
ORIGINAL ARTICLE

Mirco Musolesi Æ Cecilia Mascolo Æ Stephen Hailes

EMMA: Epidemic Messaging Middleware for Ad hoc networks

Received: 10 July 2004 / Accepted: 17 November 2004 / Published online: 19 August 2005
� Springer-Verlag London Limited 2005

Abstract The characteristics of mobile environments,
with the possibility of frequent disconnections and
fluctuating bandwidth, have forced a rethink of tradi-
tional middleware. In particular, the synchronous com-
munication paradigms often employed in standard
middleware do not appear to be particularly suited to ad
hoc environments, in which not even the intermittent
availability of a backbone network can be assumed.
Instead, asynchronous communication seems to be a
generally more suitable paradigm for such environ-
ments. Message oriented middleware for traditional
systems has been developed and used to provide an
asynchronous paradigm of communication for distrib-
uted systems, and, also for some specific mobile com-
puting systems recently. In this paper, we present our
experience in designing, implementing, and evaluating
Epidemic Messaging Middleware for Ad hoc networks
(EMMA), an adaptation of Java Message Service (JMS)
for mobile ad hoc environments, discussing in detail the
design challenges and the solutions that have been
adopted.

Keywords Message oriented middleware Æ Middleware
for mobile computing Æ Epidemic protocol Æ Mobile ad
hoc networks

1 Introduction

With the increasing popularity of mobile devices and
their widespread adoption, there is a clear need to allow
the development of a broad spectrum of applications that
operate effectively over such an environment. Unfortu-
nately, this is far from being simple: mobile devices are
increasingly heterogeneous in terms of processing capa-
bilities, memory size, battery capacity, and network

interfaces. Each such configuration has substantially
different characteristics that are both statically different
for example, there is a major difference in capability
between a Berkeley mote and an 802.11g-equipped lap-
top and that varies dynamically, as in situations of fluc-
tuating bandwidth and intermittent connectivity. Mobile
ad hoc environments have an additional element of
complexity in that they are entirely decentralised.

In order to craft applications for such complex
environments, an appropriate form of middleware is
essential if cost effective development is to be achieved.
In this paper, we examine one of the foundational as-
pects of middleware for mobile ad hoc environ-
ments—that of the communication primitives.

Traditionally, the most frequently used middleware
primitives for communication assume the simultaneous
presence of both end points on a network, since the
stability and pervasiveness of the networking infra-
structure is not an unreasonable assumption for most
wired environments. In other words, most communica-
tion paradigms are synchronous: object oriented mid-
dleware such as Java RMI and CORBA are typical
examples of middleware based on synchronous com-
munication.

In recent years, there has been a growing interest in
platforms based on asynchronous communication, such
as publish-subscribe systems [6]; these have been
exploited very successfully where there is application
level asynchronicity. This is an extract from a Gartner
Market Report [7]: ‘‘Given message-oriented middle-
ware’s (MOM) popularity, scalability, flexibility, and
affinity with mobile and wireless architectures, by 2004
MOM will emerge as the dominant form of communi-
cation middleware for linking mobile and enterprise
applications (0.7 probability)...’’. Moreover, in mobile
ad hoc systems, the likelihood of network fragmentation
means that synchronous communication may in any
case be impracticable, giving situations in which delay
tolerant asynchronous traffic is the only form of traffic
that could be supported. Middleware for mobile ad hoc
environments must therefore support semi-synchronous

M. Musolesi (&) Æ C. Mascolo Æ S. Hailes
Department of Computer Science, University College London,
Gower Street, London, WC1E 6BT United Kingdom
E-mail: m.musolesi@cs.ucl.ac.uk

Pers Ubiquit Comput (2006) 10: 28–36
DOI 10.1007/s00779-005-0037-4



or completely asynchronous communication primitives
if it is to avoid substantial limitations to its utility. Aside
from the intellectual challenge in supporting this model,
this work is also interesting because there are a number
of practical application domains in allowing inter-com-
munity communication in undeveloped areas of the
globe. Thus, for example, projects that have been carried
out to help populations that live in remote places of the
globe such as Lapland [3] or in poor areas that lack fixed
connectivity infrastructure [9].

There have been attempts to provide mobile middle-
ware with these properties, including STEAM, LIME,
XMIDDLE, Bayou (see [11] for a more complete review
of mobile middleware). These models differ quite con-
siderably from the existing traditional middleware in
terms of primitives provided. Furthermore, some of
them fail in providing a solution for the true ad hoc
scenarios.

If the projected success of MOM becomes anything
like a reality, there will be many programmers with
experience in it. The ideal solution to the problem of
middleware for ad hoc systems is, then, to allow pro-
grammers to utilise the same paradigms and models
presented by common forms of MOM and to ensure
that these paradigms are supportable within the mobile
environment. This approach has clear advantages in
allowing applications developed on standard middle-
ware platforms to be easily deployed on mobile devices.
Indeed, some research has already led to the adaptation
of traditional middleware platforms to mobile settings,
mainly to provide integration between mobile devices
and existing fixed networks in a nomadic (i.e. mixed)
environment [4]. With respect to message oriented mid-
dleware, the current implementations, however, either
assume the existence of a backbone network to which
the mobile hosts connect from time to time while
roaming [10] or assume that nodes are always somehow
reachable through a path [20]. No adaptation to heter-
ogeneous or completely ad hoc scenarios, with frequent
disconnection and periodically isolated clouds of hosts,
has been attempted.

In the remainder of this paper we describe an initial
attempt to adapt message oriented middleware to suit
mobile and, more specifically, mobile ad hoc networks.
In our case, we elected to examine JMS, as one of the
most widely known MOM systems. In the latter part of
this paper, we explore the limitations of our results and
describe the plans we have to take the work further.

2 Message oriented middleware and JMS

Message-oriented middleware systems support commu-
nication between distributed components via message-
passing—the sender sends a message to identified queues,
which usually reside on a server. A receiver retrieves the
message from the queue at a different time and may
acknowledge the reply using the same asynchronous

mechanism. Message-oriented middleware thus supports
asynchronous communication in a very natural way,
achieving de-coupling of senders and receivers. A sender
is able to continue processing as soon as the middleware
has accepted the message; eventually, the receiver will
send an acknowledgment message and the sender will be
able to collect it at a convenient time. However, given
the way they are implemented, these middleware systems
usually require resource-rich devices, especially in terms
of memory and disk space, where persistent queues of
messages that have been received but not yet processed,
are stored. Sun JMS [5] and IBMWebSphere MQ [6] are
examples of very successful message-oriented middle-
ware for traditional distributed systems.

The JMS is a collection of interfaces for asynchro-
nous communication between distributed components.
It provides a common way for Java programs to create,
send, and receive messages. JMS users are usually re-
ferred to as clients. The JMS specification further defines
providers as the components in charge of implementing
the messaging system and providing the administrative
and control functionality (i.e. persistence and reliability)
required by the system. Clients can send and receive
messages, asynchronously, through the JMS provider,
which is in charge of the delivery and, possibly, of the
persistence of the messages.

There are two types of communication supported:
point-to-point and publish-subscribe models. In the point-
to-point model, hosts send messages to queues. Receivers
can be registered with some specific queues, and can
asynchronously retrieve the messages and then
acknowledge them. The publish-subscribe model is
based on the use of topics that can be subscribed to by
clients. Messages are sent to topics by other clients and
are then received in an asynchronous mode by all the
subscribed clients. Clients learn about the available
topics and queues through Java Naming and Directory
Interface (JNDI) [16].

Whilst the JMS specification has been extensively
implemented and used in traditional distributed systems,
adaptations for mobile environments have been pro-
posed only recently. The challenges of porting JMS to
mobile settings are considerable; however, in view of its
widespread acceptance and use, there are considerable
advantages in allowing the adaptation of existing
applications to mobile environments and in allowing the
interoperation of applications in the wired and wireless
regions of a network.

Mobile networks vary very widely in their charac-
teristics from nomadic networks in which modes relo-
cate whilst offline through to ad hoc networks in which
modes move freely and in which there is no infrastruc-
ture. Mobile ad hoc networks are most generally appli-
cable in situations where survivability and instant
deployability are the keys—most notably in military
applications and disaster relief. In between these two
types of mobile networks, there are, however, a number
of possible heterogeneous combinations, where nomadic
and ad hoc paradigms are used to interconnect totally

29



unwired areas to more structured networks (such as a
LAN or the Internet).

In [10], for example, JMS was adapted to a nomadic
mobile setting, where mobile hosts can be JMS clients
and communicate through the JMS provider that,
however, sits on a backbone network, providing reli-
ability and persistence. The client prototype presented in
[10] is very lightweight, due to the delegation of all the
heavyweight functionality to the provider on the wired
network. However, this approach is somewhat limited in
terms of widespread applicability and scalability as a
consequence of the concentration of functionality in the
wired portion of the network. If JMS is to be adapted to
completely ad hoc environments, where no fixed infra-
structure is available, and where nodes change location
and status very dynamically, more issues must be taken
into consideration. In the following section, we will
discuss our experience in designing and implementing
JMS for mobile ad hoc networks.

3 Design of a message oriented middleware for mobile
ad hoc networks

3.1 Adaptation of JMS for mobile ad hoc networks

We now describe EMMA, our initial attempt to adapt
the JMS specification to target the particular require-
ments related to ad hoc scenarios. As discussed in Sect.
2, a JMS application can use either the point-to-point or
the publish-subscribe styles of messaging.

3.1.1 Point-to-point model

The point-to-point model is based on the concept of
queues that are used to enable asynchronous commu-
nication between the producer of a message and possible
different consumers. In our solution, the location of
queues is determined by a negotiation process that is
application dependent. For example, let us suppose that
it is possible to know a priori, or it is possible to
determine dynamically, that a certain host is the receiver
of the most part of messages sent to a particular queue.
In this case, the optimum location of the queue may well
be on this particular host. In general, it is worth noting
that, according to the JMS specification and suggested
design patterns, it is common and preferable for a client
to have all of its messages delivered to a single queue.

Queues are advertised periodically to the hosts that
are within transmission range or that are reachable by
means of the underlying synchronous communication
protocol, if provided. It is important to note that, at the
middleware level, it is logically irrelevant whether or not
the network layer implements some form of ad hoc
routing (though considerably more efficient if it does);
the middleware only considers information about which
nodes are actively reachable at any point in time. The
hosts that receive advertisement messages add entries to

their JNDI registry. Each entry is characterized by a
lease (a mechanism similar to that present in Jini [17]). A
lease represents the time of validity of a particular entry.
If a lease is not refreshed (i.e. its life is not extended), it
can expire and, consequently the entry is deleted from
the registry. In other words, the host assumes that the
queue will be unreachable from that point of time. This
may be caused, for example, if a host storing the queue
becomes unreachable. A host that initiates a discovery
process will find the topics and the queues present in its
connected portion of the network in a straightforward
manner.

In order to deliver a message to a host that is not
currently in reach1, we use an asynchronous epidemic
routing protocol that will be discussed in detail in Sect.
3.2. If two hosts are in the same cloud (i.e. a connected
path exists between them), but no synchronous protocol
is available, the messages are sent using the epidemic
protocol. In this case, the delivery latency will be low as
a result of the rapidity of propagation of the infection in
the connected cloud (see also the simulation results in
Sect. 4). Given the existence of an epidemic protocol, the
discovery mechanism consists of advertising the queues
to the hosts that are currently unreachable using anal-
ogous mechanisms.

3.1.2 Publish-subscribe model

In the publish-subscribe model, some of the hosts are
similarly designated to hold topics and store subscrip-
tions, as before. Topics are advertised through the reg-
istry in the same way as with queues, and a client
wishing to subscribe to a topic must register with the
client holding the topic. When a client wishes to send a
message to the topic list, it sends it to the topic holder (in
the same way as it would send a message to a queue).
The topic holder then forwards the message to all sub-
scribers, using the synchronous protocol if possible, the
epidemic protocol otherwise. It is worth noting that we
use a single message with multiple recipients, instead of
multiple messages with multiple recipients. When a
message is delivered to one of the subscribers, this re-
cipient is deleted from the list. In order to delete the
other possible replicas, we employ acknowledgment
messages (discussed in Sect. 4), returned in the same way
as a normal message.

We have also adapted the concepts of durable and
non-durable subscriptions for ad hoc settings. In fixed
platforms, durable subscriptions are maintained during
the disconnections of the clients, whether these are
intentional or are the result of failures. In traditional
systems, while a durable subscriber is disconnected from
the server, it is responsible for storing messages. When
the durable subscriber reconnects, the server sends it all

1 In theory, it is not possible to send a message to a peer that was
never reachable in the past, since there is no entry present in the
registry. However, to overcome this limitation, we provide a
primitive through which information can be added to the registry.

30



unexpired messages. The problem is that, in our sce-
nario, disconnections are the norm rather than the
exception. In other words, we cannot consider discon-
nections as failures. For these reasons, we adopt a
slightly different semantics. With respect to durable
subscriptions, if a subscriber becomes disconnected,
notifications are not stored but are sent using the epi-
demic protocol rather than the synchronous protocol. In
other words, durable notifications remain valid during
the possible disconnections of the subscriber.

On the other hand, if a non-durable subscriber be-
comes disconnected, its subscription is deleted; in other
words, during disconnections, notifications are not sent
using the epidemic protocol but exploit only the syn-
chronous protocol. If the topic becomes accessible to
this host again, it must make another subscription in
order to receive the notifications.

Unsubscription messages are delivered in the same
way as with subscription messages. It is important to
note that durable subscribers have to explicitly unsub-
scribe from a topic in order to stop the notification
process; however, all durable subscriptions have a pre-
defined expiration time in order to cope with the cases of
subscribers that do not meet again because of their
movements or failures. This feature is clearly provided
to limit the number of the unnecessary messages sent
around the network.

3.2 Message delivery using epidemic routing

In this section, we examine one possible mechanism that
will allow the delivery of messages in a partially con-
nected network. The mechanism we discuss is intended
for the purposes of demonstrating feasibility; more effi-
cient communication mechanisms for this environment
are themselves complex, and are the subject of another
paper [14].

The asynchronous message delivery described above
is based on a typical pure epidemic-style routing pro-
tocol [18]. A message that needs to be sent is replicated
on each host in reach. In this way, copies of the messages
are quickly spread through connected networks, like an
infection. If a host becomes connected to another cloud
of mobile nodes during its movement, the message
spreads through this collection of hosts. Epidemic-style
replication of data and messages has been exploited in
the past in many fields starting with the distributed
database systems area [2].

Within epidemic routing, each host maintains a buffer
containing the messages that it has created and the
replicas of the messages generated by the other hosts. To
improve the performance, a hash-table indexes the
content of the buffer. When two hosts connect, the host
with the smaller identifier initiates a so-called anti-en-
tropy session, sending a list containing the unique iden-
tifiers of the messages that it currently stores. The other
host evaluates this list and sends back a list containing
the identifiers it is storing that are not present in the

other host, together with the messages that the other
does not have. The host that has started the session re-
ceives the list and, in the same way, sends the messages
that are not present in the other host. Should buffer
overflow occur, messages are dropped.

The reliability offered by this protocol is typically the
best effort, since there is no guarantee that a message will
eventually be delivered to its recipient. Clearly, the
delivery ratio of the protocol increases proportionally to
the maximum allowed delay time and the buffer size in
each host (interesting simulation results may be found in
[18]).

3.3 Adaptation of the JMS message model

In this section, we will analyse the aspects of our
adaptation of the specification related to the so-called
JMS message model [5]. According to this, JMS mes-
sages are characterised by some properties defined using
the header field, which contains values that are used by
both clients and providers for their delivery. The aspects
discussed in the remainder of this section are valid for
both models (point-to-point and publish-subscribe).

A JMS message can be persistent or non-persistent.
According to the JMS specification, persistent messages
must be delivered with a higher degree of reliability than
the non-persistent ones. However, it is worth noting that
it is not possible to ensure once-and-only-once reliability
for persistent messages as defined in the specification,
since, as we discussed in the previous subsection, the
underlying epidemic protocol can guarantee only best-
effort delivery. However, clients maintain a list of the
identifiers of the recently received messages to avoid the
delivery of message duplicates. In other words, we pro-
vide the applications with at-most-once reliability for
both types of messages.

In order to implement different levels of reliability,
EMMA treats persistent and non-persistent messages
differently, during the execution of the anti-entropy
epidemic protocol. Since the message buffer space is
limited, persistent messages are preferentially replicated
using the available free space. If this is insufficient and
non-persistent messages are present in the buffer, these
are replaced. Only the successful deliveries of the per-
sistent messages are notified to the senders.

According to the JMS specification, it is possible to
assign a priority to each message. The messages with
higher priorities are delivered in a preferential way. As
discussed above, persistent messages are prioritised
above the non-persistent ones. Further selection is based
on their priorities. Messages with higher priorities are
treated in a preferential way. In fact, if there is not en-
ough space to replicate all the persistent messages, a
mechanism based on priorities is used to delete and
replicate non-persistent messages (and, if necessary,
persistent messages).

Messages are deleted from the buffers using the
expiration time values that can be set by senders. This is

31



a way to free space in the buffers (one preferentially
deletes older messages in cases of conflict), to eliminate
stale replicas in the system, and to limit the time for
which destinations must hold message identifiers to
dispose of duplicates.

3.4 Reliability and acknowledgment mechanisms

As already discussed, at-most-once message delivery is
the best that can be achieved in terms of delivery
semantics in partially connected ad hoc settings. How-
ever, it is possible to improve the reliability of the system
with efficient acknowledgment mechanisms. EMMA
provides a mechanism for failure notification to appli-
cations if the acknowledgment is not received within a
given timeout (that can be configured by application
developers). This mechanism is the one that distin-
guishes the delivery of persistent and non-persistent
messages in our JMS implementation—the deliveries of
the former are notified to the senders, whereas the latter
are not.

We use acknowledgment messages not only to inform
senders about the successful delivery of messages but
also to delete the replicas of the delivered messages that
are still present in the network. Each host maintains a
list of the messages successfully delivered that is updated
as part of the normal process of information exchange
between the hosts. The lists are exchanged during the
first steps of the anti-entropic epidemic protocol with a
certain predefined frequency. In the case of messages
with multiple recipients, a list of the actual recipients is
also stored. When a host receives the list, it checks its
message buffer and updates it according to the following
rules: (1) if a message has a single recipient and it has
been delivered, it is deleted from the buffer; (2) if a
message has multiple recipients, the identifiers of the
delivered hosts are deleted from the associated list of
recipients. If the resulting length of the list of recipients
is zero, the message is deleted from the buffer.

These lists have, clearly, finite dimensions and are
implemented as circular queues. This simple mechanism,
together with the use of expiration timestamps, guar-
antees that the old acknowledgment notifications are
deleted from the system after a limited period of time.

In order to improve the reliability of EMMA, a de-
sign mechanism for intelligent replication of queues and
topics based on the context information could be
developed. However this is not yet part of the current
architecture of EMMA.

4 Implementation and evaluation

We have implemented a prototype of our platform using
the J2ME Personal Profile [15]. The size of the execut-
able is about 250 KB including the JMS 1.1 jar file; this
is a perfectly acceptable figure given the available
memory of the current mobile devices on the market.

The communication infrastructure is based on sockets.
We have tested our prototype on HP IPaq PDAs run-
ning Linux and interconnected with WaveLan and on a
number of laptops with the same network interface.

We also evaluated the middleware platform using the
OMNeT++ discrete event simulator [19] in order to
have some simulation results considering the scenario
composed of a realistic number of hosts. This environ-
ment offers broad functionalities that facilitate the
development and the optimisation of the simulation
code.

4.1 Description of the simulation

We simulated the delivery of messages using the epi-
demic protocol in the case of one recipient (i.e. topic
subscriptions and point-to-point message delivery) and
in the case of multiple recipients (i.e. notifications to
multiple subscribers). We assumed that no synchronous
protocol is present in the underlying network layer. We
used a group mobility model with movement patterns
similar to those described in [13]. We evaluated the
performance of the system in terms of the delivery ratios
and delays of persistent messages by sending 200 mes-
sages (50% persistent and 50% non-persistent, with
different priorities). Furthermore, we analysed the im-
pact of the use of priorities in a different simulation
scenario, sending 300 persistent messages in three pri-
ority classes (100 messages for each class). We per-
formed this simulation in order to understand the
influence of priorities; moreover, the case of persistent
messages only in the system is an interesting limit case.
In all the simulations, the priority and the type of per-
sistence of each message are generated using uniform
distributions.

The intervals between each message are modelled as a
Poisson process. All the messages are sent in 20 s. The
sender and receiver of each message are chosen ran-
domly. The buffer for each node is set to 100 messages,
unless otherwise specified. In the case of subscriber
notifications, we set the number of recipients to 80% of
the number of hosts; this scenario allows us to evaluate
the performance of the delivery mechanisms based on
the dissemination of the messages using the epidemic
protocol. We consider three mobile scenarios composed
of 16, 24, and 32 hosts in a 1 km2 simulation area. We
assume an omnidirectional antenna that transmits
according to a free space model with a transmission
range equal to 200 m. The maximum allowed delay time
is set to 4 min.

4.2 Analysis of results

In this subsection we analyse the results of our simula-
tions, presenting the performance of our platform and
discussing the variation of some performance indicators
as functions of the density of hosts (i.e. the number of

32



the hosts in the simulation area) and the size of the
buffers used to store messages.

4.2.1 Point-to-point model

Figure 1 shows the dependency of the delivery ratio of
persistent and non-persistent messages on the buffer size,
in the case of a scenario with 32 hosts. As expected, the
buffer size has a strong impact on the performance of the
platform. Therefore, the choice of the correct dimension
of the buffer is a key aspect of the deployment of the
platform. However, in general, the maximum size of
buffers is also constrained by the limited amount of
available memory of mobile devices. Figure 2 shows the
distribution of the average delay for the point-to-point
delivery (32 hosts scenario); a proportion of the mes-
sages are delivered more or less immediately, since the
recipients are in the same cloud as the sender. Figure 3
shows the delivery ratio of persistent messages with
different priorities (300 persistent messages with three
uniformly distributed levels of priorities as described
above, with a buffer size equal to 100).

4.2.2 Publish-subscribe model

Figure 4 shows the distribution of the delivery ratio of
persistent and non-persistent messages in a 32 hosts
scenario. In the case of the publish-subscribe model, the
term delivery ratio indicates the average percentage of
the potential recipients that actually received the mes-
sage. Figure 5 shows the distributions of the delivery
ratio of persistent and non-persistent messages with
multiple recipients with respect to buffer size, respec-
tively (in the case of the scenario with 32 hosts). In
Fig. 6, a graphical representation of the variation of the
delivery ratio with respect to the population density
(considering scenarios with 16, 24, and 32 hosts, with a
buffer size equal to 100) is presented. As expected, the
delivery ratio increases as the population density in-
creases.

The simulation results show that the performance
provided by the platform in terms of delivery ratio and
delay of persistent messages and messages with higher
priorities is good. This is a direct consequence of the
exploitation of epidemic techniques [18]. However, it is
worth noting that, in general, it is quite difficult to offer
high degree of scalability in peer-to-peer middleware for
mobile computing due to the characteristics of the de-
vices (limited memory to store messages temporarily)
and the number of possible interconnections in ad hoc
settings. Nevertheless, the number of nodes of many
potential application scenarios that could be envisaged is
quite limited due to the intrinsic communication pat-
terns and organisational boundaries. Moreover, it is
worth noting that the dimension of the buffer may be
chosen both in accordance with the application
requirements and considering the resources of the de-
vices.

For larger application scenarios, where the number of
hosts is considerably higher or where the messages ex-
changed are in high number, we are studying a variation
of the delivery mechanism presented that uses probabi-
listic and statistical techniques to reduce the number of
message replicas present at the same time in the system

Fig. 1 point-to-point model (scenario with 32 hosts): delivery ratio
of persistent and non-persistent messages versus buffer size

Fig. 2 point-to-point model (32 hosts scenario): delay time
distribution of persistent and non-persistent messages

Fig. 3 point-to-point model (32 hosts scenario): delivery ratio of
persistent messages with different priorities versus buffer size

33



[14]. The description of the protocol is however outside
the scope of this paper.

5 Discussion and related work

The design of middleware platforms for mobile com-
puting requires researchers to answer new and funda-
mentally different questions; simply assuming the
presence of wired portions of the network on which
centralised functionality can reside is not generalisable.
Thus, it is necessary to investigate novel design princi-
ples and to devise architectural patterns that differ from
those traditionally exploited in the design of middleware
for fixed systems.

As an example, consider the recent cross-layering
trend in ad hoc networking [1]. This is a way of re-
thinking software systems design, explicitly abandoning
the classical forms of layering, since, although this sep-
aration of concerns afford portability, it does so at the
expense of potential efficiency gains. We believe that it is
possible to view our approach as an instance of cross-
layering. In fact, we have added the epidemic network
protocol at middleware level and, at the same time, we

have used the existing synchronous network protocol if
present both in delivering messages (traditional layering)
and in informing the middleware about when messages
may be delivered by revealing details of the forwarding
tables (layer violation). For this reason, we prefer to
consider them jointly as the communication layer of our
platform together providing more efficient message
delivery.

Another interesting aspect is the exploitation of
context and system information to improve the perfor-
mance of mobile middleware platforms. Again, as a re-
sult of adopting a cross-layering methodology, we are
able to build systems that gather information from the
underlying operating system and communication com-
ponents in order to allow for adaptation of behaviour.
We can summarise this conceptual design approach by
saying that middleware platforms must be not only
context-aware (i.e. they should be able to extract and
analyse information from the surrounding context) but
also system-aware (i.e., they should be able to gather
information from the software and hardware compo-
nents of the mobile system).

A number of middleware systems have been devel-
oped to support ad hoc networking with the use of
asynchronous communication [11] (such as LIME,
XMIDDLE, STEAM). In particular, the STEAM [12]
platform is an example of event-based middleware for ad
hoc networks, providing location-aware message deliv-
ery and an effective solution for event filtering. In
STEAM the communication is limited to the hosts that
are in the same radio range sets of interests are also used
to reduce the computational complexity of the process of
message filtering. STEAM offers an interesting content-
based model, but its possible applications are limited to
specific scenarios, where the interaction among hosts
belonging to different clouds is not necessary. EMMA,
instead, supports communication also among hosts that
are intermittently disconnected.

A discussion of JMS, and its mobile realisation, has
already been conducted in Sect. 2. The Swiss company
Softwired has developed the first JMS middleware for
mobile computing, called iBus Mobile [10]. The main

Fig. 5 Publish-subscribe model (32 hosts scenario): delivery ratio
distribution of persistent messages versus buffer size

Fig. 4 Publish-Subscribe model (32 hosts scenario): delivery ratio
distribution of persistent and non-persistent messages

Fig. 6 Publish-subscribe model (32 hosts scenario): delivery ratio
distribution of persistent messages versus population density

34



components of this typically infrastructure-based archi-
tecture are the JMS provider, the so-called mobile JMS
gateway, which is deployed on a fixed host, and a
lightweight JMS client library. The gateway is used for
the communication between the application server and
mobile hosts. The gateway is seen by the JMS provider
as a normal JMS client.

Pronto [21] is an example of middleware system based
on messaging that is specifically designed for mobile
environments. The platform is composed of three classes
of components: mobile clients implementing the JMS
specification, gateways that control traffic, guaranteeing
efficiency and possible user customizations using differ-
ent plug-ins and JMS servers. Moreover, different con-
figurations of these components are possible. Pronto
represents a good solution for infrastructure-based mo-
bile networks but it does not adequately target ad hoc
settings, since mobile nodes rely on fixed servers for the
exchange of messages.

Other MOM implemented for mobile environments
exist; however, they are usually straightforward exten-
sions of existing middleware such as [8]. The only
implementation of MOM specifically designed for mo-
bile ad hoc networks was developed at the University of
Newcastle [20]. This work is again a JMS adaptation;
the focus of that implementation is on group commu-
nication and the use of application level routing algo-
rithms for topic delivery of messages. However, there are
a number of differences in the focus of our work. The
importance that we attribute to disconnections makes
persistence a vital requirement for any middleware that
needs to be used in mobile ad hoc networks. The authors
of [20] signal persistence as possible future work, not
considering the fact that routing a message to a non-
connected host will result in delivery failure. This is a
remarkable limitation in mobile settings where unpre-
dictable disconnections are the norm rather than the
exception.

6 Conclusions

Asynchronous communication is a useful paradigm for
mobile ad hoc networks, as hosts are allowed to come,
go, and pick up messages when convenient, also taking
account their resource availability (e.g. power, con-
nectivity levels). We have described EMMA that rep-
resents a proof of concept adaptation of JMS to the
extreme scenario of partially connected mobile ad hoc
networks.

We have described and discussed the characteristics
and differences of our solution with respect to tradi-
tional JMS implementations and the existing adapta-
tions for mobile settings. EMMA provides very good
performance in terms of delivery ratio and latency.
However, trade-offs between application-level routing
and resource usage should also be investigated, as mo-
bile devices are commonly power/resource scarce. In
fact, a key limitation of this work is the poorly per-

forming epidemic algorithm in terms of the number of
replicas that are spread across the network. An impor-
tant advance in the practicability of this work requires
an algorithm that better balances the needs of efficiency
and message delivery probability. We are currently
working on algorithms and protocols that, exploiting
probabilistic and statistical techniques on the basis of
small amounts of exchanged information, are able to
improve considerably the efficiency in terms of resources
(memory, bandwidth, etc) and the reliability of our
middleware platform [14].

References

1. Conti M, Maselli G, Turi G, Giordano S (2004) Cross-layering
in mobile ad hoc network design. IEEE Comput 37(2):48–51

2. Demers A, Greene D, Hauser C, Irish W, Larson J, Shenker S,
Sturgis H, Swinehart D, Terry D (1987) Epidemic algorithms
for replicated database maintenance. In: Sixth symposium on
principles of distributed computing, pp 1–12

3. Doria A, Uden M, Pandey DP (2002) Providing connectivity to
the Saami nomadic community. In: Proceedings of the second
international conference on open collaborative design for sus-
tainable innovation

4. Haahr M, Cunningham R, Cahill V (1999) Supporting COR-
BA applications in a mobile environment. In: Proceedings of
MOBICOM’99), pp 36–47

5. Hapner M, Burridge R, Sharma R, Fialli J, Stout K (2002) Java
message service specification version 1.1. Sun Microsystems,
Inc., http://java.sun.com/products/jms/

6. Hart J (2003) Web Sphere MQ: connecting your applications
without complex programming.IBM WebSphere Software
White Papers

7. Hayward S, Pezzini M (2001) Marrying middleware and mobile
computing. Gartner Group Research Report

8. IBM (2002) WebSphere MQ EveryPlace Version 2.0, http://
www-3.ibm.com/software/integration/wmqe/

9. ITU (2003) Connecting remote communities. Documents of the
World Summit on Information Society, http://www.itu.int/osg/
spu/wsis-themes

10. Maffeis S (2002) Introducing wireless JMS. Softwired AG,
http://www.softwired-inc.com

11. Mascolo C, Capra L, Emmerich W (2002) Middleware for
mobile computing. In: Gregori E, Anastasi G, Basagni S (eds)
Advanced lectures on networking, vol 2497. Lecture Notes in
Computer Science, Springer, Berlin Heidelberg New York, pp
20–58

12. Meier R, Cahill V (2002) STEAM: event-based middleware for
wireless ad hoc networks. In: 22nd international conference on
distributed computing systems workshops (ICDCSW ’02), pp
639–644

13. Musolesi M, Hailes S, Mascolo C (2004) An ad hoc mobility
model founded on social network theory. In: Proceedings of the
7th ACM international symposium on Modeling, analysis and
simulation of wireless and mobile systems. ACM Press, Venice,
pp 20–24

14. Musolesi M, Hailes S, Mascolo C (2004) Adaptive routing for
intermittently ad hoc networks. Proceedings of the IEEE 6th
International Symposium on a World of Wireless Mobile and
Multimedia Networks (WOWMOM 2005), Taormina, Italy

15. Sun Microsystems. J2ME Personal profile documentation.
http://java.sun.com/products/personalprofile/

16. Sun Microsystems (2003) Java naming and directory interface
(JNDI) documentation version 1.2. http://java.sun.com/prod-
ucts/jndi/

17. Sun Microsystems (2003) Jini specification version 2.0, http://
java.sun.com/products/jini/

35



18. Vahdat A, Becker D (2000) Epidemic routing for partially
connected ad hoc networks. Technical Report CS-2000-06,
Department of Computer Science, Duke University

19. Varga A (2001) The OMNeT++ discrete event simulation
system. In: Proceedings of the European simulation multicon-
ference (ESM’2001), Prague

20. Vollset E, Ingham D, Ezhilchelvan P (2003) JMS on mobile ad-
hoc networks. In: Personal wireless communications 2003
(PWC ’03), Venice, pp 40–52

21. Yoneki E (2003) Pronto: mobilegateway with publish-subscribe
paradigm over wireless networks. In: Middleware’03—work in
progress session, number 4(5), IEEE DistributedSystems On-
line

36


	Sec1
	Sec2
	Sec3
	Sec4
	Sec5
	Sec6
	Sec7
	Sec8
	Sec9
	Sec10
	Sec11
	Sec12
	Sec13
	Sec14
	Fig1
	Fig2
	Fig3
	Sec15
	Fig5
	Fig4
	Fig6
	Sec16
	Bib
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21

