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Abstract—Earables (in-ear wearables) are a new frontier in
wearables. Acting both as leisure devices, providing personal
audio, as well as sensing platforms, earables could collect sensor
data for the upper part of the body, subject to fewer vibra-
tions and random movement variations than the lower parts
of the body, due to inherent damping in the musculoskeletal
system. These data may enable application domains such as
augmented/virtual reality, medical rehabilitation, and health
condition screening. Unfortunately, earables have inherent size,
shape, and weight constraints limiting the type and position of the
sensors on such platforms. For instance, lacking a magnetometer
in all earables reference platforms, earables lack reference points.
Thus, it becomes harder to work with absolute orientations.
Embedding magnetometers in earables is challenging, as these
rely heavily on radio (mostly Bluetooth) communication (RF)
and contain magnets for magnetic-driven speakers and docking.
We explore the feasibility of adding a built-in magnetometer
in an earbud, presenting the first comprehensive study of the
magnetic interference impacting the magnetometer when placed
in an earable: both that caused by the speaker and by RF (music
streaming and voice calls) are considered. We find that appropri-
ate calibration of the magnetometer removes the offsets induced
by the magnets, the speaker, and the variable interference due to
BT. Further, we present an automatic, user-transparent adaptive
calibration that obviates the need for alternative, expensive, and
error-prone manual, or robotics, calibration procedures. Our
evaluation shows how our calibration approach performs under
different conditions, achieving convincing results with errors
below 3° for the majority of the experiments.

I. INTRODUCTION

Recent years have seen the rise of wearable technologies,

both in the form of specialist devices such as pacemakers and

in consumer devices, primarily smartwatches. A growing trend

is the use of wireless earbuds that, while designed primarily

for personal audio playback, offer a new sensing platform

at an important site on the body. So-called Earables can be

equipped with a variety of sensors and radios making them

potentially suitable for a range of applications that go beyond

just audio streaming, including indoor navigation, augmented

reality, enhanced perception and medical monitoring. Some

analysts believe Earables could be as disruptive as smartphones

were in the last decade – forecast to hold the largest share

(35%) of the wearable market [4]. Today, however, we are
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in the early stages of understanding their capabilities, both in

terms of the sensors that they can offer and their applications.

In this paper we focus on the feasibility and value of

adding magnetometers to earables. Today’s consumer earables

already contain inertial sensors (IMU) like accelerometers and

gyroscopes. In other mobile devices, these are paired with

magnetometers to provide movement descriptors in a global,

absolute frame of reference [36], which would be highly valu-

able at the head too. Although a reasonable argument could be

using the magnetometer in the phone to provide the earbuds’

IMU with the references needed to calibrate/re-calibrate them,

in practice, this would not work. Notably, the head does
not always move according to the way the body does;

besides, they often do not face the same direction. Hence,

relying only on the phone would inevitably provide descriptors

that do not necessarily match those when moving the head.

Beyond this, adding a magnetometer to an earable would

allow for a variety of applications including inertial navigation;

magnetic-field-based indoor localization [19]; driver monitor-

ing systems [21]; and medical applications (i.e. intra-body

localization [24], [39], speech-language therapy [11], trans-

cranial stimulation [13]). However, the highly constrained

earable form factor and practicalities around their calibra-

tion have so far prohibited the availability of magnetometers

on earables. Common magnetometer calibration techniques

are cumbersome and error-prone [15], and regular manual

calibration of both earbuds (and any personal devices) is

unrealistic. Instead, we leverage the heading of the user’s

phone – typically trustworthy, as we will discuss – to auto-

calibrate the magnetometers in the earbuds when the devices

are believed to be pointing in the same direction. We ensure

the latter constraint by applying the algorithm only when the

user is directly interacting with the phone.

The specific contributions of this paper are: (i) We explore

how magnetometer signals are affected by magnetic distur-

bances expected in an earable, highlighting the need for good

calibration. (ii) We propose a novel magnetometer calibration

technique that leverages the user’s phone sensors (typically

well calibrated). The algorithm can run in the background,

without user intervention, providing a semi-continuous cal-

ibration. (iii) We evaluate the performance of the calibration

framework, both in terms of accuracy and system performance.

Further, we present a proof of concept study with a navigation

application. (iv) We theoretically and practically assess the

computational and energy efficiency of our approach, showing



our approach is accurate yet computationally inexpensive,

allowing its regular execution on a constrained wearable,

consuming ≈ 2.9% extra power over idle.

II. MOTIVATION

Magnetometer and Inertial Sensing Historically, the pres-

ence of a magnetometer has been key to improve the accuracy

of inertial based applications. Inertial sensors drift significantly

when integrated over time [31]. For this reason, IMUs are often

paired with a magnetometer: while the former measures rela-

tive motions (i.e. linear acceleration and rotational velocity),

magnetometers sense the Earth Magnetic Field, and are used to

find the (absolute) direction of the Magnetic North in a global

reference frame. This constitutes an absolute anchor to be

constantly re-calibrate IMUs. Further, magnetometers are also

coupled with IMUs for 3D-motion tracking: without a magne-

tometer, it becomes extremely hard to have knowledge of the

tracked object’s heading in a global reference frame [36] (used

to correctly initialize the tracking system). Unfortunately,

neither IMU calibration, nor 3D-motion tracking (e.g. of the

head) are feasible with today’s earables, which lack a mag-

netometer. Fusing the user’s smartphone magnetometer data

and IMU readings from their earables would naturally result

in a wrong estimation, given how user’s head and phone often

face in different directions. There are many compelling use-

cases that can be unlocked from a magnetometer in earables,

provided the magnetometer is accurate enough. Concretely,

an in-earable magnetometer could enable acoustic AR [18],

[34], [42] providing precise navigation thanks to spatial audio

based on head orientation. For instance, considering a 4 lanes

intersection (≈10 meters wide), an error of 3° on the heading

would entail an offset of 10× sin(1.5) ≈ 0.26m. Further, by

leveraging head rotations to compute the angle of arrival (AoR)

of incoming sounds with higher accuracy [17], it could provide

improved noise-cancellation. To be effective, AoR estimation

errors should be < 20° [26]. This requirement becomes more

stringent when using the earable for immersive audio or

speaker isolation, especially in multi-source conversations.

Magnetic Interference There are various sources of mag-

netic interference which would impact a magnetometer in

an earable, all being implicitly linked to the user’s patterns.

Firstly, earbuds usually have one (to drive the speaker) or

more magnets (for docking purposes). These, being in close

proximity to the magnetometer due to the earable’s form

factor, can interfere with its readings [22], making infer-

ence tasks unreliable at best [15]. Further, earables mostly

communicate via Bluetooth (BT). Radio frequencies (RF)

communications, like BT, require substantial electrical current

which, flowing in the circuitry, generates an electromagnetic

field, interfering with the magnetometer. Specifically with

earables, RF communications are intense while streaming

and just a few beacons otherwise. Practically, BT requires

variable current, thus generating variable magnetic fields [22],

entailing a hard-to-model electromagnetic interference, highly

dependent on the users’ patterns. Similarly, when playing

music the speaker coil vibrations that generate sound also

(a)

(b)

Fig. 1: Basic system setup (Figure 1a) and setup used to isolate the
interference generated by BT streaming and speaker (Figure 1b).

result in magnetic interference. Like sound, the interference

depends on the vibration patterns, and therefore on whether

the user is playing music, and what music they are playing. To

understand how this practically affects a magnetometer in an

earable, we present a thorough analysis of these interfering

phenomena (Section III). We look at RF communications

(i.e. music streaming form a smartphone to the earbuds), as

well as music playback. Music playback was selected because

of its popularity and the wide spectrum of tonal patterns of

different genres. We analyze the impact of voice calls, too.

Interestingly, these patterns, while present, are eclipsed by the

interference produced by the RF circuitry (Section III-B).

III. MAGNETOMETER CALIBRATION AND INTERFERENCE

Proper calibration is key to obtain accurate sensor readings,

especially for continuous magnetic sensing: whether we are

looking for the heading of an object [37], [41], or tracking

magnetic bodies [21], [24], [39], reliable sensor data is crucial.

A. Magnetometer Calibration

To calibrate a magnetometer, common approaches seek to

estimate the bias and scale factor for each axes. Magnetometer

calibrations can be grouped in static or dynamic [16] and

whether they rely on attitude information or not [38]. How-

ever, one major obstacle in calibration is interference from

other magnetic fields. Concretely, this presents two challenges

during calibration, i) interference can rarely be detected thus

resulting in incorrect calibration parameters and ii) during use,

where interference can result in incorrect bearing estimations.

B. Interference Characterization

Testing device: As an example of earable, we chose eS-

ense [23]. Contrary to other commercial earbuds, eSense

permits access to the raw data streamed by the IMU and

BLE chips. Since eSense was not equipped with a 3-

axis magnetometer, we attached an external one (Freescale

MAG3110 [35]) on top of the earbud (Figure 1a) to mimic

a realistic position where the sensor might be placed. We

sampled the external magnetometer at 80Hz using an Arduino

Uno. This setup allowed us to collect data while the earbud

was performing operations that could interfere with the sensor

(i.e. music streaming or phone calls).

Results: We initially looked at the effect of streaming audio

to the earbud on the magnetometer. This requires both active

speaker movement and significant electrical current associated

with the earbud circuitry. Figure 2a shows the effect on
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Fig. 2: Impact of audio streaming on calibrated magnetometers.

the y axis of a pre-calibrated magnetometer before, during

(green shaded zone), and after playing music. Playing audio

introduced an offset of 10 μT . This is a fraction of the

Earth’s typical magnetic field, hence the effect on the heading

estimate was minimal Figure 2b. Nonetheless, there is a clear

audio-induced change. Analogous trend was also evident in

the magnetometer signals during voice calls. We can further

observe that all of the disturbances were reversed when the

audio was stopped, but that this was not immediate. Rather,

we observed a gradual return to the pre-audio values. From

this we can conclude that audio playback in an earbud affects

its magnetometer signal. While we observed a relatively small

change, it is enough that a one-off calibration procedure during

audio playback is to be avoided. Besides, it may also hinder

applications that do not use the magnetometer for heading

(e.g. magnetic map matching). Furthermore, magnetic fields

dissipate quickly with distance and a magnetometer soldered

to the earbud board (beyond the scope of this work) might

experience greater disruption and heading errors.

To better understand the source of the interference, we

examined the frequency spectrum of the magnetometer when

playing pure tones. We observed that tones played at (even

very) low volume produced noise across all frequencies in the

magnetometer. Increasing the volume resulted in additional

spikes corresponding to the tone frequency: e.g. a 20Hz tone

produces a corresponding spike at 20Hz (Figure 3). From

this we infer that the interference comes partially from the

audio playback (speaker/driver circuit produces the spikes) and

partly from some non-specific part of the circuitry (giving the

general noise). The slow reversal of the audio-induced changes

when the audio stops is further evidence that the interference

is not solely due to the sound reproduction.

Fig. 3: FFT of the magnetometer
traces while playing (on high vol-
ume) pure tones at 20Hz.

Fig. 4: Impact of BT streaming
and speaker on the heading esti-
mated by the raw magnetometer.

We sought to isolate the core circuitry from the speaker. We

used two earbuds, A and B. We unsoldered and removed the

speaker from A. When streaming audio to A, we observed

wideband noise in the magnetometer, persisting beyond the

end of the music (Figure 4). In this mode, the main operational

circuitry is the BT module and the audio decoder. Since the

latter is not used after the music stops, we focused on the

BT module. We used a packet sniffer to establish when BT

radio was in use, finding that BT packets continued to be

sent for a period after the audio was manually stopped. This

period corresponded directly to the magnetometer recovery

phase. We can therefore attribute a substantial part of the

interference to the Bluetooth circuitry being active. We then

used two wires to connect the speaker terminals on A to the

speaker terminals on B. In this way we could assess the impact

caused by the speaker alone without interference introduced by

the circuitry (Figure 1b). We powered both earbuds on, and

then streamed music to A. This caused music to be played

on B, where only the core circuitry was active (not BT or

other components). The magnetometer on B exhibited a small

deviation when music was played, but significantly smaller

than that observed when isolating the BT hardware. While the

interference induced by the BT is almost identical for different

songs, it changes between music players (e.g. Spotify, Apple

Music, YouTube) as they adopt different protocols.

Findings Summary: Streaming audio to a modified eSense

earbud resulted in a local magnetic field that appeared as

interference in the magnetometer readings. The magnitude of

the interference was small, but we cannot rule out a larger

effect for a magnetometer fully integrated onto the earbud.

The interference came primarily from the BT circuitry being

active, with a smaller component due to the speaker. Therefore,

static magnetometer calibrations in an earbud should not be

carried out while the BT radio is active.

IV. A NOVEL CALIBRATION ALGORITHM

The previous section established that internal components of

an earbud introduce magnetic interference during RF usage,

but that it is possible to incorporate a magnetometer such

that the heading estimate is minimally affected. However,

this is contingent on the magnetometer being either correctly

calibrated prior to the interference, or having the calibration

dynamically updated, something that is impractical due to

the manual calibration procedures conventionally used. In this

section we describe a technique to provide calibration that does

not need manual intervention and can be updated dynamically.

A. Overview

Performing user-transparent magnetometer calibration is an

extremely challenging task [31]. Rather than trying to cali-

brate earbuds independently, we propose leveraging the user’s

smartphone to assist in the calibration. We assumes the phone

has itself a calibrated magnetometer and can provide reliable

global heading. In practice, this assumption is justified since

today’s phones are able to maintain a calibrated heading by

fusing the array of sensors, from IMU to GPS [2]. When

people interact with their smartphones, e.g. unlocking it, their

head is almost certainly facing the phone. In this case the



smartphone and the earbuds are aligned and should report

the same bearing, if correctly calibrated (Figure 5). Our

approach is to use trusted bearing of the phone to estimate the

calibration parameters for the earbuds. Empirically, we find

that unlocking an iPhone using the FaceID usually constitutes

the perfect user head-smartphone positional relationship. This

work considers unlock interactions, but the technique could be

applied whenever phone and head align.

Fig. 5: Intuition behind the proposed calibration technique.

B. Calibration Approximation

We estimate the heading (the angle between the direction

of facing and the Magnetic North) by doing: heading =
atan2(magy,magx)

180
π . This is the standard way of estimat-

ing the heading given magx, magy – the leveled (with respect

to the ground) readings of the magnetometer respectively along

the x and y axis. The sign, as well as the order, of magy
and magx change depending on the magnetometer orientation.

Several commercial earables ensure the bud remains in a still,

standard position in the users’ ears. Hence, the orientation of

each earbud is likely to remain unaltered. We leverage this, and

the fact that most of the substantial rotations and changes of

heading happen along a plane parallel to the ground, to avoid

continuously accounting for tilt compensation. Having defined

how we estimate the heading, we can lay the foundations of

our approach. Firstly, we apply a standard sensor model for

magx and magy respectively as: magx = Sx(xearbud raw −
xearbud offset) and magy = Sy(yearbud raw−yearbud offset),
where xearbud raw and yearbud raw are the raw, uncalibrated

magnetometer readings in the xy plane, Sx and Sy are scaling

factors and xearbud offset and yearbud offset are constant

offsets. According to our key assumption (Figure 5), we can

re-write the way we compute the heading as:

hphone = atan

(
R

(yearbud raw−yearbud offset)

(xearbud raw−xearbud offset)

)
180
π , (1)

where h phone is the phone’s heading estimate and R =
Sy/Sx the scale factors ratio. Our goal is to collect multiple

hphone values to solve for the unknowns in this equation.

We make the assumption that R ≈ 1. We expect sensors

to be factory calibrated, that should ensure this approximate

relationship (more in Section VII). Small perturbations from

1 have minimal effect on the heading (arctan(x + δx) ≈
arctan(x) for small δx). The assumption allows us to reduce

the unknowns to two (yearbud offset and xearbud offset),

requiring as few as k = 2 phone interactions to estimate a

calibration. In practice, we gather as many phone headings

(k) as needed to ensure good calibration quality:

hphone k = atan

(
yearbud raw k−yearbud offset
xearbud raw k−xearbud offset

)
180
π (2)

By solving the over-determined systems of equations consti-

tuted by the k-th phone’s headings (Equation (2)), we derive

xearbud offset and yearbud offset, continuously updated at

every interaction. Collecting these reference measurements

from the phone can occur in the background, without any inter-

vention from the user. Phone readings have to be reliable. In a

smartphone the magnetometers are assumed to be calibrated,

as both Android and Apple devices fuse the magnetometer

readings with GPS (if available) [2]. A new reference is found

every time users interact with their phone (i.e. FaceID unlock),

provided the phone measures an undisturbed magnetic field

(i.e. trustworthy heading). This is further borne out by the

high average number of daily interaction people have with

their mobile phones [20]. While more references are good

as they should lead to a better model fit, calibrating with

fewer references is valuable. A good fit depends on there

being sufficiently distinct hphonek values, and we do not have

control over the users behavioural patterns. Hence, we favour

calibrating as soon as possible and refining the calibration with

extra measurements later on, without explicit user interaction.

C. Calibration Algorithm

The overall functioning of the our calibration procedure is

depicted in Figure 6. At any given time, we monitor for events

(e.g. phone-pickup/unlocking) that can potentially provide

measurements suitable for calibration. Given the variability of

the interference and the consequent volatility characterizing

magnetometer calibrations [31], rather than aiming at the per-

fect calibration routine, instead we strive for the best possible

approximation of it. In this way, we can afford to calibrate as

soon as possible and continuously monitor the status of the

calibration, updating it when necessary. In addition, by using

the phone’s heading as a reference, there is no need to further

process the heading estimated from the magnetometer data in

the earbuds by calculating the magnetic declination [3].

Phone pickups and data check: Once a phone-pickup is

detected, we perform a data check to ensure the smartphone’s

data are suitable for the calibration: first, we ensure the

magnitude of the phone’s readings matches, at least in the

order of magnitude, that of the Earth’s field at the current

location. This is a standard way to check the magnetometer

readings trustworthiness. Once secured we are not in a mag-

netic anomaly, we make sure the phone is in portrait mode.

Although this is true for most of the interactions, to calibrate

we can not afford using a reference off by 90° (i.e. phone in

landscape mode). Lastly, we verify no sharp head movements

occurred, which may result in misalignment in the phone’s and

earbuds’ heading, or if the user moved the head but not the

phone. This is key to ensure the reference heading is truthful.

Calibration Execution: If the data pass this check, we store

them and wait until we have enough references to perform



our calibration. At least two equations are needed to linearly

solve a system of equations with two unknowns (the offsets).

Hence, we need at least two reference headings (Section V).

Once satisfied the number entries to perform the calibration,

we execute it by applying a least squares fitting (eq. (2)).

Before finalising the calibration, we perform a sanity check

to ensure there was not any significant interference skewing

the fit: we compare, on-the-fly, the instantaneous heading

recorded by the phone and the average bearing of the earbuds.

The calibration is only committed after the freshly-calibrated

earbud magnetometer successfully passes this additional step.

Calibration check and update: Unfortunately, accurately

modelling the life time of a magnetometer calibration (i.e. how

long the calibration will last before the sensor readings will

start being off) is extremely difficult. A number of factors

can invalid the calibration of a magnetometer, such as the

environment, the temperature, and the number of people in

a room [29]. We avoid faulty calibration models by regularly

checking the validity of the calibration. This is an inexpensive

operation we carry out in two ways, depending whether there is

a phone unlock event, or not. If so, we compare the bearing of

the phone and that reported by the earbuds. If their difference

is under a certain threshold, we assume our calibration is still

valid, otherwise we drop the existing calibration. The value

of the threshold depends on the application and the desired

accuracy. Alternatively, if no phone-interaction is detected, we

cannot assume the phone’s heading is the same of the earbuds’.

In this eventuality, we compare the earbud’s magnetometer

bearing with the earbud’s IMU. If there are sharp changes in

the magnetometer data, but no rotations or linear accelerations

are registered by the IMU (and vice-versa), the existing

calibration is likely off. Notably, we look for the magnitude of

the motion recorded by the gyroscope and we compare it with

the change in bearing reported by the magnetometer. Even

if uncalibrated, gyroscopes are fairly precise in measuring

relative motion, while they fail in tracking sustained motion.

Fig. 6: Auto-Calibration procedure.

V. CALIBRATION EVALUATION

In this section we provide a detailed evaluation of the

proposed calibration procedure both in controlled conditions

and with an in-the-wild with a case study. We conclude by

presenting some theoretical considerations on the proposed

algorithm complexity, supporting this analysis with power

consumption experimental results of our calibration routine.

(a) (b)

Fig. 7: Setup used to benchmark the proposed calibration technique
(7a) and volunteer wearing the Arduino as if they were earbuds (7b).
This is the setup used for our in-the-wild use test.

A. Micro Benchmarks

We start our evaluation with a list of micro benchmarks. Fig-

ure 7a reports the setup we used to benchmark our calibration.

Once assessed how the calibration removes the interference

caused by both BT and music playback using the hardware

described in Section III, we focus on benchmarking the

calibration technique by using the magnetometer embedded

in an Arduino Nano 33BLE [1]. For reproducibility, we build

a stand (Figure 7a) to simulate the positional relationship

between the magnetometer and the smartphone (iPhone 8Plus).

Static Scenario: We begin assessing how different factors

may affect the calibration accuracy. We look at the impact of

spacing between references (i.e. spacing(i, i+1) = |hphonei−
hphonei+1

|), the number of references, and the number of data

points fed into the calibration algorithm (i.e. time spent sam-

pling magnetometer data at every hphonei ). Contrarily to what

we originally thought, we do not observe any significant gain

with larger spacing of the reference headings. Interestingly,

we noticed that we do not require more than 2− 3 reference

headings to achieve errors on average smaller than 2°, without

getting into the territory of diminishing returns – i.e. paying

more in terms of energy consumption Section V-C) without

benefiting a substantial accuracy boost. Lastly, we assessed

how very a few data points (sampled over 0.5s) are already

sufficient for our calibration to reach its highest accuracy.

Dynamic Case: Consider a person rotating their head: their

bearing would change of an angle equal to that of head

rotation. A calibration must remain valid for every direction

faced during the movement. We make sure magnetometer and

ground truth are always in the same positional relationship

evaluating that using the stand in Figure 7a. Concretely, we

look at whether the calibrated heading diverge from the ground

truth whenever there is motion. For all the experiments, we use

only two references, collected over windows of 1/20s.

Practically, we begin by looking at small movements of

a few degrees (both positive and negative) and outline our

findings in Figure 8a. The uncalibrated error is significant,

averaging 30° over the duration of our experiment (mean

rolling error in Figure 8b), being at best is 10° off ground

truth and at worst 45°. Besides, the magnitude of the motions

seems not to reflect those of the real movements. Conversely,

we can observe that the calibrated heading trace is very stable

and close to the ground truth heading averaging an error

smaller than 5° at any given time. We repeated that for larger



movements (Figure 9a), expecting large movements to induce

greater errors in the heading. The uncalibrated heading trace

is at one point in excess of over 90°, providing unusable data

for most applications (Figure 9b); while the calibrated heading

trace closely follows the ground truth, with an overall mean

error of just a few degrees, always smaller than 5°.

B. In-The-Wild Example Case-Study: Navigation

We believe, in the case of navigation, earables could be

better suited than smartphones. The rationale behind that lays

in the ability of earbuds to track head movements: a desirable

feature at complex intersections. Further, earables can provide

extra robustness by recording 2 independent measurements of

the same heading. Notice that an end-to-end earable-based

navigation system is out of the scope of this work, instead, we

use this toy example to evaluate, in-the-wild, our calibration.

Assessing the goodness of our calibration in-the-wild, we

deal with both rotational movements and human motion

(i.e. linear acceleration). Concretely, a user (ethics approval

grated by the departmental ethics board) wore two Arduino

(with a build-in magnetometer) as earbuds (Figure 7b), while

holding the phone in their hands.The volunteer was told to

walk as desired in two distinct locations the first one being

indoor (in a house) while the latter outdoor (over a block). We

had no control over the potential source of interference in the

environment. This experiment showcases how the proposed

calibration is capable of enabling earable-based in-the-wild

navigation, without constraining nor bounding the user, both

indoor and outdoor. Figure 10 reports our results when estimat-

ing the heading with calibrated and uncalibrated magnetometer

traces and their average errors. Through our calibration, we are

able to achieve accuracy up to few degrees (below 3° for most

of the time) for the whole duration of the experiment. Notably,

considering the 4 lanes intersection example, our ≈ 3° error

on the heading would lead to a ≈ ±0.26m error. We believe

±0.26m is an acceptable tolerance for pedestrian navigation.

C. Computational and Power Consumption Considerations

A calibration has to be accurate, yet computationally inex-

pensive; however, all of the established calibration techniques

require to perform a regression to fit a model based on the

observations received. Especially, online schemes do the fitting

every time the calibration is performed; in our case, as dictated

from Figure 6, we check if a calibration is needed at every

suitable phone pickup. Normally, such techniques use a form

of least-squares fitting having a formal complexity of O(c2n),
where c the number of features and n the number of vectors

in R
c used when performing the fitting. However, in our case,

we require very a few vectors n < 10, all in R
2, representing

the readings of the magnetometer on the xy plane. Hence,

the amortised complexity of our procedure ends up being

even more affordable in practice, even if we have to run the

calibration procedure often. We evaluated this claim with a

power consumption experiment with a Raspberry Pi Zero.Set

side by side to the overhead of radio communications over idle

(≈ 1.7% TX and ≈ 2.4% RX), our scheme imposes a com-

parable low overhead, only consuming an additional ≈ 2.9%
over idle, with a total of 456.38mW (idle: 442.58mW ).

VI. RELATED WORK

Sensing with Earables The applicability of earables for health

condition screening has been investigated many [25] looked

at their potential in monitoring energy expenditure and heart

rate. [14] introduced the idea of an ear-worn multi-modal plat-

form to sense brain, cardiac, and respiratory functions. More

recently, [9] proposed a PPG-equipped ear-piece to monitor

blood pressure. Ear-worn devices have also been researched

to monitor sleep stages [28] or detect eating activities [5]–[7].

Magnetometer Calibration Although in-ear magnetometers

are mostly affected by a static interfering component in-

duced by permanent magnets in the buds’ case, they are

also impacted by a dynamic component caused by RF com-

munications and audio playback. Isolating the magnetometer

with special materials, preventing magnetic disturbance, is

not a viable option: without considering the cost, it would

likely isolate the magnetometer from the magnetic field we

wanted to measure in a first instance [27]. Similarly, filtering

approaches [40] do not work for perturbations generated by

RF circuitry [27]. Besides, increasing the air gap between

sources of interference and magnetometer [12], [27] is not

feasible: assuming these can be modeled as magnetic dipoles,

the strength of the magnetic field they generate decreases with

r3, where r is the radius of a sphere with the magnetic dipole

as center [22]. Yet, this does not consider the design constraints

and miniaturization trends of earables, and does not account

for the external magnetic disturbances [16], [38]. Likewise,

the same argument holds for factory calibrations [16]. Sensor

calibration is a well studied topic with a rich body of literature.

However, only a few works specifically tackle calibration for

mobile devices [15], and, to the best of our knowledge, none

investigates calibration strategies specifically for earables –

affected by variable interference. The aim of a magnetometer

calibration is to find some parameters to only measure the

Earth’s magnetic field [37]. Thus, the sensor can be used, for

example, as heading source. A magnetometer calibration can

be either static or dynamic [16]; attitude dependent or not [38].

Static calibrations are often done with the aid of specialized

equipment (e.g. a proton magnetometer [30], a robot arm [33]),

or by manual direction placement [10]. Historically, the most

common approach is what known as compass swinging [8].

This only works for 2D-magnetometers, and requires the user

to be instructed to rotate the compass in specific orienta-

tions [41]. Dynamic calibrations, more practical for mobile

devices, are usually based on additional information from the

system (e.g. IMU or GPS). Many are iterative and carried out

at run-time, often trading accuracy for adaptation. Examples

are ellipsoid fitting [32], Kalman-filter-based iterative algo-

rithms [16], and stochastic optimization approaches [38], with

the most famous being the figure 8 calibration: the user has

to move the magnetometer along an 8-shaped trajectory, to

collect enough data to run an ellipsoid fitting algorithm. How-



(a) (b)

Fig. 8: Heading estimation (8a) and mean errors (8b) for small angles.

(a) (b)

Fig. 9: Heading estimation (9a) and mean errors (9b) for large angles.

(a) (b)

Fig. 10: In-the-wild heading estimation (10a) and mean errors (10b).

ever, these result cumbersome for the user, and often error-

prone [15]. Hence, we present a completely user-transparent,

adaptive, magnetometer calibration, which specifically targets

earables, without requiring any specialized equipment, other

that the user’s phone, natural companion of every earbuds.

VII. FINAL REMARKS

This work proposes a method to calibrate in-ear magne-

tometers in a user-transparent and efficient way and shows the

feasibility of having magnetometers in earables. We conclude

by discussing the limitations of our calibration technique.

Presence of a Phone: Our technique requires the earbuds user

to carry a phone. Phones are ubiquitous and carried almost

everywhere. Moreover today’s earables are not stand-alone,

requiring a companion device they are connected to – usually

a phone. We leave as a future work devising a user-transparent

magnetometer calibration for a future stand-alone earbud.

Tilt Compensation: Magnetometers usually provide a 2 de-

grees of freedom orientation parallel to the ground [36].

If the sensor is not leveled, tilt compensations is needed.

Common strategies usually exploit gravity measurements from

an accelerometer to compute the sensor tilt and map it back

in the correct reference frame [36]. While earables experience

less significant rotations than other devices by virtue of their

attachment to the head, tilt compensation is still required. In

our work, although not explicitly stated, we always make

sure the x and y we are using are leveled with respect

to the xy plane. Further, in our system, head dips of α°

can be modeled as rotations about the y axis, resulting in

(magx cos(α),magy). cos(α) ≈ 1 for small values of α, we

assume little head dips (like those when normally interacting

with a phone) only marginally affect our system.

Scaling Factors: Our approach does not estimate the sensor

scale factors. Instead, we assume the ratio of scale factors

would be 1. This allowed us to reduce the number of distinct

headings to estimate the calibration, favouring usability and

low complexity. Our justifications for the assumption are:

(i) scale factors are used to address soft iron distortions

which, although having a non-negligible effect when looking

at the intensity of the Earth’s magnetic field, are substantially

less significant than hard iron distortion when looking at the

heading; (ii) we expect earbud manufacturers to perform a

factory calibration of their sensors, which would build in

compensation for any soft or hard iron biases internal to

the earbuds themselves. Calibration parameters do of course

change with environmental factors, necessitating in-field cali-

brations. However, the changes are likely perturbations around

the factory calibration. Therefore the ratio of observed scale

factors – on which the heading computation depends – would

be expected to be approximately 1. Notably, this was the

case experimentally for all of the magnetometers we tested.

Perturbations to this ratio have a limited effect on the estimated

heading, so our assumption has minimal effect on the error,

whilst reducing the complexity of our calibration procedure;

(iii) assuming R ≈ 1, we do not estimate the true scale factors.

While this have minimal effect on the heading accuracy, it

does mean we do not obtain a reliable estimate of the overall

magnetic field magnitude, implying we cannot use the field

magnitude to discard readings when in a magnetic anomaly.

Nonetheless, we are able to accurately compute the earbuds

heading, key enabler to many applications, starting from IMU

calibration. In the future we hope to extend our model to scale

factors, too. In the meantime, we note that anomalies may

be detected through large rotation discrepancies between the

gyroscope and the magnetometer.

Interactions with the Phone: As a proof of concept, in this

work, we rely on FaceID unlocks to ensure the positional rela-

tionship phone-earbuds is what we require for our calibration

to work properly (Figure 5). However, unlocks are not the

only events leading to this specific positional relationship. By

reliably detecting more of such occurrences (even during a

single interaction) would be possible to further increase the

granularity of our measurements, which might be suitable for

some application which need more frequent references.
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