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ABSTRACT
Experience sampling has long been the established method to sam-
ple people’s mood in order to assess their mental state. Smartphones
start to be used as experience sampling tools for mental health state
as they accompany individuals during their day and can therefore
gather in-the-moment data. However, the granularity of the data
needs to be traded off with the level of interruption these tools
introduce. As a consequence the data collected with this technique
is often sparse. This has been obviated by the use of passive sensing
in addition to mood reports, however, this adds additional noise.

In this paper we show that psychological traits collected through
one-off questionnaires combined with passively collected sensing
data (movement from the accelerometer and noise levels from the
microphone) can be used to detect individuals whose general mood
deviates from the common relaxed characteristic of the general pop-
ulation. By using the reported mood as a classification target we
show how to designmodels that depend only on passive sensors and
one-off questionnaires, without bothering users with tedious expe-
rience sampling. We validate our approach by using a large dataset
of mood reports and passive sensing data collected in the wild with
tens of thousands of participants, finding that the combination of
these modalities achieves the best classification performance, and
that passive sensing yields a +5% boost in accuracy. We also show
that sensor data collected for a week performs better than single
days for this task. We discuss feature extraction techniques and
appropriate classifiers for this kind of multimodal data, as well as
overfitting shortcomings of using deep learning to handle static
and dynamic features. We believe these findings have significant
implications for mobile health applications that can benefit from the
correct modeling of passive sensing along with extra user metadata.
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1 INTRODUCTION
Experience sampling –which involves asking participants to report
on their behaviors or environment on repeated occasions over time–
has long been used as a mechanism to longitudinally assess the
mental health of individuals by prompting them to report their
mood using questionnaires traditionally delivered through pen and
paper, but also through the web. Psychologists have used different
tools or scales that facilitate users to assess their mood. These
include the Positive and Negative Affect Schedule (PANAS) [46],
a self-report questionnaire of two 10-item scales that measures
both positive and negative affect; and the Affect Grid [32] scale, a
2-dimensional grid, where the x-axis indicates the feeling in terms
of its positiveness or negativeness while the y-axis indicates its
intensity. Independently of the scale used, timely and accurate
mood report is important to anticipate clinical outcomes such as
depression [7], longevity [43] or mortality [1].

The pervasiveness of smartphones and wearable devices has
enabled timely delivery of experience sampling [10], allowing a
near real-time detection of clinical outcomes and relapses. This
led to the development of several mobile phone applications that
prompt their users to assess and report their mood one or more
times per day, using one or more different scales [35, 37]. Apart
from potentially inducing biases in the measurements, interrupting
users during their daily lives at a high frequency and with the
same purpose is seen as a high burden by many users [26], as it is
evidenced by the high dropout rates reported in these applications.
Indeed, according to recent statistics, more than 2/3rds of people
who download a mobile health app used it only once [21].

Previous research has pointed out the link between self reported
mood and some personality traits such as emotional stability [8, 11].
Exploiting this link to track mental health would mitigate users’
burden, as assessing their personality as well as other psychologi-
cal traits would only require one off questionnaires. At the same
time, personal mobile devices come also equipped with a growing
set of built-in sensors, such as an accelerometer, microphone and
gyroscope. A proper and rigorous analysis of the data passively
collected with these sensors provides valuable insights for the users’
physical behaviour [2], but could also act as a proxy of their mental
health [44]. However, how to use psychological traits and passive
sensing data to accurately track mental health is still an open re-
search question. Also, the use of low sampling rates for passive
sensing data collection due to battery consumption issues often
lead to very sparse sensing data, which adds to the challenge.
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Figure 1: Aggregate 735.778 self-reported mood scores in the Emotionsense dataset collected from 17.251 users. Most users
report neutral (around 0.5,0.5) and calm-happy (down right quadrant) mood on the affect grid (a). The two multi-modal distri-
butions (pearson r=-0.23, p<0.00001) of the mood(b).

Figure 2: The mood tracking application. Users can report
their mood in an affect grid, complete personality and other
questionnaires.

The penetration of mobile devices has also introduced scale:
many more individuals can now be reached and assessed. For exam-
ple, in a hospital environment, mobile experience sampling enabled
the collection of 11,381 survey responses over a 12-month period
from 304 physicians and nurses, completed with minimal initial
training [39]. Mobile sensors enable researchers to collect not only
the explicit reports of the participants, but also the context in which
these answers were provided. Indeed, a recent survey of 110 papers
concluded that a total of 70 studies (63.6%) passively or actively
collected sensor data from the participants’ study device [41]. On
a larger scale, Utsureko [37] and Emotionsense [35], two different
smartphone applications for mood monitoring through self-reports
were used by more than 24, 000 and 17, 000 users, respectively.
However, most of the studies on investigating the use of smart-
phones to track and improve mental health and well-being have
been conducted through controlled experiments, and limited num-
ber of participants and observations [19, 22, 33, 45]. Conducting

such studies in the wild would allow reaching many more partic-
ipants, broadening the significance of the findings. However, the
absence of rigid control over participation and the limited mech-
anisms to promote engagement, make the data collected noisier
and sparser than in controlled setups, and it is unclear whether
previous findings and methodologies can be transferred to these
large natural datasets. Robust methodologies for anticipating clin-
ical outcomes and relapses using very sparse data are key to the
widespread adoption of smartphones as tools to provide mental
health support.

Mobile sensing applications often require inputs from sensors in
the form of high-dimensional time-series, coming from accelerom-
eters, gyroscopes, microphones or other user-generated data [18].
However, these sensor measurements are quite noisy and although
for some purposes simple first-order features have proved to be
effective, it is not straightforward how to select robust features
from different noise levels of individual user behaviors, since every
user introduces different levels of noise according to its device, en-
vironment etc. For example, the MoodExplorer study [47] extracted
the mean, variance, and signal-to-noise ratios from the microphone
sensor, while the Emotionsense study [35] calculated the standard
deviation of the magnitude of acceleration from the three axes
(x ,y, z) of the accelerometer. Noise in mobile measurements is hard
to model because it is correlated over time [29] and presents a
non-linear structure [3].

In this paper we investigate whether individuals’ perceivedmood
can be obtained through their psychological traits collected through
one-off questionnaires, as well as passively collected mobile sensing
data, thus avoiding sending frequent experience sampling question-
naires. More specifically, we investigate whether these psychologi-
cal traits and passive sensing data can be used to detect individuals
whose general mood deviates from the common relaxed mood dis-
tinctive among mentally healthy individuals [32]. To do so, we
propose a machine learning methodology to classify individuals
according to their general mood, that takes as inputs sparse answers
to one-off surveys covering different profile-related characteristics
of the individuals, as well as features extracted from noise and
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sparse accelerometer and microphone sensors readings passively
collected with their smartphones. We evaluate our methodology
using a large-scale dataset of mobile sensing and self-reported data
collected in the wild for more than 3 years and that contains data
from more than 17,000 participants. We conduct extensive exper-
imentation by training over 100 models in order to find out the
best combination of modalities. We also conduct extensive first and
second-order feature extraction from the sensor time-series.

This paper makes the following contributions:
• We conducted an extensive data exploration of the self-
reportedmoods provided by 17, 251 of the users of a experience-
sampling based smartphone applications, with the aim of
identifying the most common reporting behaviour so as to
characterize mentally healthy individuals in the context of
our research. Our findings showed that the majority of the
population in our dataset reported feeling, on average, re-
laxed (down-right side of the affect grid), which is in line
with previous research [32].

• We provide a supervised learning methodology to detect
individuals whose general mood deviates from the common
relaxed mood distinctive amongmentally healthy individuals
[32]. Our methodology does not involve any kind of cumber-
some experience sampling, but only uses one-off question-
naires (demographics, personality, etc.) as well as sparse and
noisy passive sensing data collected with the accelerometer
and microphone sensors of individuals’ smartphones.

• We performed an extensive evaluation of our methodology
using a large scale dataset collected in the wild. Our results
showed that the combination of one-off questionnaires and
passive sensing data gives the best performance in mood
prediction. Indeed, by adding passive sensing datawe achieve
a +5% in accuracy (75% in absolute) with respect to only using
questionnaires.

These findings have the potential of informing future developers
of mobile health applications as well as psychologists on how to
properly use one-off questionnaires and passive sensing data for
the early detection of symptoms of mental disorders at scale.

2 THE PROBLEM AND THE DATA
Mobile health applications aimed at assisting users with their men-
tal health so as to prevent clinical outcomes should minimize the
burden to the user so as to increase adherence and satisfaction
with the app. Instead of the timely and continuous collection of
mood self-reports, psychological traits obtained through one-off
questionnaires, as well as passive sensing data, should be preferred
in order to design effective and useful applications. Our aim in the
rest of this paper is to investigate how psychological traits and
passive sensing data can be used to detect individuals who might
not feel mentally well, i.e., users who have been reported moods
that deviate from the general reports of the population.

To do so, we first conduct an exploratory analysis of the mood
reports provided by more than 17,000 individuals for a period of
more than 3 years, in order to identify the most common set of men-
tal states (moods) reported by any of these individuals (Section 3).
Given the scale and the in the wild nature of the data collection,
we believe our results are general enough to be representative of
the whole population. We then use these findings as the ground
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Figure 3: CCDF of the mood reported by users during the
time they were using the application. This includes (i) the
self-reports actually done (done), (ii) those that users were
prompted to report but they did not do so (missed) and (iii)
the sum of both (expected).
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truth to validate our machine learning methodology to identify
individuals whose record of reported moods deviates from that
of the majority, by only using one-off questionnaires and passive
sensing data (Section 4). We provide further details of the data used
in our analysis and experiments in the rest of this section.

2.1 The data
We use the Emotion Sense dataset [35], a dataset that contains sensor
and self-reported data collected with a mobile phone application
for Android (Fig. 2) designed to study subjective well-being and
behavior. From February 2013 until October 2016, this application
collected 735,778 self-report data from 17,251 users, through surveys
presented on the phone via experience sampling, and behavioral
data from physical and software sensors in the phone (accelerom-
eter, microphone, location, text messages, phone calls, etc.). The
participants singed a consent form that restricts the use of the
data to the University of Cambridge researchers, according to the
Institutional Review Board (IRB). For this analysis, we consider
self reported mood collected graphically using the Affect Grid [32],
profile-related surveys, as well as sensed data collected with the
accelerometer and microphone sensors. Twice per day, between
8AM and 10PM and with a difference of at least 120 minutes apart,
participants received a notification asking them to report their
mood in the affect grid (Figure 1). Meanwhile, sensed data were
collected passively in the background at different moments during
the day depending on the different versions of the application. At
different stages of the application, participants were requested to
complete profile-related questionnaires covering a broad range of
topics: demographics, personality, gratitude, health, sociability, job
satisfaction, life aspirations and connectedness, where the ques-
tions were answered using Likert scales. Below we describe the
specific data we use in our experiments.

Experience sampling. The Emotion Sense application for mood
monitoring prompted their users to report, twice per day, how they
felt using an Affect Grid scale. Figure 1 shows the aggregate of
mood self-reports for all the users of the application, where the
down-right quadrant, corresponding to relaxed mood, is the most
densely populated, a result that matches previous studies in the
area [32]. Due to the in the wild nature of the data collection, users
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did not always report their mood even if they were prompted to
do so, which might be consequence of the burden that experience
sampling brings to the users. In more detail, Figure 3 shows the
CCDF of moods reported per participant, included the ones they
were expected to do given the time they were using the app, the ones
they were prompted to do but they did not (missed) and those that
they actually did so. Thus, alternatives to experience sampling are
required to design effective, long-term, mobile health applications
for mental health. As we will show later, by using the reported
mood as a classification target we can design systems that depend
only on passive sensors and one-off surveys.

One-off questionnaires. Previous research has found a link
between self reported mood and personality traits such as emo-
tional stability [8, 11]. However, to the best of our knowledge, it
is not clear yet how to use personality, and other psychological
traits, to detect potentially mentally unhealthy individuals. In the
Emotion Sense dataset, a subset of the users (12,106, 70% of total)
completed some one-off surveys providing information regarding
their demographics, personality, gratitude, health, sociability, job
satisfaction, life aspirations, connectedness, and satisfaction with
life.

Passive sensing data. Data collected through the built-in ac-
celerometer sensor of our smartphones provide valuable insights
into our activity level throughout the day. At the same time, previ-
ous research has demonstrated the link between activity level and
happiness [20, 35]. We hypothesize that our activity level through-
out the day has a high impact on how we feel on that day and
therefore also use these sensing data in our experiments. In the Emo-
tion Sense dataset, accelerometer samples consist of [x ,y, z](m/s2)
axes data for periods of 5, 8 or 10 seconds, collected at different
intervals throughout the day depending on the version of the ap-
plication. Microphone samples, on the other hand, provide insights
into the noise level in the user’s environment. As with activity, we
hypothesize that how we feel (our mood) influences/is influenced
by the kind of places or environments we visit and the level of
noise in these spaces. Therefore we use this in our experiments. To
preserve privacy, the Emotion Sense application only recorded the
amplitude level of noise at 20Hz for periods of 5, 8, 10 seconds at
different intervals throughout the day depending on the version of
the application.

Varied amounts of data are available for each of the sensors and
self reports, mainly due to the uncontrolledway inwhich users were
recruited. Also, the in the wild nature of the data collection makes
the available data noisy and sparse, which adds to the challenge.
We present more details on how we dealt with these noisiness
and sparseness, as well as on the number of participants and days
of sensed and self reported data used for each analysis, later on
Sections 3 and 4.

3 FINDING GROUPS OF USERS FROM
SELF-REPORTED MOOD TRAJECTORIES

The main goal of our research is on investigating whether psy-
chological traits and passive sensing data can be used to identify
users whose set of mood reports deviates from those of the general
population, which might be indicative of some mental condition.
Fig 1a shows a visualization of the aggregation of self reports pro-
vided by the users in the Emotion Sense dataset, where the most
common mood reported is in the down-right side of the affect grid,
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Figure 4: Hierarchical clustering of the users (y-axis, only
some user IDs are visible) and features (x-axis) extracted
from their historical mood (_x=valence, _y=arousal). The
colorbar represents the actual value of the feature.

corresponding to the relaxed mental state. However, it is not clear
whether to fix the boundaries on the affect grid. We propose not
to hard code the thresholds and potentially inducing biases in our
labels, but instead relying on clustering techniques to make labels
naturally emerge from the data. The rest of this section describes
in detail the methodology to label users into relaxed/non-relaxed
in the Emotion Sense dataset.

3.1 Methodology
A mood self-report in the affect grid is described by means of two
coordinates: the x-coordinate that indicates the feeling in terms of
its positive and negative and the y-coordinate indicates the intensity
of alertness. The history of mood-reports of an individual consists
of time-series trajectories of [x,y] tuples recorded over time in the
affect grid. Also, the noise and sparseness of an in-the-wild setup
result in that (i) the number of self-reports reported by different
individuals might be different, and (ii) that for a given individual,
the reported moods might not be consecutive (as a consequence of
users missing reports). In order to cope with this variability and
obtain independent features to allow clustering algorithms to learn
representative clusters, we extract 8 simple features for each axis
or coordinate, namely counts, mean, std, min, max and quantiles
(25%, 50%, 75%), resulting in 16 final features for every user. Missing
values are replaced with zeros and minmax [0,1] normalization is
applied to the final features column-wise. Due to the sparsity of the
mood and the power law distribution of the counts, these two count
features that measure non-missed reports are affected the most by
the normalization, concentrating all their mass close to zero.

We then apply the k-means [24] clustering algorithm to produce
mutually exclusive clusters of spherical shapes based on distance. In
order to come up with the optimal number of clusters, we conduct
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Figure 5: Clustering the historical mood trajectories of 17251 users (every dot is a user) in 2, 3, and 4 clusters: (a,b,c) Parallel
coordinate plot of cluster centroids for each feature, (d,e,f) Affect grid plot of the mean valence and arousal of the clustered
users. The clusters of the first plot (d) are used as prediction labels for the mood classification task.
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Figure 6: Elbow plot to determine the optimal number of
clusters, estimated with the silhouette score.

the Elbow method [40] where we increase the number of clusters
and observe the drop of the evaluation metric. Here, we use the
silhouette metric [31] which measures how similar a sample is to
its own cluster compared to other clusters.

Other clustering algorithms might also be used. In fact, tech-
niques such as hierarchical (agglomerative) clustering [17] applied
to the matrix of [users,features], can be used to find partitions on
the data, but also to uncover overlapping patterns between features.

3.2 Findings
We applied our methodology to identify non-relaxed users (or those
that deviate from the most common mood feeling reported) in

the Emotion Sense dataset. For each of the 17,251 users that have
reported their mood at least once, we obtain 2,682 sparse mood
reports completed over 3 years, for valence and arousal. This is the
final sample we used for this experiment.

Exploratory analysis. As a first exploratory analysis, we apply
hierarchical clustering to the historical mood of the users. Figure 4
shows the resulting trees. Specifically, the y-axis shows the cluster
of users whereas the x-axis the cluster of features (16 features, 8
per valence and 8 per arousal). We observe that there are multiple
user groups shown on the left side tree, pointing out that some
mood reporting behaviours resemble other users’. However, it is
not easy to spot clear relationship due to the number of users. The
features are also clustered with the most prominent 2 groups being
the valence and arousal. However, there are some intruders in those
clusters: for example, the maximum arousal (max_y) belongs to
the valence cluster while the counts (counts_x) and the minimum
(min_x) of valence goes into the arousal group. These feature clus-
ters provide hints regarding the non-linear relationships of the
mood components.

k-means. We now apply k-means to obtain the labels to use
in our experiments. We repeat the experiments by varying k, the
resulting number of clusters in order to visually identify them in the
affect grid. Figure 5 shows the resulting clusters when increasing
the number of clusters from 2 to 4. For 2 clusters (Fig. 5d), by
plotting the mean valence and arousal in the affect grid, we notice
a group of consistently relaxed users on the down-right quadrant
and another group that consists of depressed, stressed and excited
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users on the rest of the grid. When we further increase the number
of clusters, things get more complicated for pattern finding. For
example, with 3 clusters (Fig. 5e) we spot a central neutral group
which is now distinct, while the rest is similar to the previous plot
(relaxed and non-relaxed). Finally, for 4 clusters (Fig. 5f), we spot
again the middle neutral users but this time the valence axis breaks
down to two areas: excitement (up right) and relaxation (down
right). It is still interesting that the negative feelings (left side) do
not break down to sub-clusters hinting that the two spectra of
arousal for unpleasant feelings (stress and depression) might share
some common characteristics. However, these last plots (3 and 4
clusters) present significant cluster overlap.

We also show the cluster centroid for every feature in a parallel
coordinate plot (Figure 5a-c) in order to identify the significant
features for clustering. Intuitively, this means that the clustering
algorithm found 2 centers in the high-dimensional space and we
just plot the values for every feature of these points. For instance,
for 2 clusters (Fig. 5a) the largest distance seems to be between
maximum valence as well as the minimum arousal. These two
features could be enough to separate the two clusters. By moving
up in the number of clusters, things get more complicated since
we have to find features for which all the features reside equally
apart. Namely, for 3 clusters (Fig. 5b) minimum valence seems to
be different for every group, while for 4 clusters (Fig. 5c) there is
not a single feature with distinct centroids.

Finally, we perform the elbow method to quantitatively find the
optimal number of clusters. Figure 6 shows that the top silhouette
score is 0.30 (higher is better) with two clusters while it goes down
0.23 with three clusters. We observe that it plateaus at around 0.20
with seven clusters or more. These two groups will be used as a
label in the machine learning pipeline to infer non-relaxed users
from one-off questionnaires and passive sensing data in the next
section. We are aware that these clusters are inferred information
and thus could include some errors, however we incorporate the
silhouette score with the lowest error. Please note that there is a
class imbalance between the clusters on the user level: cluster 1
(65%), cluster 2 (45%), which we will address later in that section.

4 PSYCHOLOGICAL TRAITS AND MOBILE
SENSING TO PREDICT NON-RELAXED
MOOD

We now describe our methodology to identify non-relaxed indi-
viduals from their psychological traits obtained through one-off
questionnaires, and passive sensing data collected using the ac-
celerometer and microphone sensors of their smartphones. We
follow the workflow in Figure 8, where we begin by extracting
features from the accelerometer and microphone raw data, as well
as one-hot encoding the answers to the one off questionnaires re-
garding users’ psychological traits. We then perform a two-step
feature selection, where we first calculate the feature significance
of a real-valued feature to a binary target as a p-value using the
univariate Mann-Whitney U test [25], and then we transform these
selected features with Principal Component Analysis (PCA) [30]
to obtain feature combinations with the maximum variance. These
features are finally fed to classifiers. We detail these steps below.

4.1 Feature extraction
Questionnaires. One-off surveys cover a wide range of a user pro-
file attributes such as demographics, personality, gratitude, health,
sociability, job satisfaction, life aspirations, connectedness, and sat-
isfaction with life. These 92 features are represented as Likert-scales
or categories. In order to be appropriate for machine learning mod-
els, the categorical features are transformed to individual features
with one-hot encoding, so that a feature with e.g. 3 possible choices
(Yes, No, missing), is transformed to 3 different features. Categorical
features include the gender, age group, education level and ethnic
group among others. The total list of questionnaire features is 131.

Accelerometer. We consider the 3 (x,y,z) dimensions of the
accelerometer and compute the magnitude of the acceleration for 5,
8, and 10-second samples, resulting in 48 time-steps for every user-
day (336 time-steps for every user-week). We aggregate the sensor
in 30-min bins since this level of granularity is the best trade-off
between data sparsity and modeling the sub-hourly movement of
individuals. By doing this light processing, we end up with one
time-series instead of three, combining the three axes into one time-
series. Based on the sparsity histogram (Fig. 7b), we filter those
samples that have at least 50 time-steps during the week (20 time-
steps during the day). This time-series is normalized with minmax
scaling to a [0.05-1] range and the missing values are replaced with
zeros. We extract 721 simple and second order features that cover
a wide range of attributes of a sensor such as the energy, auto-
correlation, entropy, trends, wavelet and Fourier coefficients, peaks,
etc. For a comprehensive list of the features we refer the reader to
the documentation of the tsfresh library [9].

Microphone. Similarly with the accelerometer data, we com-
pute the mean of the 5, 8, and 10-second window over the initial
raw microphone data over the amplitude level of noise at 20 Hz,
ending up with 48 time-steps for every user-day (336 time-steps
for every user-week). We apply the same filtering, normalization
and feature extraction as the accelerometer above, resulting in 717
features.

Seasonality. Temporal features are extracted by the end of the
sensor user-week time-stamp in order to capture the inherent sea-
sonality patterns. Namely, we compute these 5 increasingly detailed
time-aware features: the number of the quarter, month, week, day
of week and hour of day. We consider these features to belong to
the sensor modality that we introduce later.

4.2 Classifiers
We considered three different classifiers for our inference task:
Logistic Regression, Gradient Boosting Trees and a Deep Neural
Network. Below we describe the details of our implementation.

Logistic Regression (LR). An sklearn implementation of a bi-
nary logistic regression, with penalty of L2 regularization along
with a C = 1 (inverse of regularization strength), was tested.

Gradient BoostingTrees (GB).An sklearn implementation of a
gradient boosting was tested. Reportedly the state-of-art in feature-
based machine learning [28], this classifier forms an ensemble of
weak prediction models, typically decision trees.

Deep Neural Network (NN). We use a straightforward bottle-
neck architecture of 4 feed forward Dense layers of dimensionality
100-50-100. The reduced dimensionality in the middle (50 units)
has been shown to lead to better generalization in deep learning
architectures [13, 23]. A rectified linear unit (ReLU ) [12] activation
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Figure 7: Sparsity analysis of the sensors. Missing values for the sensors on the weekly (a,c) level. Cumulative distribution
functions (CDF) for the missing time-steps (b,d) show the long tail distribution of sparsity. Some weekly periodicity is also
spotted. Similar conclusions are drawn with the daily level sensors.
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Figure 8: Workflow of the data processing and model devel-
opment for the mood prediction task.

is applied at the output of every layer, followed by a batch nor-
malization layer that transforms the output to have zero mean and
unit variance [14]. Dropout of 50% probability is applied to every
layer to reduce overfitting [36]. The final layer performs a softmax
activation which estimates thecross-entropy loss, while the back-
propagation optimizer is Adam [16]. We train for 300 epochs or
until the validation loss stops improving for 10 consecutive epochs.
Our implementation is based on Tensorflow/Keras.

5 EVALUATION
We now detail the evaluation of our methodology to identify non-
relaxed users from one-off questionnaires and passive sensing data

described in Section 4. We used the Emotion Sense dataset, for our
experiments, and the clustered mood we obtained using k-means
in the Section 3 as the labels for the classifiers. Below we indicate
how we merged the data from the different modalities and how we
partition the dataset for our experiments in Section 5.1. Findings
and results are provided in Section 5.2.

5.1 Experimental setup
Modality merge. Experiments in the wild such as this one do not
guarantee complete and fine-grained data, especially when they
involve battery consuming tasks like sensor-tracking or input-based
prompts like self-reports from users. Therefore, not all modalities
appear for the same users. We start by merging the accelerometer
and microphone modalities resulting in 141,261 user-weeks while
we concatenate their features along with the seasonality ones. Then,
we find which users from those weeks have completed at least a
single questionnaire and concatenate these static features to the
feature vector, resulting in 131,793 user-weeks. Finally, we merge
with the clusters that we produced in the previous section, so that
every user-week feature vector corresponds to one of the two user
mood clusters. Please note that these clusters came up by taking
into account the full mood history of the users and therefore we do
not imply that mood is static. Apparently, the high class imbalance
on the user level earlier is exaggerated here because only 7% of
the user-weeks belong to cluster 2 (green in Fig. 5). As a result, we
subsample the majority class, resulting in 18,998 balanced user-
weeks from 2,812 users. The same processing is followed for the
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Table 1: Mean classification performance (AUC) to predict mood group based on weekly or daily sensors, across 10 cross-
validation runs along with standard deviation in brackets (NN=neural network, LR=Logistic Regression, GB=Gradient Boost-
ing).

Modality Weekly Daily
LR GB NN LR GB NN

Sensors (S) 0.575 (0.03) 0.555 (0.03) 0.550 (0.04) 0.543 (0.04) 0.514 (0.02) 0.510 (0.03)
Questionnaires (Q) 0.690 (0.05) 0.627 (0.10) 0.687 (0.09) 0.671 (0.11) 0.729 (0.09) 0.701 (0.09)
All (S +Q) 0.749 (0.06) 0.721 (0.03) 0.725 (0.06) 0.706 (0.07) 0.740 (0.09) 0.697 (0.10)

daily sensors: 112,161 user-days after sensor merge, 106,672 after
questionnaire merge, and we end up with 16,470 user-days from
1,859 unique users when we merge with the labels and sub-sample.

Feature ablation studies. In order to identify which feature
modality contributes to the classification more we repeat our ex-
periments with 3 different modalities: only sensors (accelerometer,
microphone and seasonality), only one-off questionnaires (psycho-
logical profile) and combined. To make for a fair comparison, for
every modality we keep only 100 features that we feed to the clas-
sifiers. Since every modality contains different numbers of features
(combined=1,564, sensors=1,434, questionnaires=130), we perform
a two-step feature selection. First, we calculate the feature sig-
nificance of a real-valued feature to a binary target as a p-value
using the univariate Mann-Whitney U test [25]. Then, these se-
lected features are transformed with Principal Component Analysis
(PCA) [30], a common decorrelation method, that produces feature
combinations with the maximum variance, ending up with 100
components/features.

User based cross validation. Typical cross-validation would
not be adequate in our task since some static features such as the
age or gender are repeated for different weeks because they belong
to the same user. Therefore, we create training and test sets from
disjoint user splits, making sure that weeks from the same user
do not appear in both splits. Please note that this does not result
in perfectly balanced class splits, but the evaluation metric we
are using, the Receiver operating characteristic-Area Under Curve
(ROC-AUC or simply AUC) is robust to class imbalances. Even then,
it is not easy to guarantee that a split picked a representative test-
set, so we perform a 10-fold-like cross validation using 10 different
seeds to pick disjoint users. Consequently, we conduct an extensive
experimentation by testing 180 models (3 modalities × 10 user splits
× 3 classifiers × 2 temporal levels). The size of the test set is 10% of
the dataset, and of the rest 90% used for training we keep a random
10% for validation (used only in neural networks). This validation
set belongs to the same distribution as the training set. We report
the average performance of the folds and the standard deviation.

5.2 Results
We now present the classification results of predicting whether a
user-week/day belongs to the relaxed or the rest of the mood spec-
trum, based on sensors, questionnaires and other meta-data. As
discussed earlier, we performed extensive experiments and trained
180 models to evaluate the impact of the different modalities and
user splits. In Table 1, we present the mean classification perfor-
mance of the experiment setup described in the previous section,
that of predicting the mood cluster group (relaxed or not) based on
each user’s weekly/daily sensors and questionnaire metadata.

Week level. By using the sensors on the week level we achieve
the best overall performance of 0.749 AUC, which comes from the
LR model, while the NN comes second with 0.725. Even though
the NN and GB are non-linear classifiers they under-perform, pos-
sibly due to the issue of overfitting or the data compression with
PCA. Also the LR model shows stability with the lowest standard
deviation across all cross-validation runs. Regarding the modali-
ties, in the best case of the LR, the combined representation of the
sensors and the questionnaires outperforms the single modality of
questionnaires by +5.9% AUC and reaches +9.4% in the case of GB
(with a lower max AUC in the combined representation though).
The sole use of sensors achieves less than 60% for all the models.
This ranking is consistent for all the classifiers.

Day level. Considering only one day of sensing data, the abso-
lute results are slightly lower than that of the weekly level. Here,
the GB model achieves an AUC of 0.740, while the LR comes second
with 0.706. The NN presents similar performance for the combined
and questionnaire representation, hinting that the daily sensors do
not contribute much for it. However, the rest models show a rise of
+1.1% (GB) and +3.5% (LR) in AUC, when we add the sensors to the
questionnaires.

Discussion. These results show that by adding passive sensing
to traditional personality and demographics surveys we are able to
predict the mood group of individual users with a higher precision.
Specifically, for our task we achieve ∼ 75%AUC by classifying users
into relaxed or not. Also, we observe that by tracking the users for
more time (week over day level), we achieve better performance.
In hindsight, this is intuitive since movement and noise levels are
expected to be related with relaxation levels. Beyond the binary task,
extra experiments with 3 or 4 clusters (multi-class) yielded worse
results due to the significant cluster overlap and less data-points
per class to learn. Last, putting our results in the context of related
work we see that similar datasets yield lower accuracy (around 65%)
for slightly different tasks such as predicting tomorrow’s mood [38]
or daily mood average [22].

6 RELATEDWORK
As noted in one of the first seminal review papers in 2010 [18], the
main obstacle to the field of mobile sensing and pervasive health is
not lack of adoption, since billions already carry sensor-rich devices,
but rather on how to perform privacy-aware and resource-sensitive
reasoning with noisy and missing data, and to deliver effective
interventions. When these issues are solved, mobile sensing will act
as a catalyst for diverse domains such as social networking, health,
and energy. Here, we focus on the challenges regarding learning
robust and informative features from noisy signals and how they
can assist with user modeling and interventions.
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While the motivation for building mood prediction systems
seems well-founded, the implementation thereof appears to be chal-
lenging. Numerous mobile apps for mental health monitoring have
been proposed, like BeWell [19], orMoodScope [22]. Specific groups,
like undergrad students, have been studied in controlled setups, e.g.
StudentLife [45] measured the impact of student workload on stress
with sensors and self-reports, whereas Snapshot [33] tracked mood
and sleep. Other efforts have focused on detecting depression by
tracking medication, sleep patterns and actions [37], location [5], or
even keypress acceleration [6]. Like in our case, static personality
metadata have been combined with sensor time-series [4]. Please
note that the paper that introduced this dataset [35] also predicted
mood by using smartphone sensor data, but used a smaller subset
of users and most importantly a different prediction target (mood
at time t with data sensed before and after t ).

One of the biggest limitations of the above works is the relatively
small sample size, with participants often belonging to similar so-
cioeconomic backgrounds, in order to draw robust conclusions.
Besides, participants were often tracked for short periods and in
controlled setups. For instance, the MoodScope study [22] moni-
tored 32 people over 2 months, the StudentLife project [45] tracked
48 students over 10 weeks, whereas Snapshot [33] is probably the
biggest general published study with 206 students tracked for over
1 month. In contrast, we draw robust conclusions from an initial
dataset of more than 17, 000 users, collected in the wild for more
than 3 years.

Putting aside the limitations of the sample size, perhaps the most
closely related work to ours is the Snapshot [33] study. This study
investigated how daily behavior gathered through passive sensing
data influence sleep, stress, mood, and other wellbeing-related fac-
tors. Multiple papers focused on different aspects of the collected
dataset, such as personalization with multi-task learning to predict
tomorrow’s mood, stress, and health [38], prediction of happy/sad
mood based on sleep history [34], or a denoising autoencoder to
fill in missing sensor data for mood prediction [15]. Similar to us,
they first cluster the users before going into classification [38], al-
though their goal here is to provide personalized predictions to
these clusters. However, our models do not distinguish between
healthy and depressed patients, but predict the clustered mood
group which roughly correspond to relaxed or not-relaxed users.
From a more practical perspective, personalized models are difficult
to be deployed on a real world scenario, since they require training
N personalized models, with N being the number of users. Even
though previous research has shown that better performance can
be achieved by averaging the individual model accuracies [5, 22],
no results are reported on unseen disjoint users. Instead, we provide
single end-to-end trainable models while in all of our experiments
we report performance from a disjoint user set that the model has
not seen during training.

The majority of related literature has applied supervised learn-
ing algorithms, like Logistic Regression or SVMs, without focusing
on systematic first and second order feature extraction from the
sensors. The only alternative seems to be using some kind of deep
learning which although yields moderate results (e.g StudentLife
dataset with deep feed-forward neural networks [27]). Other neural
approaches include the Deepmood paper that uses RNNs for depres-
sion prediction [37]. We build upon this growing piece of literature
of employing machine learning on mood prediction by proposing
end-to-end models that exploit a thorough feature extraction of the

sensors as well as well rich information about the demographic and
personality data of the users.

7 CONCLUSION
The pervasiveness of smartphones have converted them into expe-
rience sampling tools to collect people’s mood so as to assess their
mental state. However the granularity of the data needs to be traded
off with the level of interruption these tools introduce on users’
activities, which often results into very sparse data. In this paper
we propose a machine learning methodology to detect if an indi-
vidual’ perceived mood differs from that of the general population,
by solely considering their psychological traits collected through
one off questionnaires and passively collected mobile sensing data,
thus avoiding the use of experience sampling questionnaires.

We evaluate our methodology by using a large-scale dataset col-
lected in the wild for more than 3 years and 17, 000 participants. An
exploratory analysis of the data revealed that relaxed is the most
common state reported by our population. Our experiments also
confirmed that our methodology is able to distinguish between gen-
erally relaxed/non-relaxed individuals with a 75% AUC when using
a combination of weekly sensors (accelerometer and microphone)
and one-off questionnaire data (personality, demographics, etc) as
inputs. Besides, the use of passive sensing data yields a +5% boost
in accuracy. In healthcare context, this accuracy states that we can
group users 3 out of 4 times correctly using only short-time mobile
phone sensing and sparse surveys. While that level of accuracy
might not be adequate for medical deployments, our focus is mostly
on the positive contribution of passive sensing.

As future work, we plan to study data imputation techniques
in order to ameliorate the significant data loss while merging the
modalities [15] as well as focus on feature importance analysis.
Also, in our current setup we use the aggregate approach of target
clusters of users which someone can argue that might change over
time; we are working on continuous predictions of both the sensors
and themood predictions.We also plan to adapt models that operate
on raw time-series such as Wavenet [42] and combine them with
multi-modal approaches for the static features.
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