model, the put operation is

defined on components, i.e., both on processes and units. Hence, in the case of processes
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the copying is performed recursively on the process and on all its constituent units. In
the case of put, the bindings that a process may have established are not preserved as a
consequence of this copy operation, i.e., all the variables are restored to their initial values.
This represents a “weak” form of copying. Our model provides also a stronger notion with
the clone operation, which preserves all the bindings owned by the process.

The statement startVoter establishes also a reference to the variable z, whose value
is contained in a data unit instantiated on each site. To understand in more detail this
latter aspect, let us take a brief detour and jump temporarily to the Components sec-
tion, to look at the initial configuration of the system. The first statement uses the macro
newData to indicate the creation of a data unit named z using the definition provided in
the program NodeDefinition, assigns to it the value 4, and places it on the i** node. Since
the statement is quantified over the number N of nodes in the system, each node hosts an
instance of this data unit as a result of the operation.

Similarly, the other three statements in the Components section create on the first
node respectively the data unit for the token, the code unit for the poll strategy, and the
voter process. Given the nature of our model, which enables movement to the level of
a single Mobile UNITY variable or statement, it is interesting to note how VoterActions
actually represents the unit of definition for a number of units, namely, the data units cor-
responding to voted and startup, and the code units corresponding to startVoter, linkCode,
and passToken. In principle, each of these could be moved or copied independently. Since
this is not the case in this example, they have been grouped together under VoterActions.
This simplifies the text of the specification by minimizing the number of Program dec-
larations, and also enables the creation of a single process that automatically contains
instances for all the aforementioned units by using newProcess. Finally, note how the
value of a process is its activation status, i.e., either ACTIVE or INACTIVE.

Now, let us return to the reference operation in startVoter. Thanks to the binding
rules, this operation establishes a transient sharing between the variable in the data unit
z defined in NodeDefinition and the declaration in the voter. Note how, similarly to what
was described for put, only the name of the data unit z is specified, while its indices is
determined by implicitly querying the node. The model provides also the inverse operation
unreference.

The statement linkCode takes care of replicating the poll strategy and, possibly, of



Chapter 7. A Fine-Grained Model 103

substituting the new poll code for the old one. It executes only when the exists function in
the guard evaluates to true. The function exists, formally introduced in the next section,
effectively models the aforementioned query mechanism, and enables linkCode to execute
only when a code unit with name poll is found on the node. If the unit is found, the move
operation brings it within the process, thus enabling its execution. Simultaneously, a copy
of the unit is sent to the next node in the ring via a put, provided that the next node
is not node(0). At the same time, if a pre-existing poll unit is found in the process the
destroy operation removes it from the system.

Finally, passToken handles the movement of the token. Again, the query mechanism is
used to get implicitly the identifier of any token data unit present on the node and move
it within the process to establish the proper bindings. After the poll is performed, i.e.,
voted is set to true, the token is moved from the scope of the voter to the next node in the

ring.

7.5 Formal Semantics

Our general strategy is to reduce the new model for code mobility to a specialization of
the standard Mobile UNITY notation and proof logic. The first step, explained in the pre-
vious sections, shows how we reinterpret a notation which looks very close, if not identical,
to that of Mobile UNITY by simply treating each variable declaration and statement as
a separate, independent program. Multiple instantiations of each such fine-grained pro-
gram, called a unit, are defined in the Components section. Once this transformation
from a concrete to an abstract syntax is completed, the parts of the model still missing
are the mechanics of data sharing within the confines of each process, the control over
the scheduling of statements for execution, and the definition of the various mobility con-
structs. Our strategy is to capture all these semantic elements as statements present in
the Interactions section of the Mobile UNITY system and to disallow the designer from
adding anything else to the Interactions section. The result is a specialization of Mobile
UNITY to the problem of fine-grained mobility. The fact that the entire semantic specifi-
cation can be reduced to a small set of coordination statements attests to the flexibility of
Mobile UNITY. In the remainder of the section we consider in turn the topics of scoping,

statement scheduling, mobility constructs, and creation predicates. From now on we use
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find(u,l) =  (min i,5:u; ;. A =1 (u,1,5))
find(u,i,1) = (mln] ui g A =1 (u,i,5))
exists(u,l) = (4,5 ui ;. A =1)

exists(u, i,0) = (Fj = uij A=1)

Figure 7.7: Specification of the functions find and exists.

the compact notation ¢; ; to mean p(c,i,7), i.e., the instance j of the component named

¢ extracted from program i. Throughout this section we also assume that:

e Each component, (i.e., data unit, code unit, or process) c; ; is characterized by its lo-
cation (¢; j.)), request field (¢; j.p) designed to hold mobility commands the system is

expected to execute on its behalf, and type (¢; ;.7 € {DATAUNIT, CODEUNIT, PROCESS}).

e Each process g;; is also characterized by an implicitly specified set of contained
units (those located within the process), a set of referenced units (g;;.v), and its

activation status (g; j.w € {ACTIVE, INACTIVE, TERMINATED}).

The designer does not need to refer to any of these attributes even though they are essential
to the formal semantic definition.

When writing code, the designer will typically refer to a component’s name (e.g., ¢)
rather than its fully qualified name (e.g., ¢;;) consisting of the three indices (i.e., ¢, 1,
7) defining the component name, program, and index, respectively. Given the name, the
other identifiers can be extracted easily by employing the functions find and exists defined
in Figure 7.7.

The find function finds an instance of the component named u on the location [. The
name of the program the unit is derived from (i.e., 7) can be added as a parameter in
order to constrain the search only to units derived from a particular program definition;
the same is true for the function exists. Processes, like other units, also have three indices:
the first index is the name of the process, the second is the name of the program the units
in the process are derived from (e.g., the process voter created with newProcess in the

Components section of Figure 7.5), and the third is the instance discriminator.
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7.5.1 Scoping Rules

Since a code unit can only access its own variables, the mechanism by which we establish
scoping and access rules is that of forcing variables with the same name and present in
the same scope (i.e., contained in the same process) to be shared. This can be readily
captured by employing one of the high level constructs of Mobile UNITY, transient variable
sharing across programs (A.a =~ B.b when p). The predicate p controlling the sharing
simply needs to capture the scoping rules. Figure 7.8 shows how these rules can be stated
as two Mobile UNITY coordination statements. Statement 7.1 handles sharing between
a variable in a data unit and a variable in a code unit, while statement 7.2 defines the
sharing between two variables in data units.

Statement 7.1 states that variables® ui .2 and wj .z share the same value when u;
is a data unit and wj  is a code unit, and the two units are within the same process, or
either the data unit or the code unit is referenced by the process owning the other unit
and the two units are on the same site. The engage value is the value of the variable in
the data unit. The two disengage values are the actual value shared for the data unit
variable, and the undefined value for the code unit variable, respectively—variables in code
units are not supposed to carry a value unless they are sharing it with a data unit. The
function sharing tells if two units have a common “parent” (a parent can be the process
within which they are located or the one which references them), i.e., the units are in the
same scope. In turn, sharing uses the functions childOf(v; s, u; 5), that determines whether
vj 1, is child of w; j (i.e., vjj is a unit contained in u; ), and referencedBy(v; i, u; ), that
determines whether v; ;. is referenced by wu; p.

Statement 7.2 defines sharing between variables in two data units. The variables must
have the same name in the same scope. Sharing takes place under the same conditions of
statement 7.1, except that both variables are in data units. The engage clause forces the
two variables to share the maximum value. Different policies can implement a different
semantics for reconciliation of values. As no disengage is specified the variables retain

the values they had before the when condition became false. The update of all shared

"The formulae in Figure 7.8 and following assume that variable sharing is well-defined, i.e., it takes
places only among variables which actually appear in the specification of a unit according to the program
definition. Also, distinguished variables like A and 7 are never shared. The formal definition of these

conditions is omitted for the sake of brevity.
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Ui p-T R Wy .t when u; .7 = DATAUNIT A w; .7 = CODEUNIT A
(wi,n A = wj -\ # head(u; . A) V
(sharing(u; 5, w;j 1) A head(u; 5.A) = head(w; 1.)))) (7.1)
engage u; .7
disengage u; .z, L
Ui h-T N W gt when u; .7 = w; .7 = DATAUNIT A

(u,',j./\ = wj,k.)\ #* head(wj,k./\) \%

(sharing(u:. 5, w; ) A head(u: - \) = head(w; ;.\))) ("2

engage max(u; ;.T,w; .T)

inhibit u; 5.5 when u; ;.7 = CODEUNIT A
((Vp, m,n : pm,n.T = PROCESS A (childOf(u; 1, pm,n) V (7.3)

referencedBy(u; p, Pm,n)) it Pm,n.w # ACTIVE) V

(3 uyp.r = 1))

Auxiliary definitions:

sharing(u; , w; 1) = (3p, m,n :: (childOf(wj 1, Pm,n) A referencedBy(u; 1, Pm,n)) V
(childOf(u; p,, pm,n) A referencedBy(w; x, pm,n)))
true  if v k. X = u; p. Ao (u,i,h)

Chi|d0f(’l}]‘,k, ui,h) =
false otherwise

true if (v,7,k) € u; .
referencedBy (v; ., u; p) = (0.3, k) b
false otherwise

Figure 7.8: Bindings among units using variable sharing and statement inhibition.

variables must happen in the same atomic step as the assignment to any of them. However,
sharing is specified separately from the (possibly many) assignments that may change the
value of a variable. To accomplish this, Mobile UNITY has a two-phased operational model
where the first phase involves an ordinary assignment statement execution and the second
is responsible for propagating changes to shared variables. We call the statements that ex-
ecute in the second phase reactive statements. Logically, the set of reactive statements are
executed to fixed point right after each non-reactive statement and one reactive statement
may trigger the execution of other reactive statements. Transient sharing is ultimately

defined using reactive statements [MR98], but this is outside the scope of this paper.
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7.5.2 Statement Scheduling

In Mobile UNITY, each statement is assumed to be executed infinitely often in an infinite
execution, i.e., weakly fair selection of statements is the basis for the scheduling process.
The coordination constructs of Mobile UNITY include a construct for guard strengthening
called inhibit. In inhibit s when p, for instance, the statement s continues to be selected
as before, but its effect is that of a skip whenever the condition p is not met. We take
advantage of this construct in statement 7.3 of Figure 7.8 to inhibit statements not in
the scope of an active process, and statements that have unbound variables. A variable
appearing in a statement is always unbound if it is not shared with a variable present in a

data unit.

7.5.3 Mobility Constructs

The designer views the move construct as a mechanism by which a component at one
location is relocated to another. The new location may be a known site or a known process.

This form of the move construct:

move(compName, currentLocation, newLocation)

is actually a special instance of the more general form in which the identity of the unit is
already known. One can simply determine the identity by employing the function find as

in®

move(find(compName, currentLocation), newLocation).

If multiple instances of the same unit exist one is selected”. In order to explore the manner
in which we assigned semantics to the mobility constructs associated with our model we
will focus our presentation on the general form of the construct. Moreover, we will assume

that the unit in question is a process named ¢ with identifier (4, ;) destined for location I:

move(Q) i)j) l)'

5Throughout, we assume that move((q, i,7),) is unambiguously reducible to move(q, i,7,1).
"We chose to pick up the instance with minimum index.
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Our general strategy is to treat the operation as a macro reducible to a simple local

assignment statement to the distinguished variable p (see Figure 7.9):

pi= (REQ, MOVE, (q, 6], (]v l))

where the first two fields of the record stored in p indicate the propagation status (i.e., an
initial request) and the nature of the request (i.e., a move).

We delegate the actual execution of the operation to a series of coordination statements
built into the Interactions section. The coordination statements propagate the request to
the contained units and ultimately carry out the migration of the individual components
to the new location. All these actions are executed atomically because they are encoded
as reactive statements that execute to fixed point before the system is allowed to take any
other action. The first thing that happens is to have the request transferred in the form
of a command to the process ¢q. The result is that g; ;.p is assigned the request with a

propagation status of EXEC:

qij-p = (EXEC) MOVE, (qa i, (]7 l))

while the attribute p of the unit issuing the request is cleared. Of course, in general it
might be the case that a unit requests its own movement and one needs to distinguish

between the two cases as made evident in Figure 7.10.
If, for the sake of simplicity, we assume that the only units contained by ¢ are d,, j
and s ,, the next reaction being triggered leads to having the process ready to start the

move, a fact indicated by dropping the propagation status
Gi,j-p = (MOVE, (4, 1))

while simultaneously propagating the command to the contained units (see Figure 7.10),

e.g.,

dm,h-p = (EXEC,MOVE, damahv(halo (qalaj)))

Sk,n-P = (EXEC,MOVE,S,k,n,(n,ZO (qalvj)))

Figure 7.10 defines the function F that computes, in a command-specific manner,

the arguments needed by the contained units. In this case, the location to where they
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move(u,i,7,!

REQ, MOVE, u, 1, ], (, 1))

put(u,i,7,k,1 REQ, PUT, u, %, j, (getid(u, 3), 1)) || k := getid(u, i)

clone(u, i,7,k,1

REQ, CLONE, u, i, , (getid(u, ¢), 1)) || k := getid(u, )

destroy(u, i, j

)
)
)
) REQ, DESTROY, ©, 4, j, ()
activate(u, i,5)
7)
)
)
)
)

REQ, ACTIVATE, 1, %, §, ()

(
deactivate(u, i,
(

terminate(u, i, j

REQ, TERMINATE, u, i, , ())

new(u’j’ k7l

REQ, NEW, u, j, getid (u, §), (1)) || k := getid(u, 5)

reference(u, i,7,v,k, h

(
(
(
(
(
(REQ, DEACTIVATE, u, i, 7, ())
(
(
(REQ, REFERENCE, u, 1, §, (v, k, h))
(

VDD D DD

unreference(u, i,j,v,k,h

REQ, UNREFERENCE, u, 1, j, (v, k, h))

. . getid(name) = get2nd3rd(find(name, €))
Auxiliary definitions: )
getid(name, i) = get3rd(find(name, i, €))

Figure 7.9: Mapping mobility constructs to Mobile UNITY statements.

need to move is the relocated process. Since further propagation is no longer possible the

commands drop the propagation status in the next step

dmp.p = (MOVE, (h,l0(q,i,7)))
Skn-p:= (MOVE,(n,lo(q,i,7)))

The last step is the change in location of each of the units (Figure 7.11). Given the
semantics of Mobile UNITY, this may happen in any order but the reactive statements will

be executed again and again until fixed point is reached, i.e.,

GijA=1 AN dnpA=10(q,4,5) N spnA=10(qg,ij)

If an attempt is made to move a unit before the containing process, an apparently
inconsistent state is reached in which the unit is located inside of a nonexistent process
but this is corrected as soon as the process move is complete. Thus the command completes
always in a consistent state.

All other constructs function in a similar manner except that not all the commands
are propagated to the contained units. For instance, terminate affects only the status
of the process. The function toPropagate used in Figure 7.10 is designed to control the
propagation process: the propagating constructs are move, put, clone, and destroy.
The construct getid returns the three-part identity of a component located in the ether.

A minimal lexicographical value for the triplet is selected. The two functions get2nd3rd
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wip.p =L ifwjp # up || usp.p = (EXEC, command, u, i, args) (7.4)
7.4

reacts-to w; ;.p = (REQ, command, u, i, h, args)

u; p.p = (command, args) || (|| v, n, m : childOf(vn,m, u; 1) A toPropagate(command) ::

Un,m.p = (EXEC, command,v,n, F(command,u,i,v,n, m, args)) (7.5)

reacts-to u; j.p = (EXEC, command, u, i, args))

F(MOVE, u, i, v, n, m, (h,

h
F(put,u,i,v,n, m,(k,
Return values for F: L

F(CLONE, u, i, v, n, m, (k,

F(DESTROY, 4, i,v,n,m,

Figure 7.10: Modeling the actions of the run-time support.

and get3rd return the second and third indices, and the third index, respectively, given
the indices triple returned by the function find. The complete list of commands and the

corresponding formalization appear in Figures 7.9 and 7.11.

7.5.4 Creation Predicates

The three macros newData, newCode, newProcess are used in Figure 7.5 for the in-
stantiation of new components. newData is defined in two forms, the first allows the set-
ting of the initial value as a parameter (i.e., v)®. The second uses the initial value defined in
the program. The constructs used in Figure 7.5 are special instances of more general form:
for instance, newData(u, n, [, v) is a special form of newData(u, n, getid(u,n), [, v). The
function getid (shown in Figure 7.9) has two parameters in this case as we know one of the
indices (i.e., the program name n). Table 7.12 contains the semantics of these predicates.
newData states that a new data unit is located at location [ and that setting the initial
value for its variable is v. newCode states that a new code unit is located at location .
The predicate newProcess locates a process at location [, with status s. The predicates

newData and newCode are used to define the initial location of all the units that have

8The newData predicate is used in the Components section in order to define the instantiation of new
data units. The implicit quantification over the variables used in the Components section is generally
restricted to some proper range. In case of variable names the range is set to the names appearing in the

unit (i.e., the case of z.
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u; A =1 if (u; .7 = PROCESS = | = head(l)) A u; j,.w 7 TERMINATED A u; . A 7 € || .
Ui p.p = L reacts-to u; j.p = (MOVE, (h,[)) (76)
Ui kA Ui g -w =, u; p.w if (u; .7 = PROCESS = | = head(l)) A u; p. A # €|
u; p.p := L reacts-to u; j.p = (PUT, (K, 1)) 7
Ui koA, Ui g w = [, u; pow if (u; .7 = PROCESS = | = head (1)) A u; b\ # € || .
uip.p =L | (V& :: u; .z := u; .¢) reacts-to u; ,.p = (CLONE, (k,)) 8
ug p A= L if u; b A # €| uyp.p := L reacts-to u; .p = (DESTROY, ()) (7.9)
Ui p.w i= ACTIVE if u; j,.w = INACTIVE A 4; j,.T = PROCESS A u; p, A # € || u; p.p = L
reacts-to u; j.p = (ACTIVATE, ()) (7:10)
Ui p-w := INACTIVE if u; . w = ACTIVE A u; j,. T = PROCESS A 4; p. A Z € || 4 p.p:= L "
reacts-to u; j.p = (DEACTIVATE, ()) (r10
U; j.w := TERMINATED if u; j.w 7 TERMINATED A u; ,.T = PROCESS A u; . A 7 € ||
Ui p.p = L reacts-to u; j.p = (TERMINATE, ()) (7:12)
ui A :=1 if u; .7 = PROCESS = [ = head(l) || u; p.p:= L

(7.13)
reacts-to u; j.p = (NEW, )
Ui py = Uiy U {(v,5,k)} if vj .7 # PROCESS A u; 5.7 = PROCESS A t; , A 7# €A (7.14)
vj,k-A # €| u;,p.p = L reacts-to u; ;,.p = (REFERENCE, (v, j,k))
i h-y = U py \ {(v,7,k)} || tin.p:= L reacts-to u; ».p = (UNREFERENCE, (v, j, k)) (7.15)

Figure 7.11: Migrating components.

newData(u, n, k, [, v) S U g A=A Up .8 =V

newData(u, n, k,[) = Up kA =LA Uy ¢ = initial(n, )

newCode(u, n, k, 1) = Uy A =1

newProcess(u,n,k,l,5) =ty pA=1A Uy p.w=sA
(Vu' : datadefined(u’, n) :: newData(u', n, getid(u',n),l o (u, n, k)))A
(Vu' : codedefined(u’, n) :: newCode(u', n, getid(vw', n),l o (u, n, k)))

Figure 7.12: Constructs for the instantiation of components.

to be inside the process.
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Chapter 8

An Enhanced Fine-Grained Model

Mobile code technologies presented in Chapter 1 usually implements a model where unit
of mobility coincide with the unit of execution. In the most of the cases the model is flat
like the one presented in Chapter 7. A flat model does not allow the unit of execution to
contain other units of execution. In this chapter we want to loose this constrain extending

the model in Chapter 7.

In this chapter we present an extension of the fine-grained model presented in Chap-
ter 7. In this enhanced model processes can contain not only units but also other pro-
cesses, therefore generating a hierarchy of processes on the hosts. Hierarchical scoping is
combined with dynamic reconfiguration of process structures. This enhanced model is a

natural extension of the previous model.

The notation of the location that in the previous chapter was associated only with
hosts is now associated also with processes that become real locations for other units and
processes. As the modifications to the model only affect the notion of location, the real
changes to the semantics are minimal. The enhanced model allows the specification of
a powerful system with a location based hierarchical structure that still does not have
a corresponding developed technologies (only a similar attempt has been developed in

Telescript [Whi96]). We now give details of the enhancement.

8.1 The Enhancement with Scoping

A process is now a container not only for units but also for other processes. The general

structure of a host is now a tree. Figure 8.1.a shows the representation of a host containing



114 Chapter 8. An Enhanced Fine-Grained Model

[ ]

0]} [ 7%
o 464

Figure 8.1: The structure of a host in the enhanced model (a) and the corresponding

tree topology (b).

nested processes and Figure 8.1.b shows the corresponding tree topology '. Nested struc-
tures promise added flexibility in the organization of resources and systems. Nevertheless,
they are not typically encountered in mobile code languages. The extension turns out to
be a natural step, merely a simple refinement of the notion of location. A location is no
longer the concatenation of at most two names (i.e., the host name and, if needed, the

process name), but an arbitrarily long concatenation of names, reflecting process nesting.

Every nested process acts as a block structured context: all the data and code in
the block are considered local to the process and cannot be accessed from the upper
blocks. However, the inner blocks can access the content of the outer blocks. The binding
mechanism presented in Table 7.8 is readily extended to accommodate the new hierarchical
process structure. Figure 8.2 shows an example of binding in the tree. Variables with the
same name in the scope of the same process (like z in the units v and u) are bound and
share the same value (as in the “flat” model). As one might expect, structural changes
due to mobility of code fragments leads to corresponding changes in scope and data access.
Let us consider again Figure 8.2. Notice that the data unit w contains a declaration for z.
While the data unit v is present, the variable z in code unit u is bound to the declaration
of z in v. If unit v moves away, the z in code unit v becomes bound to z in w. In general,
the binding mechanism binds a variable in a code unit to the “closest” declaration for that

variable found in the path to the root (i.e. the host) of the tree.

The access to referenced units must also be adjusted for use with the hierarchical model.

!The rectangular thicker boxes represent hosts, normal boxes are processes, and circles are units.
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We constrain the scope of the referenced unit only to the peer units in the referencing
process; however it is still possible to explicitly formalize the access to a referenced unit
also for the lower level units in the branch. Let us consider, for instance, Figure 8.3.a: the
variable z in the code unit v is bound to the declaration of z in data unit z (we assume
that the unit z and process P are on the same host). The declaration of z in z, however,
cannot be bound to the z in code unit u as this is at a lower level (i.e., it is not a peer
unit). In some cases the designer may want to let the z in v to be bound to the z in
z: to do this she can either put another reference to z from process ) or exploit the
reference from process P and introduce a new data unit w declaring z at the peer level of
z in process P. In this case the binding mechanism allows the sharing between the two
declarations of z in data units in the same scope (i.e., w and z), and w is the closest data
unit declaring  with respect to unit u, then the binding is established between the two z

(see Figure 8.3.b).

In the hierarchical perspective a new operation can be added to the model to be able
to constrain the access of a unit only to peer units. At the moment the access strategy
is a hierarchical access, where lower level units can be bound to an upper level unit (in
case it contains the closest declaration for a certain variable). The new operation could
constrain the accessibility of a unit only to peer units. In order to do so units should have
an attribute indicating their access type: the automatic sharing mechanism looking for
the closest instance of a variable would now have to consider this attribute in computing
it. For instance, let us consider again Figure 8.3.b in this context: if the unit w had access
right set to PeerAccess, unit u would never be able to share the value of its variable, as it

is not a peer unit.

Figure 8.2: Scoping in the enhanced model: the dashed circles represent data units.
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Figure 8.3: Referencing in the hierarchical model

The hierarchical model requires little changes in the semantics of the constructs defined
in Table 7.11. As the model in general is enhanced only modifying the notion of location,
the changes required in the semantics are minimal. The operations move, put, clone, can
now place a process putting it inside another process, not only on hosts. Let us consider,
for instance, the move operation (7.6) in Table 7.11. The check

U ,-T = PROCESS = [ = head(l)
ensures that a process is only be moved on a host, and not inside another process (i.e., [
is a host location). In the modified move for the hierarchical model this check disappears
and the new formalization of move is:

ui p-A =1 if (u; p.w # TERMINATEDAu; .\ # €) || U 5.p := L reacts-to u; ;.p = (MOVE, (1))

Figure 8.4 contains the updated table for all the constructs, refining Figure 7.11.

Moreover, the operations activate, deactivate, and terminate have to be propagated
to all the child processes of the input process. For this reason the function F has to be
defined also for these constructs (it simply returns the () value). Figure 8.5 shows the new

functions.
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ui A =1 if u; p.w 7 TERMINATED A u; , A 7 € || -
Ui p.p = L reacts-to u; j.p = (MOVE, (h,[)) &0
Ui g N, Uy pow = Ly pw 3w A F£ €|

(8.2)
u; p.p := L reacts-to u; ;.p = (PUT, (K, 1))
Ui g Ay Ui oW = L ug pw 1w A # €|

(8.3)
uip.p =L || (V& :: u; .z := u; .¢) reacts-to u; ,.p = (CLONE, (k,))
uip-Xi= L1 if u; . X # €| uyp.p:= L reacts-to u; .0 = (DESTROY,()) (8.4)
Ui p-W := ACTIVE if 4; j.w = INACTIVE A %; j,.T = PROCESS A u; p A Z € || ujp.p =L
reacts-to u; j.p = (ACTIVATE, ()) (89
U p.w i= INACTIVE if 4; j.w = ACTIVE A 4; j,.T = PROCESS A u; p, A Z € || u; p.p:= L
reacts-to u; j.p = (DEACTIVATE, ()) 50
U p.w := TERMINATED if 4; j,.w 7 TERMINATED A u; j,.T = PROCESS A u; , A 7 € ||
u; p.p := L reacts-to u;j.p = (TERMINATE, ()) 50
u; oA =1 if u; .7 = PROCESS = [ = head(!l) || u; p.p:= L
reacts-to u; j.p = (NEW,[) &9
Ui py = Uy U {(v,5,k)} if vj .7 # PROCESS A u; 5.7 = PROCESS A t; , A 7# €A (8.9)
vj kX 7 €| u;p.p = L reacts-to u; j,.p = (REFERENCE, (v, ], k))
i hy = U py \ {(v,7,k)} || i n.p:= L reacts-to u; ».p = (UNREFERENCE, (v, j, k)) (8.10)

Figure 8.4: Migrating components: enhanced model.

F(MOVE, u, i, v, n, m, (h,

m, Lo (ua i h))

! (
l (getid(v,n), Lo (u,1,k))
(
(

h
F(pUT, u,%,v,n,m, (k,
F(CLONE, u, i, v, n, m, (k, getid(v,n), o (u,i,k))

)

)
)
)
)

I
F(DESTROY, 4, i, v, n, m, (

Figure 8.5: Updated functions return values.
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Chapter 9

Lilliput: a Fine-Grain Mobility Prototype

The fine-grained model presented in Chapter 7 describe a different approach to mobility
from a formal point of view. In this chapter we show a prototype of the approach that
wants to show the implementability of the idea. We describe the design of the prototype,
the name of which is LiLLiPUT. The Java API (Application Program Interface) is then

contained in Appendix A.

The LILLIPUT implementation follows the formal specification given in Chapter 7. The
input language of the system is a simplified Mobile UNITY [MR98] (where no interaction
section can be defined, the symbol var is added in the declare section, and all the vari-
able have integer type). The complete grammar of the input language can be found in
Appendix A. A compiler then translates the input document in a Java document that
is going to be compiled and executed on the Java Virtual Machine. The pseudo-Mobile
UNITY specification defines the system initial configuration distributed over a network of
hosts and the specification of the variables and code of the system. The compiler translates
every statement into a code unit and every variable declaration with its initialization in
a data unit (it generates Java classes for them). The Components section is translated
in a main method calling some other methods to send units and processes to different
locations. Figure 9.1 depicts the process of translation of the input document into Java

documents.

Once the system is initialized, units and processes are located on different hosts. An
engine is started on each host to maintain consistent sharing among variables (according
to rules specified in Chapter 7), inhibiting code from execution, and executing the mobility

constructs invoked by the code units. When the system is running units and processes
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move around and each engine on hosts has the responsibility to keep the binding in a
consistent state.

We will go through the details of the system next.

9.1 The Lilliput System

We now introduce the details of LILLIPUT starting from the interface with the programmer.
The language used to prepare input documents for LILLIPUT is based on the Mobile UNITY
notation [MR98] that will be translated into a set of Java files (Figure 9.1). A small
example will help in the description from now on. Figure 9.2 contains the specification of
a simple input system that shows how LILLIPUT can migrate processes and units, update
code when needed (through injection of new code in existing processes, and disposal of
code out of date), bind variables and execute code units. The example allows a variable
(i.e, z) with state, to be moved from a process to another on a different host. Once
the variable reaches its destination, code for executing an increment of the variable may
execute. At a later time, the code for the increment needs to be updated with a more
“efficient” increment strategy. Therefore, new code is shipped and injected into the remote
process while disposing of the old code.

The system shown (i.e., System Example) consists of three programs. The first pro-
gram (i.e., Program Migration) contains a declaration (with keyword declare) of vari-
ables z, and flag, their initialization (with keyword initially) and an assignment section
(with keyword assign) containing two statements labelled with migrate and ship, respec-
tively. The statement migrate specifies the movement of the variable z from localhost to
process @ on HOST2 and the assignment of the variable flag to true. The statement

ship allows the movement of a statement labelled with increment to the same process )

User Program J ava Document

Classes

— defining Umtx\D
— mp[— mp -

|
! |
' | Initial Configuration i
' I

Figure 9.1: Translation of the Input Document.
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System Example
Program Migration

declare
z: var integer

flag: var boolean
initially
z=0
flag = false
assign
migrate:  move(z,localhost, find(Q, HOST?2)) || flag := true

ship: move(increment, localhost, find(Q, HOST?2)) if flag = true
end

Program Increment

Program Update
declare
z: integer
assign

increment: T = 2x

end

Components
newProcess(P, Migration, HOST1, ACTIVE)
newProcess(Q, Increment, HOST2, ACTIVE)

newCode(increment, Update, HOST1)
end

declare
z: integer
assign
increment: z =z + 1 if —find(increment, Update, here)
change: destroy(increment, Increment) if find(increment, Update, here)
end

Figure 9.2: An example of system as input in LILLIPUT.

on HOST?2. The second program (i.e., Increment) increments a variable z, and contains

another statement to update the code increment once new code for “more efficient” in-

crement computation has been received. The third program (i.e., Update) contains the

increment code that is going to be used for the update defined above.

In order to understand the meaning of these programs we need to give details on

how this specification is interpreted by LILLIPUT. Programs are considered “units of

definition” of the data and code of the system. Every variable declared with the keyword

var is interpreted as a data unit of the system and a unit is created, using the initial value

assigned in the initially section. In Figure 9.3 we show the data unit, implemented in
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import lilliput.*;

public class DUxMigration extends LilliDU{
public DUxMigration(){

super("x","Migration",0);

Figure 9.3: The Java representation of the data unit for variable z.

import lilliput.*;

public class CUmigrateMigration extends LilliCU {

public CUmigrateMigration(){
super("migrate","Migration");
vars.add(new Variable("flag"));

}

public void perform(){
LilliEngine e=LilliEngine.getEngine();
LilliDU d=(LilliDU)e.find("x");
e.move(d, "HOST"","Q");
LilliDU d’=(LilliDU)vars.search("flag");
d’.value=TRUE;

Figure 9.4: The Java representation of the code unit for statement migrate.

Java, that corresponds to the declaration of variable z of program Migrate in Figure 9.2.
The Java class extends a data unit class (i.e., 1i11iDU from package 1i11liput), and calls the
constructor with the name of the unit (i.e., x), the program it comes from (i.e., Migration),
and the initialization value (i.e., 0) as parameters'. A similar data unit is defined for the
variable flag.

Every statement of the program (i.e., every labelled line after the assign keyword) is
interpreted as a code unit. In Figure 9.4 we show the LILLIPUT code unit corresponding

to the statement labelled with migrate in program Migration of Figure 9.22. Notice that

!From now on we refer to a data unit with the name of the variable that it represents. This can lead to
ambiguities in case two variables with same name are member of two different units, however this is not

going to be the case in our example.
2From now on we refer to a code unit with the label of the statement that it represents. This can lead

to ambiguities in the case of statement increment, defined both in program Increment and Update. We
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all the variables in the code units are appended to a list of variable names (i.e., vars). No
value for variables is recorded in code units as variables are only placeholders to be bound
to actual data units variables. The perform() method contains the actual code of the unit.
First a reference to the local LILLIPUT engine needs to be determined (i.e., e). Then, a
search by name for the unit is performed on localhost (with £ind()). At this point the
movement primitive, move(), can be invoked to move the unit d to the new host and then
to the scope of process Q. The statement that in Figure 9.2 is specified after the symbol
| is executed in a sequential manner in the code unit®. The variable flag is updated.
Notice that the search() method used to find the flag variable from the list of variables
bound to the code unit, has a different meaning from the method £ind (), used to find the
data unit to be moved. While search() looks only in the list of variables bound to the
code, £ind() searches for a unit on which a mobility primitive has to be applied (£ind(),
in fact, may also be used for searching code units and processes that need to be migrated

or replicated).

The declaration of variable z in program Increment and in program Update are not
preceded by the keyword var, and therefore no data units for them need to be created.
This is justified by the fact that z here is only a dummy variable for the definition of the
statement increment in the assign section. The increment statement in program Update,
the change statement in program Increment, and the ship statements in program Migrate

are interpreted as code units similar to the one in Figure 9.4.

The Components section contains the initialization setting for the system. In Fig-
ure 9.2 two processes, P and @ are created and placed on location HOST1 and HOST?2, in
an active state, respectively, using the construct newProcess. The second parameter of
newProcess is the name of the program from which units being part of the scope of the
process must be taken from. In case of process P, for instance, the units z, flag, migrate,
and ship are put in its scope. In case of process @) only the unit increment is placed in
the scope. The code unit increment of program Update is placed in the host “library” of

HOST1 for future use using the command newCode *. In Figure 9.5 we show the corre-

will distinguish in this case specifying also the name of the program.
3Semantically, this interpretation of concurrency as interleaved actions is valid: the code unit is executed

in an atomic fashion by LILLIPUT of the host.
“The construct newData is provided as well in order to allow the creation and location of data units(as

defined in the semantics in Chapter 7.
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import lilliput.*;

public class Lilliput implements LilliConstants{

public static void main(String[] args){
LilliEngine 1illi= new LilliEngine();
LilliProcess P= new LilliProcess("P","Migration");
LilliProcess Q= new LilliProcess("Q","Increment");
DUxMigration duXM= new DUxMigration();
DUflagMigration duFlagM= new DUflagMigration();
CUmigrateMigration cuMigrateM= new CUmigrateMigration();
CUshipMigration cuShipM= new CUshipMigration();
CUincrementIncrement culncrementI= new CUincrementIncrement();
CUchangeIncrement cuChangeI= new CUchangeIncrement();
CUincrementUpdate culncrementU= new CUincrementUpdate();
1illi.addInScope (P,duXM);
1illi.addInScope (P,duFlagM) ;
1illi.addInScope(P,cuMigrateM);
1illi.addInScope(P,cuShipM);
1illi.addInScope(Q,culncrementI);
1illi.addInScope(Q,cuChangelI);
1illi.addInScope(Q,culncrementU);
1illi.newProcess(P,"Migration","HOST1",ACTIVE) ;
1illi.newProcess(Q,"Increment","HOST2",ACTIVE);
1il1li.newCode(culncrementU, "HOST1");

Figure 9.5: The Java representation of the Components section.

sponding initialization class (i.e., Lilliput) generated from the Components section of
Figure 9.2. The LilliEngine object is created. Two processes and all the units to place in
their scope are created and the scoping relationships are established with addInScope().
Then, the newProcess() method is called to place the processes in the right status and on

the right location.

We suppose that a LILLIPUT engine is started on every host of the system. Figure 9.6
shows the architecture of a host in the system. Once the units and the processes are
placed on the right initial locations, the system begins its routine operations. The listener
thread waits for incoming entities arriving on the host and puts them in a queue. In the
meanwhile, a spawn interpreter thread gets entities from the queue, and handles their

relocation on the host. The interpreter also takes care of bindings among the variables of
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Q]ncoming Entiites

ODOQD

Interpreter

Listener

Figure 9.6: A host of the LILLIPUT system.

all the units (in the same scope), of enabling of code units for execution (once all their
variables are bound and the process they are in active), of the (non deterministic) choice
of an enabled code unit for execution, and of its execution.

Each code unit can execute simple operations, like the increment of a variable (i.e.
as the increment statement in Figure 9.2), or mobility operations like the move() in the
code unit CUmigrateM. Mobility operations are implemented in LiLLIPUT, and they con-
sist of constructs of migration, creation, replication, and referencing reflecting the model
described in Chapter 7.

Going back to our example, consider the initial situation also depicted in Figure 9.7,
where the process P is on HOST1 and ) on HOST?2. The interpreter on P will be able to
bind the variable flag in data unit duFlagM with the variable flag in code unit cuMigrateM
(both in the scope of process P). This will allow the code unit cuMigrateM to be enabled for
execution (as P, defining the scope for that unit, is active). The code unit cuIncrementI
is also executable, however its guard is always false (until the cuMigrateM sets it to TRUE
while executing). The interpreter on HOST'1 chooses non deterministically code units for
execution among the enabled ones. The interpreter will eventually pick up for execution
the cuMigrateM unit. The execution of the unit performs a migration (with move()) of the
sibling unit dux¥, if found (otherwise an exception is risen), that will be transferred to
HOST?2 and sets the flag to true.

On HOST?2, the listener puts the data unit just received in a queue and the local
LILLIPUT interpreter will place the unit in the scope of process }, where the unit is
destined. The interpreter on HOST2 was idle as no units were enabled for execution: the

code unit cuIncrementI had unbound variables (i.e., the variable z) as no data unit was
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HOST1 HOST2

incremen

b ®

increment

Figure 9.7: The initial system configuration.

present in the process’s scope. When the data unit duXM arrives the interpreter is able to
bind the two 2 of the data and code unit and the code unit becomes ready for execution.
The execution simply performs increments on the value of the variable z in the bound
data unit duXM, changing the actual value in the data unit. When the code unit cushipM
is eventually executed on HOST1 (as the flag now is true) the code unit culncrementU
is shipped to the process @ on HOST?2, thus enabling the code unit cuchangeI that will
dispose of the old code for the increment so that the new code may be used. In order to
simplify the example we have used a flag to determine when it was time to ship the new
code for the computation of the increment. However, it is possible to refine this example
defining more sophisticated policies for deciding when it is necessary to ship new code
(i.e., after a request, or after checking some performance parameters). The potential of
LiLLipuT are discussed further in Section 9.4.

In the next section we describe the architecture of the LILLIPUT implementation in

details.

9.2 The Architecture of the System

LiLLIPUT has been implemented in Java 1.2 in about 1200 lines of code. The communi-
cation of the hosts involved in the system is handled using the p-CODE toolkit [Pic98].
1-CODE is a light weight mobile code system with a small set of abstractions to provide the
shipping and the fetching of code and objects across a network of hosts. The integration
of u-CoODE with LILLIPUT can be clarified considering again Figure 9.6. The LILLIPUT en-
gine on a host spawns a u-CODE thread (i.e., the listener) to listen for incoming elements.
The LILLIPUT method for the migration of elements outside the host is move(). move()

is implemented exploiting u-CODE methods for migrating units/processes to other hosts.
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public class LilliEngine implements LilliConstants{
public void move(LilliElement e, String location, String ProcessName)
public LilliElelement cloning(LilliElement e)
public LilliElelement put(LilliElement e)
public LilliElement neww(Class c)
public void destroy(LilliElement e)
public void activate(LilliProcess p)
public void deactivate(LilliProcess p)
public void terminate(LilliProcess p)
public void reference(LilliProcess p, LilliUnit u)
public void unreference (LilliProcess p, LilliUnit u)

public LilliElement find(String s)

Figure 9.8: The LILLIPUT engine interface.

In case the element to be transferred is a unit, move() instructs u-CODE to migrate the
object instanced for the unit and the class describing the unit (i.e., a class like the ones
in Figure 9.3 and in Figure 9.4). Notice that in case of a code unit the object carries no
status for the variables used in the code (as they are only placeholders to be bound on
destination). In case the element to be moved is a complete process, the movement of all
the units in the scope of the process needs to be triggered. The objects of the process
and all the units are moved through p-CODE together with all the classes for all the units.
In any case all the binding between data unit variables and code unit variables need to
be severed before migration. This is particularly important in case of referencing to units
in libraries of the host that are not moved together with the referencing processes. The

engine interface is shown in Figure 9.8.

The engine provides the mobility methods available to the programmer. The move()
method has already been described. The two methods cloning() and put () allow replica-
tion of processes and units, with status or without (i.e., with or without initial setting),
respectively. The neww() method creates a new instance of a unit or process, given the
class. This is used to dynamically instantiate classes creating new units or to generate new
processes. reference() and unreference() establish and severe a reference between a unit
and a process. activate(), deactivate(), and terminate() change the status of a pro-
cess to ACTIVE, DEACTIVATE, or TERMINATED, respectively. The destroy() method explicitly

eliminates the process or unit.
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public void run(){
while(true)q{
engage() ;
eval();
}
}
private void engage(){
merge() ;
bind();
enable();
}
private void eval(){
LilliCU c=null;
c=pickUp();
execute(c);

}

Figure 9.9: The LILLIPUT interpreter thread main cycle.

The LILLIPUT interpreter main cycle is shown in Figure 9.9. The interpreter first phase

is implemented by the engage() method. In this phase the interpreter gets (with merge())

the first of the received elements from the queue (Figure 9.6). Then, it puts it in the right

place on the host, either linked to a process or on the host library. The bind() method

binds the variables of the code units to the data units (in the same scope) so to enable

code units for execution. The enable() method then searches for the code units ready for

execution (i.e. the ones in active processes). The second phase of the interpreter consists

in the execution of a code unit. The eval() method uses pickup() to choose one enabled

unit for execution in a non deterministic fashion. Then the execute() method calls the

perform() method of the chosen code unit to actually execute the unit code. The code

may, like in case of the code unit in Figure 9.4, contain migration operations (i.e., move).

If this is the case, y-CODE is called to handle the migration process.

9.3 Implementation Details

We now show, using UML class diagrams [BJR99], the main components of the LILLIPUT

system architecture (Figure 9.10).

Every entity derives from the abstract class Element . An Element has a name, and
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Element
+name : int
+ prog : int
+type :int
Process
- status : int
1 - datalList : List
+name : int + destination : int - muserver : Muserve
+value : int + container : Process
+ referencedBy : List + clone()
+ clone() 0..* cloneUndef()
L o + clone()
1\
T bu cu 0.*
+var : Var 0. q.* |+vars:Var]
+ clone() + perform()
+ cloneUndef() + clone()
+ cloneUndef()
0.*
0.*
Engine
libraryCU : List Handler
Intepreter(Thread) libraryDU : List — =
- actualEngine : Engine plist : List 0. - adtualEngine : Engine
- pending : Lis_t - + unpacki
- engage() executable : List _ cregteRSnnable()
- merge() engine : Engine
- bind() listener : Listener
- enable() interpreter : Interpreter|
- find() muserver : MuServer
- eval()
- pickUp() + move() -
- execute() - search&Remove()
- linkDUvars() \Q - eliminate()
- linkCUvars() + cloning()
- bindDUDU() + put()
- bindDUCU() + neww()
- binDUGammay() + reference()
+ unreference()
+ activate()

+ deactivate()

+ terminate()

+ destroy()
addPending()
removePending()
+ newData()

+ newCode()

+ newProcess()

Figure 9.10: The Class Diagram of LILLIPUT.

a program name (i.e., the name of the program it is derived from). The element also has

a type that will be used to distinguish data, and code units and processes.

The class Constants defines the constants of the system, while the class Variable
defines a prototype for a variable, with a name and a value. The class Unit and Process
inherit from the Element class. A Unit class carries the attribute container pointing
at the containing process for the unit. The attribute destination is set in the movement
phase when the unit needs to migrate inside a remote process, it carries the name of the
process. The referencedBy list records the processes referencing the unit. Referencing is
the ability to access the contents of a unit without being in the same process context (see

Chapter 7 for details). The clone() method clones the unit. The Process class contains
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the attribute status , i.e., the activation status of the process. The lists datalList and
codeList define references to the contained data and code units, respectively. The gamma
list contains links to the referenced units. The muServer is the local muserver to store the
classes of the units contained. The method clone() clones the process. cloneUndef ()
performs a clone with initialization values to variables in the units set. The classes DU and
CU define the abstract data and code units. The inherit from Unit and they are refined
in real data and code unit in the Java document output of the front-end of LILLIPUT (like
in Section 9.1).

The DU class defines an abstract data unit. It contains a variable declaration. Every
data unit derived from the program defined by the programmer by compilation is an
extension of the DU abstract class.

The CU class defines an abstract code unit. It contains the code to be executed (single
statements). It stores a list of variables, that are the variables used in the code statement.
The method perform is implemented by the real code units and will contain the code
to be executed. For simplicity the code can contain arithmetic expressions and mobility
constructs only. The perform method executes the code of the unit. If the code contains
mobility constructs they are invoked on the public mobility methods of the engine on the
host (see Section 9.3.1), containing static methods.

Both code and data unit classes contains a method clone that clones the unit and a
method cloneUndef to clone and set initial values. This is used in order to implement
the put/clone primitives defined in the model (Chapter 7).

We now describe the main engine of the system and its classes.

9.3.1 The Engine

The engine is the main element located on each host. The engine class contains structures

used for the evolution of the system. In particular the engine contains:
e the processes list (i.e. the list of processes on the host): plist ;
e the lists of “pending for entering” entities : pending ;
e code units, and data units in the “library” of the host: datalist and codeList ;

o the list of executable code units: executable .
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e the p-Code server muserver used to listen to the incoming elements (and to imple-

ment the move operations).

The engine also implements the methods defining the mobility primitives. These meth-

ods are called in the perform() method of the code units.

e move() : to move the entity (unit or process). Implemented on top of u-Code. This
is the only operation involving remote hosts. As we suppose the other operations
only act locally; the method generates a p-Code object (i.e., a group) that will be
sent the engine on the destination site. The destination engine listens for incoming

groups through a u-Code server.
e put() and clone() : to duplicate entities;
e new() : to create an instance of a class or process on the location.
e activate / deactivate / terminate : to change the status of processes;
e destroy : to destroy an entity;

e reference / unreference to reference/unreference a unit: the operation can only
act locally on the host. lL.e., if I want to unreference a unit but it is not here the

operation throws an exception.
e newData() : this operation allows the setting to a location of a new data unit;
e newCode() : this operation put a code unit to a location;
e newProcess : it puts a new process to a location.

There are also some auxiliary methods: eliminate() , searchAndRemove() ,

addPending() , and removePending() that we do not describe for brevity.

9.3.2 The Interpreter

The interpreter waits for the engine to put elements in the pending queue, then gets the
elements, puts them in the right lists of the engine, binds the variables, enables the code
units for execution and execute one of them.

We now describe each method in details:
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e engage() . engage() calls two other methods in order to get incoming elements,

merge them to the right lists, and bind the variables. engage uses the following

methods:

merge() : this method executes a synchronized method removePending()
of the engine that acts on the pending queue. Whenever the listener puts
something in the queue with the engine method addPending() the interpreter

is woken-up. Then, the elements then are put in the right lists on the engines.

bind () : the method is called to stabilize the system after the arrival of new
elements. It binds the variables with the same name contained in two data
units in the same scope and variables with same name in data and code units

in the same scope.

enable() : it checks the code units on the site and find the ones ready for
execution. That is, it tests if the unit is in the context or it is referenced by a
an active process, and if for all the variables used by the unit there is a binding

to a data unit set. In this case the unit is put in the executable list.

handleRemote() : to allow exchanging of messages across the sites. To be de-

veloped.

e eval() : it picks up a statement from the executable list and executes it calling

the method perform() of the code unit selected.

— pick-up() : select non deterministically a statement for execution for the

executable list of code units.

— execute(CU c) : calls the perform() method of the statement in the selected

code unit.

There are some auxiliary methods like bindDUDU() , bindDUCU() , bindDUGamma() ,

linkDuvars() , and linkCUvars() .

9.3.3 The Handler

The Handler is called from the u-Code server in order to unpack an incoming group. The

method unpack() gets the element from the received group and put it in the pending

queue.
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9.4 Discussion and Future Work

Mobile agents systems have been mostly implemented in Java [WPM99], with some ex-
ceptions (i.e., Agent Tcl [Gra95], and Telescript [Whi96], Jocaml [CF99]). The choice of
the programming language has often influenced the system design choices. The unit of
mobility in the Java based mobile systems usually is an object, i.e., the executing agent.
Code mobility in mobile systems is usually limited to fixed class loading mechanisms, most
notably refinements of the Java class loader (like in Aglets [LO98], Java/RMI [RMI98], or
Web Browsers). In LILLIPUT the unit of mobility is very fine-grained, however mobility of
more complex structures, like processes, is allowed and class loading strategies are imple-
mented with code unit migration. Moreover, data and code mobility are at the same level
of the LILLIPUT abstraction. Therefore, nothing would prevent us from defining some sort
of “object loaders”, to migrate object status close to the code instead of the usual other

way around.

LirLipuT allows all the general mobile agents operations, such as classes and values
sharing among processes (with the referencing mechanism), and replication of resources,
code and agents. At a very fine-grained level (even single lines) LILLIPUT also permits code
to be injected into the agent to increase its capabilities, or to replace obsolete behaviors. In
Section 9.1 we showed an example of this, shipping and updating the “increment” strategy

of a remote process.

There are many domains in which features of flexibility and dynamic reconfigurability
are important, we are investigating LILLIPUT applications to domains such as active net-
works, where code needs to be transferred with packets to instruct routers about preferred
routing strategies, or wireless networks, where small devices with scarce resources and

connection need to interact and exchange code and data.

The model at the basis of LILLIPUT aims to be as general as possible. For instance
referencing of units is allowed across hosts, and cross referencing between processes is
permitted. Once the referencing process and the referenced unit are not on the same
host the unit is not considered as part of the process scope (i.e., no binding is allowed
to that unit). However, references are recorded so that when the process and the unit
happen to be co-located again the binding is automatically permitted. In the LILLIPUT

implementation we constrained the range for referencing. References are only only local
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between processes and co-located units. Furthermore no cross referencing between pro-
cesses units is allowed (i.e, a process can only reference units on the library of the host,
thus simulating code/data library sharing). References are severed upon migration and
no recording is kept. Nevertheless, we are investigating the advantages and drawbacks
of the implementation (but also formalization) of more general referencing mechanisms,
introducing referencing by type (instead of the used referencing by name), or allowing
remote and permanent referencing a la Obliq [Car95].

LiLLipuT binding of variables and search of elements is based on names. Different
strategies, possibly based on types, can be implemented as well. Given the fine-grained
level and the range of primitives available in LILLIPUT many security issues rise. “Who
has the right to do what on which element?” is the general question to summarize the
many security problems that the approach has to face, and that have to be investigated.
On-going work on the implementation of LILLIPUT also involve the development of the
front-end of the system and the automatic mapping between Mobile UNITY and Java.

Research on possible languages that embody the decoupling between unit of execution
and mobility have been carried on using XML [BPSM98a]. In [EMFO00] an incremental
migration of pieces of XML documents is used for application in the area of management
of big numbers of workstations (i.e., behavioral update) and code distribution on thin

clients: we describe this work in the next part of this thesis.
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Summary

Code mobility is generally perceived to take place at the level of agents and classes. The
model presented in this part adopts an unusually fine level of granularity by considering
the mobility of code fragments as small as single variables and statements. Our primary
goal was to demonstrate the feasibility of specifying and reasoning about computations
involving fine-grained mobility. Nevertheless the study has been instrumental in helping us
develop a better understanding of basic mobility constructs and composition mechanisms
needed to support such a paradigm. Composition and scoping emerged as key elements
in the construction of complex units out of bits and pieces of code. The need for both
containment and reference mechanisms was not in the least surprising given current ex-
perience with object-oriented programming languages but it was refreshing to rediscover
it coming from a totally new perspective. The distinction between the units of definition,
mobility, and execution proved to be very helpful in structuring our thinking about the
design of highly dynamic systems. The necessity to provide some form of name service
capability in the form of the find function appears to align very well with the current
trend in distributed object processing. The resulting model shown in Chapter 7 is unique
in its emphasis on verifiability and novel in its usage of cascading reactive statements, a
construct akin to event processing but much more general. These features are, to a very
large extent, the direct result of our attempt to reduce the programming notation we offer

to the semantics of Mobile UNITY.

The granularity of the movement in process algebra is based on the notion of process
(i.e., computation code) that is the actual unit of mobility. As we also said in Chapter 1,

extension of this idea have been devised: Ambient calculus [CGO0] and Seal calculus
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[Vit99] introduce an explicit notion of environment (ambients in Ambient calculus and
seal in Seal calculus). Environments define the computation scope. The unit of mobility
is the environment that can carry computations and other environments while moving.
Environments are unit of execution and of mobility at the same time as they rely on
the notion of process common to the process algebra based languages. The approach
presented in this part focuses on the decoupling on unit of mobility (i.e., the unit) and
unit of execution (i.e., the process) in order to separate mobility related issues from more
execution related issues like activation/deactivation status. We, therefore, provide specific

operations (activate, deactivate, terminate) to act on the execution state of processes.

We can see possible future work in the security field also at this level of fine-grained
mobility, especially in terms of resource access constrains: a first step could be adding

operators constraining the visibility of units (as we discussed in Chapter 8).

Subjective and objective mobility of entities is an other security related issues, as it
has to deal with access rights to entities: Ambient calculus is based on subjective mobility,
i.e., every environment can decide to move with its content whenever it wants to, while
Seal calculus prohibits this behavior for security reasons. In Seal calculus the environment
decides on the movement of the contained entities (objective mobility). In our model the
move construct is invoked in a code unit, that, to be executed should be part of an active
process. The move can act on other entities, on the containing process, and on the code
unit itself. We did not want to constrain the model assuming for instance that the move
can only act on inactive processes, or it can only move local entities, or it cannot act on
itself. All these constrains can be formalized on top generating a set of refined models

that fit different purposes.

One of the main aims of the work presented in Chapter 7 and 8 is to provide basic
operations for mobile code systems. All the formalisms considered provide more or less
explicit mobility constructs: in m-calculus mobility is much more implicit than in Ambient
calculus, though. Ambient calculus also provides an open operation able to dissolve the
boundaries of an environment. Seal calculus does not provide that operation for security
reasons. We do not provide an open operation as it can be built on top of the basic
primitives of the model. In fact an open can be formalized as a movement (i.e., move) of
all the contained entities of a process and of a destroy of the process itself. We specify basic

movement operations for entities of different granularity (i.e., data, code, and processes).
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The two cloning operations (i.e. put and clone) differ depending on initialization value of
the copied entity. All the process algebra based models exploit the replication construct
(.e., !) to formalize cloning. No notion of initialization values is provided.

Resources handling happen to be a fundamental issue in mobile code setting: we
provide an operation to establish references to resources. Ambient and Seal calculus rely
exclusively on the notion of scoping defined by the environment hierarchy for handling
resources sharing: in our model processes act as containers and scope boundaries, however
an explicit operation is provided (i.e., reference) to allow more general sharing that can
be modeled by the designer.

In Chapter 9 we have presented a prototype of the fine-grained model, showing the
implementability of the approach, in the next part we show how these ideas are embodied
into an XML based approach. We will also describe some applications of the fine-grained

approach.
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Chapter 11

Active Documents

In this part we use established tehcnologies to embody the fine-grained mobility of code

strategies investigated in the previous chapters of this thesis.

In this chapter we introduce a recent technology (XML) and the way we have exploited
it to be able to display formal notations on Internet Browsers. We show how the approach
is used for formal notation display, in particular for Z [Spi92] documents display, enriching
XML [BPSM98a] documents with customized code with “displaying power”. the way in
which the displaying is encoded and used is a first and simple attempt to add “activity” to
XML documents. Active objects linked to the XML documents are loaded when needed in
a very reconfigurable and flexible manner. Our first use of the approach was for displaying

purposes. We describe this next.

11.1 Managing complex documents over the Internet

In the last years, we have seen the WWW being slowly transformed from an environment
for sharing documents and data among members of specialized communities (be they scien-
tific, research, artistic, social ones, etc.) to a general-purpose new medium for advertising
and marketing commercial enterprises to the public at large. Since commercial use has a
larger impact and therefore power on the advances of the medium, the specific needs of
specialized communities have been overlooked in the further development and advances of

this new medium.

For instance, the use of the WWW as an environment for software design introduces

new problems and challenges: the use of the WWW to support software process workflows,
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sharing specification documents, allowing to read and write them, and providing hyper-
textual links among documents is felt as a hot topic [KDJY97, SN97], but little specific

aid to software designers is available on the WWW at large.

A very important need that many communities of engineers have is the support for
special notations that are current or even absolutely necessary within that community.
Currently the Web is very poor in supporting special notations. The typographical render-
ing of WWW documents is usually defined using the HI'ML mark up language; currently,
it is the basis of most intranet document management systems [Ban97, Res97]. In its
many versions, HTML provides textual support for elements such as input fields, buttons,
choice lists, etc. along with structural and formatting commands for text within the data
format of network documents, and, of course, the hyperlinking capabilities that gave it its

name.

It has been extremely important that HTML allowed both complex interfaces and
proper and traditional text content to be described in ASCII-based source documents.
HTML has shown the way that text-based support for non-textual content eases under-
standing, tool creation and debugging of applications that deal with it. Furthermore,
they allow a complete intermix of different concerns, such as interface elements and text
characteristics, thereby fostering the creation of complex interfaces that are at the same

time rich in content and sophisticated in their interaction with the user.

On the other hand, HTML is limited in that it has only a small set of allowable
elements, that is, only those that are explicitly defined in the standard. Whenever some
authors’ needs exceed the capabilities of the elements already defined in HTML, a different
approach needs to be used: either the existing tags are abused for a different purpose than
that for which they were designed, or an image is used, or a Java applet is created providing

the desired functionality.

These kludges have obvious and well known drawbacks, that have lead to the devel-
opment of many alternative (and partial) solutions. For instance, Cascading Style Sheets
(CSS [LB97, BLLJ98]) allow authors to separate the efforts to specify special graphic ef-
fects and the structure and determination of the actual content of the document, allowing
complex typographical rendering to be built on top of still readable plain HTML docu-
ments. XML [BPSM97] is another tentative in that direction: instead of forcing authors to

the limited and closed set of pre-defined elements, XML is a meta-markup language that
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allow authors to define their own sets of markup elements that are most appropriate to
the specific class of documents they are dealing with. Adjunct languages (XSL, XPointer,
XLink [MD98]) are used by authors to associate these elements to some rendering or link-
ing semantics for their display on paper or screen. This allows a definitive separation
between the description of structures and roles of the documents and the description of

their graphical rendering on a computer terminal or on a high resolution printer.

Neither solution is currently completely satisfying for supporting specialized notations
because both are only concerned with supporting text-oriented content only. Many no-
tations have sophisticated need that go well beyond texts. For instance, specification
languages like 7 [Spi92] are often based on specialized notations (mathematics and logic
symbols): it would be useful to be able to give a visual interpretation of these symbols

and to allow them to be displayed on WWW pages.

The purpose of this section is to report on a Java rendering engine for XML data that
we have implemented. The engine allows standard typographical support for text-oriented
XML documents, as well as extensible graphical support for additional needs, in particular
for specialized notations. We have created a complete graphical and typographical support
for formal specification documents written in Z. The rendering engine we are describing
works as a completely autonomous applet inside unmodified Java-enabled browsers such

as Netscape Communicator or Microsoft Internet Explorer.

11.2 Creating Z specifications

Several tools exist to this date to help software designers to write, test, and share docu-
ments containing their Z specifications. A complete guide to all the existing tools for Z

can be found in the site http://www.comlab.ox.ac.uk/archive/z.html.

We can divide the available tools into four main categories: fonts, browsers, editors,

and type checkers.

True Type fonts for Z are available to use with common word processors on many
platforms including Windows and Macintosh, but fonts of course only give access to the
special mathematical characters of the Z language, forcing users to use non-specific features

of available tools to create the graphic boxes of schemata and other Z elements.
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Customizable formatters such as LaTeX [Lam86] are the most common tools to write Z
specifications. General style files for LaTeX, such as oz.sty, fuzz.sty, ztc.sty, have

been published to precisely render Z specifications.

Logica has created a syntax-driven WYSIWYG editor for Z on MS Windows platforms.
Such an editor also integrates a type checker and forces the production of well-formed Z
specifications by providing facilities for building, editing, checking, and viewing 7 specifi-
cation documents. Being WYSIWYG, the editor can display the Z constructs and symbols

as they would appear on a printed page.

The paper [M*95] describes the Z Browser, an application for displaying Z specifica-
tions running on MS Windows. Such a tool is aimed at Z novices, and is integrated with
a complete help system for Z grammar and notation, thus it supports the construction,

syntactical check, and visual layout of Z documents.

Several analysis tools also exist for Z specifications. For instance, CadiZ [Jor91] is an
integrated suite of tools for creating Z documents. It understands source files in LaTeX
and Word for Windows, and can visualize implicit Z expressions (i.e. schema calculi) by

showing their expansions.

Finally, the ZTC [Jia94] type checker accepts LaTeX-formatted Z specifications as well
as text-based ones. ZTC also suggests using a special syntax based on concatenation of

ASCII characters for mathematical symbols.

In summary, it is clear that Z is a highly structured notation both graphically and se-
mantically complex, and that writing, checking, and displaying Z specification documents

is yet an unsolved issue.

11.2.1 Hypertext and Z specifications

There are several good reasons to provide hypertext functionalities to Z specifications. A
complex specification is intrinsically composed of many connected chunks (schemas, etc.)
that refer to each other in a peculiar, often unpredictable way. Furthermore, the idea of
literate programming [Knu84] requires that schemas and texts interleave freely, so that
the reader is provided with a narrative explanation of the most complex schemas, and a
formalized and exact specification of vaguer descriptions. These remarks naturally call for

a hypertext solution.
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Moreover, collaboration and sharing are even better reasons for providing hypertext
support to Z specifications: formal specifications are but one step in the complex process
of system design, verification, and implementation [FKV94]. Modern development pro-
cesses are enacted by teams of people that cooperate, interact, and discuss. Being able to
create, access, and verify formal specifications within the usual tools of our everyday work,
publish them, connect them to the other deliverables of the design and implementation
processes would allow a tighter integration between formal design and actual implemen-

tation [CFRI7].

Till recently, Z specifications could only be visualized on the WWW by creating images
in one of the supported inline formats, such as GIF. This leads to a very cumbersome and
unnatural creation process, since the 7 specifications have to be created in a different
environment than the text, and furthermore non-specialized graphic editors have to be
used and restrained in order to produce graphically acceptable schemas. It is also a very
unnatural and clumsy way of accessing to the information: an image of a schema is a
completely opaque object, where the subparts, the texts, the formulas are completely
inaccessible; it is a bitmap that cannot be further processed because the content and
meaning have been lost: the content of a schema cannot be searched, the specifications

cannot be indexed, analyzed or verified.

A first attempt to show Z specifications on the WWW was described in [MAS97],
designing a plug-in for Netscape and Internet Explorer that accepts Z specifications written

using one of the existing LaTeX styles.

Although this approach is very original it has two main limitations: first, visualizing
Z documents requires the availability of the plug-in, which is architecture-dependent (it
only exists for MS Windows). Secondly, the LaTeX format is alien to the available SGML-
based formats suggested for the WWW: in fact, writing Z schemas in LaTeX requires a
different syntax and approach than writing the surrounding free-flow text in HTML, and
the specifications live independently of the host document. The first problem has been
addressed: the Z browser is becoming a Java applet, which is architecture-independent

and can be run on most computers of the current generation.

J. Bowen and others in Reading are working on a Java applet to visualize Z schemas

[BCY8]. Our approach, detailed in section 11.5, is related but with relevant differences.
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11.2.2 The advantages of markup languages

HTML has been extremely successful in allowing unsophisticated network users to be-
come authors of fairly complex documents, even in the absence of widespread editing
tools. Nonetheless, there has been in the past two or three years a widespread aware-
ness ([SMG94]) that HTML has reached its potential, and that a change of paradigm was
necessary.

The major drawback of HTML is that it allows only a pre-specified set of elements.
Authors can only use these elements, and have to limit their authoring needs to what is
available within the existing language, or to force these elements beyond their intended
meaning.

HTML is an application of the Standard Generalized Markup Language [SMG94],
that is, a class of documents conforming to the SGML Document Type Definition (DTD)
that describes “HTML documents”. SGML, being a meta-language describing classes of
documents rather than one specific class, is free of the above mentioned limitations of
HTML: by appropriately creating a custom class of documents, and defining the legal
elements therein, authors can provide support for any kind of rhetoric need, however
complex and arcane.

Unfortunately, SGML is considerably more complex to learn and design documents
with than HTML, and it has been felt that this would prevent its generalized adoption.
Therefore the SGML working group of the Word Wide Web Consortium was asked to
develop a new mark-up meta-language, namely the Extensible Markup Language (XML)
[BPSM97], to take the place of SGML on the Web. XML documents would have to be
straightforwardly usable over the Internet, compatible with SGML, and easy to create.

There are several standards being developed within the XML framework: the most
important is XML itself, a meta-markup language that allows user to create their own set of
elements for their class of documents. XPointer and XLink [MD98] extend HTML linking
mechanism by providing external specifications of locations, multiple links, external links,
etc. XSL [CD98| associates rendering behavior (e.g. character and paragraph settings)
to XML elements through a mapping and rewriting language. XML-Namespace [BHL98|
allows elements coming from different namespaces (document types, for instance) to live
together in the same document. Very important is MathML [IM98], a markup language
for mathematics, formerly part of the unborn HTML 3.0 and subsequently detached in
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an autonomous standard finally converted into XML. MathML covers most needs for
mathematical rendering, and is capable of showing most of the strange glyphs that are
part of the Z language, but is not thought for Z and does not provide support for other,
more specific needs of the Z notation.

Interestingly, in the Z community an SGML-based language for Z specifications already
exists: the Z Interchange Format (ZIF for short) [BN92] defines a portable representation
of Z, that can be used by all tools supporting SGML. The ZIF is basically a Document
Type Definition (DTD), namely an SGML specification defining the syntax of documents
that contain Z specifications. In [GC95] a study of the usage of the ZIF was presented,
according to which ZIF can be fruitfully used to create editors for Z documents using
standard SGML tools, and that Z specifications encoded using ZIF could easily be included
in other SGML documents.

XML documents are valid SGML documents. Most existing SGML DTDs can be used
with no modifications in an XML environment. Notably, the Z Interchange Format is one

of such DTDs.

It is therefore possible to use the definitions specified in the ZIF within XML tools, in
order to create web-friendly visualizations of Z specifications. Alternatively, XML tools
allow the HI'ML tag set to be described and extended as needed. By joining the HIT'ML
DTD with the ZIF DTD, and producing a capable browser, it is possible to write HTML
documents that contain 7Z specifications as markup items, instead of images, thereby keep-

ing all the useful properties that markup has over bitmaps.

In this chapter we report about one such tool, that allow the display of text-based XML
documents enriched with Z specifications. This mechanism can obviously be extended to

handle the display of any kind of notation within a XML document.

11.3 Displets and markup languages

Displets were proposed in [VCB97] as a way to extend HTML documents using Java. The
HTML language was extended on a per-document basis by defining new tags as needed,
and providing Java classes to take care of their graphical display. While not providing all
the functionality and flexibility of a full meta-mark up language such as XML (Sect. 11.2),
HTML extended with displets could allow all kinds of specialized notations and graphical
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effects while at the same time leveraging over the existing and well-known set of elements
defined by HTML.

Our first experiment with rendering arbitrary, non-text-based mark up extensions
[VCBY97] was to modify an existing browser to allow the parsing and the visualization
of new HTMUL-like elements. To do so, we took an early version of the HotJava browser,
whose source code was freely available, and modified it so that it could accept on-the-fly
extensions of the HTML DTD and load the appropriate classes (called displets) whenever
the newly defined tags were to be displayed. That experiment was extremely limited, in
that we used an old version of the Java language, and worked only on a specific version of
a specific browser. Furthermore, we heavily relied on the existing rendering architecture
of the browser and just provided a minimal effort implementation (basically a displet was
just a sequence of drawing instructions for the visualization of the elements).

In [CRV98], on the other hand, we reported about the DispletManager applet, a gen-
eral, extensible rendering and architecture we have been working on, which can be used
for both extensions to HTML and straight XML documents. This architecture is embod-
ied in a Java applet that can be run within any Java-enabled browser such as Netscape
Communicator or MS Internet Explorer.

Fundamental design requirements for the rendering engine have been:

e it must be possible to create special code for rendering arbitrarily odd data types,

in particular non-textual data (displets).

e all displets must easily integrate with each other: a chart element may have a math-
ematical formula as one of the labels, and some staff notation as another, where

some notes may act as hypertext links.

e the rendering engine must work both for extended HTML and for straight XML,

and the displet classes must be identical.

Figure 11.1 shows the general structure of the DispletManager applet:

The document chunk to be displayed, be it HITML or XML, is loaded by the displet
manager and parsed by the appropriate parser. The resulting tree is then recursively
(depth-first) analyzed: the appropriate displet classes are activated to create the rendering

(i.e., the display object) of their element on the basis of the rendering of their sub-elements.
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Figure 11.1: The general structure of the DispletManager applet

No class is allowed direct access to the screen: on the contrary, each displet creates a (set

of) off-screen bitmap(s) that its ancestor can pass, ignore, modify or add to.

Several specialized browsers exist for XML-based special notations. For instance, We-
bEQ for MathML [Web] and Jumbo for CML, a XML-based notation for chemical data
[Jum]. Although a specialized browser would have probably been more efficient and so-
phisticated for Z elements, too, we felt that a general rendering engines for all kinds of

notation was preferred, leading us to a more general and extensible architecture for Z and

other needs.

11.3.1 Applying displets to XML documents

The XML language allows authors to define their own set of elements (tags) to structure
and organize their documents. Of course these elements do not have a pre-defined meaning,
nor even a pre-defined visualization. For instance, while it is known that the “H1” element
in HTML has both a structural role (the heading of a first level section) and a graphical
rendering (use a large font and align it on the left), a corresponding “major-heading”
element in a XML document would have no machine-understandable structural role (but
this is not a problem), nor a known graphical rendering (we can not even determine

whether the element is a block, a paragraph or an inline element).
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The XSL [CD98] language is used for associating rendering information to an XML
document. Each XML document that needs to be displayed on screen or on a printer
would have a XSL document associated. The XSL document contains a series of “rules”
mapping the XML elements of the document to one or more flow objects (i.e., graphical

objects such as blocks, paragraphs and inline texts).

Although in XSL the set of available flow objects is fixed, we allow the specification of
new flow objects, that can be specified in the rules just like the standard ones. Each flow

object corresponds directly to a displet class.

What follows is an example of a simple XML document contained in the DispletMan-
ager applet and its associated XSL style rules. The style sheet refers to two flow objects:
a standard paragraph object (belonging to the CSS family of flow objects available within
the standard XSL proposal), and a special “reverse” flow object that is prepared as a

displet by the author of the document:

<applet code="DispletManager.class" width=500 height=200>

<param name = "style" value = "

<xsl>
<rule>
<target-element value=’para’/>
<css.div font-size=’12’>
<children/>
</css.div>

</rule>

<rule>
<target-element value=’rev’/>
<example.reverse>
<children/>
</example.reverse>

</rule>

</xsl> ">

<param name = "XMLcode" value="



Chapter 11. Active Documents 151

<para>This is an example of a text rendered in

<rev>reverse</rev></para>

ll>

</applet>

The DispletManager applet for XML has two arguments: the first contains the style
sheet document according to the XSL rules, while the second one contains the XML
document that has to be displayed, using the elements that are described in the XSL style

sheet associated.

Upon loading the applet, the displet manager will start the XSL engine and read in the
'style’ parameter. This is parsed (by a XML parser, because it is itself a XML document)
and organized. Then the “XMLcode” parameter is read and parsed by the same XML

parser, creating a tree of elements and data.

The XSL engine will then match each element in the XML document with the pattern
contained in each XSL rule. When the most suitable match has been found, the rest of
the rule (the action part) is executed, creating the flow objects listed and feeding them

their content (usually the rendering of their subelements, as specified by the <children>
tag).

In this example, the 'para’ element of the XML document matches the first XSL rule,
triggering the creation of a 'div’ object of the standard CSS package (a paragraph) with
a specific parameter (font-size=12), fed with the children of the element (i.e., the words
and the elements contained within the para tags). Then the 'rev’ element is considered,
and matched to the second rule of the stylesheet, triggering the creation of a ’reverse’
object belonging to the ’example’ package, fed with its content. As soon as the rendering
of its content has been readied (by creating the necessary bitmaps), the displet class

corresponding to the flow object is activated.

Each displet will then produce a (list of) bitmaps of its content. For instance, the *div’
displet of the CSS package will set a few parameters (such as margins, line spacing, font,
and size) that may affect its sub-elements, wait for the XSL engine to return control after

its content has been readied, and build its own content by combining the bitmaps of each
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Figure 11.2: Rendering a simple displet

word into lines according to the given constraints. Figure 11.2 shows the above mentioned

document results on screen:

11.4 The Rendering Engine

The rendering engine used by the DispletManager applet consists of a set of Java classes
that provide the rendering for the appropriate document elements. These classes are
all subclasses of the DocElement class, which provides the framework of the rendering
procedure.

All classes provide a createBitmap() method, whose purpose is to create and return
the bitmap of the flow object of the considered mark up element on the basis of the bitmaps
of its sub-elements. The createBitmap() method is usually not seen by the implementer

of new classes, and provides the following functionalities:

e an active drawing environment is managed. The drawing environment is a set of
parameters that are used by the rendering methods of the classes in order to decide
how to create the bitmaps. For instance, a paragraph-like class may set some pa-
rameters that will be used by itself, such as margins, line spacing, alignment, etc.,
and some that will be used by its sub-elements, such as font name, font size, font
color, etc. The createBitmap() method allows a displet to set its own attributes

with the setParams() method, and restores the previous situation when the displet
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is finished. Since createBitmap() methods are recursively activated, this creates a

stack that provides the proper parameters at any level of recursion.

e the rendering of sub-elements is managed. The presence/absence of the element in
the XSL rule may cause or prevent the rendering of the sub-elements of the current

element.

e the rendering of the element is managed. After the bitmaps of the sub-elements of
the element have been created (if appropriate), the createBitmap() method calls
the render() method, which in turn creates the final bitmap (or set of bitmaps)
that will be returned. Different classes will implement render() differently: for
instance, the render() method of a block element will collect the bitmaps of its
sub-elements in a vertical stack (one above the other), and provide a single bitmap
of the whole element, while the render() method of a paragraph will collect its
sub-elements side-by-side in lines of the given width, and provide a bitmap for every
line it has created; this allow the element containing the paragraph to decide how

much of the paragraph to display at a time (for instance, in case of scrolling).

e active elements are specified and created. Active elements are those that will need
to react to user and system events after they have been displayed. For instance,
form elements and anchors have an associated behavior that is activated when the

user selects them.

Figure 11.3 shows the inheritance structure of the classes of the module library:

DocElements can either be data, entities or tag elements. DataElement classes are used
for the content of mark up elements, i.e., #PCDATA in SGML and XML DTDs. They
can either be text or hidden elements. EntityElements are provided for the management
of XML and HTML entities such as &amp; or the definition of new ones. TagElements
are used for the creation of the structure flow objects of the document: they are either

flow objects, block objects, inline elements or special elements.

e A block element is a single object that stands alone in the vertical layout of the
document. Paragraphs or tables are block elements. A flow element is a block
element that is built piecemeal: while plain block elements are built from start to end

before the createBitmap() returns, flow elements build each of their sub-element



154 Chapter 11. Active Documents

Figure 11.3: The inheritance structure of the module library

and return, and are called as many times as there are sub-elements. This allows
long and complex elements to be rendered only for the possibly small section that is
actually displayed. For instance, HTML and BODY are considered flow elements,
so that the display of an HTML document can start as soon as the first object is
completed, and be interrupted when the available display space is filled.

e Inline elements are elements that can be put side by side with their siblings. Inline
elements are used within block elements and may be text-based, images or something
else. The StyledText class allows the specification of text runs of arbitrary styles.
Inline elements specify the places where they can be broken by creating as many
bitmaps as break points. This allows the containing paragraph or block element to

determine where the line should be broken.

e Special elements are completely tailorable. While in the previous classes displet
programmers can only overload the setParams() and render() methods, here all

methods are overloadable, and can be customized.

As an example, this is the complete source code of the 'reverse’ displet:

package example;

import displet.*;

public class reverse extends StyledText {
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public void setParams(StyledTextParams p) {
Color c = p.fgColor;

p-fgColor = p.bgColor ;

p.bgColor = c ;

The reverse displet is a subclass of the StyledText, which is a subclass of the InlineEle-
ment class. These are classes for text-based objects that behave as in-line elements (eg.
bold, italic, etc.). As it can be seen, the programmer of such a displet only has had to
specify a parameter and have the render() method of its superclass handle all the details.

The displets for showing Z specifications are shown in the following section.

11.5 The Z browser

The main extension to HTML we have considered using displets is the implementation of
the complete ZIF DTD. Authors writing 7 specifications can create documents containing
their Z specifications in a markup language similar to HTML and completely intermixable
with plain text and other HTML features such as links, tables, etc.

The ZIF format defines several elements (tags) for the building blocks of the language,
such as schemas, definitions, etc., and several entities (literal macros) for the special
characters inherited from mathematics and logics. Each element is implemented by a
displet that creates a bitmap where the content of the element is appropriately composed
and the graphical elements such as boxes, lines, etc. are then added. Entities on the other
hand are elements of a graphical alphabet that is contained in a single GIF image and is
loaded with the displets.

The following is an example of a Z schema using the Z Interchange format:

<givendef>
NAME, DATE
</givendef>
<schemadef>
BirthdayBook
<decpart>

<declaration> known: &pset; NAME</declaration>
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<declaration> birthday: NAME &pfun; DATE </declaration>
</decpart>
<axpart>

<predicate>known = &dom; birthday</predicate>
</axpart>

</schemadef>

A schema is defined by a tag called schemadef, which contains three elements: the name
of the schema, a declaration part and an axiom part. The declaration part contains one
or more declarations, and the axiom part contains zero or more predicates. Appropriate
ordering and nesting of elements is enforced by the DTD, and is checked when parsing the
document. The notations “&pset;”, “&pfun;” and “&dom;” are three entities (respectively,
the partial set symbol, the partial function symbol and the domain symbol) that will be
substituted by the corresponding element in the graphical alphabet containing all the
relevant Z symbols. The displet manager can appropriately show document bits as the
previous one in a WWW browser.

Since many 7 specifiers use LaTeX to produce their Z documents, we have developed
an off-line translator called “Zed2XML” that transforms Z specifications written in LaTeX
using style oz.tex into a corresponding HTML document with the appropriate extension.

For instance, given the following Z specification (the basic birthday book example
from [Spi92]):

corresponding to the following LaTeX source document:

\documentclass[italian, 12pt,twoside,openright]{report}
\usepackage{amsfonts}

\usepackage{oz}
\begin{document}
\begin{zed}
[NAME, DATE]

\end{zed}

\begin{schema}{BirthdayBook}
known: \power NAME\\
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birthday: NAME \pfun DATE
\where

known = \dom birthday
\end{schema}

\end{document}

The Zed2XML application transforms the previous LaTeX example in the correspond-

ing applet specification:

<applet archive="displet.zip" code="XMLManager.class" width=450 height=200>

<param name = "XMLcode" value="

<givendef>
<a name='"name'">NAME</a>,
<a name="date">DATE</a>
</givendef>
<schemadef>
BirthdayBook
<decpart>
<declaration>
known: pset; <a href="#name">NAME</a>
</declaration>
<declaration>
birthday: <a href="#name">NAME</a> pfun;<a href="#date"> DATE</a>
</declaration>
</decpart>
<axpart>
<predicate>

known = dom; birthday

</predicate>
</axpart>
</schemadef>
"> <param name = "style" value="

<xsl>

<import name="htmlcss.stl"/>
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<import name="Zpackage.stl"/>

</xsl>

"></applet>

The output of Zed2XML is the HTML specification of the DispletManager applet. As
it can be seen, we are following the ZIF format quite strictly. For the sake of brevity and
reusability, standard stylesheets are used and invoked by a simple import command in the
specification of the applet.

The ’htmlcss.st]” document contains the XSL rules to use HTML elements within
XML documents. For instance, we are using here HTML links with the A tag. This is the

relevant excerpt from the ’htmlcss.stl” document:

<rule>
<target-element type="a'>
<attribute name="href" value="%2"/>
</target-element>
<css.a href="}2">
<children/>
</css.a>

</rule>

The *Zpackage.xsl” document contains the XSL rules to use the Z displets within XML

documents. This is an excerpt from this stylesheet:

<rule>
<target-element type="givendef"/>
<zpack.givendef>
<children/>
</zpack.givendef>

</rule>

<rule>
<target-element type="schemadef'>
<zpack.schemadef>
<children/>

</zpack.schemadef>
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</rule>

When run on a WWW browser, the previous documents is shown as in Figure 11.4.

We remark that all displets integrate with each other and can refer to each other freely.
In our case, the Z schema contains a hypertext link described in a different package. Z
elements and plain text based XML elements freely intermix: it is possible to put standard
HTML tags within Z schemas, for instance an author may require that some declarations of
a schema are written in bold. The Zed2XML translator automatically connects types used
in declarations to their definitions using plain HTML links. The author may freely add or
modify the available links and HTML features, and include additional HTML elements,
as well as native XML elements or elements belonging from other packages of displets.

In the next chapter we show how the XML based approach allow very flexible handling
of code and data bindings.
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Chapter 12

Incremental Code Mobility and Applications

The increasing popularity of Java and the spread of Web-based technologies are contribut-
ing to a growing interest in dynamic and reconfigurable distributed system architectures.
Such reconfiguration can be achieved with code mobility, transferring fragments of code
across the network, from one host to another. Code mobility is generally associated with

Java, where byte code representations of classes can be loaded from remote hosts.

The potential mobility range is however wider, starting from simple data mobility,
where information is transferred. Simple examples are the actual parameters that are
passed to a remote procedure call or the web page that is returned to a get request in the
HTTP protocol. At a level above this, code mobility allows the migration of executable
code: browsers loading applet classes from remote servers are very common examples of
code mobility. Java-based technologies, for instance, Java RMI [RMI98] and Java Virtual
Machines, such as those built into Web browsers, offer a mobility granularity at a class
level. Mobile agents [WPM99], in which code and data move together, can be considered

the highest level of mobility that can be achieved in a logical context.

Several application domains need a more flexible approach to code mobility then can
be achieved with Java. This flexibility can either be required as a result of low network
bandwidth or scalability. The 9,600 baud bandwidth between a server and a GSM mobile
phone cannot cope with downloading large amounts of Java byte code from a server.
Scalability requirements can mean for example, that applications on several thousand
clients have to be kept in sync or that tasks are so computationally intensive that they
need to be distributed across multiple processors. These processors need to be instructed

in a flexible way.
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In this chapter we show how to achieve more fine-grained mobility than in the ap-
proaches that are based on Java. We demonstrate that the unit of mobility can be
decomposed from an agent or class level, if necessary, down to the level of individual
statements. We can then support incremental insertion or substitution of, possibly small,
code fragments and open new application areas for code mobility such as management
of applications on mobile thin clients, for example wireless connected personal digital

assistants (PDAs), user interface construction and inconsistency management.

This work builds on the formal foundation for fine-grained code mobility that we
presented earlier in Part II. There we develop a theoretical model for fine-grained mobility
at the level of single statements or variables and argues that the potential of code mobility
is somehow hidden behind the capability of the most commonly used language for code
mobility, i.e., Java. In this chapter, we share that vision and focus on an implementation

of fine-grained mobility using standardized and widely available technology.

In this chapter we give a description of how to use the eXtensible Markup Language
(XML) [BPSM98a| to achieve flexible, fine-grained and incremental code mobility. In Sec-
tion 12.1, we discuss related work, most notably XML and other approaches to logical
code mobility. In Section 12.2, we show how XML supports the definition of high-level
languages and how incremental code mobility can be defined with XML. In Section 12.3
we demonstrate how the implementation of mobile code systems supported by off-the-shelf
XML products. The construction of interpreters for high-level languages is simplified by
XML parsers and the Document Object Model (DOM) [ABC*98]. XML parsers construct
abstract syntax trees of the XML document and the DOM standardizes an interface for
traversals through abstract syntax trees. Section 12.4 we argue that fine-grained mobil-
ity has the potential for a set of application areas such as consistency management in
distributed documents, user interface development, and management of applications on
mobile thin clients. We give examples of the application of our approach in these areas.

Section 12.5 evaluates the approach and identifies strengths and weaknesses.

12.1 Overview of XML and Logical Mobility

Physical mobility is concerned with the physical movement of hosts, such as notebooks,

PDAs, mobile phones and wearable computers. Logical mobility is the ability to transfer
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data and/or code from one host to another by using a network. This chapter focuses
on logical mobility, though the approach is also applicable to information that transits
between physically mobile hosts; in fact, Section 12.4 discusses how our work can be
applied to manage applications deployed on PDAs. Logical mobility encompasses data

and code mobility.

Data mobility is a very common mechanism and often used to exchange or spread infor-
mation among different hosts distributed on a network. Data mobility can be achieved by
passing parameters to remote procedure calls, object requests or the put and get operations
of the file transfer protocol. With the introduction of the Internet and the World-Wide-
Web the Hyper Text Markup Language (HTML) has been used as the predominant format

for data that moves between hosts on the Internet.

XML [BPSM98a] is the next generation markup language for the Internet. XML is a
subset of the Standard Generalized Mark-up Language (SGML) [ISO86]. Unlike HTML
both XML and SGML allow users to define their own set of mark-up tags for structuring
documents. These user-defined mark-up tags are defined in document type definitions
(DTDs). A DTD is a context free grammar that defines the syntax of documents. XML
documents always declare a reference to their DTD in order to enable generic parsers to
obtain the specification of the grammar. Thus with the advent of XML, different formats
for transferable data can be defined. Many different DTDs have been standardized to
encode specific notations in XML. An example of a software engineering application is the

XMI [OMG98b] that defines a DTD that can represent any UML [BJR99] model.

XML is not only useful for publication of documents on the World-Wide-Web, but
that it can also be used as an application-specific transport protocol in distributed system
construction. In [ESF99] the authors report about the use of XML for the transport of
data between different distributed and heterogeneous components of a financial trading
system. That system uses XML documents as parameters to CORBA object requests.
Moreover, the OMG have requested proposals for the interoperability between their Inter-
face Definition Language and XML [OMG99] that will address the seamless interchange

of XML documents and equivalent complex values of IDL data types.

Data and code mobility in Java are supported through object serialization and class
loading. The status of objects can be serialized and transferred from one host to another

while the class loading strategies can vary, depending on the application. For instance,
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<?7xml version="1.0" encoding="IS0-8859-1"7>

<!ELEMENT KarelProgram (turnon|go|turnleft]|
pickbeeper |putbeeper |turnoff |times) *>

<!ELEMENT turnon EMPTY>

<!ELEMENT go EMPTY>

<!ELEMENT turnleft EMPTY>

<!ELEMENT pickbeeper EMPTY>

<!ELEMENT putbeeper EMPTY>

<!ELEMENT turnoff EMPTY>

<!ELEMENT times (turnonl|go|turnleft]|
pickbeeper |putbeeper |turnoff |times) *>

<!ATTLIST times howoften CDATA #REQUIRED>

Figure 12.1: The DTD for Karel’s Instruction Set.

the Netscape class loader downloads applet classes from the web server of the containing
HTML page; the Java RMI class loader allows the application to download the classes of
the objects remotely passed as parameters at run time. The class of the moved object
can migrate onto the new host or it can be fetched from a remote server. Many different

technologies have been built on top of these simple mechanisms.

Mobile agents are such a technology. Mobile agents are autonomous objects carrying
their state and code that proactively move across the network. Many new systems have
been developed to support mobile agents [KZ97]. Agent mobility requires the migration
of both code and state of the agent at the same time and they can move proactively
performing tasks on behalf of users. The more recent mobile agents technologies are usually
Java based [WPM99] however some examples exist of non-Java based mobile agents (e.g.,

Emerald [LHMS88]).

12.2 Specifying Incremental Code Mobility with XML

XML provides a flexible approach to describe data structures. We now show that XML
can also be used to describe code. XML DTDs are, in fact, very similar to attribute gram-
mars [Knu68|. Each element of an XML DTD corresponds to a production of a grammar.

The contents of the element define the right-hand side of the production. Contents can be
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<?xml version="1.0"7>
<!DOCTYPE KarelProgram SYSTEM "karel.dtd">
<KarelProgram>
<turnon/>
<times howoften="2">
<turnleft/>
<times howoften="2">
<go/>
</times>
</times>
<turnoff/>

</KarelProgram>

Figure 12.2: An XML program for Karel.

declared as enumerations of further elements, element sequences or element alternatives.
These give the same expressive power to DTDs as BNFs have for context free grammars.
The markup tags of DTDs define terminal symbols. Elements of XML DTDs can be at-
tributed. These attributes can be used to store the value of identifiers, constants or static
semantic information, such as symbol tables and static types. Thus, XML DTDs can be
used to define the abstract syntax of programming languages. We refer to documents that
are instances of such DTDs as XML programs. XML programs can be interpreted and
in Section 12.3 we discuss how such interpreters can be constructed using XML parsers.

When such instances are sent from one host to another we effectively achieve code mobility.

In order to demonstrate these ideas, we consider a very simple programming language
to instruct Karel, the robot. The language has first been defined in [PRS94]. In this
chapter we only consider a subset of it for reasons of brevity. Karel’s language has a set
of primitives. These include turnon , to switch the robot on, go to make it proceed one
step into its current direction, turnleft to change the robots current direction by turning
left, pickbeeper and putbeeper to get and dispose of beeper objects and turnoff to
turn Karel off. Moreover, Karel’s programming language includes a number of control
structures for repetition and conditional execution. Here, we only consider the times
statement. It repeats a cycle of commands for a given number of times. Figure 12.1 shows

the syntax of the subset of Karel’s programming language defined as an XML DTD.
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Figure 12.3: The actions of the robot.

<?xml version="1.0"7>
<!DOCTYPE times SYSTEM "karel.dtd">
<times howoften="3">
<turnleft/>

</times>

Figure 12.4: XML Code Increment.

Figure 12.2 shows an instance of the DTD in Figure 12.1. This instance is a Karel
program that instructs Karel first to turn left, then to proceed two steps, turn left again
and proceed two more steps. Karel’s route is shown in Figure 12.3. If we imagine that
Karel is a real robot, that is instructed from some control host by sending these XML
programs via, for example, a radio network, we have then achieved logical code mobility

with XML.

Unlike Java code, which is sent in a compiled form, XML code is transferred as source
code and then interpreted on a remote host. Unlike Java, XML does not confine us to
sent coarse-grained units of code; XML documents do not need to begin with the root
of the DTD, they can also start with other symbols of the grammar. This enables us to
specify sub-programs and even individual statements. We refer to such code fragments as
XML program increments. Hence, we can specify complete programs as well as arbitrarily

fine-grained increments in XML.

Figure 12.4 shows such a fine-grained program increment. We can imagine that we

want to change the behaviour of Karel by replacing the turnleft statement with this
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increment and thus change the behaviour of Karel making it turn right instead of left '.
As Karel is controlled by a slow radio network, we want to avoid re-sending the whole

program but rather incrementally send the new program fragments.

The question that arises is how we specify the insertion or replacement of program
increments. Addressing particular locations in an HTML document is achieved by “an-
chors”. These anchors, however, cannot be defined by users who do not have control over
the document. Likewise in our approach, the sender of an increment does not have control
over the program once it has been sent and we cannot assume that programmers identify
anchors or other labels a-posteriori that could then later be used for incremental code

insertion or replacements.

To solve this problem, we use XPointer, an XML-related standard. XPointer is part
of the XLink specification [MD98] and overcomes the limitation of HTML by supporting
navigations within XML documents. These navigations are capable of addressing every
document component without having to modify the document itself. We use XPointer to
identify that component of an existing XML program that we want to replace with a new

increment.

Going back to our example, Figure 12.6 shows an XPointer expression that determines
the Karel program statement that we want to replace. The XPointer expression starts
from the root of the program and then selects the first statement of type times , and in
that statement it selects the turnleft statement. Thus, by specifying a fragment of a
program in XML together with an XPointer expression, we can express incremental code
mobility. Figure 12.5 shows how Karel’s behaviour will differ after the new increment has

replaced the turnleft statement.

We have so far shown how we can use XML to define programs and how we can define
the update of code in an incremental fashion. In the next section we describe how we
can utilize off-the-shelf XML technology in order to implement interpreters for application

specific languages and how these interpreters implement incremental code updates.

!Because the Karel language does not have a primitive to turn right, we have to implement turning

right by turning left three times.
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Figure 12.5: The incremental change to Karel’s behaviour.

root().child(1,times).child(1l,turnleft)

Figure 12.6: XPointer Address for Increment.
12.3 Implementation of the Approach

After a programming language has been specified, an interpreter for this language needs
to be implemented. We first show how significantly off-the-shelf XML technology, most
notably XML Parsers and the implementations of the Document Object Model, simplify
the construction of such interpreters. Then, we explain how the communication between
sender and receiver can be achieved using distributed object technology. Finally, we focus
on the implementation of incremental code mobility, demonstrate how XPointer processors
support locating the increment to be updated, and how the DOM supports incremental

syntax tree modifications.

12.3.1 Interpreter Implementation

The first stage of an interpreting a program involves the validation of the syntactic cor-
rectness. As a result of that stage, interpreters produce an attributed abstract syntax
tree (AST) of the program. If the program is written in XML, both tasks can be entirely
delegated to a validating XML parser. We use IBM’s XML4J [Alp99] but many other
validating XML parsers exist. Figure 12.7 shows the use of the XML4J parser in our
Java-based Karel interpreter. When invoking parse on the Karel code of Figure 12.2 the
XML parser will construct the parse tree that is graphically represented in Figure 12.8.
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import org.w3c.dom.*; //DOM API

import com.ibm.xml.parser.*; //XML Parser

public void execute(String program,

String update_location){

//create a new parser for Karel Programs
Parser parser=new Parser("Karel.dtd");
InputStream is;

// parser to read input stream from program
is=new StringBufferInputStream(program);

// root of parse tree for program in inc

Document inc=parser.readStream(is);

Figure 12.7: Translating XML program into an AST.

The next stage of the interpretation is a static semantic analysis that checks, for
example, the uniqueness of identifiers or the correct typing of expressions. This is often
done while the interpreter is executing the code in order to avoid several traversals of the
abstract syntax tree. Thus, while traversing the tree and visiting each node, the interpreter
first checks for violations of the static semantics and then executes the operation that the
node represents. Operations for traversals through ASTs that have been constructed from
XML documents are standardized by the Document Object Model (DOM) [ABC*98] and
are implemented in off-the-shelf products, such as IBM’s XML4J. The DOM traversal
operations support obtaining all the children of a node, querying the type of the node,

obtaining values of node attributes and so on.

Figure 12.9 shows an excerpt of the Karel interpreter that traverses the abstract syntax
tree and executes a statements for each AST node. The actions usually modify some state
variables. In case of Karel, these state variables indicate whether the robot has been
switched on, its current position and direction and the number of items that it has picked
up. The interpretation is then performed as a recursive method execute , which is initially

passed the root node of the AST tree. It then examines the type of node and performs the
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KarelProgram

times

howoften=2

times
turnleft howoften=2

turnon

Figure 12.8: Abstract Syntax Tree for Karel’s Program.

appropriate action. For the root node, it recursively calls execute for all its child nodes.
For a node of type go , it adds the current direction to its co-ordinates. We note that for
Karel, the implementation of each command requires a few lines of code and in total is

about 50 lines of Java code.

12.3.2 Code Mobility

In order to support code mobility, we have to send an XML program from a remote host
rather than read it from a local file system. Any transfer protocol could be used for
this purpose. However, in [ESF99], we discussed the benefits of using distributed object
technology to transport XML documents between different hosts of a network. The same
considerations apply to XML documents that represent programs and we therefore use
distributed object technology to pass XML programs from a sender that manages the
execution to a receiver that then implements the interpreter as shown above. Figure 12.10

visualizes this behaviour.

For sending Karel programs to the robot interpreter, we use Java/RMI [RMI98]. The
use of distributed object technology rather than lower-level network protocols is motivated
by the availability of further middleware services. If for example security is important in a
particular application area and use of the interpreter by non-authorized principals needs to
be disabled or requesters need to be authenticated, a security service, such as the CORBA
security service [OMG98a] could be used.

In order to facilitate the remote communication that transmits the mobile code, the

Karel Interpreter declares the remote interface Karel as shown in Figure 12.11. That
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import org.w3c.dom.*; // DOM API

import com.ibm.xml.parser.*; // XML parser

class KarelExecutor {

//the position and direction of Karel:
private int x_pos=b5, y_pos=b;

private int x_direction=1, y_direction=0;
private int num_beepers=0; //collected items

private boolean on=false;//activation status

public void execute(Node n) {
if (n.getNodeName () .equals("KarelProgram")){
NodeList children=n.getChildNodes();
Node command;
for (int i=0; i<children.getLength();i++) {
execute(children.item(i));
}
} else if (n.getNodeName().equals("go")){
if (on) {
x_pos=x_pos+x_direction;
y_pos=y_pos+y_direction;
}
} else ...
}
}

Figure 12.9: Traversing the AST during interpretation.
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document
INTERPRETER
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Figure 12.10: Migration of XML program to remote interpreter.

interface is implemented by the Karel interpreter. This enables a controller that resides
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import java.rmi.x;

import java.io.*;

public interface Karel extends Remote {
void execute(String program,
String update_location)
throws RemoteException,
UnambiguousInsertException;

} // Karel

Figure 12.11: Remote Method Invocation for Karel.

XPointer
directions
XML

Increment

XML
document DTD

INTERPRETER

Figure 12.12: The migration of the increment XML file to the robot site.

on one host to send Karel programs for interpretation on a different host. Note that we do
not transfer the DTD together with the code but rather assume that the DTD is stored
locally. This choice derives from the observation that the interpreter implementation is
very tightly linked to the DTD, because the DTD is the grammar of the language and

every interpreter is dependent on the grammar of the language that it executes.

12.3.3 Incremental Code Mobility

Incremental and fine-grained mobility as shown in Figure 12.12 can be implemented using
standard XML off-the-shelf technologies. So far, we have shown how to parse and interpret
the program, which is passed as the first parameter to the execute method in Figure 12.11.
The second parameter is an XPointer expression. If this XPointer expression is not empty
and well-formed, it will identify a node in the abstract syntax tree that needs to be
replaced with the program increment that is passed as the first parameter to execute .
The strategy for implementing incremental code mobility is then as follows: we first parse
the program increment passed as the first parameter and construct an syntax tree for the

increment, we then evaluate the XPointer expression and then replace the node addressed
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KarelProgram

times
howoften=2

times times
Code —— [howoften=3} [howofterI:Z}

Replacement

Figure 12.13: Result of incremental code update on AST.

in the expression with the root node of the syntax tree of the increment. This replacement

is shown in Figure 12.13.

In order to implement this strategy for incremental updates, we take again advantage
of the DOM. Parsing the program increment and constructing the AST for it is achieved
in the same way as for the full program. This time, the parser just creates a tree whose
root node type is different from the root type of the DTD. In case of our Karel increment,

a root increment node of type times is created.

The evaluation of the XPointer expression for the replacement node can be fully del-
egated to an XPointer processor. Again there are several of those processors available
and we use the one that comes with XML4J. Figure 12.14 shows how we use the XPointer
processor in order to locate the node replace that needs to be replaced. The replacement
of the code increment is shown at the bottom of Figure 12.14. We then navigate to the
parent node of replace and substitute it with the root node of the syntax tree of the

increment that was sent using standard DOM operations.

12.4 Applications

In the previous two sections, we have presented our work through a deliberately simple
example in order to introduce our approach and highlight its potential. In this section, we
describe application domains that could benefit from incremental code mobility with XML.
These include user interfaces engine, the management of applications on portable digital

assistants, and the flexible co-ordination of consistency checks in distributed documents.
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import org.w3c.dom.*; // DOM API
import com.ibm.xml.parser.*; // IBM’s parser

import com.ibm.xml.xpointer.*;//IBM’s xpointer

public void execute(String program,
String update_location)
throws RemoteException,

UnambiguousInsertException {

// create an XPointer object from
// the update location that is passed
XPointerParser xpp=new XPointerParser();
XPointer xp=null;
xp=xpp.parse (update_location);
// Interpret XPointer object from the
//root node of the previously parsed doc
Pointed nodelist=xp.point(root);
if (nodelist.size()!=1) {
throw new UnambiguousInsertException();
} else {
Node replace=(nodelist.item(0)) .node;
Node parent=replace.getParentNode() ;
//we get the parent node
if (parent==null)
throw new UnambiguousInsertException();
//replacement of the child with the new code
parent.replaceChild(inc.getDocumentElement (),

replace);

Figure 12.14: Evaluating XPointer Expression

12.4.1 User Interface Engines

The installation and administration of large-scale systems with thousands of clients is

a potential application for incremental code mobility. The departure control system of
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airlines that are used to handle check-ins are good examples. For large airlines or alliances,
the clients implementing the user interface of such systems have to be deployed on several
10,000 machines, distributed across the globe. The machines are not necessarily owned
by the airlines but are rather temporarily rented from airport authorities, which want to
keep a tight regime on updates of software. Thus airlines cannot frequently update the
software that is installed on these machines. To accommodate frequent changes, they have

to utilize code mobility.

It would be possible to accommodate changes by deploying a Java Virtual Machine
on each of these systems and downloading front-end applications from centralized servers.
The Java approach, however, has two disadvantages. First it requires code of substantial
size to be downloaded from a server, possibly through slow dial-up networks. Second, the
Java code needs to be changed whenever the user interface needs to be changed. These
limitations can be overcome by installing a general-purpose user interface engine onto each

of the client machines that interpret high-level user interface descriptions.

XwingML is a DTD for such a user interface description language [Sof99b]. It provides
markup tags for all Java Swing user interface components and also provides an interpreter
for XwingML documents that generates the desired user interfaces. Applying our approach
of code mobility to XML, the high-level descriptions of user interfaces can be sent from a
centralized server to all distributed client hosts. Because the user interface descriptions are
rather small compared to the size of the Java byte code of the full user interface application,
we avoid the first of the above problems. The second limitation is overcome because the
user interface description is just code, which can be generated by server applications that

may, for example, be driven by business processes.

Incremental mobility can be applied successfully in this context, too. If the displayed
window needs to be updated, for example by adding or replacing some buttons, an XML
code increment can be sent to the user interface engine. The idea is exactly the same
as with incremental code mobility for Karel the Robot. The program increment can be
dynamically integrated with the original XML code for the window, thus making the

window change its appearance.
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12.4.2 Application Management on Mobile PDAs

An interesting application for our XML-based approach to code mobility arises when
logical mobility meets physical mobility. Lightweight computing devices, such as Personal
Digital Assistants (PDAs) are starting to be used for mission critical computing and are
integrated into enterprise computing environments. In these settings, it is important for
all PDAs to run the same set of applications. An example for such a PDA deployment is
the New York Stock Exchange (NYSE). NYSE has equipped its traders with PDAs, that
are used for trade data entry and automated transmission between trade data and back
office trade settling systems.

The applications that are used in financial markets have to evolve rather rapidly.
Financial analysts invent new products known as derivatives on a regular basis. Once
such a product has been created, the trading applications need to be adjusted and be
updated to support trading in these new derivatives. If the used machines were wired
workstations it would be feasible to transfer and replace the complete code when needed.
The incremental approach described in this chapter could be also applied. This approach
becomes rather essential when the used devices are thin clients like PDAs; in this case
incremental code updates are an interesting option, considering temporal unreachability
of PDAs and slow IRDA or radio network connectivity.

To pursue this approach application developers have to devise an XML-based scripting
language for developing trading applications. They also have to build an interpreter for
this language which then is deployed on each PDA. Whenever an application needs to
be adjusted, a program increment can be added to a list of updates that are kept on
the server to which PDAs connect. Whenever a PDA physically enters the trading room
and establishes connection to the server, the server first checks the patch-level of the
applications on that PDA. The server will then incrementally send all application updates
that are not yet deployed on the PDA.

The definition of an application-specific language and its implementation in an inter-
preter may sound difficult to accomplish. It is, however, well supported. The application-
specific language can refer to XWingML for user interface definition purposes. The imple-
mentation of an interpreter is simplified by the availability of light-weight XML parsers
and Java Virtual Machines that have already been developed for PDAs, such as 3COM’s
Palm Pilot [Sof99a).
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<ConsistencyRule id="rl1" type="CT">
<id>ri</ri1>
<Description>
For every instance in a collaboration diagram
there must be a class in a class diagram
with the same name.
</Description>
<Source>
<XPointer>
root().child(all,Package).
(all,CollaborationDiagram) .
(all,Collaboration).(all,Instance)
</XPointer>
</Source>
<Destination>
<XPointer>
root().child(all,Package).
(all,ClassDiagram).(all,Class)
</XPointer>
</Destination>
<Condition expsource="origin().attr(CLASS)"
op="equal"
expdest="origin() .attr (NAME)"/>

</ConsistencyRule>

Figure 12.15: A Counsistency Rule in XML Format.

12.4.3 Consistency Management

In [EEF199], we describe a high-level language for defining rules that define the consistency
between distributed software engineering documents. We assume that these documents
are represented in XML themselves. This is a fair assumption, because Microsoft’s Office
2000 can save documents in XML format, IBM’s Visual Age environment uses XML as
representation scheme for its project repository and most case tools can export UML

diagrams in XMI.

[EEF199] suggests a language to express consistency rules. This language is, in fact,
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Figure 12.16: Consistency management architecture.

a high-level XML programming language and facilitates representing consistency rules as

XML documents. Figure 12.15 shows an example of such a rule.

The rule is based on the XMI DTD and demands that for each object in each collab-
oration diagram, there is a class in a class diagram whose name equals the type of the
object. In [EEF199], we also explain the interpreter that executes these consistency rules
in order to check the consistency of XML documents. The result of such a check for a rule
is a set of XLink expressions that link consistent document fragments with each other and

inconsistent document fragments to an indicator of such inconsistency.

The approach as described in [EEFT99] uses one set of rules and one rule interpreter.
This is rather inflexible as every member of a software development team has to work
against the same set of rules. Moreover, the centralized interpretation of rules creates a
bottleneck that can be avoided if we have multiple rule interpreters on each developer’s
machine. The rule interpreter would then only have those sets of rules that the developer
needs to check consistency of the documents she produced locally. We can even have
dedicated interpreters for particular subgroups of the development team in order to check
consistency between documents produced by different team members and then at a higher
level there can be rule sets that check for project-wide consistency.

The sets of rules that are active at each of these interpreters cannot be static but have to
evolve during the course of the project, for example as a result of changing team structures

and different allocations of responsibilities. In order to accommodate such changes, the
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set of rules that are active at each interpreter have to be changed. New rules have to be
added and existing rules may have to be deleted. These changes can be triggered by a
consistency supervisor component that uses our approach to incremental code mobility to

pass the XML-encoded consistency rules to the different rule interpreters involved.

Figure 12.16 shows the overall architecture of this approach. Each developer’s work-
station and group and project servers run an interpreter for XML-consistency rules. The
consistency supervisor manages the rule set of consistency rules that are active for each

of these interpreters and moves new rules incrementally to these interpreters, if necessary.

12.5 Evaluation

In this section we discuss the advantages and current disadvantages of the approach. We

also hint at how the disadvantages may be overcome.

We have demonstrated how XML and its related technologies can be used for both
specifying and implementing incremental code mobility at any granularity. By not fixing
a particular granularity for mobile code, we enable complete programs as well as individual
lines of code to be sent across the network. The combination of fine-grained and incremen-
tal mobility achieves previously unavailable degrees of flexibility. We have examined the
application of incremental and fine-grained code mobility to user interface management,

application management on PDAs and consistency management of distributed documents.

The success of the approach critically depends on the ability to encode a high-level
programming language in an XML DTD. Our Karel example has demonstrated that this is
possible. The XwingML DTD suggests this can also be achieved in a scalable way. We can
imagine, that our approach will be used to write XML versions of interpreted languages,
such as Javascript. We could then build a compiler that translates between Javascript and
the XML encoding and a XML interpreter that wraps an existing Javascript interpreter.

Our approach then facilitates incremental code updates.

In the Karel example, we have only shown how incrementality can be achieved by
replacing existing fragments. We note that this may be overly restrictive. However, the
strategies shown here can also be applied to add or delete pieces of code to or from the

original program. To address insertion points or identify the fragments of deletion, we



180 Chapter 12. Incremental Code Mobility and Applications

could use XPointer in the same way. To implement the changes to the abstract syntax
tree, we could use the insert and delete method calls of the XML4J package [Alp99].

Our approach has not yet explored the combination of data and code mobility, in a
step towards agent mobility. This would be, however, a rather small improvement as XML
is naturally well suited to express data structures. To achieve this in our Karel example,
we could change the DTD of Karel’s language and add an encoding for the position and
other state attributes of Karel. In this way we can write an XML program containing
Karel’s position initialization. The interpreter would have to be modified as well in order
to be able to obtain the information (i.e. the initial position), and to initialize Karel’s
status correctly.

We used Java and RMI for implementing the migration of the XML program in the
example, the approach, however, is completely language independent, as long as XML is
used to encode the moving code?.

The incremental update of the code is done after the robot has terminated an execution.
However, in some applications it may be convenient to apply the changes to the program
while the program is executing. The user interface application is a good example. This
is feasible in our approach as well. Nevertheless, it would raise problems related to the
maintenance of the program counter and the updating of operations in a cycle. However,
if the language is simple enough this might be feasible.

Furthermore, incremental updating of code raises a series of issues related with access
control problems: for instance, what happens if the code is updated twice by different
principals? No one of the parties would know the actual status of the program. In our
perspective we see applications in “code-distribution” oriented domains, where a single
sender has full control of the code and has the right to update it. If we did not use RMI,
but CORBA to transmit the code, the CORBA security service could be used to enforce

these access rights.

>The use of Java was also driven by the availability of XML4J [A1p99] tools.
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Summary

In Chapter 11 we have presented a tool for visualizing Z specifications on the WWW:
it fits every browser and every platform. The tool is based on XML displayed through
“displets”. The advantage of having a Z browser running on all platforms is essentially

that sharing of Z documents is encouraged by the diffusion of WWW on the Internet.

A possible application can be a groupware tool for editing and versioning formal doc-
uments; such a tool could be integrated with other software tools in order to improve the
specification phase of the software process. The reuse of parts of documents obviously ben-
efits from having these hypertextual Z documents. The tools will also improve the search
of pieces of specifications in complex documents: every element in the Z specification can

be labeled or linked to other pieces of documents or to URL on the Internet.

XML can be further extended in order to include new symbols and integrate Z speci-

fication with other notations: new Java classes have to be written for the new symbols.

An ambitious goal consists of defining all XML displets necessary in an organization to
support the intranet management system of formal documents typical of such an organi-
zation. For instance, we are currently working on displets for managing UML documents.
XML documents are completed with XSL style sheets that instruct display engines about
how the rendering of notations. This first attempt toward the use of XML technologies
for code mobility is enhanced in Chapter 12, where we showed a way of applying the
fine-grained code mobility to specific application domains. We used off-the-shelf tools to
implement a very fine-grained approach and used it in different contexts, validating the
thesis that fine-grained code mobility could be actually be useful in specific studies, and

opening the doors to new approaches.
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In the chapter we presented an incremental approach to code mobility using the XML
language. The novelty of the approach consists in being able to send code incrementally
instead of re-sending complete updated versions of the code. Java based technologies
launched the idea of object and classes mobility, allowing a set of new paradigms for
communication to become feasible [WPM99, Pic98].

Many theoretical languages have been used to specify and analyze code mobility [CG98,
MR98, NFP98, CFM98, FGL™96] the movement is specified with different granularities
showing that the Java point of view, where a class is the unit of mobility was not the
only possibility to be explored [MPR99]. In this part we showed a possible incarnation
of these ideas, and described a set of application in a domain specific contexts. Possible
developments of this work may involve security issues: incrementally updating of code
raises access right and authentication issues.

Incremental update of executing code, although already feasible in the approach, is a
challenging field we will explore, maybe restricting to specific its use to particular domains.
We intend to explore the use of this approach in real projects involving industrial partners

in some of the domains that we mentioned in Section 12.4.



Conclusions

The main goal of the work presented in this thesis has been the development of models,
tools, and prototypes allowing the investigation and the exploitation of mobile code tech-
niques. More specifically, we concentrated on mobile code specification and automatic
analysis, on investigation of basic mobile code operations and exploiting the power of log-
ical mobility looking beyond the developed mobile code technologies. Some of the results
of the investigation could be applied to application domains through the use of existing

technologies in a way that was compliant with our investigation.

Contribution

We now summarize the contribution of this thesis.

Specification and Analysis of Mobile Code System

We have presented the specification language PoliS and its enhanced version (MobiS) able
to specify mobile code features of systems. On top of PoliS a model checker has been
built by our group in Bologna for the analysis of properties of systems. In this thesis we
used the model checker to prove properties on mobile code systems. MobiS allows the
specification of mobile agents as first class elements nd the specification of three major

mobility paradigms,i.e., data, code and agent mobility can be formalized.

Model and Prototype for Fine-grained Mobility

Mobile UNITY has been used to give semantics to a set of basic primitives for logical
mobility and for investigating issues related with fin-grained mobility. In this approach
every line of code and every variable is considered mobile. In the model we study the

details of the approach trying to constrain it to follow existing technology behavior. The
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prototype (Lilliput) presented was written in Java . It shows the implementability of the

semantics constrains and of the basic operations of the model.

Implementation of Incremental Code Mobility

In the last part of the thesis we have presented the use of currently available techniques and
tools for the implementation of a very fine-grained model for code mobility. The approach
uses XML and related technologies for achieving incremental mobility at a statement level.
The number of possible application domains for this approach reveals that the existing
technology might sometimes be inadequate. We showed some possible applications of this

new approach.

Future Work

Different lines of future work could be followed. I will distinguish future work on the
different parts in order to show these multiple lines. On the specification and analysis
front with PoliS and MobiS much can be done in order to improve the readability of the
specifications. We are thinking of possible integration of PoliS with UML and XML in
order to obtain a more user-friendly interface. The model checker needs to be enhanced in
order to deal with MobiS specifications. We are investigating this issue as having agents as
first class elements leads to a large state explosion in our current model checker. Security
properties could result to be very interesting on an analysis front, especially in a code
mobility setting.

On the fine-grained approach we are interested in enhancing some aspects such as
referencing units by type and not by name, and exploring other mobility primitives not
considered. In Chapter 8 we enhanced the model with nested spaces and it would be
interesting to study referencing in mode detail in the tree structure generated by nested
processes. A prototype of the nested model could be implemented as well exploring imple-
mentation problems of the approach. Security issues could be explored on this fine-grained
approach as well, especially the ones concerned with resource access and remote entity ref-
erencing and migration.

The use of Mobile UNITY temporal logic proof system would offer a good field for

analysis of properties on the model with respect to incremental code mobility with XML.
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We see future work in the application domains described in Chapter 12. We also have plan
for application of the XML approach to mobile computing settings and Java cards. XML
technologies are rapidly evolving and new features can be introduced in the prototype
like for instance XML schemas could substitute XML DTDs allowing a higher level of
flexibility.

Closing Remark

Analysis, specification, and prototyping have revealed to be powerful instruments for in-
vestigation of new paradigms and technologies. With respect to mobile code the formal
approach taken led us to the development of challenging new models, independent from the
developed mobile code technologies. From model we went down again reaching the tech-
nology level and demonstrated the implementability of the new approaches that revealed

potentially unexplored trends for code mobility in different application domains.
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Appendix A

The Lilliput Input Grammar

S
SystemBody
Programs
Components
ProgramBody
OptDeclare

Declare

Declaration

DeclarationBody

Optlntialize

Initialize

Initialization

RightInit

OptAssign

R

I

1

System Id SystemBody end
Programs Components

Id ProgramBody end
Components ComponentsBody end
OptDeclare Optlnitialize OptAssign
declare Declare|e

Declaration

Declaration || Declare

Id : DeclarationBody

var Integer

Integer

initially Initialize|e

Initialization

Initialization || Initialize

Id = RightInit

Integer

Function(ListId)

assign Assign end|e
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Appendix A. The LILLIPUT Input Grammar

Assign

Assignment

Stmt

St

GuardedStmt
SimpleStmt
Rightside

QuantifiedStmt
Range

LRel

RRel

Limit

Guard

Simple Guard

Term

Factor

L4 1

J

N

Ll Ll

1

Assignment

Assignment [| Assign
Label : Stmt

St || Stmt

St

GuardedStmt

SimpleStmt
QuantifiedStmt

[Stmt] if (Guard)

Id := Rightside

Integer

Function(Listld)
MobilityCalls

< OpListld : Range :: Stmt >
Limit LRel Id RRel Limit
<] <

> |2

Integer|Id

Simple Guard Relop Guard
Simple Guard

Term

SimpleGuard Addop Term
Factor

Term Mulop Factor

Id

Function(Listld)

Integer

not Factor
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Op
MobilityCalls
Predicate

List

ComponentsBody
Component

SimpleC

QuantifiedC
RelOp
Addop
mulop

1d

Integer
digits

optional — exp

N S

N

01
Predicate(List)

move|put|clone]...

Id, List|Function(List), List
Id| Function(List)
Component || ComponentsBody
QuantifiedC || SimpleC
newData(List)
newCode(List)
newProcess(List)

< [l Id : Range :: SimpleC >
<lz1<]>

+ = |V

*|/IA

letter (letter|digit)*

digits optional — exp

digit digit*

(E(+] — |€) digits)|e
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Appendix B

The Lilliput API

Hierarchy For Package lilliput

e class java.lang.Object

— class lilliput.LilliElement (implements java.lang.Cloneable, lilliput.LilliConstants,
java.io.Serializable)
x class lilliput.LilliProcess
x class lilliput.LilliUnit
- class lilliput.LilliCU
- class lilliput.LilliDU

class lilliput.LilliEngine (implements lilliput.LilliConstants)

class lilliput.LilliHandler (implements mucode.GroupHandler, lilliput.LilliConstants)

class java.lang.Thread (implements java.lang.Runnable)

 class lilliput.LilliInterpreter (implements lilliput.LilliConstants)

class java.lang. Throwable (implements java.io.Serializable)

x class java.lang.Exception
- class lilliput.LilliActivateException
- class lilliput.LilliDestroyException
- class lilliput.LilliExecutableException
- class lilliput.LilliFind Exception

- class lilliput.LilliMoveProcessException
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- class lilliput.LilliReferenceException

— class lilliput.Variable (implements java.lang.Cloneable, lilliput.LilliConstants,

java.io.Serializable)

e interface lilliput.LilliConstants

Interface LilliConstants

All Known Implementing Classes: Lillilnterpreter, LilliElement, LilliHandler, Lil-
liEngine, Variable

public interface LilliConstants

Constants for the package LilliConstants.java

Field Summary

static int ACTIVE status of an active process

static int CODE type of code units

static int DATA type of data units

static java.lang.String EMPTY empty string

static int INACTIVE status of an inactive process
static int PROCESS type of processes

static int TERMINATED status of a terminated process

static int UNDEFINED value assigned to variables that do not need to carry a value

Class LilliElement

java.lang.0Object

I
+--1lilliput.LilliElement

Direct Known Subclasses: LilliProcess, LilliUnit

public abstract class LilliElement
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extends java.lang.Object

implements java.io.Serializable, java.lang.Cloneable, LilliConstants

The class defines the abstract element LilliElement.java

Field Summary

java.lang.String name the name of the element

java.lang.String program the name of the program the element comes form in case of
a process the program is the program where the contained units come from

int type the type of the element

Fields inherited from interface lilliput.LilliConstants

ACTIVE, CODE, DATA, EMPTY, INACTIVE, PROCESS, TERMINATED, UNDEFINED
Constructor Summary

LilliElement ()

Class LilliUnit

java.lang.0Object

I
+--1lilliput.LilliElement

I
+--1illiput.LilliUnit

Direct Known Subclasses: LilliCU, LilliDU

public abstract class LilliUnit

extends LilliElement

defines the class of a general (abstract) unit LilliUnit.java

Field Summary
LilliProcess container name of the containing process
java.lang.String destination the name of the destination process when the unit is to

be moved
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java.util.LinkedList referencedBy the list of the referencing processes
Fields inherited from class lilliput.LilliElement

name, program, type

Constructor Summary

LilliUnit O

Method Summary

java.lang.0bject clone() the method to clone the unit

Class LilliProcess

java.lang.0Object

I
+--1lilliput.LilliElement

I
+--1illiput.LilliProcess

public class LilliProcess

extends LilliElement

See Also: Serialized Form

Field Summary

java.util.LinkedList codeList the list of contained code units
java.util.LinkedList dataList the list of contained data units
java.util.LinkedList gamma the list of referenced units

mucode . MuServer muserver the muserver proper of the process where to store the classes
of the units

int status the staus of a process: the initalization value is to INACTIVE

Fields inherited from class lilliput.LilliElement

name, program, type

Constructor Summary LilliProcess(java.lang.String n, java.lang.String prog)
the constructor with two parameters

Method Summary java.lang.0bject clone()
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the method clones the process

java.lang.0bject cloneUndef() the cloning of a process with initialization values

Class LilliDU

java.lang.0Object

I
+--1illiput.LilliElement
I
+--1illiput.LilliUnit
I
+--1illiput.LilliDU

public class LilliDU

extends LilliUnit

contains the class for a data unit LilliDU.java

Field Summary

Variable var the variable contained in the unit

Fields inherited from class lilliput.LilliUnit

container, destination, referencedBy

Fields inherited from class lilliput.LilliElement name, program, type
Constructor Summary

LilliDU (java.lang.String n, java.lang.String p, int val) the method clones the
data unit

Method Summary

java.lang.0Object clone() the method to clone the unit

java.lang.0bject cloneUndef() the method clones the unit with undefined value for
the variable; the method needs to be refined by the real data unit class that can initialize

the variable with the actual initialization value
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Class LilliCU

java.lang.0Object

I
+--1lilliput.LilliElement
I
+--1illiput.LilliUnit
I
+--1illiput.LilliCU

public class LilliCU
extends LilliUnit

This is the class representing a code unit LilliCU.java

Field Summary

java.util.LinkedList vars the list of variables of the unit

Fields inherited from class lilliput.LilliUnit

container, destination, referencedBy

Fields inherited from class lilliput.LilliElement

name, program, type

Constructor Summary

LilliCU(java.lang.String n, java.lang.String p) the method containing the ac-
tual code: to be overwritten

Method Summary

java.lang.0Object clone() the method to clone che code unit.

java.lang.0bject cloneUndef() the method clones the unit but leaves all the variables

to undefined void perform() method containing the code of the unit

Class LilliEngine

java.lang.0Object
I
+--lilliput.LilliEngine
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public class LilliEngine
extends java.lang.Object

implements LilliConstants

LilliEngine.java
Field Summary (package private) static LilliEngine engine the actual engine
reference
(package private) java.util.LinkedList executable the list of executable units
(package private) static LilliInterpreter interpreter the static interpreter
(package private) java.util.LinkedList libraryCU the list of code units part of
the host library
(package private) java.util.LinkedList libraryDU the list of data units part of
the host library
(package private) mucode.MuServer muserver the muserver storing the classes on
the host
private java.util.LinkedList pending the list of pending elements to enter the host
pending is accessed only by two synchronized methods add and removePending
(package private) java.util.LinkedList pList the list of processes on the host
Fields inherited from interface lilliput.LilliConstants
ACTIVE, CODE, DATA, EMPTY, INACTIVE, PROCESS, TERMINATED, UNDEFINED
Constructor Summary
LilliEngine ()
Method Summary
void activate(LilliProcess p) ’activate’ method it activates an inactive process.
(package private) void addPending(LilliElement el)
LilliElement cloning(LilliElement e)
void deactivate(LilliProcess p) ’deactivate’ method to deactivate a process so that
it does not execute
void destroy(LilliElement e) ’destroy’:method to destroy an element.
private voideliminate(LilliElement e, LilliProcess father) ’eliminate’ method:

to eliminate an element from the site.
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LilliElement find (java.lang.String s)

static LilliEngine getEngine()

static void main(java.lang.String]] args)

void move(LilliElement e, java.lang.String lambda, java.lang.String ProcessName)
the method move moves an element to a location the movement can address also a desti-
nation process if the element to be moved is a unit.

void newCode(LilliCU c, java.lang.String lambda)

void newData(LilliDU d, java.lang.String lambda, int val)

void newProcess(LilliProcess p, java.lang.String prog, java.lang.String lambda,
int status)

LilliElement neww (java.lang.Class c)

void parseArgs(java.lang.String[] args, int index)

private static void printHelp ()

LilliCU put(LilliCU c)

LilliDU put(LilliDU d)

LilliProcess put(LilliProcess p)

void reference(LilliProcess p, LilliUnit u) to reference a local element not of type
process

(package private) LilliElement removePending()

private voidsearchAndRemove(java.util.LinkedList 1, LilliElement e) aux-
iliary method to search and remove from a list of elements

void terminate(LilliProcess p) to terminate a process

void unreference(LilliProcess p, LilliUnit u) to unreference an element.

Class LilliHandler

java.lang.0Object

I
+--1illiput.LilliHandler

public class LilliHandler

extends java.lang.Object
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implements mucode.GroupHandler, LilliConstants

The handler called by the MuCode server. LilliHandler.java

Field Summary

(package private) LilliEngine actualEngine

Fields inherited from interface lilliput.LilliConstants

ACTIVE, CODE, DATA, EMPTY, INACTIVE, PROCESS, TERMINATED, UNDEFINED
Constructor Summary

LilliHandler ()

Method Summary

java.lang.Runnable unpack (mucode.Group group, mucode.MuServer server) the method

called by mucode to unpack the group arrived at destination

Class LilliInterpreter

java.lang.0Object
I

+--java.lang.Thread

+--1lilliput.LilliInterpreter

public class Lillilnterpreter
extends java.lang.Thread

implements LilliConstants

The class of the interpreter Lillilnterpreter.java

Field Summary

(package private) LilliEngine actualEngine

Fields inherited from interface lilliput.LilliConstants

ACTIVE, CODE, DATA, EMPTY, INACTIVE, PROCESS, TERMINATED, UNDEFINED

Constructor Summary
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Lillilnterpreter (LilliEngine en)

Method Summary

private void bind() bind(): to bind the variables of the units on the host

private void bindDUCU (LilliProcess p, Lil1iDU d) this method binds a data
unit d to the code unit in the same scope

private void bindDUDU(LilliProcess p, LilliDU d) this method binds a data
unit d to the data unit in the same scope

private void bindDUGamma(LilliProcess p, LilliDU d) this method binds the
data unit d to the referenced units in the same scope

private void enable() this method enables the code unit ready for execution and put
them in the executable list of the engine

private void engage() ’engage’ method: to get from the pending list the elements to
be arranged on the host, bind the variables and enable code units

void eval() this method picks up a code unit for execution and executes it

private void execute(LilliCU c) this method executes the unit chosen calling the
method perform of the unit

private LilliElement lilliFind(java.lang.String s, java.util.LinkedList 1) to
find an element with name s in a list.

private void linkDUvars(Variable v1, Variable v2) this method binds two vari-
able with same name

private void merge()

to get incoming units and put them on the right place on the host

private void moveClassElement(LilliElement e, mucode.MuServer muserver) this
method helps in moving classes to a classpace

private LilliCU pickUp() this method picks up a unit for execution from the exe-
cutable list with a random policy

void run() the run method executes the engagement and the evaluation

Class Variable

java.lang.0Object
I
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+--1lilliput.Variable

public class Variable
extends java.lang.Object

implements java.io.Serializable, LilliConstants, java.lang.Cloneable

the class defining a variable Variable.java

Field Summary

java.lang.String name the name of the variable

int value the value of the variable

Fields inherited from interface lilliput.LilliConstants

ACTIVE, CODE, DATA, EMPTY, INACTIVE, PROCESS, TERMINATED, UNDEFINED
Constructor Summary

Variable(java.lang.String namel) the constructor initializing the value to the unde-
fined value

Variable(java.lang.String namel, int valuel) the constructor for specific initial-
ization with value

Method Summary java.lang.0Object clone() to clone the variable
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