
1

Dynamic Reconfiguration
in the RUNES Middleware

Geoff Coulson#, Richard Gold†, Manish Lad†, Cecilia Mascolo†, Luca Mottola∗,
Gian Pietro Picco∗, and Stefanos Zachariadis†

#Lancaster University †University College London ∗Politecnico di Milano
geoff@comp.lancs.ac.uk c.mascolo@cs.ucl.ac.uk picco@elet.polimi.it

Abstract— Next generation embedded systems will be
composed of large numbers of heterogeneous devices.
These will typically be resource-constrained (such as sensor
motes), will use different operating systems, and will be
connected through different types of network interfaces.
Additionally, they may be mobile and/or form ad-hoc
networks with their peers, and will need to be adaptive to
changing conditions based on context-awareness.

As an example of these system we consider disaster re-
covery scenarios where large numbers of different devices
need to interconnect in an ad-hoc manner. In this respect,
our goal is the provisioning of a middleware framework
for such system environments. Our approach is based on
a small and efficient middleware kernel supporting highly
modularised and customisable component-based middle-
ware services. These services can be tailored for specific
embedded environments, and are runtime-reconfigurable
to support adaptivity.

This paper describes a demonstration that highlights
some of the features available in our middleware. In
particular, we focus on heterogeneity handling by showing
our middleware running on resource-rich as well as
resource-constrained devices, and on adaptivity features
by demonstrating runtime reprogramming and on-the-fly
component deployment.

I. INTRODUCTION

Miniature computing devices are being embedded in
an increasing range of objects around us including home
appliances, cars, transport infrastructures, buildings, and
people. Furthermore, the networking of such embedded
environments is enabling advanced scenarios in which
devices leverage off each other and exhibit autonomous
and coordinated behaviour to solve complex tasks.. Re-
cent developments in wireless networking are pushing
these trends even further by enabling new application
scenarios, as witnessed by the recent surge of interest in
wireless sensor networks.

However, research into such networked embedded en-
vironments has so far focused much on the development
of miniaturised devices with increasingly powerful and
general capabilities. As a result, the software fabric that

ultimately makes innovative applications possible has
tended to be overlooked. Instead, software is typically
developed in an ad-hoc fashion, with little or no provi-
sion for reusable services and abstractions. Furthermore,
even where attempts have been made to provide such
features, the range of devices involved in networked
embedded environments inevitably leads to significant
complexity in appropriately configuring, deploying, and
dynamically reconfiguring the software. There is there-
fore a need for dedicated middleware platforms for net-
worked embedded systems, providing abstractions that
can span the full range of heterogeneous systems, and
offering consistent mechanisms with which to configure,
deploy, and reconfigure dynamically both system and
application level software.

The work discussed in this paper is addressing the
need for such middleware platforms. The work is being
carried out in the context of the EU-funded RUNES
project (Reconfigurable, Ubiquitous, Networked, Em-
bedded Systems) [1], which has the goal of developing
an architecture for networked embedded systems that en-
compasses dedicated radio layers, networks, middleware,
and specialised simulation and verification tools.

Our middleware platform, which is at the heart of the
RUNES architecture, is component-based and encapsu-
lates the functionality provided by its various compo-
nents behind well-defined interfaces [2]. This decoupling
not only enables one to deploy different variants of the
same component (e.g., tailored to a specific device type),
but also enables dynamic reconfiguration of component
instances and their interconnections. This provides sup-
port for dynamic adaptation to changing conditions — a
fundamental requirement in the context-aware scenarios
typical of networked embedded systems.

Our work in the scope of the project is motivated by
a realistic application, for which our middleware was
developed: a tunnel fire scenario, where the tunnel is
instrumented with sensor nodes that report to a central
controller when possible, but that can dynamically adapt
their behaviour to report to firefighters entering the



2

tunnel in groups to rescue the situation. The middleware
needs to allow communication among different devices,
and must allow adaptation of behaviour in a context-
aware manner.

This paper describes a demonstration of a subset
of the aforementioned features. In particular, we use
commercially available “mote” nodes as the sensors
in the tunnel, and laptops to represent the firefighters.
A minimal software configuration on the sensor nodes
allows to perform data reporting under normal operating
conditions. Nevertheless, as soon as the firefighters enters
the tunnel, they are able to dynamically reprogram
the motes to change their behavior according to the
needs arising in the emergency situation. In addition,
we also show how the firefighters are able to share
the data sensed by nearby sensor nodes to coordinate
their actions. This is achieved thanks to a reconfigurable
communication infrastructure, that is able to provide
communication among the rescue team members despite
their physical mobility.

In Section II we first present the tunnel fire scenario
in detail. Then, in Section III we describe our solutions
to the challenges inherent with the scenario, and how we
actually demonstrate them. Finally, Section IV describes
the details regarding the components we implemented
for this demonstration.

II. REFERENCE SCENARIO

The general scenarios we envisage are heterogeneous
in terms of resources, networking interfaces and op-
erating systems. Our design and development work is
grounded in a number of networked embedded systems
scenarios that we employ throughout the RUNES project.
The most prominent of these is a road transport infras-
tructure based scenario in which a road tunnel is instru-
mented with sensors and actuators to detect and guard
against potential disasters arising from events such as fire
or chemical spillage. More specifically, the road tunnel is
instrumented with a number of sensors (e.g., temperature
sensors and sensors to detect toxic fumes) that feed
data back to a tunnel control centre. In addition, there
are various actuators present such as fire sprinklers and
road traffic management signs. To maximise resilience
in disaster situations, these sensors and actuators are
interconnected using redundant network technologies —
both wired and wireless.

In the event of a disaster occurring, the sensor and
actuator networks may become partitioned and may thus
need to reconfigure themselves to maintain their opera-
tional status. Furthermore, sensor and actuator devices
may need to be brought under the direct control of

Fig. 1. Demo setup.

emergency personnel such as firefighters, and this may
require further ad-hoc networks to be established and
may additionally require that sensors be dynamically
reprogrammed — for example, firefighters may need to
poll sensor devices rather than wait for periodic push-
based reports, and this may require new software to be
loaded onto the sensors.

Scenarios such as this are clearly highly heteroge-
neous. They involve a range of sensor and actuator
devices which may run different operating systems and
programming languages. They also clearly involve het-
erogeneous networks: wired, infrastructure-based wire-
less, and ad-hoc wireless. Furthermore, such scenar-
ios are highly dynamic—especially during emergency
situations—and thus require to be highly adaptive and
reconfigurable. Networks must be repaired, reconfigured
and instantiated, new devices must be accommodated
(e.g., devices on vehicles or attached to firefighters), and
new software must be loaded onto devices. These are
precisely the types of characteristics that our middleware
platform is addressing.

III. DEMO OVERVIEW

To highlight the aforementioned challenges in a real
demonstration, we devised a setup in which the firefight-
ers are represented using 2 laptop PCs, and the sensing
devices in the tunnel are represented by a number of
TMote Sky nodes, as illustrated in Figure 1. Link layer
connectivity between the firefighters’ laptops and the
tunnel motes is achieved by relying on a “proxy mote”
attached to the laptops via a USB cable. This mote does
not perform any specific action, it simply acts as an
antenna to allow communication with the motes in the
tunnel. The remaining laptop represents the coordinator
of the emergency team. As such, it does not have direct



3

access to the motes, but instead receives notifications
from the other laptops.

Some of the most difficult technical issues in the
aforementioned scenario lie in letting different devices
co-operate seamlessly, in reconfiguring sensor behavior
under emergency conditions, and in supporting informa-
tion sharing among firefighters. In our demonstration,
these challenges are faced by exploiting the RUNES
middleware as follows:

Heterogeneity. Device heterogeneity is handled by
exploiting different implementations of the RUNES mid-
dleware. In particular, the firefighter laptops run the Java
version of the middleware, whereas the sensing devices
run the Contiki version. Even if these implementations
clearly differ in the underlying technology used, they
nevertheless provide the same, simple, component-based
programming environment to the application developers.
This is centered around the notion of Component as an
encapsulated unit of functionality and deployment. The
functionality a component provides is made available to
other components through a set of Interfaces. Dually,
components can exploit functionality provided by other
components through the use of Receptacles, i.e., required
interfaces. When a component relies on the functionality
provided by another, the two must be explicitly associ-
ated through a Bind operation the RUNES middleware
provides1.

Our component model is simple enough to be im-
plemented on a wide range of devices, from powerful
laptops up to resource constrained devices, while also
being expressive enough to allow for a wide range of
mechanisms to be implemented in terms of components.
Thank to this, the programmers can face the hetero-
geneity of multiple operating systems and programming
languages by relying on the same set of programming
abstractions.

Software Reconfiguration. While a number of com-
ponents can be defined to overcome the aforemen-
tioned challenges, it is not possible for all of them to
be available simultaneously on the relatively resource-
constrained sensor devices. However, the RUNES com-
ponent model fosters the development of loosely coupled
components, that are able to function independently.

In our demonstration, sensor nodes operating under
normal conditions run with a basic set of components
that include a component to take periodic measurements,
and a component implementing a form of unicast com-
munication to report data to the tunnel control centre.
Under emergency situations, we assume each firefighter

1Further details on the RUNES component-model and program-
ming abstractions can be found in [2].

is interested in readings sensed by nearby motes. To this
end, as soon as a firefighter’s laptop enters the commu-
nication range of a mote, it dynamically deploys a com-
ponent implementing a publish-subscribe [4] paradigm.
This component either complements or replaces the
existing reporting mechanism, and allows sensor data
to be locally broadcast and thus made available to the
firefighters.

The runtime supporting the RUNES middleware al-
lows pairs of components to bind and re-bind dynam-
ically to one another. So, initially, the measurement
component is bound to the unicast notification com-
ponent. However, when the publish-subscribe compo-
nent is uploaded dynamically on a sensor node, the
measurement component re-binds dynamically to the
interface provided by the publish-subscribe component.
This allows a transparent change to occur in the method
of measurement data dissemination.

Topological Reconfiguration. The firefighters laptops
form a mobile ad-hoc network. Information dissemina-
tion within this network is achieved across multiple hops
through a content-based publish-subscribe infrastructure,
implemented as a set of RUNES components. This
allows for a different form of reconfiguration, which now
does not affect the software running on a single node,
but instead how different nodes communicate with each
other in a mobile environment.

Once the publish-subscribe component is deployed on
the motes, these start to broadcast locally their readings.
When a firefighter’s laptop receives these data from
a mote, it disseminates the information by publishing
messages. The publish-subscribe infrastructure then de-
livers the messages to only the interested firefighters,
determined according to the subscriptions they expressed
up to that moment. This is achieved using a form of
subscription forwarding on a tree-shaped overlay.

In the demonstration, we show how this communi-
cation infrastructure can cope with the mobility of the
firefighters. To this end, laptops are physically moved or
turned off to show reconfiguration of the event dissemi-
nation routes. This is achieved using a self-reconfiguring
tree overlay, whose mechanisms are explicitly devised
for content-based routing in mobile environments [5],
joint with an efficient scheme to reconfigure subscription
routes established on top of the overlay [6].

IV. COMPONENTS AND INTERACTIONS

The RUNES component model allows us to overcome
the aforementioned challenges in a light-weight, flexible
and incremental manner. Here, we detail on a number
of components used in our demonstration, and illustrate
how they interact dynamically with one another.



4

A. Sensor Node Components

Measurement Data Collection. The measurement
component encapsulates the functionality to obtain read-
ings from the sensor hardware and to process them for
dissemination. It is implemented in C/Contiki [3] as a
RUNES component, and defines a process thread that is
executed automatically on instantiation. This essentially
runs an infinite loop that clears existing buffers, takes
measurement readings, evaluates the current operational
status based on these readings, formats readings for dis-
semination, and initiates dissemination through a generic
notify() interface call.

Under normal operating conditions, measurement
readings are taken and reported at a regular pre-defined
interval. However, under emergency conditions, it is
essential to gather as much accurate and up-to-date in-
formation as possible. So, the abnormal sensor readings
result in a change in the evaluated operational status, that
triggers a reduction in the interval that measurements are
taken, allowing more frequent measurement readings to
be disseminated. The granularity of operational status is
controlled within the component code itself, thus several
different operational levels could be defined, adjusted
and used.

Measurement Data Dissemination. Measurement
dissemination is performed differently depending on the
type of dissemination required. Under normal operating
conditions, a unicast notification component is present
for the transmission of measurement readings to the
tunnel control centre. It provides the generic interface
notify() that takes in parameters indicating the type
of notification and the actual data. After constructing
a measurement data packet ready for transmission, a
packet brokering component undertakes a unicast trans-
mission of the measurement data packet.

Conversely, the publish-subscribe component the fire-
fighters deploy onto sensor nodes enables the additional,
local broadcast of measurement readings. This can be
received by the firefighters whose proxy mote is in range
of the sensor mote, so that the measurement readings
can be disseminated also among firefighters according
to their interests.

B. Laptop Components

Publish-Subscribe Infrastructure To implement sub-
scription forwarding in mobile environments across mul-
tiple hops, we use a self-reconfiguring tree overlay and
a dedicated scheme to reconfigure subscription routes.
These are implemented in different components, hence
enabling the dynamic reconfiguration of the two mech-
anisms separately.

Overlay maintenance is implemented in a
TreeOverlayManager component, that takes
care of reconfiguring the tree overlay in case a link fails
because of mobility or node disappearing. Conversely,
a PSTransport component embodies a strategy to
reconfigure the routes laid on the overlay, and followed
by events. The two components are loosely coupled,
as the interface between the two is basically composed
of a single openLink operation, used by the overlay
manager to inform the PSTransport component that
a new link on the overlay has been activated. Moreover,
a further service component is implemented to take
care of UDP transmissions. The whole solution poses
a very little requirement on the underlying network
layers, as only the availability of 1-hop, broadcast UDP
transmission is required.

V. CONCLUSIONS

In this paper we have presented the core characteristics
of the RUNES middleware and we have described some
basic components developed in the scope of our target
application (tunnel fire scenario). We have presented
the key themes of our demo which are heterogeneity,
software reconfiguration and topology reconfiguration.
The paper has also presented the steps of the RUNES
middleware demonstration, in which we will demonstrate
practically how these components allow us to overcome
each of the challenges faced within the tunnel fire
scenario.

Acknowledgments: We would like to acknowledge
the support of the European Union through project IST
EU RUNES.

REFERENCES

[1] IST EU RUNES. www.ist-runes.org.
[2] P. Costa, G. Coulson, C. Mascolo, G. P. Picco, and S. Zachari-

adis. The RUNES Middleware: A Reconfigurable Component-
based Approach to Network Embedded Systems. In Proc. of
16th International Symposium on Personal Indoor and Mobile
Radio Communications (PIMRC05). IEEE Press, Sept. 1995.

[3] A. Dunkels, B. Groenvall, and T. Voigt. Contiki - a lightweight
and flexible operating system for tiny networked sensors. In Pro-
ceedings of the First IEEE Workshop on Embedded Networked
Sensors, Tampa, Florida, USA, Nov. 2004.

[4] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The
many faces of publish/subscribe. ACM Computing Surveys,
2(35):114–131, June 2003.

[5] L. Mottola, G.Cugola, and G. Picco. A Self-Repairing
Tree Overlay Enabling Content-Based Routing in
MANETs. Submitted for publication. Available at
www.elet.polimi.it/upload/mottola, 2006.

[6] G. P. Picco, G. Cugola, and A. Murphy. Efficient content-based
event dispatching in the presence of topological reconfigurations.
In Proc. of the 23rd Int. Conf. on Distributed Computing Systems
(ICDCS03), pages 234–243, 2003.


