
Adapting Asynchronous Messaging Middleware
to Ad Hoc Networking

Mirco Musolesi
Dept. of Computer Science,
University College London

Gower Street, London
WC1E 6BT, United Kingdom

m.musolesi@cs.ucl.ac.uk

Cecilia Mascolo
Dept. of Computer Science,
University College London

Gower Street, London
WC1E 6BT, United Kingdom

c.mascolo@cs.ucl.ac.uk

Stephen Hailes
Dept. of Computer Science,
University College London

Gower Street, London
WC1E 6BT, United Kingdom

s.hailes@cs.ucl.ac.uk

ABSTRACT
The characteristics of mobile environments, with the possi-
bility of frequent disconnections and fluctuating bandwidth,
have forced a rethink of traditional middleware. In partic-
ular, the synchronous communication paradigms often em-
ployed in standard middleware do not appear to be par-
ticularly suited to ad hoc environments, in which not even
the intermittent availability of a backbone network can be
assumed. Instead, asynchronous communication seems to
be a generally more suitable paradigm for such environ-
ments. Message oriented middleware for traditional systems
has been developed and used to provide an asynchronous
paradigm of communication for distributed systems, and,
recently, also for some specific mobile computing systems.

In this paper, we present our experience in designing,
implementing and evaluating EMMA (Epidemic Messaging
Middleware for Ad hoc networks), an adaptation of Java
Message Service (JMS) for mobile ad hoc environments. We
discuss in detail the design challenges and some possible so-
lutions, showing a concrete example of the feasibility and
suitability of the application of the asynchronous paradigm
in this setting and outlining a research roadmap for the com-
ing years.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed Applications; C.2.1 [Network Ar-
chitecture and Design]: Wireless Communication

General Terms
DESIGN, ALGORITHMS

Keywords
Message oriented middleware, middleware for mobile com-
puting, epidemic protocol, mobile ad hoc networks, context

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
2nd Workshop on Middleware for Pervasive and Ad-Hoc Computing
Toronto, Canada
Copyright 2004 ACM 1-58113-951-9 ...$5.00.

awareness

1. INTRODUCTION
With the increasing popularity of mobile devices and their

widespread adoption, there is a clear need to allow the devel-
opment of a broad spectrum of applications that operate ef-
fectively over such an environment. Unfortunately, this is far
from simple: mobile devices are increasingly heterogeneous
in terms of processing capabilities, memory size, battery ca-
pacity, and network interfaces. Each such configuration has
substantially different characteristics that are both statically
different – for example, there is a major difference in ca-
pability between a Berkeley mote and an 802.11g-equipped
laptop – and that vary dynamically, as in situations of fluc-
tuating bandwidth and intermittent connectivity. Mobile ad
hoc environments have an additional element of complexity
in that they are entirely decentralised.

In order to craft applications for such complex environ-
ments, an appropriate form of middleware is essential if cost
effective development is to be achieved. In this paper, we
examine one of the foundational aspects of middleware for
mobile ad hoc environments: that of the communication
primitives.

Traditionally, the most frequently used middleware prim-
itives for communication assume the simultaneous presence
of both end points on a network, since the stability and per-
vasiveness of the networking infrastructure is not an unrea-
sonable assumption for most wired environments. In other
words, most communication paradigms are synchronous: ob-
ject oriented middleware such as CORBA and Java RMI are
typical examples of middleware based on synchronous com-
munication.

In recent years, there has been growing interest in plat-
forms based on asynchronous communication paradigms, such
as publish-subscribe systems [6]: these have been exploited
very successfully where there is application level asynchronic-
ity. From a Gartner Market Report [7]: “Given message-
oriented-middleware’s (MOM) popularity, scalability, flexi-
bility, and affinity with mobile and wireless architectures,
by 2004, MOM will emerge as the dominant form of com-
munication middleware for linking mobile and enterprise ap-
plications (0.7 probability)...”. Moreover, in mobile ad hoc
systems, the likelihood of network fragmentation means that
synchronous communication may in any case be impractica-
ble, giving situations in which delay tolerant asynchronous
traffic is the only form of traffic that could be supported.

Middleware for mobile ad hoc environments must therefore
support semi-synchronous or completely asynchronous com-
munication primitives if it is to avoid substantial limita-
tions to its utility. Aside from the intellectual challenge in
supporting this model, this work is also interesting because
there are a number of practical application domains in al-
lowing inter-community communication in undeveloped ar-
eas of the globe. Thus, for example, projects that have been
carried out to help populations that live in remote places of
the globe such as Lapland [3] or in poor areas that lack fixed
connectivity infrastructure [9].

There have been attempts to provide mobile middleware
with these properties, including STEAM, LIME, XMID-
DLE, Bayou (see [11] for a more complete review of mobile
middleware). These models differ quite considerably from
the existing traditional middleware in terms of primitives
provided. Furthermore, some of them fail in providing a
solution for the true ad hoc scenarios.

If the projected success of MOM becomes anything like
a reality, there will be many programmers with experience
of it. The ideal solution to the problem of middleware for
ad hoc systems is, then, to allow programmers to utilise the
same paradigms and models presented by common forms of
MOM and to ensure that these paradigms are supportable
within the mobile environment. This approach has clear
advantages in allowing applications developed on standard
middleware platforms to be easily deployed on mobile de-
vices. Indeed, some research has already led to the adapta-
tion of traditional middleware platforms to mobile settings,
mainly to provide integration between mobile devices and
existing fixed networks in a nomadic (i.e., mixed) environ-
ment [4]. With respect to message oriented middleware, the
current implementations, however, either assume the exis-
tence of a backbone network to which the mobile hosts con-
nect from time to time while roaming [10], or assume that
nodes are always somehow reachable through a path [18].
No adaptation to heterogeneous or completely ad hoc sce-
narios, with frequent disconnection and periodically isolated
clouds of hosts, has been attempted.

In the remainder of this paper we describe an initial at-
tempt to adapt message oriented middleware to suit mobile
and, more specifically, mobile ad hoc networks. In our case,
we elected to examine JMS, as one of the most widely known
MOM systems. In the latter part of this paper, we explore
the limitations of our results and describe the plans we have
to take the work further.

2. MESSAGE ORIENTED MIDDLEWARE
AND JAVA MESSAGE SERVICE (JMS)

Message-oriented middleware systems support communi-
cation between distributed components via message-passing:
the sender sends a message to identified queues, which usu-
ally reside on a server. A receiver retrieves the message from
the queue at a different time and may acknowledge the reply
using the same asynchronous mechanism. Message-oriented
middleware thus supports asynchronous communication in
a very natural way, achieving de-coupling of senders and
receivers. A sender is able to continue processing as soon
as the middleware has accepted the message; eventually,
the receiver will send an acknowledgment message and the
sender will be able to collect it at a convenient time. How-
ever, given the way they are implemented, these middleware

systems usually require resource-rich devices, especially in
terms of memory and disk space, where persistent queues
of messages that have been received but not yet processed,
are stored. Sun Java Message Service [5], IBM WebSphere
MQ [6], Microsoft MSMQ [12] are examples of very success-
ful message-oriented middleware for traditional distributed
systems.

The Java Messaging Service (JMS) is a collection of inter-
faces for asynchronous communication between distributed
components. It provides a common way for Java programs
to create, send and receive messages. JMS users are usually
referred to as clients. The JMS specification further defines
providers as the components in charge of implementing the
messaging system and providing the administrative and con-
trol functionality (i.e., persistence and reliability) required
by the system. Clients can send and receive messages, asyn-
chronously, through the JMS provider, which is in charge of
the delivery and, possibly, of the persistence of the messages.

There are two types of communication supported: point
to point and publish-subscribe models. In the point to point
model, hosts send messages to queues. Receivers can be reg-
istered with some specific queues, and can asynchronously
retrieve the messages and then acknowledge them. The
publish-subscribe model is based on the use of topics that
can be subscribed to by clients. Messages are sent to topics
by other clients and are then received in an asynchronous
mode by all the subscribed clients. Clients learn about the
available topics and queues through Java Naming and Di-
rectory Interface (JNDI) [14]. Queues and topics are created
by an administrator on the provider and are registered with
the JNDI interface for look-up.

In the next section, we introduce the challenges of mobile
networks, and show how JMS can be adapted to cope with
these requirements.

3. JMS FOR MOBILE COMPUTING
Mobile networks vary very widely in their characteristics,

from nomadic networks in which modes relocate whilst of-
fline through to ad hoc networks in which modes move freely
and in which there is no infrastructure. Mobile ad hoc net-
works are most generally applicable in situations where sur-
vivability and instant deployability are key: most notably in
military applications and disaster relief. In between these
two types of ’mobile’ networks, there are, however, a number
of possible heterogeneous combinations, where nomadic and
ad hoc paradigms are used to interconnect totally unwired
areas to more structured networks (such as a LAN or the
Internet).

Whilst the JMS specification has been extensively imple-
mented and used in traditional distributed systems, adap-
tations for mobile environments have been proposed only
recently. The challenges of porting JMS to mobile settings
are considerable; however, in view of its widespread accep-
tance and use, there are considerable advantages in allowing
the adaptation of existing applications to mobile environ-
ments and in allowing the interoperation of applications in
the wired and wireless regions of a network.

In [10], JMS was adapted to a nomadic mobile setting,
where mobile hosts can be JMS clients and communicate
through the JMS provider that, however, sits on a back-
bone network, providing reliability and persistence. The
client prototype presented in [10] is very lightweight, due
to the delegation of all the heavyweight functionality to the

provider on the wired network. However, this approach is
somewhat limited in terms of widespread applicability and
scalability as a consequence of the concentration of function-
ality in the wired portion of the network.

If JMS is to be adapted to completely ad hoc environ-
ments, where no fixed infrastructure is available, and where
nodes change location and status very dynamically, more
issues must be taken into consideration. Firstly, discovery
needs to use a resilient but distributed model: in this ex-
tremely dynamic environment, static solutions are unaccept-
able. As discussed in Section 2, a JMS administrator defines
queues and topics on the provider. Clients can then learn
about them using the Java Naming and Directory Interface
(JNDI). However, due to the way JNDI is designed, a JNDI
node (or more than one) needs to be in reach in order to ob-
tain a binding of a name to an address (i.e., knowing where
a specific queue/topic is). In mobile ad hoc environments,
the discovery process cannot assume the existence of a fixed
set of discovery servers that are always reachable, as this
would not match the dynamicity of ad hoc networks.

Secondly, a JMS Provider, as suggested by the JMS spec-
ification, also needs to be reachable by each node in the
network, in order to communicate. This assumes a very
centralised architecture, which again does not match the re-
quirements of a mobile ad hoc setting, in which nodes may
be moving and sparse: a more distributed and dynamic so-
lution is needed. Persistence is, however, essential function-
ality in asynchronous communication environments as hosts
are, by definition, connected at different times.

In the following section, we will discuss our experience
in designing and implementing JMS for mobile ad hoc net-
works.

4. JMS FOR MOBILE AD HOC NETWORKS

4.1 Adaptation of JMS for Mobile Ad Hoc
Networks

Developing applications for mobile networks is yet more
challenging: in addition to the same considerations as for
infrastructured wireless environments, such as the limited
device capabilities and power constraints, there are issues
of rate of change of network connectivity, and the lack of a
static routing infrastructure. Consequently, we now describe
an initial attempt to adapt the JMS specification to target
the particular requirements related to ad hoc scenarios. As
discussed in Section 3, a JMS application can use either the
point to point and the publish-subscribe styles of messaging.

Point to Point Model The point to point model is based
on the concept of queues, that are used to enable asyn-
chronous communication between the producer of a message
and possible different consumers. In our solution, the loca-
tion of queues is determined by a negotiation process that
is application dependent. For example, let us suppose that
it is possible to know a priori, or it is possible to determine
dynamically, that a certain host is the receiver of the most
part of messages sent to a particular queue. In this case, the
optimum location of the queue may well be on this particu-
lar host. In general, it is worth noting that, according to the
JMS specification and suggested design patterns, it is com-
mon and preferable for a client to have all of its messages
delivered to a single queue.

Queues are advertised periodically to the hosts that are
within transmission range or that are reachable by means of

the underlying synchronous communication protocol, if pro-
vided. It is important to note that, at the middleware level,
it is logically irrelevant whether or not the network layer im-
plements some form of ad hoc routing (though considerably
more efficient if it does); the middleware only considers in-
formation about which nodes are actively reachable at any
point in time. The hosts that receive advertisement mes-
sages add entries to their JNDI registry. Each entry is char-
acterized by a lease (a mechanism similar to that present
in Jini [15]). A lease represents the time of validity of a
particular entry. If a lease is not refreshed (i.e, its life is
not extended), it can expire and, consequently, the entry
is deleted from the registry. In other words, the host as-
sumes that the queue will be unreachable from that point
in time. This may be caused, for example, if a host storing
the queue becomes unreachable. A host that initiates a dis-
covery process will find the topics and the queues present
in its connected portion of the network in a straightforward
manner.

In order to deliver a message to a host that is not cur-
rently in reach1, we use an asynchronous epidemic routing
protocol that will be discussed in detail in Section 4.2. If two
hosts are in the same cloud (i.e., a connected path exists be-
tween them), but no synchronous protocol is available, the
messages are sent using the epidemic protocol. In this case,
the delivery latency will be low as a result of the rapidity of
propagation of the infection in the connected cloud (see also
the simulation results in Section 5). Given the existence of
an epidemic protocol, the discovery mechanism consists of
advertising the queues to the hosts that are currently un-
reachable using analogous mechanisms.

Publish-Subscribe Model In the publish-subscribe model,
some of the hosts are similarly designated to hold topics and
store subscriptions, as before. Topics are advertised through
the registry in the same way as are queues, and a client
wishing to subscribe to a topic must register with the client
holding the topic. When a client wishes to send a message
to the topic list, it sends it to the topic holder (in the same
way as it would send a message to a queue). The topic
holder then forwards the message to all subscribers, using
the synchronous protocol if possible, the epidemic protocol
otherwise. It is worth noting that we use a single message
with multiple recipients, instead of multiple messages with
multiple recipients. When a message is delivered to one of
the subscribers, this recipient is deleted from the list. In
order to delete the other possible replicas, we employ ac-
knowledgment messages (discussed in Section 4.4), returned
in the same way as a normal message.

We have also adapted the concepts of durable and non
durable subscriptions for ad hoc settings. In fixed platforms,
durable subscriptions are maintained during the disconnec-
tions of the clients, whether these are intentional or are the
result of failures. In traditional systems, while a durable
subscriber is disconnected from the server, it is responsible
for storing messages. When the durable subscriber recon-
nects, the server sends it all unexpired messages. The prob-
lem is that, in our scenario, disconnections are the norm

1In theory, it is not possible to send a message to a peer that
has never been reachable in the past, since there can be no
entry present in the registry. However, to overcome this
possible limitation, we provide a primitive through which
information can be added to the registry without using the
normal channels.

rather than the exception. In other words, we cannot con-
sider disconnections as failures. For these reasons, we adopt
a slightly different semantics. With respect to durable sub-
scriptions, if a subscriber becomes disconnected, notifica-
tions are not stored but are sent using the epidemic proto-
col rather than the synchronous protocol. In other words,
durable notifications remain valid during the possible dis-
connections of the subscriber.

On the other hand, if a non-durable subscriber becomes
disconnected, its subscription is deleted; in other words, dur-
ing disconnections, notifications are not sent using the epi-
demic protocol but exploit only the synchronous protocol. If
the topic becomes accessible to this host again, it must make
another subscription in order to receive the notifications.

Unsubscription messages are delivered in the same way
as are subscription messages. It is important to note that
durable subscribers have explicitly to unsubscribe from a
topic in order to stop the notification process; however, all
durable subscriptions have a predefined expiration time in
order to cope with the cases of subscribers that do not meet
again because of their movements or failures. This feature
is clearly provided to limit the number of the unnecessary
messages sent around the network.

4.2 Message Delivery using Epidemic Routing
In this section, we examine one possible mechanism that

will allow the delivery of messages in a partially connected
network. The mechanism we discuss is intended for the pur-
poses of demonstrating feasibility; more efficient communi-
cation mechanisms for this environment are themselves com-
plex, and are the subject of another paper [13].

The asynchronous message delivery described above is
based on a typical pure epidemic-style routing protocol [16].
A message that needs to be sent is replicated on each host in
reach. In this way, copies of the messages are quickly spread
through connected networks, like an infection. If a host be-
comes connected to another cloud of mobile nodes, during
its movement, the message spreads through this collection
of hosts. Epidemic-style replication of data and messages
has been exploited in the past in many fields starting with
the distributed database systems area [2].

Within epidemic routing, each host maintains a buffer
containing the messages that it has created and the replicas
of the messages generated by the other hosts. To improve
the performance, a hash-table indexes the content of the
buffer. When two hosts connect, the host with the smaller
identifier initiates a so-called anti-entropy session, sending
a list containing the unique identifiers of the messages that
it currently stores. The other host evaluates this list and
sends back a list containing the identifiers it is storing that
are not present in the other host, together with the messages
that the other does not have. The host that has started the
session receives the list and, in the same way, sends the mes-
sages that are not present in the other host. Should buffer
overflow occur, messages are dropped.

The reliability offered by this protocol is typically best ef-
fort, since there is no guarantee that a message will eventu-
ally be delivered to its recipient. Clearly, the delivery ratio
of the protocol increases proportionally to the maximum al-
lowed delay time and the buffer size in each host (interesting
simulation results may be found in [16]).

4.3 Adaptation of the JMS Message Model

In this section, we will analyse the aspects of our adapta-
tion of the specification related to the so-called JMS Message
Model [5]. According to this, JMS messages are charac-
terised by some properties defined using the header field,
which contains values that are used by both clients and
providers for their delivery. The aspects discussed in the
remainder of this section are valid for both models (point to
point and publish-subscribe).

A JMS message can be persistent or non-persistent. Ac-
cording to the JMS specification, persistent messages must
be delivered with a higher degree of reliability than the non-
persistent ones. However, it is worth noting that it is not
possible to ensure once-and-only-once reliability for persis-
tent messages as defined in the specification, since, as we dis-
cussed in the previous subsection, the underlying epidemic
protocol can guarantee only best-effort delivery. However,
clients maintain a list of the identifiers of the recently re-
ceived messages to avoid the delivery of message duplicates.
In other words, we provide the applications with at-most-
once reliability for both types of messages.

In order to implement different levels of reliability, EMMA
treats persistent and non-persistent messages differently, dur-
ing the execution of the anti-entropy epidemic protocol. Since
the message buffer space is limited, persistent messages are
preferentially replicated using the available free space. If
this is insufficient and non-persistent messages are present
in the buffer, these are replaced. Only the successful deliv-
eries of the persistent messages are notified to the senders.

According to the JMS specification, it is possible to assign
a priority to each message. The messages with higher prior-
ities are delivered in a preferential way. As discussed above,
persistent messages are prioritised above the non-persistent
ones. Further selection is based on their priorities. Messages
with higher priorities are treated in a preferential way. In
fact, if there is not enough space to replicate all the persis-
tent messages, a mechanism based on priorities is used to
delete and replicate non-persistent messages (and, if neces-
sary, persistent messages).

Messages are deleted from the buffers using the expiration
time value that can be set by senders. This is a way to free
space in the buffers (one preferentially deletes older mes-
sages in cases of conflict); to eliminate stale replicas in the
system; and to limit the time for which destinations must
hold message identifiers to dispose of duplicates.

4.4 Reliability and Acknowledgment Mecha-
nisms

As already discussed, at-most-once message delivery is the
best that can be achieved in terms of delivery semantics in
partially connected ad hoc settings. However, it is possi-
ble to improve the reliability of the system with efficient
acknowledgment mechanisms. EMMA provides a mecha-
nism for failure notification to applications if the acknowl-
edgment is not received within a given timeout (that can
be configured by application developers). This mechanism
is the one that distinguishes the delivery of persistent and
non-persistent messages in our JMS implementation: the
deliveries of the former are notified to the senders, whereas
the latter are not.

We use acknowledgment messages not only to inform senders
about the successful delivery of messages but also to delete
the replicas of the delivered messages that are still present
in the network. Each host maintains a list of the messages

successfully delivered that is updated as part of the normal
process of information exchange between the hosts. The lists
are exchanged during the first steps of the anti-entropic epi-
demic protocol with a certain predefined frequency. In the
case of messages with multiple recipients, a list of the actual
recipients is also stored. When a host receives the list, it
checks its message buffer and updates it according to the
following rules: (1) if a message has a single recipient and
it has been delivered, it is deleted from the buffer; (2) if a
message has multiple recipients, the identifiers of the deliv-
ered hosts are deleted from the associated list of recipients.
If the resulting length of the list of recipients is zero, the
message is deleted from the buffer.

These lists have, clearly, finite dimensions and are imple-
mented as circular queues. This simple mechanism, together
with the use of expiration timestamps, guarantees that the
old acknowledgment notifications are deleted from the sys-
tem after a limited period of time.

In order to improve the reliability of EMMA, a design
mechanism for intelligent replication of queues and topics
based on the context information could be developed. How-
ever this is not yet part of the current architecture of EMMA.

5. IMPLEMENTATION AND PRELIMINARY
EVALUATION

We implemented a prototype of our platform using the
J2ME Personal Profile. The size of the executable is about
250KB including the JMS 1.1 jar file; this is a perfectly ac-
ceptable figure given the available memory of the current
mobile devices on the market. We tested our prototype on
HP IPaq PDAs running Linux, interconnected with Wave-
Lan, and on a number of laptops with the same network
interface.

We also evaluated the middleware platform using the OM-
NET++ discrete event simulator [17] in order to explore a
range of mobile scenarios that incorporated a more realistic
number of hosts than was achievable experimentally. More
specifically, we assessed the performance of the system in
terms of delivery ratio and average delay, varying the den-
sity of population and the buffer size, and using persistent
and non-persistent messages with different priorities.

The simulation results show that the EMMA’s perfor-
mance, in terms of delivery ratio and delay of persistent
messages with higher priorities, is good. In general, it is
evident that the delivery ratio is strongly related to the cor-
rect dimensioning of the buffers to the maximum acceptable
delay. Moreover, the epidemic algorithms are able to guar-
antee a high delivery ratio if one evaluates performance over
a time interval sufficient for the dissemination of the replicas
of messages (i.e., the infection spreading) in a large portion
of the ad hoc network.

One consequence of the dimensioning problem is that scal-
ability may be seriously impacted in peer-to-peer middle-
ware for mobile computing due to the resource poverty of
the devices (limited memory to store temporarily messages)
and the number of possible interconnections in ad hoc set-
tings. What is worse is that common forms of commercial
and social organisation (six degrees of separation) mean that
even modest TTL values on messages will lead to widespread
flooding of epidemic messages. This problem arises because
of the lack of intelligence in the epidemic protocol, and can
be addressed by selecting carrier nodes for messages with

greater care. The details of this process are, however, out-
side the scope of this paper (but may be found in [13]) and do
not affect the foundation on which the EMMA middleware
is based: the ability to deliver messages asynchronously.

6. CRITICAL VIEW OF THE STATE OF
THE ART

The design of middleware platforms for mobile comput-
ing requires researchers to answer new and fundamentally
different questions; simply assuming the presence of wired
portions of the network on which centralised functionality
can reside is not generalisable. Thus, it is necessary to in-
vestigate novel design principles and to devise architectural
patterns that differ from those traditionally exploited in the
design of middleware for fixed systems.

As an example, consider the recent cross-layering trend in
ad hoc networking [1]. This is a way of re-thinking software
systems design, explicitly abandoning the classical forms of
layering, since, although this separation of concerns afford
portability, it does so at the expense of potential efficiency
gains. We believe that it is possible to view our approach
as an instance of cross-layering. In fact, we have added the
epidemic network protocol at middleware level and, at the
same time, we have used the existing synchronous network
protocol if present both in delivering messages (traditional
layering) and in informing the middleware about when mes-
sages may be delivered by revealing details of the forwarding
tables (layer violation). For this reason, we prefer to con-
sider them jointly as the communication layer of our plat-
form together providing more efficient message delivery.

Another interesting aspect is the exploitation of context
and system information to improve the performance of mo-
bile middleware platforms. Again, as a result of adopting
a cross-layering methodology, we are able to build systems
that gather information from the underlying operating sys-
tem and communication components in order to allow for
adaptation of behaviour. We can summarise this conceptual
design approach by saying that middleware platforms must
be not only context-aware (i.e., they should be able to ex-
tract and analyse information from the surrounding context)
but also system-aware (i.e., they should be able to gather
information from the software and hardware components of
the mobile system).

A number of middleware systems have been developed to
support ad hoc networking with the use of asynchronous
communication (such as LIME, XMIDDLE, STEAM [11]).
In particular, the STEAM platform is an interesting exam-
ple of event-based middleware for ad hoc networks, provid-
ing location-aware message delivery and an effective solution
for event filtering.

A discussion of JMS, and its mobile realisation, has al-
ready been conducted in Sections 4 and 2. The Swiss com-
pany Softwired has developed the first JMS middleware for
mobile computing, called iBus Mobile [10]. The main com-
ponents of this typically infrastructure-based architecture
are the JMS provider, the so-called mobile JMS gateway,
which is deployed on a fixed host and a lightweight JMS
client library. The gateway is used for the communication
between the application server and mobile hosts. The gate-
way is seen by the JMS provider as a normal JMS client. The
JMS provider can be any JMS-enabled application server,
such as BEA Weblogic. Pronto [19] is an example of mid-

dleware system based on messaging that is specifically de-
signed for mobile environments. The platform is composed
of three classes of components: mobile clients implementing
the JMS specification, gateways that control traffic, guar-
anteeing efficiency and possible user customizations using
different plug-ins and JMS servers. Different configurations
of these components are possible; with respect to mobile ad
hoc networks applications, the most interesting is Server-
less JMS. The aim of this configuration is to adapt JMS
to a decentralized model. The publish-subscribe model ex-
ploits the efficiency and the scalability of the underlying IP
multicast protocol. Unreliable and reliable message delivery
services are provided: reliability is provided through a neg-
ative acknowledgment-based protocol. Pronto represents a
good solution for infrastructure-based mobile networks but
it does not adequately target ad hoc settings, since mobile
nodes rely on fixed servers for the exchange of messages.

Other MOM implemented for mobile environments exist;
however, they are usually straightforward extensions of ex-
isting middleware [8]. The only implementation of MOM
specifically designed for mobile ad hoc networks was devel-
oped at the University of Newcastle [18]. This work is again
a JMS adaptation; the focus of that implementation is on
group communication and the use of application level rout-
ing algorithms for topic delivery of messages. However, there
are a number of differences in the focus of our work. The
importance that we attribute to disconnections makes per-
sistence a vital requirement for any middleware that needs
to be used in mobile ad hoc networks. The authors of [18]
signal persistence as possible future work, not considering
the fact that routing a message to a non-connected host will
result in delivery failure. This is a remarkable limitation in
mobile settings where unpredictable disconnections are the
norm rather than the exception.

7. ROADMAP AND CONCLUSIONS
Asynchronous communication is a useful communication

paradigm for mobile ad hoc networks, as hosts are allowed to
come, go and pick up messages when convenient, also taking
account of their resource availability (e.g., power, connectiv-
ity levels). In this paper we have described the state of the
art in terms of MOM for mobile systems. We have also
shown a proof of concept adaptation of JMS to the extreme
scenario of partially connected mobile ad hoc networks.

We have described and discussed the characteristics and
differences of our solution with respect to traditional JMS
implementations and the existing adaptations for mobile set-
tings. However, trade-offs between application-level routing
and resource usage should also be investigated, as mobile
devices are commonly power/resource scarce. A key lim-
itation of this work is the poorly performing epidemic al-
gorithm and an important advance in the practicability of
this work requires an algorithm that better balances the
needs of efficiency and message delivery probability. We
are currently working on algorithms and protocols that, ex-
ploiting probabilistic and statistical techniques on the basis
of small amounts of exchanged information, are able to im-
prove considerably the efficiency in terms of resources (mem-
ory, bandwidth, etc) and the reliability of our middleware
platform [13].

One futuristic research development, which may take these
ideas of adaptation of messaging middleware for mobile en-
vironments further is the introduction of more mobility ori-

ented communication extensions, for instance the support
of geocast (i.e., the ability to send messages to specific geo-
graphical areas).

8. REFERENCES
[1] M. Conti, G. Maselli, G. Turi, and S. Giordano.

Cross-layering in Mobile ad Hoc Network Design. IEEE
Computer, 37(2):48–51, February 2004.

[2] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic Algorithms for Replicated Database
Maintenance. In Sixth Symposium on Principles of
Distributed Computing, pages 1–12, August 1987.

[3] A. Doria, M. Uden, and D. P. Pandey. Providing
connectivity to the Saami nomadic community. In
Proceedings of the Second International Conference on
Open Collaborative Design for Sustainable Innovation,
December 2002.

[4] M. Haahr, R. Cunningham, and V. Cahill. Supporting
CORBA applications in a Mobile Environment. In 5th
International Conference on Mobile Computing and
Networking (MOBICOM99), pages 36–47. ACM, August
1999.

[5] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and
K. Stout. Java Message Service Specification Version 1.1.
Sun Microsystems, Inc., April 2002.
http://java.sun.com/products/jms/.

[6] J. Hart. WebSphere MQ: Connecting your applications
without complex programming. IBM WebSphere Software
White Papers, 2003.

[7] S. Hayward and M. Pezzini. Marrying Middleware and
Mobile Computing. Gartner Group Research Report,
September 2001.

[8] IBM. WebSphere MQ EveryPlace Version 2.0, November
2002. http://www-3.ibm.com/software/integration/wmqe/.

[9] ITU. Connecting remote communities. Documents of the
World Summit on Information Society, 2003.
http://www.itu.int/osg/spu/wsis-themes.

[10] S. Maffeis. Introducing Wireless JMS. Softwired AG,
www.sofwired-inc.com, 2002.

[11] C. Mascolo, L. Capra, and W. Emmerich. Middleware for
Mobile Computing. In E. Gregori, G. Anastasi, and
S. Basagni, editors, Advanced Lectures on Networking,
volume 2497 of Lecture Notes in Computer Science, pages
20–58. Springer Verlag, 2002.

[12] Microsoft. Microsoft Message Queuing (MSMQ) Version
2.0 Documentation.

[13] M. Musolesi, S. Hailes, and C. Mascolo. Adaptive routing
for intermittently connected mobile ad hoc networks.
Technical report, UCL-CS Research Note, July 2004.
Submitted for Publication.

[14] Sun Microsystems. Java Naming and Directory Interface
(JNDI) Documentation Version 1.2. 2003.
http://java.sun.com/products/jndi/.

[15] Sun Microsystems. Jini Specification Version 2.0, 2003.
http://java.sun.com/products/jini/.

[16] A. Vahdat and D. Becker. Epidemic routing for Partially
Connected Ad Hoc Networks. Technical Report CS-2000-06,
Department of Computer Science, Duke University, 2000.

[17] A. Vargas. The OMNeT++ discrete event simulation
system. In Proceedings of the European Simulation
Multiconference (ESM’2001), Prague, June 2001.

[18] E. Vollset, D. Ingham, and P. Ezhilchelvan. JMS on Mobile
Ad-Hoc Networks. In Personal Wireless Communications
(PWC), pages 40–52, Venice, September 2003.

[19] E. Yoneki and J. Bacon. Pronto: Mobilegateway with
publish-subscribe paradigm over wireless network.
Technical Report 559, University of Cambridge, Computer
Laboratory, February 2003.

	Introduction
	Message Oriented Middleware and Java Message Service (JMS)
	JMS for Mobile Computing
	JMS for Mobile Ad hoc Networks
	Adaptation of JMS for Mobile Ad Hoc Networks
	Message Delivery using Epidemic Routing
	Adaptation of the JMS Message Model
	Reliability and Acknowledgment Mechanisms

	Implementation and Preliminary Evaluation
	Critical view of the State of the Art
	Roadmap and Conclusions
	REFERENCES -9pt

