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ABSTRACT
Sensor devices are being embedded in all sorts of items in-
cluding vehicles, furniture but also animal and human bod-
ies through health monitors and tagging techniques. The
collection of the information generated by these devices is
a challenging task as the data results in enormous amounts
and the sensors have scarce resources (especially in terms
of energy for the forwarding of the data). Fortunately, the
data is often delay tolerant and its delivery to the sinks is,
in most cases, not time critical.

This paper tackles the problem of the delivery of mobile
sensor data to sinks. We devise a Sensor Context-Aware
Routing protocol (SCAR), which exploits movement and
resource prediction techniques to smartly forward data to-
wards the right direction at any point in time. In order to
cope with the possibly frequent sensor faults, we also adopt a
multi-path routing approach which increases the reliability.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—wireless communication, store and
forward networks, distributed networks; C.2.2 [Computer-
Communication Networks]: Network Protocol—routing
protocols

General Terms
Design, Algorithms

Keywords
Sensor networks, delay tolerant networks, mobile sinks, adap-
tive routing, buffer management, time series forecasting

1. INTRODUCTION
The proliferation of wireless sensors[1] and embedded com-

puting is imposing new challenges to the development of
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data collection research and technologies. Sensor devices
are now present in virtually all sorts of items, from vehi-
cles and furniture to humans and animals. This generates
network of wireless connected devices with topologies which
could be very dynamic. The monitoring abilities of these de-
vices range from pollution and temperature to health-care
and mobility. The amounts of data generated by these ap-
plications are usually quite large, however, fortunately, the
data is, in most cases, also delay tolerant, in the sense that
it can wait in the network for quite a while before being
collected.

The scenario we envisage in this paper is one where the
mobile sensor nodes (e.g., animals, vehicles or humans) route
data through each others in order to reach sink nodes, which
can be either mobile or fixed. The fixed nodes are intended
as nodes connected to a backbone network and therefore
able to forward the data to the appropriate place when this
is reached (Figure 1).

The challenges offered by this scenario are many and in-
clude the quantity of data to be shipped to the sinks, the
potentially scarce communication power (i.e., energy and
bandwidth) of the nodes, the possible communication and
sensor hardware faults, the mobility and the scarce buffer
size of the nodes.

Different techniques could be employed for mobile sensor
data gathering. A basic strategy would be to only allow
data delivery when sensors are in direct proximity of the
sinks. This technique has very little communication over-
head, given that messages are only sent directly from the
sensor node generating messages to the sink. However, de-
pending on how frequently sensor nodes meet the sinks, the
delivery of the data might be very poor. This is particularly
true if the sinks are very few and spread out.

More refined techniques would include epidemically in-
spired approaches [20], which would spread the data over the
sensor network, so that eventually a sink could be reached.
This approach has very good delivery ratio if buffers are
sufficiently large, however the overhead in terms of commu-
nication and, therefore, energy is quite high.

In [21] an approach which is based on a probabilistic de-
livery approach for data messages is presented. The paper
also discusses how the replication of the data over the sen-
sor network can be constrained using a fault tolerance value
associated to each data message. However, this approach
still has quite a high overhead in terms of message spread-
ing, due to the coarse grained delivery probability technique
used for the choice of the nodes on which to replicate and



the amount of replication involved by the approach. In sen-
sor networks where energy and, therefore, communication
overhead is an issue, the spreading of the message needs to
be carefully controlled and traded off for the delivery ratio.
This is even more true if the nodes have limited memory so
that the buffer size is small and very few messages can be
stored.

In this paper we present SCAR (Sensor Context-Aware
Routing), a routing approach which uses prediction tech-
niques over context of the sensor node (such as previously
encountered neighbors, battery level, ..) to foresee which
of the sensor neighbors are the best carriers for the data
messages. We further adopt different classes of messages in
order to achieve an intelligent buffer management.

Multiple carriers are chosen among the neighbor of the
data source sensor, based on their history in terms of en-
counters, mobility and resources, however the number of
replicated data around in the network is still considerably
smaller than in any epidemic based approaches, in particu-
lar than in [21], where the effects of replication may lead to
an epidemic-like spreading of the message.

Our prediction based techniques for choosing a carrier is
based on Kalman Filters and has been exploited in [16],
where we describe our Context-aware Adaptive Routing pro-
tocol for mobile ad hoc networks. SCAR has maintained the
prediction based approach used in CAR but all the aspects
related to the communication and the replication had to be
redesigned. In particular SCAR has to suit the high data
traffic of sensor networks. This is achieved by limiting the
horizon in which deterministic information is kept to the
neighbors of a sensor, and, given the fault rate of a sensor
network, we have introduced an intelligent buffer manage-
ment algorithm and multiple carriers for the message.

The structure of this paper is as follows: in Section 2 we
present our approach, whereas in Section 3 we discuss its
novelty, comparing it with the state of the art. Section 4
concludes the paper, outlining our current research direc-
tions.

2. OUR APPROACH
In this section we discuss the details of SCAR. Our ap-

proach can be summarized as follows: the mobile sensor
nodes try to send their data to sink nodes, scattered over
the field; each sensor node will try to deliver its data in bun-
dles to a number of neighboring sensor nodes which seem to
be the best carriers to reach a sink.

The decision process by which nodes select the best car-
riers is based on prediction of the future evolution of the
system. Our solution relies on the analysis of the history of
the movement pattern of the nodes and their colocation with
the sinks and on the evaluation of the current available re-
sources of the sensors. In particular, each node evaluates its
change rate of connectivity, colocation with sinks, and bat-
tery level. The forecasted values of the context attributes
describing the context are then combined to define a deliv-
ery probability P (si) for each sensor si to deliver bundles to
sinks.

While moving, the sensors will transfer their data to other
sensors only if these have a higher probability to deliver the
data to sinks (i.e., they are better carriers). The calculation
of the delivery probability is local and it does not involve
any distributed computation. Nodes only periodically ex-
change information about their current delivery probability

Figure 1: Sensor network composed of sensors (in-
dicated with letters) and sinks (indicated with num-
bers). Sensors and sinks can be mobile or fixed.

and their available buffer space with the neighbors. We as-
sume that each device of the system is actively involved
in the storing-and-forwarding process: this is a reasonable
assumption, since usually sensor networks are owned and
deployed by a single organization.

2.1 Multi-carrier Selection
Each sensor that is the source of data tries to place bun-

dles on a number of neighboring nodes which have the best
chance to deliver them to a sink node.

Each node maintains an ordered list of the neighboring
nodes (including itself) decreasingly ordered according to
their delivery probabilities. Each node then replicates the
bundle to the first R nodes (R − 1 nodes if the node itself
is in the first R positions of the list). The value of R is
specified by the user and it can be considered as a priority
level associated to the data retrieved by the sensor.

The replica sent to the node with the highest delivery
probability is labeled as master copy. The other replicas are
labeled as backup copies. These can be overwritten if buffers
are full, whereas master copies are deleted only when sensors
exchange the data with the sinks. In general, this distinction
is used for an intelligent management of the buffer, that
we will describe in Section 2.3. A unique identifier is also
associated to each bundle. Replicas of the same bundle have
the same identifier.

Each node keeps monitoring if there are neighbors with
better probability of delivery than its own. If this is the
case, the data bundles are shifted from one buffer to the
other. This, however, implies that the data bundles are
only replicated on a number of nodes in the first hop, while
they are forwarded (i.e., deleted from one node and copied
on another), later if the carriers, while roaming, find either
a sink or a better carrier.

As we are in a sensor network, the high level of faults
in the nodes implies that we need to allow for some more
replication on the data (which is not something supported
in the basic CAR protocol [16]). However, if the amount of
data generated by the sensors is considerable, the approach
of replication adopted by both epidemic-like protocols and
in [21] incurs in heavy overheads. We replicate less but we
try to control the replication in an intelligent way by pre-
dicting the future evolution of the system. In other words,



data are replicated R times, with R that may be order(s) of
magnitude less than the number of sensors composing the
system.

As it will be explained in the following section, the de-
livery probability of the nodes also keeps into account the
energy level of the nodes, so to avoid that some best carriers
become strong attractors and run into low battery problems
more quickly than others. In other words, we will show that
as the battery level decreases, the probability of being se-
lected decreases.

2.2 Choice of Best Carriers
In order to select the best carrier(s) for the data bundles,

we use a mechanisms based on the estimation of the future
behavior of each sensor node based on the history of its co-
location with sinks, its changing rate of connectivity (i.e.,
its mobility), and its power level.

2.2.1 Forecasting techniques for probabilistic rout-
ing

Each node predicts, using time series forecasting tech-
niques, the evolution of its context described by a set of
attributes. In particular, we consider three indicators de-
scribing its colocation with the sinks, its change degree of
connectivity and its battery level.

More specifically, a utility function is associated to each
context indicator. Our aim is to maximize each attribute, in
other words, to choose the node that presents the best trade-
off between the attributes representing the relevant aspects
of the system for the optimization of the bundles delivery
process. Analytically, considering k attributes with asso-
ciated utility functions U1(si), ..., Uk(si), the problem can
be reformulated as a multiple criteria decision problem [13]
with k goals:

Maximize{U(si)} = f(U1(si), ..., Uk(si)) (1)

The combined goal function using the the so-called Weights
method can be defined as

Maximize{
nX

j=1

wjUj(si)} (2)

where w1, w2, ...wk are significance weights reflecting the rel-
ative importance of each goal.

In our case, the solution is very simple, since it consists in
the evaluation of the function f(U1, ..., Uk) using the values
predicted for each node and in the selection of the node(s)
i with the maximum such value.

The overall utility function U(si) gives a measure of the
probability that a node si is ability of delivering bundles
to the sinks (i.e. of being co-located with them in the fu-
ture). The delivery probability of each sensor will be equal
to its composed utility function. More formally, the delivery
probability of a sensor si is defined as

P (si) = U(si) (3)

Two devices are co-located if they are in the same trans-
mission range (i.e, one hop distance).Therefore, this utility
function is computed considering its relative mobility (cal-
culated by evaluating its change degree of connectivity his-
tory), its colocation with sinks, and its survivability (calcu-
lated by considering its battery level history)1. We associate

1Even if we take into consideration only these three context

a utility function to each of these indicators, respectively
Ucdc(si), Ucoloc(si) and Ubattery(si)), and we compose these
utility functions using a weighted sum as follows:

U(si) = wcdc
bUcdc(si) + wcoloc

bUcoloc(si) + wbat
bUbat(si) (4)

where

• bUcdc(si) measures the change degree of connectivity of
the node i that we define as the number of connections
and disconnections that a node has experienced over
the last period [t− 1, t] seconds normalized by consid-
ering the nodes that have been in reach in this period.
This parameter measures relative mobility and, conse-
quently, the probability that a node will meet differ-
ent nodes in a given period of time, that is the aspect
that we are interested in. In fact, being in reach of a
large number of different nodes increases the probabil-
ity of meeting sensors with higher delivery probability
or sinks. On the other hand, it may be possible to
have a node that moves around but always together
with the same nodes; in this case, the node is always
co-located with the same devices. Even if its physical
mobility is high, its topological mobility (i.e., consid-
ering its abstract connectivity graph) is equal to 0.

More precisely, let Nit−1 the set of the neighbors of
the node h at time t, the input value to the predictor

at time t for bUcdc(si) is equal to:

Ucdc(si) =
|Nit−1 ∪Nit | − |Nit−1 ∩Nit |

|Nit−1 ∪Nit |
(5)

where Nit is the number of nodes in reach of the sensor
si at time t.

Intuitively, this corresponds to the number of nodes
that has been become in reach or out of reach in the
time interval [t−1, t] normalized by dividing it for the
total number of nodes met in the same time interval.

• bUcoloc(si) summarizes the history of colocation of the

sensor si with a sink. Therefore, the value of bUcoloc(si)
is high if a node has been recently co-located with a
sink.

• bUbat(si) gives an estimation of the future battery level
of the node. The value 1 corresponds to a full battery,
whereas 0 corresponds to an empty one.

The relative importance of these utility functions is de-
fined by using the weights wcdc, wcoloc and wbat. Weights
are used to assign different importance to the different di-
mensions of the sensor context. For example, if the battery
level is a critical dimension (that is often the case in wireless
sensor networks, except for devices embedded in cars, planes
or trains), a high value should be assigned to wbat.

It is important to note that these utility functions rep-
resent an estimation of the future trend of these indicators
calculated by exploiting time series analysis and forecasting
techniques and not the current values of these utility func-
tions. We use the symbol b to indicate the fact that these
are predicted values and not current ones

indicators, our framework allows for the integration of other
utility functions describing other aspects of the system that
may be important to improve the performance of the storing-
and-forwarding strategy.



The forecasted values are calculated by exploiting Kalman
filter prediction techniques [12] that were originally devel-
oped in automatic control systems theory. These are essen-
tially a method of discrete signal processing that provides
optimal estimates of the current state of a dynamic system
described by a state vector. The state is updated using pe-
riodic observations of the system, if available, using a set of
prediction recursive equations.

In fact, it is possible to express this prediction problem
in the form of a state space model. We have a time series
of observed values that represent each context. From this it
is possible to derive a prediction model based on an inner
state that is represented by a set of vectors, and to add to
this both trend and seasonal components [2].

It is worth noting that one of the main advantages of
the Kalman filter is that it does not require the storage of
the entire past history of the system, making it suitable
for a sensor network setting in which computational and
memory resources are very limited. Moreover, this technique
is also very lightweight from a computational point of view,
since the forecasting model only requires the update of the
values representing the state using a system composed of
linear equations (without any integration or differentiation
required). In view of the fact that we use existing results, we
do not present the mathematical aspects of the application
of state space models theory and Kalman filter time series
analysis in this paper; however, the interested reader can
find these in [16].

2.2.2 Synchronization Issues
There are potential issues related to the fact that sensors

can also be in idle mode. We need to consider two cases:

• Nodes are data sources Each sensor after selecting the
nodes for the initial replication, if it cannot transfer
the bundles immediately, it waits for a short period
of time, so to increase the chances that to be active
at the same time as the other node(s) to transfer its
bundles. If these attempts are not successful, after the
expiration of a pre-defined timeout, the sensor selects
the subsequent node from their ordered delivery prob-
ability list.

• Nodes are intermediate carriers Each sensor transfers
the data immediately after receiving the delivery prob-
ability from the other nodes, if this is higher. In this
case, the probability that both nodes are active at the
same time is very high.

However, in both cases, acknowledgment messages are
used in order to enable re-transmissions. After a certain
number of retransmissions, the other sensor is considered
unreachable and, then, also in this case, the subsequent node
from the ordered list is selected.

2.3 Buffer Management

2.3.1 Bundle Priorities
As discussed, a replica of a bundle can be a master o

backup copy. When two nodes exchange their delivery prob-
ability, they also send the number of available slots in their
buffer. We assume that the size of the buffer slots is fixed2.

2For simplicity, we also assume here that all the bundles
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Figure 2: Buffer Management: the figure shows a
buffer with a size equal to 7, with 2 master copies in
it. In this case, the node will advertise 5 available
slots.

A slot is considered available, if it does not contain a bundle
or if its content can be overwritten (i.e., the slot contains
a backup copy). For example, in Figure 2, a buffer com-
posed of 7 slots is represented. The buffer contains three
backup copies and two slots are empty. The sensor will then
advertise 5 available slots.

Bundles are copied in the buffer of the other sensors firstly
using the available empty slots and then overwriting the
slots containing backup copies. Finally, we would like to
discuss an interesting limit case. It may happen that a buffer
is full and contains only master copies. In this case, the
sensor will not accept any bundle from the other nodes 3.
However, if the node has been selected to carry so many
master copies, this is due to the fact that its probability
of being in reach of a sink is very high, so this situation
will probably last for a very limited period of time (i.e., the
sensor will get in reach of a sink soon and will transfer all
the bundles and then free all the slots in its buffer).

2.3.2 Bundle Deletion Mechanisms
When a sensor meets a sink, the latter sends a hash table

containing the identifiers of the bundles to the former. The
sensor deletes all the bundles that have already been deliv-
ered from its buffer and then sends all the bundles that have
not been delivered yet to the sink.

When two mobile sinks get in reach, they exchanges these
hash tables. Then, each sinks updates its hash table adding
the identifiers of the bundles delivered to the other sink and
not already present in it. A timestamp is associated to each
entry of the tables and the older ones are periodically re-
moved.

2.4 Exchange of Context Information
Neighbors exchange these values of their delivery proba-

bility. Each node maintains an ordered delivery probability

have the same size. However, this mechanism can be easily
extended in order to considered bundles of variable size, such
as bundles that require two buffer slots and so on.
3In this case (i.e., when the number of slots is equal to 0),
sensors will not advertise their deliver probability, in order to
avoid a waste of energy, since this action will be completely
useless.



list. Each entry of this table has the structure (sensorId,
deliveryProb, availableSlots); where sensorId is the sensor
identifier, deliveryProb is its currently delivery probability
and the last field is the number of available slots defined as
discussed in Section 2.3.

Periodically, each sensor sends its delivery probability to
their neighbors together with the number of the available
slots. Each sensor sends its delivery probability after com-
pleting the neighbor sensing process that is performed after
the transition from the idle to the active state.

2.5 Replication Process
As said before, each sensor keeps monitoring if neighbors

with better probability of delivery than its own exist. This
is done by examining the context information received by
the other nodes. If there is a node in proximity with a
higher delivery probability, the bundles are transferred to
that node.

It is important to note that a bundle is copied from a
sensor sA to a sensor sB if and only if the probability of sA

is a lot larger than the probability of sB :

P (sB) � P (sA) (6)

This is evaluated by setting an exchange threshold ζ. There-
fore, the replication process between sA and sB happens if
and only if

P (sB)− P (sA) > ζ (7)

This prevents replication actions that are not characterized
by a good trade-off between delivery probability and energy
consumption. Moreover, it avoids possible bundle thrashing,
that may cause considerable waste of energy.

Finally, if the buffers of the other nodes do not have space
for all the bundles to be transferred, priority is given to the
master copies. If there is not enough space for all the master
copies, these are selected for replication randomly4. The
same happens for the backup copies.

2.6 Emergency Replication
An additional mechanism is introduced in order to cope

with situations where nodes carrying master copies exhaust
their battery. When the battery level is low (i.e., under
a certain threshold), the master copies of the bundles are
copied to the nodes in reach that have a sufficient number
of free slots without considering the current values of their
delivery probabilities.

In general, the fact that the battery level is taken into
consideration in the calculation of the delivery probability
should be sufficient to avoid these situations. However, it
may happen that nodes with low battery level store master
copies because of a particular combination of weights that
gives a low relative importance to battery level and/or high
values of the colocation and change degree of connectivity
attributes. For this reason, this mechanism is introduced to
increase the fault tolerance of the system and it will be used
only in “emergency” situations.

4Alternatively, a priority may be associated to each bundle
and used for this selection process. The number of initial
replicas can also be used as priority. In this paper, we as-
sume that all the data sources have the same importance
(i.e., priority).

2.7 Predictability of the Sensor Network Sce-
nario

Our system relies on predictions about the future values of
context attributes. However, in some conditions predictions
are not reliable, e.g., because the time series describing a
particular context attribute is random or exhibit a behavior
that cannot be forecasted with accuracy (i.e., within a given
prediction error) using the model used. Therefore, it is im-
portant to assess the confidence level of context predictions,
and modify forwarding decisions accordingly.

To assess the quality of context predictions it is possible to
use the technique presented in [18], based on the analysis of
the forecasting error [3]. A predictability component receives
in input both the observed value (at time t) of a context
attribute and the predicted value (computed at t− 1). The
analysis over time of the difference between these two values
(called the residual value) enables to determine whether the
prediction model (the Kalman filter in our case) has enough
information to predict the next value of the time series with
the required accuracy. In essence, this is true when the
residuals are randomly distributed and their value is close
to zero. The analysis of the predictability of the time series
can be performed periodically in order to save resources.
However, it is worth noting that this technique is rather
lightweight in terms of use of resources.

When the predictability component determines that pre-
dictions are unreliable, we will use alternative protocols to
carry the data, for example epidemic-style approaches.

3. DISCUSSION AND RELATED WORK
There have been a number of attempts of dealing with

delay tolerant networks [8] overcoming the limitation of syn-
chronous forwarding. In the area of mobile ad hoc network-
ing, for instance, epidemic routing protocols [20] form the
basis for much of the work in this field. Chen and Murphy
refined the epidemic model, presenting the so-called Dis-
connected Transitive Communication paradigm [4]. Their
approach argues for the use of utility functions, but it pro-
vides a general framework rather than a detailed instantia-
tion, and so aspects related to the composition of calculated
delivery probabilities are almost entirely missing.

In [19], Small and Haas describe a very interesting appli-
cation of epidemic routing protocols to a problem of cost-
effective data collection, using whales as message carriers.
In [14], Lindgren et al. propose a probabilistic routing ap-
proach to enable asynchronous communication among in-
termittently connected clouds of nodes. Their approach is
based on the fact that the exploited communication model
is typically transitive and, for this reason, the probability of
message delivery must be calculated accordingly. Zhao et al.
in [22] discuss the so-called Message Ferrying approach for
message delivery in mobile ad hoc networks. The authors
propose a pro-active solution based on the exploitation of
highly mobile nodes called ferries. These nodes move ac-
cording to pre-defined routes, carrying messages between
disconnected portions of the network.

In terms of sensor networks a lot of effort has been de-
volved into data forwarding in static sensor networks [15,
9, 6]. Some attempts have also been done in the direction
of more dynamic sensor networks where mobile sinks are
available such as [5, 10]. In ZebraNet [11] mobile sensors
are deployed for tracking zebras in a hostile and wide envi-



ronment. This is one of the closest work to ours together
with [21].

However, with respect to these works, our data transmis-
sion overhead is lower (we do not have epidemic-like dissem-
ination) and, thanks to the prediction techniques used to
calculate the probabilities, the delivery of data is still rea-
sonably high. In other words, we believe that our solution
provide a better trade-off between the delivery ratio and
the energy consumption (i.e., improved sensor survivabil-
ity). We are still in the process of testing the algorithms,
but we believe that this claim is supported by our previ-
ous simulation experiments and testing of the Kalman filter
forecasting techniques with CAR [16].

4. CONCLUSIONS AND FUTURE WORK
In this paper we have described SCAR, a protocol for data

forwarding on mobile sensor networks towards a number of
fixed or mobile sinks. We plan to evaluate our approach
first through simulation using our realistic mobility model
founded on social theory [17]. We are also in the process of
porting the algorithm on top of Telos Motes running Con-
tiki [7] in order to evaluate SCAR on a real test bed.

Our research agenda is driven by the ambitious goal of
integrating different devices to form a delay tolerant system
that relies on different technologies and transmission media
that is able to exploit both deterministic and probabilistic
routing algorithms, like SCAR.
Acknowledgments: we would like to acknowledge the sup-
port of EPSRC Research Council through project CREAM.
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