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ABSTRACT
Link prediction systems have been largely adopted to recom-
mend new friends in online social networks using data about
social interactions. With the soaring adoption of location-
based social services it becomes possible to take advantage of
an additional source of information: the places people visit.

In this paper we study the problem of designing a link
prediction system for online location-based social networks.
We have gathered extensive data about one of these services,
Gowalla, with periodic snapshots to capture its temporal
evolution. We study the link prediction space, finding that
about 30% of new links are added among “place-friends”,
i.e., among users who visit the same places. We show how
this prediction space can be made 15 times smaller, while
still 66% of future connections can be discovered. Thus, we
define new prediction features based on the properties of
the places visited by users which are able to discriminate
potential future links among them.

Building on these findings, we describe a supervised learn-
ing framework which exploits these prediction features to
predict new links among friends-of-friends and place-friends.
Our evaluation shows how the inclusion of information about
places and related user activity offers high link prediction
performance. These results open new directions for real-
world link recommendation systems on location-based social
networks.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining

General Terms
Experimentation, Measurement
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1. INTRODUCTION
Location-based online social networks have seen soaring

popularity, attracting millions of users [12]. People are in-
creasingly sharing their location with their friends: such
check-ins can be broadcasted to friends, while messages, tips
or other information related to a place can be generated and
shared. As many other online social services, location-based
networks may greatly benefit from link recommendation,
since as users add more and more friends their engagement
with the service increases [15].

An inherent characteristic of these social networks is that
they may have millions of nodes, but, at the same time,
they are often quite sparse, with low density of links among
these nodes. As a result, the link prediction space is so huge
and highly imbalanced that real approaches merely focus on
finding friends in the the 2-hop social neighborhood, i.e.,
friends-of-friends of a user [8]. Extending prediction efforts
to the 3-hop neighborhood, or even further, may likely re-
sult in an exponentially larger set of increasingly less likely
candidates. As a consequence, the link prediction problem
appears so heavily influenced by network distance between
users that each social neighborhood should be treated as a
separate prediction problem [17].

Nonetheless, in location-based social networks there is an
unprecedented source of potential promising candidates for
link prediction: the places visited by each user. Data about
the venues where users check-in can be exploited to find
and predict future connections. Therefore, the question we
tackle in this work is: how do we design a link prediction
system which exploits data about user check-ins?

To investigate the practical feasibility of such approach we
have collected extensive longitudinal data about an online
location-based service, Gowalla, with hundreds of thousands
of users and more than one million different venues. We have
acquired complete data about places, users, their friends and
their check-ins for 4 consecutive monthly snapshots (Sec-
tion 2). We analyze the link prediction space by investigat-
ing how new friendship connections are created over time:
we discover that about 30% of all new links appear among
users that check-in at the same places. Thus, these “place-
friends” represent disconnected users that can become direct
connections (Section 3).

We argue that effective link prediction on location-based
services can greatly benefit from focusing only on the friends-
of-friends and on the place-friends of a user. This design
choice makes the prediction space about 15 times smaller
than the entire set of candidates and, yet, it covers about
66% of new social ties. In addition, this reduced prediction



set offers a better balance between the number of new links
and its total size. As a result, practical implementation of
link prediction systems can become more feasible, since for
each user only a much smaller set of potential friends has to
be explored to compute predictions.

The challenge is then how to exploit the information given
by the check-ins of two users, who do not share any friends
but who visit the same places, to predict whether they will
become direct connections. In fact, activity and interac-
tion revolving around physical places can result in social
ties emerging among individuals and correlated to the prop-
erties of the place itself, as the sociological “focus theory”
suggests [9]. Hence, we define prediction features which
quantify users that are likely to become friends considering
the places they visit and the properties of these places. Our
prediction features are based on user check-ins and on the
concept of “place entropy” [5], which is used to discriminate
venues that are more or less likely to foster social connec-
tions (Section 4).

We finally describe how such prediction features, com-
bined with other measures, can be used in a supervised learn-
ing framework to predict future links in a realistic deploy-
ment (Section 5) [17]. Our evaluation shows the effectiveness
of our design choices, with AUC values of up to 0.96 when
predicting links between users who visits the same places
but have no friends in common (Section 6). Our approach
can be adopted in any scenario where users of a social ser-
vice disclose data about their visits to places. We conclude
the paper with an overview of related results (Section 7) and
with a discussion of future works (Section 8).

2. DATASET
In this section we briefly describe Gowalla and the collec-

tion procedure we used to acquire our dataset, presenting
some of its basic properties.

2.1 Data collection
Gowalla is a location-based social networking service cre-

ated in 2008 that allows users to add friends and share their
location with them. The friendship relationship is mutual,
requiring each user to accept friendship requests to allow
location sharing.

We have downloaded four monthly snapshots of Gowalla
data between May and August 2010: we were able to ex-
haustively query all user accounts, downloading information
regarding their profiles, their friends and their past check-
ins. We also gathered the geographic location of each place.
This dataset represents a sequence of complete snapshots
of a large-scale online service: this will allow us to study
how links are created over time and to evaluate how a link
prediction system would perform in a real scenario.

t Users Active users Places Check-ins

1 252,020 148,234 958,823 7,475,401
2 291,812 168,925 1,104,771 9,073,157
3 325,025 189,512 1,226,847 10,537,516
4 382,750 216,734 1,421,262 12,846,151

Table 1: Properties of our Gowalla dataset across
the different temporal snapshots: total number of
registered users and active users, total number of
different places, total number of check-ins.
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Figure 1: Complementary Cumulative Distribution
(CCDF) of the number of friends (a) and of the num-
ber of places (b) per user for the last snapshot of the
dataset (Month 4). The probability distributions do
not change significantly across different snaphots.

t N K GC 〈k〉
1 109,045 476,409 102,951 (94.4%) 8.73
2 124,190 559,901 117,868 (94.7%) 9.01
3 138,387 630,045 131,711 (95.1%) 9.10
4 159,391 736,778 152,011 (95.3%) 9.24

Table 2: Properties of the social graphs at each snap-
shot: number of nodes N and edges K, number of
nodes GC (and their proportion) in the giant con-
nected component and average node degree 〈k〉.

2.2 Dataset properties
In the 4 consecutive monthly snapshots Gowalla increased

its total number of registered users from about 250 thou-
sands to about 380 thousands, as shown in Table 1, con-
stantly exhibiting about 56% of active users, that is users
with at least one friend or one check-in.

As reported in Table 2, each snapshot of our dataset re-
sults in a social graph with a subset of the active users:
each graph exhibits a large giant connected component, al-
ways containing more than 94% of all the nodes. The av-
erage number of friends per user grows from 8.73 to 9.24:
moreover, as described in Figure 1(a), the degree distribu-
tion shows a heavy tail, with only 1% of users having more
than 100 friends. Overall the social network is sparse, mak-
ing link prediction challenging because of the scarcity of so-
cial ties. User check-in activity also presents a heavy-tailed
distribution: 90% of users with check-ins have visited less
than 100 different venues, as detailed by Figure 1(b). Even
though users might visit only few places, users who visit the
same places are still more likely to become friends than what
would be expected on average, as we will see later.

Finally, we note that while many users might have so-
cial connections and no check-ins, there are also many ac-
counts with check-ins but no friends at all. On average, only
57% of active users have both some friends and some check-
ins, while 26% have no friends and 17% have no check-ins.
This partition is approximately constant across our tempo-
ral snapshots of Gowalla.

3. PREDICTION SPACE ANALYSIS
In this section we study how new friendship connections

are created by Gowalla users, exploring how the prediction
space can be divided to improve link prediction performance.
We will introduce the concept of place-friends and show how
the search for new social ties can be greatly simplified.



t Ut ENEW
t SNEW

t PNEW
t SNEW

t ∩ PNEW
t SNEW

t ∪ PNEW
t

1 148,234 43,812 (100.00%) 24,174 (56.41%) 13,150 (30.01%) 7,677 (17.52%) 30,187 (68.90%)
2 168,925 40,643 (100.00%) 21,118 (51.96%) 12,572 (30.93%) 7,131 (17.54%) 26,559 (65.35%)
3 189,512 58,238 (100.00%) 30,581 (51.51%) 20,107 (34.52%) 10,935 (18.78%) 39,753 (68.26%)

Table 3: Link formation: for each monthly network snapshot we report the total number of active users
Ut, the total number of new links appearing among them in the next snapshot ENEW

t and the breakdown
of this quantity among new links appearing among friends-of-friends SNEW

t and among place-friends PNEW
t ,

including the intersection and union of these two latter sets. Percentages are computed with respect to the
total number of new links.

3.1 Definition and notation
Formally, we represent each snapshot of our dataset as

an undirected graph Gt = (Vt, Et) for t = 1, 2, 3, 4, where
t indicates the different snapshots in time of the dataset.
The set of nodes Vt = {u1, u2, . . . , uNt} is composed of Nt

users and the set of edges Et is composed of pairs of users
that are present in each other’s friend lists in snapshot t.
We define Γt

i as the set of users connected to user ui in
graph Gt, so that kt

i = |Γt
i| is the number of friends of ui in

snapshot t. In addition, there are Lt different places Mt =
{m1,m2, . . . ,mLt} where users have checked-in at and ctij
represents the number of check-ins that user ui has ever
done at place mj until time t, with the number of check-ins
of a user in a place able only to increase with time. All the
check-ins of user ui until time t can also be represented as a

vector ~cti = (cti1, c
t
i2, . . . c

t
iLt

). Then, Φt
j is the set of all users

who have checked-in at place mj and Θt
i is the set of all

places where user ui has checked-in at, both until snapshot

t. Finally, At =
Lt⋃
j=1

Φt
j is the set of all users with at least

one check-in at snapshot t, while Ut = Vt ∪ At is the set of
all users present at snapshot t with at least one friend or one
check-in.

3.2 Dividing prediction space
Users do not add friendship connections at random with

all other users but, instead, tend to prefer other users that
are “close” to them, either in social sense or along other di-
mensions such as geographic proximity or topic interest [15,
1, 6, 19]. For instance, many links do appear between indi-
viduals at closer social distance from each other, with the 2-
hop neighborhood of single nodes being the largest source of
new ties [17]. This seems to hold also in Gowalla: as shown
in Figure 2(a), the number of new links appearing between
users which are d hops away exponentially decreases with d.
Moreover, the likelihood that a couple of users at network
distance d will have a link in the next snapshot of our dataset
decreases sharply with d, as described by Figure 2(b): the
probability that two users with at least one friend in com-
mon, thus being at distance d = 2, will become friends is
above 10−4, but this value quickly tumbles down below 10−5

and to 10−6 at distance d = 3 and d = 4 respectively. Hence,
pairs of users at larger distances give a weaker contribution
to link formation, both in terms of absolute number of new
links and likelihood of a new social tie [14].

Nonetheless, in a location-based social network the social
dimension is not the only one to be exploited and investi-
gated. Instead, in our context there is an additional source of
information about social ties: the places where users check-
in. In particular, users may add a new connection not be-
cause of a shared friend but because of a shared place.
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Figure 2: Number of new links appearing among
pairs of nodes at different values of social distance
(a) and their relative probability of appearance (b).
Pairs of users at closer distance are both generating
a larger number of social links and more likely to
turn into social links.

In order to quantify how users seek and add new friends,
for each snapshot and for each user ui we define two sets of
potential friend couples:

Friends-of-friends

St
i = {(ui, u) : u ∈

( ⋃
uk∈Γt

i

Γt
k

)
\ Γt

i}

Place-friends

P t
i = {(ui, u) : u ∈

( ⋃
mk∈Θt

i

Φt
k

)
\ Γt

i}

While friends-of-friends are all those users that share at
least one friend without being directly connected, place-
friends are all those users that have checked-in at least in one
common place but are not connected to each other. These
two sets may not be disjoint for a given user ui. Finally,
we define two sets containing all the potential pairs of nodes
that are either friends-of-friends or place-friends in a given
snapshot: St =

⋃
ui

St
i and Pt =

⋃
ui

P t
i .

The monthly snapshots of our dataset make it possible to
quantify how many new social links appear within these two
sets. For every network snapshot Gt = (Vt, Et) we define
ENEW

t = Et+1∩((Ut×Ut)\Et) as the set of all new links ap-
pearing in the next network snapshot t+1 among all users al-
ready present at snapshot t. In Table 3 new links appearing
between temporal snapshots are classified according to their
origin: SNEW

t = ENEW
t ∩St and PNEW

t = ENEW
t ∩Pt are,

respectively, the set of new links among friends-of-friends
and the set of new links among place-friends.

About two-thirds of all new links appear within St ∪ Pt.
In particular, while about 50% of new links appear among
friends-of-friends, more than 30% of new friends are added
among place-friends that check-in at the same venues. Fi-
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Figure 3: Number of potential friends (a) and imbal-
ance ratio (b) for each class of potential new links:
for social potential neighbors St, for place potential
neighbors Pt, for their intersection and union and
for the entire set of users Et. Results averaged over
all temporal snapshots.

nally, about 13% of new links appear between users without
any friends in common but who are place-friends.

3.3 Reducing prediction space
In addition to the absolute number of new links appearing

among friends-of-friends and place-friends, it is also impor-
tant to study how link prediction feasibility can vary across
these prediction spaces. In a prediction space there are both
couples of users that will become connected and couples that
will not: the performance of prediction approaches depends
on the total number of these potential couples and on the rel-
ative proportion of these two classes. Exhaustive approaches
would scale with the total number of potential links, which
can become prohibitively large for real-world online social
networks with millions of users. Also, the two classes can
present an extremely skewed distribution, with new links be-
ing greatly outnumbered by couples of users that will never
create a social tie. This problem is worsened by the fact
that these new links are actually the occurrences of greater
interest, yet they are difficult to find.

In Figure 3(a) we report the prediction space size for the
friends-of-friends set St and the place-friends set Pt, includ-
ing also their intersection and union, along with the size of
the overall prediction space for the entire dataset. While
there are more than 11 billions couples of users, there are
about 700 million place-friends (Pt) and about 100 million
friends-of-friends (St), with their intersection reducing the
prediction space to about 20 million entities. Thus, by fo-
cusing prediction efforts only on place-friends or friend-of-
friends the prediction space can be reduced by about 15
times, while still covering two-thirds of all new links.

Then, we study the imbalance ratio of a prediction set,
which is the ratio between the total number of items and
the actual number of new links that will appear within it.
Imbalance ratios are key indicators of link prediction sys-
tems performance: they express how many real instances
should be considered and analyzed, on average, before a pre-
diction can be successfully done. Place-friends and friends-
of-friends offer lower imbalance ratios than the overall pre-
diction space, as presented in Figure 3(b): hence, not only
they offer a smaller prediction space, but also the likelihood
that new links will be found is about 20 times higher than
the average.

However, discovering friends between users who check-in
at the same places appears challenging. Not all places have
the same importance for different users and, thus, not all
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Figure 4: Average probability that two users who
have checked-in at a place are friends as a function
of the number of check-ins in that place (a) and as
a function of place entropy (b).

places are equally likely to foster new social ties among in-
dividuals who visit them. The key idea is then to take ad-
vantage of the properties of a place to predict new links.

4. PREDICTION FEATURES
In this section we will describe how place properties can

be exploited in link prediction systems and we will introduce
the prediction features we adopt in our model.

4.1 Place Properties
Places can be characterized by taking into account users

check-in: in fact, the average probability that two users who
have checked-in at the same place are friends exhibits a de-
creasing trend as the place has more check-ins, as shown in
Figure 4(a). Yet, there is not much difference when a place
has less than 100 check-ins.

However, a place where only a small number of users reg-
ularly check-in is likely to be a place with a significant im-
portance for them, such as private houses, gyms, offices.
Conversely, a place with a similar total number of check-ins
but made by several users is likely to be a public place with-
out considerable significance to its visitors, such as touristic
places, airports, train stations and so on.

Hence, a more suitable measure of how much a venue pro-
motes social connections among its visitors should take into
account both the number of users that check-in and their
number of check-ins. A feasible combination is to exploit
information theory and define an entropy-based measure to
assess the importance of place for social link creation. Place
entropy has been used in ecology to measure place biodiver-
sity [5]: the underlying assumption is that a uniform distri-
bution of species in a given physical environment is much
more diverse than a skewed distribution, where only a few
species are overwhelmingly present.

Let CP
k be the total number of check-ins all users have at

place mk and qik = cik/C
P
k the fraction of check-ins that

user ui has at location mk with respect to the total number
of check-ins at place mk. Then {q1k, . . . , qNk} is a discrete
probability distribution that describes how likely a check-in
at mk was made by a certain user. Thus, we define Ek as
the entropy of place mk:

Ek = −
∑

ui∈Φk

qik log qik (1)

Venues visited by several casual users are less likely to fos-
ter the creation of social links between them. Hence, places
with higher entropy might result in less social links among



their visitors than venues with lower values. This is con-
firmed by Figure 4(b): the average probability that two users
who have checked-in at the same place are friends decreases
as the entropy of the place itself increases. Place entropy
seems to offer a strong discriminative power: as we will see,
it is a successful indicator of whether a certain place is likely
to result in social ties between its visitors.

4.2 Feature definition
Link prediction methods are based on numeric scores com-

puted for pairs of users. These values tend to capture prox-
imity of two users across different dimensions, with the un-
derlying assumption that couples of users that are similar or
close are likely to develop a social connection between them.

We will consider social features, which can be computed
for friends-of-friends, place features which can be computed
for place-friends, and global features, that can be computed
for any couple of users even, if they do not share any friend
or place. All features are described in Table 4 and discussed
in the following paragraphs.

4.2.1 Place features
When two users check-in at the same places they might

have many chances to be in contact with each other and,
therefore, to create a new connection between them. The
two features common_p and overlap_p denote respectively
the number and the fraction of common places between two
users, while w_common_p takes into account the number of
check-ins of both users and w_overlap_p is given by the
cosine similarity of the two check-in vectors.

Then, we define two features based on the entropy of the
places that two users share: min_ent, the minimum place
entropy across all the shared venues, and aa_ent, the sum
of the inverse of each place entropy value, a measure inspired
by the Adamic-Adar similarity score [1]. Similarly, we define
corresponding features considering the number of check-ins,
aa_p and min_p: in this case the relevance of a shared place
is higher if it has only a few check-ins.

4.2.2 Social features
Several link prediction features are based on the assump-

tion that two users that share many common neighbors are
more likely to create a direct connection. Thus, given two
users we define common_n as their number of common neigh-
bors and overlap_n as their Jaccard coefficient [21]. In ad-
dition, aa_n is their Adamic-Adar measure based on the
degrees of the shared neighbors [1].

4.2.3 Global features
Finally, we define measures that can be adopted for any

pair of users, as they are based on their individual properties.
An approach to link prediction is to consider the geo-

graphic distance between two users, since geographic prox-
imity is related to higher chances of social connection [16, 2,
19, 4]. We define mli as the “home-location” where user ui

has most check-ins: given two users, we compute geodist as
the geographic distance between their home locations. At
the same time, w_geodist is the same distance divided by
the product of the number of check-ins each user has done
in their home location.

Another method to define global features is to consider
how many friends users have added or how many places they
have visited. We define pa as the preferential attachment

Place features
common_p |Φi ∩ Φj |
overlap_p

|Φi∩Φj |
|Φi∪Φj |

w_common_p ~ci ~cj

w_overlap_p ~ci ~cj/
√

~ci
2 ~cj

2

aa_ent
∑

mk∈Φi∩Φj

1
Ek

min_ent min(Ek : mk ∈ Φi ∩ Φj)
aa_p

∑
mk∈Φi∩Φj

1
log CP

k

min_p min(CP
k : mk ∈ Φi ∩ Φj)

Social features
common_n |Γi ∩ Γj |
overlap_n

|Γi∩Γj |
|Γi∪Γj |

aa_n
∑

z∈Γi∩Γj

1
log(|Γz |)

Global features
geodist dist(mli ,mlj )
w_geodist dist(mli ,mlj )/cilicjlj
pa |Γi||Γj |
pp |Φi||Φj |

Table 4: List of prediction features.

score of two users [3], whereas pp, or place-product, is given
by the product between the number of places that each user
has visited. These two features tend to capture more active
users that tend to visit many places or add many friends.

5. LINK PREDICTION
In this section we describe our link prediction framework.

Our proposal builds on two key choices:

• reducing the prediction space by focusing only on friends-
of-friends and place-friends;

• exploiting prediction features based on the places vis-
ited by users.

We propose a supervised learning approach to link predic-
tion, modelling it as a binary classification problem which
adopts the prediction features previously described.

5.1 Prediction candidates
Let us consider a dataset snapshot, with Ut being the set

of all users and Gt = (Vt, Et) the relative social network
(as defined in Section 3.1). The link prediction problem can
be formulated as: given the dataset snapshot at time t as
input, compute and return a set of pairs of users EPRED

t ⊂
(Ut × Ut) \ Et that are predicted to appear in Et+1

The entire prediction space (Ut×Ut) \Et contains all the
potential couples between users that are not yet connected
by a link. Exploiting the findings of our previous analysis
of this prediction space in Gowalla, we select three disjoint
prediction sets:

i) Social: links appearing among couples that are friends-
of-friends but not place-friends (the set St \ Pt);

ii) Place: links appearing among users that are place-
friends but not friends-of-friends (the set Pt \ St);

iii) Place-social: links appearing among users that are
both friends-of-friends and place-friends (the set St ∩ Pt).
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Figure 5: ROC curves for individual features used as unsupervised prediction methods on the three different
prediction sets.

Our choice is motivated by the fact that combining these
three prediction sets results in a set of candidates about
15 times smaller than the entire prediction space while still
allowing us to predict two-thirds of new social ties, as dis-
cussed in Section 3.3.

5.2 Prediction algorithm
We adopt a supervised learning approach: for every snap-

shot t, we compute features at time t for couples of discon-
nected users and we assign a positive label to each couple if
they become connected with a link at t+1, or a negative la-
bel otherwise. Thus, training and test sets are built so that
features from a given time interval are mapped to class la-
bels in a future time interval. Hence, given our 4 snapshots,
we can create 3 learning sets, each one with labels drawn
from the next snapshot.

Classifiers can then be trained to build models and rec-
ognize positive and negative items from their features. As
motivated by recent results [17], the choice of a supervised
learning formulation to address the link prediction problem
stems from the heavily skewed distribution of class labels.
Unlike unsupervised methods, class distributions are learned
by supervised algorithms, allowing a more effective discov-
ery of inter-class boundaries and hence better classification
performance.

6. EXPERIMENTAL EVALUATION
We now present the experimental evaluation of our method:

this section includes an investigation of the predictive power
of each similarity feature and then an analysis about dif-
ferent supervised classifiers which use these features. Our
results show how link prediction systems based on our pro-
posal may be feasibly deployed on similar services with high
accuracy.

6.1 Evaluation strategy
For each snapshot t and for each prediction set we sample

disjoint training and test datasets: these datasets are always

sampled to maintain the original unbalanced distribution of
positive and negative items in the real data. Finally, for
every item we compute all available prediction features: the
only limitations are that in the Social prediction set place
features are not defined and in the Place prediction set social
features are not defined. All our evaluation tests have been
performed with the WEKA framework, which implements
several machine learning algorithms, using default parame-
ters (unless otherwise specified) [25].

We adopt Receiver-Operating-Characteristic (ROC) curves
as the main tool to evaluate prediction performance [18].
ROC curves describe how the fraction of true positives over
all the positive cases changes as a function of the fraction
of true negatives over all the negative cases when the de-
cision threshold varies. A ROC plot is a monotonic non-
decreasing plot of true positive rate as a function of false
positive rate. A random classifier will result, on average, in
the curve y = x, while better classifiers will result in curves
closer to the upper left corner. ROC curves are particularly
able to assess classification performance for highly imbal-
anced datasets, as in our case. The area under the ROC
curve (AUC) is often adopted as a scalar measure of the
overall performance.

6.2 Individual features evaluation
We study the predictive power of each individual feature:

we compute predictive scores for every pair of disconnected
users in the test set and then we numerically rank these can-
didates according to their score. Given a decision threshold,
new links are predicted for all the candidates with scores
higher (or lower, depending on the directionality) than the
threshold. As we vary the decision threshold we get true
and false positives, generating a ROC curve: these curves
are then presented in Figure 5 for each prediction set.

In the Social prediction space, as shown in Figure 5(a),
the best feature is aa_n, which dominates the other ones.
Interestingly, we observe how the global features pa and pp

perform worse than a random predictor. This denotes how



Algorithm Set Precision Recall AUC

Model
S 0.79 0.28 0.87

trees
P 0.87 0.34 0.96
PS 0.92 0.62 0.95

Random
S 0.92 0.39 0.85

forests
P 0.95 0.72 0.87
PS 0.98 0.84 0.92

J48
S 0.63 0.04 0.62
P 0.86 0.34 0.90
PS 0.90 0.64 0.91

Näıve
S 0.01 0.16 0.74

Bayes
P 0.01 0.36 0.92
PS 0.04 0.22 0.82

Table 5: Precision and recall on the positive items
and overall AUC for different supervised classifiers
on the three different prediction sets Social (S),
Place (P) and Place-social (PS). Results obtained
through 10-fold cross validation and averaged over
20 different random training sets from snapshot
t = 1.

in the social neighborhood of a given user global indica-
tors are not as useful as measures based on common friends:
this may denote how users do not have access to a global
view of the network. Instead, global features geodist and
w_geodist perform better, with the former more accurate
than the latter. Overall, aa_n, overlap_n and geodist give
the best performance, with AUC values between 0.73 and
0.82.

In the Place prediction space, as reported in Figure 5(b),
min_ent, w_overlap_p and min_p show the best results, fol-
lowed by aa_ent and aa_p. Sharing places with low en-
tropy values or with a few check-ins seems an important
indicator of potential friendship, as well as having a large
overlap of visited places. These features achieve high AUC
values between 0.88 and 0.93. The other features perform
slightly worse, with geodist doing better than the other
ones. Global features pa and pp show again inverted perfor-
mance as in the Social case.

Finally, in the Place-social prediction space, as shown in
Figure 5(c), all prediction features can be evaluated. As
aa_n dominates in Social and min_ent dominates in Place,
they also achieve the best results in this case, with the former
having a larger AUC (0.80 against 0.76).

In general, prediction performance is higher in the Place
set, while prediction within the other two sets achieves lower
AUC values. It is seems easier to predict links among place-
friends than among friends-of-friends: this may be due to the
fact that more information is available when two users share
visited places. However, the prediction space size is much
larger in the Place set than in the other two sets, represent-
ing an interesting trade-off between prediction effectiveness
and search complexity. In essence, the Social set provides
good candidates for new links, given its lower imbalance ra-
tio, but then it is difficult to discriminate between them
because there is no other information except global features
and shared friends. Instead, even if the Place set has higher
imbalance ratios, the properties of the places where users
check-in provide useful information to discover new friend-
ship connections.
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Figure 6: Prediction performance in terms of AUC
of model trees (a) and random forests (b) on the
three separate Social, Place and Place-social pre-
diction sets, in each temporal snapshots. Results
averaged over 20 random datasets, error bars show
standard deviation.

6.3 Supervised learning evaluation
We assess whether our prediction features can be com-

bined to characterize a model of link formation across the
three prediction sets. Our aim is to achieve at least the
same predictive power of the best individual features with
a supervised algorithm. We compare the performance of
the following classifiers: J48 (equivalent to C4.5[20]), Näıve
Bayes, model trees with linear regression on the leaves [10],
and random forests (10 trees, 4 random features each) [24].
We run 10-fold cross validation over 20 different training set
sampled over each prediction dataset and we consider the
AUC value as an overall performance metric [22]. In addi-
tion, we also consider two additional metrics computed over
positive items: the average precision, that is the fraction of
positive predictions that are correct, and the average recall,
that is the fraction of real links that are correctly predicted.

We present our results in Table 5. There is variability
across different classifiers: the best performance in terms of
AUC are given by random forests and model trees, which
are the only two methods that outperform individual fea-
tures across the three prediction sets (the only exception
being random forests underperforming on the Place set).
Nonetheless, random forests present higher values of preci-
sion and recall than model trees.

As random forests and model trees outperform the other
methods, we choose these two classifiers for the next part of
this evaluation, where we consider prediction performance
across consecutive temporal snapshots of Gowalla. In this
case, for every snapshot and for each prediction set we sam-
ple disjoint training and test sets of equal size and we com-
pute predictions, averaging results over 20 randomly sam-
pled datasets. As seen in Figures 6, model trees achieve
better AUC values on the three prediction sets and across
temporal snapshots. Altogether, the two algorithms have
lower performance in the Social prediction set, with AUC
values between 0.84 and 0.89, whereas Place and Place-social
present higher values. Model trees offer slightly better per-
formance than random forests: in particular, the latter algo-
rithm performs worse than individual features on the Place
prediction set. A potential explanation for this behavior
is that random forests tend to perform poorly when faced
with a large heterogeneous set of features, since randomly
chosen features are more likely to include less relevant infor-
mation [11]. This may be the case for the Place set, while
this is not the case for Social set, where there are less fea-
tures, nor for the Place-social set, where there are more fea-



0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.2

0.4

0.6

0.8

1.0
R

ec
al

l

Social
Place
Place-social

(a) Model trees

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

Social
Place
Place-social

(b) Random forests

Figure 7: Precision-recall curve for model trees (a)
and random forests (b) obtained on the three sepa-
rate prediction sets, averaged across the three tem-
poral snapshots.

tures but their prediction performance is more homogeneous.
However, investigating the precision-recall trade-off offers a
different insight on the prediction performance. Given the
same level of precision, random forests consistently achieve
higher values of recall than model trees, as described in Fig-
ure 7. In summary, our prediction framework exhibit high
effectiveness with both methods, since they are able to lever-
age the information contained in our prediction features.

Finally, to understand to which extent different feature
classes are contributing to prediction performance we focus
only on the Place-social prediction set, where all features are
used to build the prediction model, and we test what predic-
tion performance can be achieved by using only one feature
class with respect to the full model. As described by Ta-
ble 6, social features alone provide the worst performance,
while both place and global features achieve AUC values
closer to the full model. Hence, these two latter classes
are mainly contributing to the overall performance, as they
exploit information about place check-ins (Place features)
and geographic distance between users (Global features).
Again, this provides evidence that the choice of including
data coming from location-based activity in the prediction
model leads to better performance than in purely social-
based methods.

6.4 Discussion and implications
Our results are grounded on two main important design

choices: focusing link prediction only on a reduced set of
candidate pairs of users and exploiting location-based user
activity to define successful prediction features. These two
simple ideas are able to improve overall performance of link
prediction systems: as a consequence, real-world systems
can be deployed, making use of predicted links to suggest
friends to users and engage them more with the service. In
addition, recommending friends among users who check-in
in the same places may seem more important in location-
based services, since users can directly interact with them
when checking-in at these common places.

Our framework enables the prediction of new social ties
even for users who do not yet have any friendship connection,
provided that they visit and check-in at places. Standard
link prediction methods based on social features are of no use
in this scenario, since it is impossible to compute prediction
features for these isolated users [13]. In some sense, this is

Algorithm Full model Social Place Global
Model trees 0.95 0.90 0.92 0.92
Random forests 0.93 0.88 0.92 0.92

Table 6: AUC for model trees and random forests
on the Place-social prediction set when the full set
of prediction features is used and when only a single
set of prediction features is used. Results averaged
the three snapshots and over 20 different random
training and test sets.

a scenario which represents new users of the service: they
have signed up, they have checked-in in some places but
they are not engaging with other users. Thus, predicting
their future links might be extremely important to make
them more active participants.

Potentially, our proposal to exploit location-based activity
to predict new friends could result in improving prediction
performance even further by accessing additional informa-
tion, such as fine-grained temporal information of user ac-
tivity or direct interaction among users. For instance, users
that check-in at the same place and at the same time can
be much more likely to become friends [4].

7. RELATED WORKS
The link prediction problem in social networks has been

under scrutiny for many years. The seminal work by Liben-
Nowell and Kleinberg addresses the problem from an algo-
rithmic point of view, investigating how different proximity
features can be exploited to predict the occurrence of new
ties in a social network [15]. They adopt an unsupervised
approach, where scores are computed for all potential candi-
dates and then ranked to obtain the most likely predictions.

More recently, researchers have advocated supervised ap-
proaches to link prediction, given the possibility of mod-
elling the task as a binary classification problem. In partic-
ular, Lichtenwalter et al. have presented a detailed analysis
of challenges in link prediction systems, discussing imbal-
ance problems and proposing to treat prediction separately
for different classes of potential friends [17]. While we also
adopt a supervised approach, we additionally consider how
link prediction can be performed when additional informa-
tion not arising from social ties is available.

A related approach to find online social ties among mobile
users has been presented by Cranshaw et al. [5]: they track
a small number of mobile users in the physical world to dis-
cover their connections on online social networks. While fo-
cusing as well on information-based measures, our approach
considers a much larger set of users and studies their activ-
ity on a location-based service. Eagle et al. have considered
how interactions between people over mobile phones can ac-
curately predict relations among them [7]. Conversely, we do
not consider direct interaction nor communication between
users to predict social links. A recent work by Crandall et
al. [4] shows how temporal and spatial co-occurences be-
tween people help to infer social ties among them: while
their main goal is to put forward a generative model which
explains empirical data, our study has a different aim, that
is, designing a link prediction system to be used on real-
world location-based services. Furthermore, our work deals
with a different type of data: since we exploit check-ins at
well-defined venues, we can infer that two individuals vis-



ited exactly the same place without dealing with generic
geographic coordinates. As a consequence, our prediction
system achieves higher precision while being more feasible
for a real-world deployment.

Another thread of research has been addressing the geo-
graphic properties of social networks. Liben-Nowell et al.
described how the probability of friendship between two in-
dividuals can be related to the geographic distance between
them [16]. Furthermore, some users on online social net-
works also exhibit more friendship connections over short
geographic distances, with many clusters of friends living
nearby [23]. We take advantage of these findings and we
explicitly include prediction features based on geographic
distance in our prediction framework.

8. CONCLUSION AND FUTURE WORK
In this paper we have described and evaluated a link pre-

diction model based on place properties of a location-based
social network. We have studied a large real-world ser-
vice, Gowalla, finding that the link prediction space can be
reduced about 15 times by focusing on place-friends and
friends-of-friends only, while still discovering about 66% of
all new links. Then, we have described how the properties of
the venues visited by users can be used to define prediction
features with high predictive power. Building on these find-
ings, we have shown how real link prediction systems can
achieve high precision in a prediction space smaller than ex-
haustive approaches.

Among the future directions of our work we envisage the
definition of systems that infer social tie strength from location-
based activity and the design of a link recommender system
which exploits temporal information about user check-ins.
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