
Adaptable Mobile Applications: Exploiting
Logical Mobility in Mobile Computing

Stefanos Zachariadis, Cecilia Mascolo and Wolfgang Emmerich

Dept. of Computer Science, University College London
Gower Street, London WC1E 6BT, UK

{s.zachariadis,c.mascolo,w.emmerich}@cs.ucl.ac.uk

Abstract. An increasing number of applications is being written for mo-
bile hosts, such as laptop computers, mobile phones, PDAs etc. These
applications are usually monolithic, featuring very limited interoperabil-
ity and context-awareness and are usually difficult to deploy and update.
Application engineers have to deal with a very dynamic set of environ-
ments that these applications are in contact with and it is becoming
increasingly difficult to design an application that will be able to cater
to all the user’s needs in those environments. This new setting forces
a shift from design-time to run-time effort in developing software sys-
tems. To solve these problems and to allow a new class of ubiquitous and
adaptable applications to be built, we have designed and implemented
satin, a middleware system that allows the flexible use of logical mobility
techniques by applications running on mobile hosts which are connected
to very different networks. In this paper we describe our approach and
show how satin can be used to deploy and update applications on mobile
devices easily and efficiently.

1 Introduction

With the recent developments in wireless networks (Wavelan, Bluetooth) and
the sales of mobile computers of any kind (such as laptop computers, Personal
Digital Assistants (PDAs), mobile phones etc.) soaring, we are experiencing the
availability of increasingly powerful mobile computing environments which are
exposed to an increasingly dynamic setting. As such, a new highly mobile sce-
nario for mobile devices and applications is being created, potentially allowing
for interaction with and adaptability to any changes in their setting, or the devel-
opment of context-aware applications. The major characteristic of this scenario,
is heterogeneity, in the software, hardware and networking levels as the devices
that form it are composed of a large number of different applications, middle-
ware systems and hardware and can access different networking infrastructures.
This new setting forces a shift from design-time to run-time effort in develop-
ing software systems. The current industry state of the art proposes monolithic
applications which feature little to no interoperability, forcing application de-
velopers to anticipate at the design stage what possible uses their software will
have throughout its lifetime. To tackle the issues arising from such heterogeneity,



there is a need to create software systems that can automatically adapt to tackle
changes to the environment and to users’ needs. We have also recently witnessed
the acceptance of logical mobility (LM) techniques, or the ability to ship part
of an application or even a complete process from one host to another. As such,
LM techniques have been successfully used to enhance a user’s experience (Java
Applets), to dynamically update an application (Anti-Virus software etc.), to
utilise remote objects (RMI, Corba, etc), to distribute expensive computations
(Distributed.net) etc. Whereas various mobile middleware systems have been de-
veloped, the use of LM in those systems has been very limited. We wish to show
that providing the flexible use of LM primitives to mobile computing applica-
tions through a middleware system, will allow for a greater degree of application
dynamicity, will provide new ways to tackle interoperability and heterogeneity
as well as ease deployment. Section 2 continues with an introduction to LM as
well as a summary of limitations of related work. Section 3 presents a case study
for deploying applications on cellular phones. Section 4 identifies and describes
the principles of our approach, while Section 5 describes how it can be used.

2 Background and Related Work

LM (LM) is defined as moving parts of an application or migrating a complete
process from one processing environment to another. It has been classified[5]
into the following set of paradigms: Client - Server (CS), a popular paradigm
in traditional distributed systems, dictates the execution of a unit of code in a
server, triggered by a client, which may receive any result of that execution. The
most common example of this paradigm is the use of Remote Procedure Calls
(RPCs). Remote Evaluation (REV) dictates that a host sends a particular unit
of execution to be executed in another host. A result may or may not be needed,
depending on the application. This paradigm is employed by Distributed.NET,
Seti@Home and other similar distributed computing environments. In the Code
on Demand (COD) paradigm, a host requests a particular unit of code from an-
other machine, which is then shipped to the original host and executed. This is
an example of dynamic code update, whereby a host or application can update
its libraries and available codebase at runtime. Many examples of COD have
recently emerged, due to the popularity of Java and its built-in class loading
mechanism and object serialisation framework. A Mobile Agent (MA), is an au-
tonomous execution unit. It is injected into the network by a host, to perform
some tasks on behalf of the user or an application. The agent can migrate from
a processing environment or host to another. The application of LM in Mobile
Computing context has, up to now, been quite limited. Some research investigat-
ing the subject has, however, been carried out. Current efforts into this area can
be roughly grouped into two categories: Approaches which use LM to provide re-
configurability in the mobile computing middleware itself, allowing applications
to interact with services provided by heterogeneous platforms and middleware
systems, and approaches that use certain paradigms of LM to provide particular



functionality to applications. Examples of the first category include ReMMoC[3],
a middleware platform which allows reconfiguration through reflection and com-
ponent technologies. It provides a mobile computing middleware system which
can be dynamically reconfigured to allow the mobile device to interoperate with
any middleware system that can be implemented using OpenCOM components.
UIC[8], another example in the first category, is a generic request broker, defining
a skeleton of abstract components which have to be specialised to the particu-
lar properties of each middleware platform the device wishes to interact with.
Examples of the second category include Lime[7], PeerWare[4] and Jini[2]. Lime
is a mobile computing middleware system that allows mobile agents to roam to
various hosts sharing tuple spaces. PeerWare allows mobile hosts to share data,
using REV to ship computations to remote sites hosting the data. Jini is a dis-
tributed networking system, which allows devices to enter a federation and offer
services to other devices, or use COD to utilise services that are already offered.
The problem of these approaches with respect to our work is that their use of
LM is limited to solving specific problems of a limited scope. For example, Jini
uses COD to offer services, and PeerWare uses REV to distribute computations.
What the middleware system described in this paper does, is to provide the
flexibility to offer the solutions that previous approaches do, but its use is not
limited to these, as will be made clear in the following sections.

3 Case Study: Deploying Software on Mobile Phones

Mobile phones are becoming increasingly powerful: State of the art phones fea-
ture a fast CPU, large amounts of memory, are usually equipped with a number
of networking interfaces, like IrDA, Bluetooth and GSM/GPRS and can mediate
packets between the different networks. Hence, in addition to being able to con-
nect to the network operator, modern phones have the ability to form Ad-Hoc
networks with other devices that are in reach. These networks are very hetero-
geneous: Different hardware manufacturers provide different devices to users,
equipped with different operating and middleware systems, as well as applica-
tions. Moreover, the environment to which these devices are exposed is inherently
dynamic, as they are meant to be carried wherever the user goes. There have
been some approaches that promote interoperability between applications run-
ning on mobile phones allowing for data synchronisation[6]; However, very few
users actually update the software on their phones and mobile applications rarely
react to their context and interact with each other. Industry state of the art mo-
bile application development usually features large monolithic applications with
very little code reusability.

Unfortunately, installing new applications and updating existing ones is still
difficult. As a matter of fact, the only popular update is the download of ring
tones and games to mobile phones. The source of the download is usually the
network operator (see Figure 1(a)), and the cellular bandwidth, which is very
expensive for both the user and the operator, is used for the transfer. This lim-
ited approach does little to tackle the problems of heterogeneity and context



operator

operator

Fig. 1. (a) Deploying applications (ring tones & games) to mobile phones. Even though
the phones can communicate directly using Bluetooth, they are all downloading the ap-
plication from the network operator using the cellular network.(b) Possible application
deployment and update: dotted lines represent security certificate download (verifying
the authenticity of the code). Solid lines represent update download

awareness mentioned in Section 1. As such, the rich resources that these de-
vices provide are not used and users experience very little context interaction.
These devices are powerful enough to be used for various augmented reality ap-
plications such as interactive museum guides and tourist guides, media players
which dynamically learn new codecs and interact with various services on various
middleware platforms (for example a printer in a Jini system).

We believe that a better scenario would be if the devices were to form peer-
to-peer networks, where each phone can use others which are currently in reach
to dynamically update itself. Advertising and discovery mechanisms would al-
low applications to search for particular functionality from peers and download
it when needed, as well as react to any change in context. Upon entering a par-
ticular building for instance, the user would be able to interact using his or her
mobile phone with services offered inside the building. The network operator
could be used to provide some form of digital certificate as to guarantee the
authenticity of the code. Charging for this service would still be feasible, as the
provider could charge for the certificate. Popular applications would be easy to
locate in the peer to peer network. Less popular ones would still need to be
downloaded from the network operator or another centralised service. Figure
1(b) illustrates an instance of this scenario.

Advantages of this approach include efficient use of networking bandwidth
as well as automated application update & reaction to context. It constitutes
the use of LM primitives (COD specifically), in a mobile environment and it
requires host & functionality identification, a way to pack, request, sign and
ship this functionality, an advertising & discovery service and the ability to add
functionality to the middleware at runtime.

4 Principles and The satin Architecture

To allow adaptation and flexibility in mobile applications and to realise the sce-
nario mentioned above, we have identified a number of principles which we have
implemented in our middleware system, satin. We give details of these princi-
ples below.



Datalink Layer

Network Layer

Transport Layer

Application Layer

Presentation Layer

Session Layer

Psysical Layer

SATIN

Hardware

Host Operating 
System

SATIN Core (Capability)

Capabilities

Advertisable Extendable Advertising &
Discovery

Applications

Fig. 2. (a) Our architecture in the context of the ISO/OSI networking model. satin
capabilities represent the network, transport, session and presentation layers. (b)
A high level view of satin. It is composed of modules, or capabilities, registered with
a core.

Modularisation
For this approach to operate, we require the modularisation of both applica-
tions and the middleware system itself into a series of modules, or capabilities.
A capability is a unit that provides a specific functionality to the user, the mid-
dleware or to other applications and adheres to a specific interface. As such,
capabilities can range from a discovery technique, to a compression algorithm
implementation, all the way to to a calendaring application.

The capabilities that are available to a particular host are registered with
the host’s registry, or core. The core is also a capability. An instance of satin
is statically configured, if the core does not allow for the registration of new
capabilities at runtime. Alternatively, it is dynamically configured. A reference
to the handler of any capability is available to all capabilities that are registered
with the core. We use a string identifier, to register capabilities with the core,
which requires unique identification for each capability. As such, we do not allow
for the existence of two different capabilities with the same identifier on a single
host (a locally unique identifier). On the contrary, we propose the registration of
the identifier on a centralised database, similar to the CreatorID that PalmOS[1]
applications have (a globally unique identifier). The identifiers are thus defined by
the Capability developers and checked with a centralised database to verify their
uniqueness. Moreover, we allow for differentiating between revisions, or versions
of each capability, by means of a version identifier. Note that implementations
of the core can be distributed and not reside on the same host as the capabilities
that are registered with it.

Sharply contrasted with the monolithic application development that is the
current state of the art, this approach has various advantages. Considering that
satin encourages and allows the addition of new capabilities at runtime, the
identification approach allows for easily building dependency graphs of capabili-
ties, which allows us to know whether a capability will be usable on a particular
host. Moreover, it allows for identifying a capability without transmitting its
interface. This decoupling approach combined with versioning allows for fine-
grained application update and deployment, whereby we can update individual
components of applications and libraries at runtime.
Advertising & Discovery
As our goal is to promote interoperability, adaptation and flexibility to mobile



applications, it is important to be able to advertise and discover what function-
ality and or services are in reach. Moreover, as we are dealing with such a het-
erogeneous environment, it is expected that there will be many different ways to
do advertising and discovery: We might use broadcast or multicast techniques,
registration to and querying from a centralised server, or even interoperation
with an existing middleware system, such as Jini. The modularised infrastruc-
ture described above lends itself to this, as satin represents different discovery
and advertising techniques as different capabilities, which can be added to a host
dynamically when needed.

In satin, different functionalities are represented by different capabilities.
Capabilities which wish to advertise their presence and some information about
their functionality to other hosts are termed Advertisable Capabilities (see Fig-
ure 2). All advertisable capabilities have to define a text message that will be
used to describe the capability. The message is encoded in XML. For example, let
us assume an FTP capability, which provides an FTP server facility that wants
to be advertised. In this scenario, the capability’s message might be formated
as <port>21<port><anonymous/>. This would imply that the server is listening
on port 21 and allows for anonymous access. Herein lies the importance of global
identifiers: If the FTP capability is registered and has a global identifier, hosts
which receive this message can decode its meaning.

This approach decouples the advertising message from the advertising and
discovery mechanisms. Advertisable Capabilities can decide which Advertiser to
allow advertising them. An advertiser which is allowed to advertise a capability,
receives the message from it, adds some information regarding the advertis-
able capability itself, and then sends it over the network. For example the FTP
message given above would become <capability id=’’FTP’’, version=’’0’’>

<port>21</port> <anonymous/> </capability>. The advantages of our approach
to advertising and discovery are that by representing the advertising and dis-
covery techniques as modules, we tackle the problem of network heterogeneity
and allow devices to advertise and discover functionality that is available within
their current reach using various different mechanisms which can be installed and
removed when needed. Moreover, by decoupling the advertising message from
the advertising mechanism, we promote standardisation on describing a capa-
bility regardless of the networking medium and mechanism it is advertised and
discovered with, making it easier for developers to advertise their functionality
and use others that are available. Note that an advertiser can be an advertisable
capability itself. This can allow devices to learn of particular advertising tech-
niques (multicast groups for example) which are currently in reach.
Application Adaptability through Logical Mobility
Using abstractions defined by modern programming languages, we can define
the following logical items that can be transferred across the network: Classes,
Objects, Remote Procedure Calls (RPC) and Application Data. Note that in
this context, application data may include code that cannot be directly mapped
to the underlying platform (sending Python code to a Java runtime for ex-
ample). We define a Logical Mobility Unit (LMU) as a combination of any



of the above. In a mobile computing scenario, we add an extra dimension to
the LM paradigms described above, the communication semantics. In a tradi-
tional distributed system (DS) synchronous communications is the most common
communication paradigm, given the reliability of the network connection. In a
mobile distributed system however, we are encountering both synchronous and
asynchronous communications, with the latter being the norm, as mobile con-
nectivity is usually fluctuating and error-prone. When tackling LM, there are
more considerations that we need to take into account including how to use the
received LMU, how to identify an LMU so that we are able to request it, how to
formulate and structure an LMU for transfer and how to verify that the target
platform is able to execute the received LMU, a problem arising from hardware
and software heterogeneity. satin is well-suited for the construction of LMUs,
because is promotes decoupling of applications into discrete modules of spec-
ified functionality, which we can identify and build dependency trees for. We
represent LMUs as a container and provide mechanisms to specify the source
and target hosts, the size of the unit when transfered and when deployed, an
unpacker which can be used when the target host does not know how to utilise
and deploy the unit received and an optional digital signature, specifying the
validity of the LMU.

Recipients of LMUs can range from the core to any other capability present.
Capabilities that can receive LMUs are called extendable capabilities (see figure
2). To use the LM mechanisms that we provide, capabilities need to use the
LM Deployment Capability (LMDC). The LMDC is responsible for requesting,
creating, sending, receiving and deploying LMUs to the appropriate extendables.
The LMDC can do both synchronous and asynchronous transfer of LMUs, and
allows extendables to query an LMU that is targeted at them before accepting
it. A dynamically configured instance of satin must have an LMDC.

The advantages of this approach include that we have the flexibility of sending
any logical part of an application to appropriate recipients flexibly, allowing
for identification and security and for the building of dependency graphs of a
particular unit. We also allow for inspection and rejection of LMUs by extendable
capabilities, as well as for utilisation even if the recipient does not know how to.
Our unpacker can be used to send threads around the network and our approach
also allows for the arbitrary grouping of any logical parts as the situation may
dictate.

5 Application deployment through satin

This section describes application deployment and updating on cellular phones,
using the terminology of the principles we defined on Section 4.

Let us assume a mobile phone user, with a dynamic instance of satin and a
media player application installed, using “MPLAYER” as capability identifier.
“MPLAYER” is an extended capability, as it can be updated with new codecs.
The telephone is equipped with a Wavelan card. The user decides to attend
a conference. At the conference, there is a computer, also running satin, that



operator operator operator operator

Fig. 3. (a) The conference computer’s advertising service (“MULTICASTADV”) reg-
isters its existence with the network operator. (b) The media player (“MPLAYER”)
running on the mobile phone queries the network operator for any other advertising
services in the area, receives the capability “MULTICASTADV”, gets charged for it
and initialises it, so that it can listen to any other advertised services. (c) “MPLAYER”
finds out about the stream and gets the theora codec (“THEORA” capability) from
the conference computer. (d) “MPLAYER” receives a certificate for “THEORA”,
gets charged for it and receives the stream.

streams live videos of the presenters over Wavelan, so that attendees can get a
better look of the presenter, or perhaps save the stream for later viewing, in-
stead of taking notes. The user wishes to utilise this service, but there are the
following problems: The service is advertised in a multicast group and the media
player does not know which one. Moreover, the media player does not have the
appropriate codec (say, theora) to display the video. We assume two advertising
and discovery mechanisms, the first one registering and querying capabilities to
and from a centralised host (the mobile phone operator) with identifier “CEN-
TRALADV” and a multicast group discovery and advertising mechanism, with
capability identifier “MULTICASTADV”. The core’s identifier is “CORE”. We
present a solution to this problem, using satin. Although some of the approaches
described in section 2 could potentially be used to tackle this problem, the solu-
tions would be too application dependent and not as flexible, forcing developers
to take a number of limiting choices at design time. We illustrate the deployment
of capabilities on the hosts on figure 4. Our solution is described below.

The conference’s machine has an advertisable capability, “STREAM”. Its ad-
vertisable message shows the location of the stream in the local network and the
codec used. It only allows the “MULTICASTADV” advertiser to advertise it.
“MULTICASTADV” is an advertisable capability itself, advertising the group
and port it is advertising to. The “CENTRALADV” advertiser, advertises the
existence of any advertisable capabilities that allow it to advertise them, to the
cellular network’s operator1. In this case, the only capability is “MULTICAS-
TADV” which is thus registered with the cellular network’s operator servers. The
capabilities that “MULTICASTADV” advertises are “STREAM” and “THE-
ORA” and their advertisable messages are periodically multicast to the group.

1 This example assumes that the conference’s computer will advertise its existence to
the cellular network’s operator. Obviously this is an oversimplification and done for
explanation purposes



Phone

Conference

STREAM

THEORA

MULTICASTADV

CENTRALADV

MPLAYER CENTRALADV

Phone

MPLAYER CENTRALADV

THEORA MULTICASTADV

Fig. 4. (a) The deployment of capabilities before the update. (b) The deployment of
capabilities on the phone, after the update.

Upon entering the conference, the user wishes to use “MPLAYER” to view the
stream. He/she has the application find any available streams. “MPLAYER”
queries all discovery services (“CENTRALADV” in this case), for the existence
of any “STREAM” capability. It is not found and thus “MPLAYER” uses “CEN-
TRALADV” to query for the existence of any other advertising service, currently
in reach. “CENTRALADV” shows that there is an discovery service currently
in reach, “MULTICASTADV”. However, the mobile phone does not have the
“MULTICASTADV” capability so it requests it from the mobile phone op-
erator using the local LMDC. The phone operator sends an LMU containing
“MULTICASTADV”, a digital signature verifying the code’s validity, and spec-
ifies the “CORE” as the deployment target, charging the user accordingly. The
LMU also contains an unpacker, that deploys and initialises the “MULTICAS-
TADV” on the local core. The LMDC receives the LMU, and notifies the target
(“CORE”). It accepts it, seeing that the source is the network operator and
the unpacker deploys it. MPLAYER initialises “MULTICASTADV” with the
information received from its advertisable message, and has it listen to the local
multicast advertising group. “MULTICASTADV” notifies “MPLAYER” of the
existence of the “STREAM” capability. “MPLAYER” then presents the descrip-
tion of the capability to the user, who decides that it is the stream he/she wants.
“MPLAYER” analyses the advertising message of “STREAM” and realises that
it does not have the theora codec. However, the codec, encapsulated by the
advertisable capability “THEORA” is available from the conference’s computer.
“MPLAYER” uses the local LMDC again to request capability “THEORA” from
the computer. The computer’s LMDC packages “THEORA” into an LMU and
sends it to be deployed at “MPLAYER”. The phone’s LMDC receives “THE-
ORA” and asks the network operator to verify the validity of the code. The
operator verifies this and again charges the user. The LMDC then deploys the
codec to “MPLAYER” which can now display the stream.

6 Conclusion and Future Work

The use of LM techniques in traditional systems and networks is well under-
stood and has been extensively used. As such, its advantages are well known.



The novelty of our approach, is that we provide the ability to build adaptable
applications by providing the flexible use of LM techniques, using an architec-
ture that caters for the heterogeneity that this computing scenario entails. This
differs from other approaches in that we provide a complete architecture for
mobile computing applications together with an engineering approach, that is
specifically geared for mobile applications that can use LM techniques and we
do not place any limitations in the use of those techniques. We have showed the
flexibility of the approach in allowing the development of adaptable and context-
aware applications, as well as dynamically deploying functionality when needed.
We believe that satin can be used to build a new class of self-organising systems
and self-healing and context-aware mobile applications. The advantages of this
flexibility are many: They include improvements in ease of use, better use of
limited local and peer resources, more efficient use of the network resources etc.
We have implemented satin in Java and have been able to run preliminary tests
on laptops and PDAs. The current build weighs at around 100KB, including a
number of capabilities. We also have some preliminary numbers: The middle-
ware and a sample application takes 1155KB of heap memory and transfer and
installation of a single capability takes 1452ms, on an unoptimised build over
Ethernet. We plan on developing more applications based on our approach that
promote interoperability exhibit dynamic behaviour as well as to better evaluate
performance and scalability, using a number of devices as well as simulation.
Acknowledgements. We would like to acknowledge Licia Capra for her help and

comments on a draft to this paper. This work is being sponsored by EPSRC grant

number R70460.

References

1. Palmsource developers program. http://www.palmsource.com/developers/.
2. K. Arnold, B. O’Sullivan, R. W. Scheifler, J. Waldo, and A. Wollrath. The Jini[tm]

Specification. Addison-Wesley, 1999.
3. L. Capra, G. S. Blair, C. Mascolo, W. Emmerich, and P. Grace. Exploiting reflec-

tion in mobile computing middleware. ACM SIGMOBILE Mobile Computing and
Communications Review, 1(2).

4. G. Cugola and G. Picco. Peer-to-peer for collaborative applications. In Proceedings
of International Workshop on Mobile Teamwork Support, Collocated with ICDCS’02,
July 2002.

5. A. Fuggetta, G.P. Picco, and G. Vigna. Understanding Code Mobility. IEEE Trans.
on Software Engineering, 24(5).

6. C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich. XMIDDLE: A Data-
Sharing Middleware for Mobile Computing. Int. Journal on Personal and Wireless
Communications, April 2002.

7. Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. Lime: A Middle-
ware for Physical and Logical Mobility. In Proceedings of the 21st International
Conference on Distributed Computing Systems (ICDCS-21), May 2001.

8. M. Roman, F. Kon, and R. H. Campbell. Reflective middleware: From your desk to
your hand. IEEE Distributed Systems Online Journal, Special Issue on Reflective
Middleware, July 2001.


