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ABSTRACT
Today’s mobile phones represent a rich and powerful com-
puting platform, given their sensing, processing and commu-
nication capabilities. Phones are also part of the everyday
life of billions of people, and therefore represent an excep-
tionally suitable tool for conducting social and psychological
experiments in an unobtrusive way.

In this paper we illustrate EmotionSense, a mobile sens-
ing platform for social psychology studies based on mobile
phones. Key characteristics include the ability of sensing
individual emotions as well as activities, verbal and prox-
imity interactions among members of social groups. More-
over, the system is programmable by means of a declara-
tive language that can be used to express adaptive rules to
improve power saving. We evaluate a system prototype on
Nokia Symbian phones by means of several small-scale ex-
periments aimed at testing performance in terms of accuracy
and power consumption. Finally, we present the results of
real deployment where we study participants emotions and
interactions. We cross-validate our measurements with the
results obtained through questionnaires filled by the users,
and the results presented in social psychological studies us-
ing traditional methods. In particular, we show how speakers
and participants’ emotions can be automatically detected by
means of classifiers running locally on off-the-shelf mobile
phones, and how speaking and interactions can be correlated
with activity and location measures.

ACM Classification Keywords
H.1.2 User/Machine Systems, J.4 Social and Behavioral Sci-
ences, I.5 Pattern Recognition.

General Terms
Algorithms, Design, Experimentation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UbiComp ’10, Sep 26-Sep 29, 2010, Copenhagen, Denmark.
Copyright 2010 ACM 978-1-60558-843-8/10/09...$10.00.

Author Keywords
Emotion Recognition, Speaker Recognition, Social Psychol-
ogy, Mobile Phones, Energy Efficiency.

INTRODUCTION
Mobile phones represent an ideal computing platform to mon-
itor behavior and movement, since they are part of the every-
day life of billions of people [1]. Recently, systems such as
Cenceme [22] and Betelgeuse [16] have shown the poten-
tial of mobile phone sensing in providing information such
as user movement and activity for recreational and health-
care applications. One possible use of these technologies is
arguably the support to sociology experiments [20] which
involve studying people’s daily life and interactions. In the
past, this analysis has been performed with the help of cam-
eras (in home/working environments or in laboratories), by
using voice recorders attached to people, and self reports us-
ing daily diaries or PDAs [6]. However, these techniques
may lead to biased results since people are aware of being
constantly monitored. Instead, mobile phones offer an un-
obtrusive means of obtaining information about the behavior
of individuals and their interactions.

In this paper, we present EmotionSense, a framework for
collecting data in human interaction studies based on mo-
bile phones. EmotionSense gathers participants’ emotions as
well as proximity and patterns of conversation by processing
the outputs from the sensors of off-the-shelf smartphones.
This can be used to understand the correlation and the impact
of interactions and activities on the emotions and behavior of
individuals. In terms of system design, the key characteris-
tics of this framework are programmability (social scientists
can describe the sensing tasks using a declarative language),
and run-time adaptation (social scientists can write rules to
activate and deactivate sensors according to the user con-
text). Although energy efficient sensing has previously been
investigated in works such as [30], this is the first paper to
propose a fully context-aware programmable mobile sensing
system for social psychology research. Social scientists can
modify the behavior of the system both in terms of sensing
operations based on the analysis of the available information
about the user, and its environment. For example, they can



write a rule to activate a voice sensor only if people are close
by to the user.

More specifically, the key contributions of this work can be
summarized as follows:

• We design, implement, deploy, and evaluate a complete
system for experimental sociology and psychology that is
able to provide information about social group dynamics,
especially with respect to the influence of activity, group
interactions, and time of day on the emotions of the indi-
viduals, in an unobtrusive way.

• We present the design of two novel subsystems for emo-
tion detection and speaker recognition built on a mobile
phone platform. These subsystems are based on Gaus-
sian Mixture methods [27] for the detection of emotions
and speaker identities. EmotionSense automatically rec-
ognizes speakers and emotions by means of classifiers
running locally on off-the-shelf mobile phones.

• We propose a programmable adaptive system with declar-
ative rules. The rules are expressed using first order logic
predicates and are interpreted by means of a logic engine.
The rules can trigger new sensing actions (such as starting
the sampling of a sensor) or modify existing ones (such as
the sampling interval of a sensor).

• We present the results of a real deployment designed in
collaboration with social psychologists. We found that the
distribution of the emotions detected through Emotion-
Sense generally reflected the self-reports by the partici-
pants. Our findings confirm in a quantitative way the cor-
responding social psychological studies using traditional
methods. We detected correlation of user activity and
emotions as well as emotions and location, and we were
able to characterize participants talking in groups by their
amount of speaking.

EmotionSense has the potential to change how social sci-
entists study human behavior. The psychologists involved
in our project appreciate the flexibility of EmotionSense,
and above all, the possibility of exploiting an unobtrusive
technology for their experiments, and the ability of cross-
validating the information obtained by means of self-report-
based methods in a rigorous and quantitative way. Finally,
we observe that privacy is not a major concern for this sys-
tem, since all users voluntarily agree to carry the devices for
constant monitoring, like in other psychological studies. In
any case, no voice recording is stored since the samples are
discarded immediately after processing. Bluetooth identi-
fiers are also not stored by the system.

SENSING HUMAN EMOTIONS
What are the typical emotions exhibited by people? How
does the frequency of emotions vary? Can we measure emo-
tions in a quantitative way? What is the correlation of emo-
tion with location and activity? Or with interaction? How
does speech patterns among group of users vary over time?
Generations of social psychologists have tried to answer these
questions using a variety of techniques and methodologies
involving experiments on people.

The research methods used in the behavioral sciences make
little use of technology. In addition to traditional self-reports,
researchers may also rely on one-time behavioral observa-
tions of participants in laboratory settings. Such methods
can be useful, but the fact that they are based on behavior in
a lab raises concerns about their generalizability to non-lab
contexts. Recently, researchers have begun to use new meth-
ods in an effort to examine behavior in everyday life. For
example, daily diary methods [6] and experience sampling
methods [11] ask participants to report the social events and
psychological states they experienced either at the end of
the day or periodically throughout the day. Another method
has used devices that take audio recordings (or snapshots) of
participants’ daily lives every few minutes, which are later
transcribed and coded by teams of researchers. These meth-
ods have advantages over the traditional survey methods, but
they nevertheless suffer from issues associated with forget-
ting events that took place during the day, and carrying an
additional obtrusive electronic device.

We argue that mobile sensing technology has the potential
to bring a new perspective to the design of social psychol-
ogy experiments, both in terms of accuracy of the results of
the study and from a practical point of view. Mobile phones
are already part of the daily life of people, so their pres-
ence is likely to be “forgotten” by users, leading to accurate
observation of spontaneous behavior. The overarching goal
of EmotionSense is to exploit mobile sensing technology to
study human social behavior.

The research challenges related to design of the Emotion-
Sense system are three-fold. First, efficient inference al-
gorithms needs to be exploited to extract high-level infor-
mation from the available raw data of not always accurate
sensors embedded in mobile phones. Second, an efficient
system for this class of resource-constrained devices (espe-
cially in terms of power consumption) needs to be devised.
Third, the system should be easily programmable and cus-
tomizable for different types of experiments with changing
requirements. Our goal is to use off-the-shelf devices so that
inexpensive large-scale deployments can be possible. In the
next section, we present a high level description of Emo-
tionSense and then discuss in detail its key components, in
particular those for speaker recognition, emotion detection,
and rule-based dynamic adaptation.

SYSTEM OVERVIEW
In this section, we discuss the overall architecture of Emo-
tionSense presenting the key design choices and features of
each component of the system.

EmotionSense at a Glance
The EmotionSense system consists of several sensor moni-
tors, a programmable adaptive framework based on a logic
inference engine [25], and two declarative databases (Knowl-
edge Base and Action Base). Each monitor is a thread
that logs events to the Knowledge Base, a repository of all
the information extracted from the on-board sensors of the
phones. The system is based on a declarative specification
(using first-order logic predicates) of:
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Figure 1. Information flow in EmotionSense.

• facts, i.e., the knowledge extracted by the sensors about
user behavior (such as his/her emotions) and his/her envi-
ronment (such as the identity of the people involved in a
conversation with him/her).

• actions, i.e., the set of sensing activities that the sensors
have to perform with different duty cycles, such as record-
ing voices (if any) for 10 seconds each minute or extract-
ing the current activity every 2 minutes.

By means of the inference engine and a user-defined set of
rules (a default set is provided), the sensing actions are peri-
odically generated. The actions that have to be executed by
the system are stored in the Action Base. The Action Base
is periodically accessed by the EmotionSense Manager that
invokes the corresponding monitors according to the actions
scheduled in the Action Base. Users can define sensing tasks
and rules that are interpreted by the inference engine in or-
der to adapt dynamically the sensing actions performed by
the system. One example of such a rule is to start the GPS
receiver only if the user is currently moving. The flow of
information in EmotionSense is illustrated in Figure 1.

EmotionSense Manager
The EmotionSense Manager starts all the sensor monitors,
the inference engine, and instantiates the Knowledge Base.
Each monitor is a thread which collects data from the sensor
with a given duty cycle. The EmotionSense manager pe-
riodically invokes the inference engine to process the latest
facts from the Knowledge Base and generates actions that are
stored in the Action Base. The manager is then responsible
for scheduling all the sensing actions. The sensing actions
are scheduled by updating the state and parameters of each
monitor according to the actions generated by the inference
engine. Example output actions are setting sampling interval
of GPS sensor, accelerometer sensor, and so on.

Speaker and Emotion Recognition Component
This monitor is responsible for speaker and emotion recogni-
tion. It records audio samples with a variable sampling inter-
val. Each sample is processed to extract speaker and emotion
information by comparing it against a set of preloaded emo-
tion and speaker-dependent models, collected offline during
the setup phase of the system. The EmotionSense manager
updates this monitor with the latest co-location data (ob-
tained via Bluetooth). Thus, only the models associated with
co-located users need to be examined, improving the effi-
ciency and accuracy of the speaker recognition component.
The speaker recognition component also includes a silence
model. When no speech is detected, the computationally in-
tensive emotion classification algorithm is not executed. De-
tails of these subsystems are presented in the next section.

Sensor Monitors
The system is based on several sensor monitors. The Ac-
celerometer Monitor infers the current activity by evaluat-
ing the mean and the average of the amplitudes of the ac-
celerometer signal. The movement is extracted by means of
a discriminant function classifier [5]. The classifier is able
to discriminate between two types of activities: movement
and non-movement. The detection of complex actions was
not one of the main goals of the design of this prototype; in
fact, many classifiers can be plugged in such as those pre-
sented in [22]. The Bluetooth Monitor is responsible for de-
tecting other Bluetooth devices that are in proximity, and we
used the lightblue [18] module for Python For Symbian S60
(PyS60) to get this information. When the system is set up,
the Bluetooth identifier of the phone is associated with each
user. Finally, the Location Monitor is responsible for track-
ing the location of the user by analyzing the output of the
GPS receiver. We used the positioning module of PyS60 to
get location information. The monitor tries to extract valu-
able information even if the GPS data are not complete. An
example of an incomplete position is one that contains data
about the satellites used to obtain a GPS fix but no latitude or
longitude data. This can at the least be used to infer whether
the user is indoors/outdoors.

Action and Knowledge Base
Another key feature of the system is the Knowledge Base,
which stores the current facts that are inferred from the raw
data generated by the various sensors. All the monitors log
facts to the Knowledge Base, which are in turn used by the
inference engine to generate actions. The Knowledge Base
loads in memory only a snapshot of the facts (i.e., not all
facts that are generated so far but only the unprocessed facts)
to reduce application footprint. The older facts are logged to
a file. The format of facts is as follows:

fact(<fact_name>, <value>)

The corresponding timestamps of these facts are also stored.
Actions are also treated as facts, but with an extra identifier
which is of the form:

fact(‘action’, <action_name>, <value>)

Some examples are:

fact(Activity, 1)

fact(‘action’, ‘ActivitySamplingInterval’, 10)

The former indicates that the user is currently moving, and
the latter means that the sampling interval of accelerometer
should be set to 10 seconds.

Inference Engine
The adaptation framework is based on a set of adaptation
rules that allow for changing the behavior of the system at
run-time by monitoring the current activity, co-location with
other people, and location of the person carrying the mo-
bile phone. The adaptation rules are used to modify the
sampling behavior of the system according to the observed
status of the user, (e.g., if a person is moving or not) and



his/her surroundings (e.g., if there are other people around,
if they are currently talking, and so on). The adaptation
framework helps in saving energy by reducing the amount of
data sampling and information processing without compro-
mising considerably on the accuracy of the inference. We
will present more details about the inference engine in the
implementation section.

IMPLEMENTATION
In this section we provide more details about the implemen-
tation of the fundamental components of our system, de-
scribing the key design choices and original solutions. We
implemented the EmotionSense system on a Nokia 6210 Nav-
igator phone using PyS60 for most of the components. The
speaker recognition component is implemented in C++ since
it is based on tools of the Hidden markov model ToolKit
(HTK) suite for speech processing originally written in that
language [13].

Speaker Recognition Subsystem
The speaker recognition subsystem is based on a Gaussian
Mixture Model classifier [5, 26], which is implemented us-
ing HTK [13]1. HTK is a portable toolkit for building and
manipulating Hidden Markov Models (HMMs) and Gaus-
sian Mixture Models (GMMs) and provides sophisticated
facilities for speech analysis, model training, testing and re-
sults analysis. At present HTK is available for Windows and
Linux systems only. It was therefore necessary to adapt the
main components of the toolkit to work on the Nokia Sym-
bian S60 platform.

The speaker recognition process is performed as follows:

• Speech data are collected from all users enrolled in the
current experimental study. The data are then parame-
terized using a frame rate of 10ms and a window size
of 30ms and a vector of 32 Perceptual Linear Predictive
(PLP) coefficients [12] (16 static and 16 delta) are ex-
tracted from each frame.

• A 128-component universal background GMM (represen-
tative of all speakers) is then trained using all available
enrollment speech to optimize a maximum likelihood cri-
terion. This training procedure is currently executed off-
line. However, the training procedure could also be ex-
ecuted at run-time by sending samples to the back-end
servers by means of a WiFi or 3G connection.

• Next, a set of user-dependent GMMs are obtained by per-
forming Maximum A Posteriori (MAP) adaptation of the
background model using the enrollment data associated
with each user. The adaptation constant used for the MAP
process was set to 15.

• Finally, at run-time the likelihood of each audio sequence
is calculated given each user model. Each sequence is
then associated with the model that assigns it the high-
est likelihood. This is the Bayes decision rule [5] in the
case that the prior probability associated with each user is
equal.

1Alternative SVM-based schemes, including the popular GMM-
supervector [7] and MLLR [28] kernel classifiers, were not consid-
ered as they are generally suitable for binary classification tasks.

In order to improve accuracy and efficiency of the system,
two key mechanisms were implemented:

• Silence detection. Successfully detecting silence can im-
prove the efficiency of the system by eliminating the need
to compare each sequence with each user-dependent model.
Silence detection was implemented by training an addi-
tional GMM using silence audio data recorded under sim-
ilar background conditions to the enrollment data. Each
audio sequence is initially classified as either silence/non-
silence by comparing the likelihood of the sequence given
the silence and the background GMMs. The silence de-
tector can also be used to infer information about user en-
vironment, sleep patterns, and so on.

• Comparisons driven by co-location information. To re-
duce the total number of comparisons required, the speaker
recognition component compares a recorded audio sequence
only with the models associated with co-located users.
Co-location is derived from the facts extracted by the Blue-
tooth monitor. This avoids unnecessary comparisons against
models of people who are not in proximity of the user,
both considerably speeding up the detection process and
potentially avoiding misclassifying the sequence as be-
longing to users that are not present.

Emotion Recognition Subsystem
The emotion recognition subsystem is also based on a GMM
classifier. The classifier was trained using emotional speech
taken from the Emotional Prosody Speech and Transcripts
library [17], the standard benchmark library in emotion and
speech processing research. This corpus contains recordings
of professional actors reading a series of semantically neu-
tral utterances (dates and numbers) spanning fourteen dis-
tinct emotional categories. The selection is based on Banse
and Scherer’s study [3] of vocal emotional expression. Actor
participants were provided with descriptions of each emo-
tional context, including situational examples adapted from
those used in the original study. Flashcards were used to dis-
play series of four-syllable dates and numbers to be uttered
in the appropriate emotional category.

The emotion recognition process is performed as follows:

• A 128-component background GMM representative of all
emotional speech is initially trained using all the emotion
data.

• MAP adaptation of the background model is performed
offline using emotion specific utterances from the emo-
tion database to obtain a set of emotion-dependent mod-
els. These models are then loaded onto the phones.

• At run-time, the component periodically calculates the like-
lihood of the recorded audio sequence given each emotion-
dependent model and assigns the sequence to the emotion
characterized by the highest likelihood.

We initially tested a total of 14 “narrow” emotions based on
the classes defined in the emotion library. These were then
clustered into 5 standard broader emotion groups generally
used by social psychologists [10]. It is difficult to distinguish
with high accuracy between utterances related to emotions
in the same class given their similarity. In any case, we also



Table 1. Emotion clustering
Broad emotion Narrow emotions

Happy Elation, Interest, Happy

Sad Sadness

Fear Panic

Anger Disgust, Dominant, Hot anger

Neutral Neutral normal, Neutral conversation, Neutral distant,
Neutral tete, Boredom, Passive

set_location_sampling_interval
foreach
facts.fact($factName, $value)
check $factName == ’Activity’
facts.fact($actionName, $currentInterval)
check $actionName == ’LocationInterval’
$interval = update($value, $currentInterval)

assert
facts.fact(’action’, ’LocationInterval’, $interval)

Figure 2. An example rule to set sampling rate of GPS sensor.

note that it is also hard for a person involved in an experi-
ment to distinguish exactly among the emotions belonging
to the same class in a questionnaire and for this reason broad
classes are commonly used. The details of each grouping is
given in Table 1.

Adaptation Framework
The adaptation framework is based on Pyke [25], a knowledge-
based inference engine written in Python. It takes a set of
facts as inputs and derives additional facts through forward
chaining rules. It can also be used to prove goals using back-
ward chaining rules. However, these are not necessary in
our system and were removed when we adapted Pyke to the
Nokia Symbian 60 platform in order to reduce the memory
footprint. We have defined adaptation rules which drive the
behavior of the entire EmotionSense system. Each of these
rules sets the sampling interval of a sensor based on the data
extracted from it. EmotionSense Manager instantiates the
Pyke inference engine, and periodically invokes it to process
facts and generate actions, and it in turn updates the tasks for
the sensor monitors.

An example of a rule used in the EmotionSense system is
given in Figure 2. The rule updates the value of location
sampling interval based on the data from the accelerometer
sensor. It gets the fact Activity and the current location
sampling interval LocationInterval from Knowledge
Base, and then updates it based on a function (update()).
The idea is to provide a simple interface to add rules in or-
der to change the behavior of the system. In the Emotion-
Sense system, the function update() is based on a back-
off mechanism as shown in Figure 3. If the user is moving
then the sampling interval is set to a minimum value other-
wise it is increased by doubling each time until it reaches a
maximum value. The sampling interval stays at this max-
imum as long as user is idle, but, as soon as movement
is detected, it is set to a minimum value. In addition to
the GPS sensor, we have similar rules for microphone sen-
sor, Bluetooth sensor, and accelerometer sensor. This way,
users can write very simple functions to adapt the system

def update(value, currentInterval):
if value == 1:
samplingInterval = MIN_INTERVAL

elif value == 0:
samplingInterval = min(2*currentInterval, MAX_INTERVAL)

return samplingInterval

Figure 3. A back-off function for updating sampling interval.

to external changes. The parameters MIN_INTERVAL and
MAX_INTERVAL play a crucial role in the back-off func-
tion. In order to find the optimum values of these parame-
ters, we conducted several benchmark tests for each of the
sensors. We will present the results of some of these tests as
methodological example in the next section.

EVALUATION
We first present an evaluation of EmotionSense by means of
several micro-benchmark tests to study the system perfor-
mance and to tune the parameters of the adaptation mech-
anisms. In particular, we discuss the choice of the optimal
sample length value for speaker and emotion recognition and
a generic methodology for the selection of the optimal val-
ues for the parameters of the rules. These initial experiments
involved 12 users. We then describe the results of a larger
scale deployment involving 18 users for 10 days to evaluate
the prototype in a realistic setting and demonstrate its use-
fulness for social science.

Performance Benchmarks
We ran a series of micro-benchmarks to test the performance
of the different components and mechanisms of our system.
The data used for benchmarking the adaptation rules were
collected from 12 users over 24 hours. Each user carried
a Nokia 6210 mobile phone, which continuously monitored
and recorded the outputs of the accelerometer, the micro-
phone, and the Bluetooth sensors. We then used these data
as a trace to benchmark the different components and tune
the various parameters of our system. We used a different
data set for benchmarking the speaker and emotion recogni-
tion subsystems as discussed later in this section. We also
explored the trade-offs in performing local computation on
the phones and remote computation on a back-end server.

Speaker Recognition
In this subsection, we present the results of speaker recog-
nition subsystem benchmarks. Voice samples from 10 users
were used for this test using approximately 10 minutes of
data for training the speaker-dependent models. A separate,
held-out dataset was used to test the accuracy of the speaker
recognition component. We varied the sample length from
1 to 15 seconds and each sample was classified against 14
possible models. We used 15 samples per user per sample
length, resulting in a total of 150 test samples per sample
length. Figure 4 shows the speaker recognition accuracy
with respect to the sample length. As the sample length was
increased the accuracy improved, converging at around 90%
for sample lengths greater than 4. From Figure 5, it can be
seen that this corresponds to a latency of 55 seconds in the
case of local computation on the phone.
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Figure 4. Speaker recognition accuracy vs au-
dio sample length.
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Figure 5. Speaker recognition latency vs audio
sample length.
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Figure 6. Speaker recognition energy con-
sumption vs audio sample length.

We then compare the efficiency of classifying each audio
sample either locally on the phone or remotely on a power-
ful server reached via the 3G network. We can observe from
Figures 5 and 6 that remote computation is more efficient in
terms of both latency and energy consumption. The use of
the 3G network is acceptable and telephone contracts can be
purchased easily for experiments, although sometimes costs
might be an issue, especially if the scale of the planned ex-
periment is very large. However, by avoiding to use 3G data
transmission, the software can be distributed to participants
who want to use their own SIM cards (with their own phone
number and contacts) on the experiment phone, without im-
pacting on their bills (with transmission of our potentially
large quantity of data): this can be very important in the con-
text of the experiment. Since no personal data (such as voice
recordings, which are very sensitive) are sent to a back-end
server, privacy issues related to the transmission to a remote
server can be avoided by adopting the local computation ap-
proach. In the case of local computation, the process of com-
paring n voice samples with all the pre-loaded models is per-
formed on a Nokia 6210 mobile phone which is equipped
with ARM 11 369MHz processor. Instead, with respect to
the remote computation case, an audio sample to be classi-
fied is sent over the 3G network using the HTTP Connection
module of PyS60 to a powerful back-end server (Intel Xeon
Octa-core E5506 2.13GHz processor, and 12 GB RAM). An
audio sample of 5 seconds length has a size of about 78KB.
The energy consumption shown in the results is end-to-end
consumption including all computation, and radio transmis-
sion costs. We measured the energy consumption using the
Nokia Energy Profiler.

We also conducted a test to evaluate the effect of noise on
speaker recognition accuracy. We used Audacity [2], an
open source cross-platform sound editor, to inject noise into
voice samples. Audacity provides an easy way to add a par-
ticular type of noise into voice samples. We injected Brown-
ian noise into all the test samples for their entire length with
amplitudes ranging from 0 to 0.1, in increments of 0.02. Fig-
ure 7 shows the effect of Brownian noise on speaker recog-
nition accuracy. As expected, the accuracy decreases as the
amplitude of noise increases.

Emotion Recognition
In order to benchmark the emotion recognition subsystem,
we used both test and training data from the Emotional Prosody
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Figure 7. Effect of Brownian noise on speaker recognition accuracy for
a sample length of 5 seconds.

Speech and Transcripts library [17]. The advantage of using
this library is that it is difficult for non professionals to de-
liver emotional utterances. An alternative is to use “natural”
speech recordings (i.e., taken from everyday life situations
without acting). However, it is difficult to determine appro-
priate reference labels, required to evaluate performance on
this speech, since many natural utterances are emotionally
ambiguous. The use of a pre-existing library also allowed us
to avoid explicitly annotating collected data with emotional
labels. We used a total of 14 narrow emotions, which were
then grouped into 5 broad emotion categories. For each nar-
row emotion, we used a total of 25 test samples per narrow
emotion per sample length, resulting in a total of 350 test
samples per sample length.

Figures 8, 9, and 10 show the emotion recognition accuracy,
latency, and energy consumption with respect to the sam-
ple length, respectively. As the sample length increases the
accuracy improves, converging to about 71% for the broad
emotions for sample lengths greater than 5 seconds. Based
on the speaker and emotion recognition accuracy results (Fig-
ures 4 and 8), we used a sample length of 5 seconds in the
EmotionSense system which is the point where the conver-
gence becomes evident. The confusion matrix for broad
emotions for a sample length of 5 seconds is shown in Ta-
ble 2. Among non-neutral emotions, anger has the highest
accuracy out of all. This is confirmed in [4], where the au-
thors show that intense emotions (like anger) are easier to
detect than emotional valence. They also mention that the
emotions that are similar in intensity, like anger and fear
(panic), are hard to distinguish: the same can be observed
in our confusion matrix.
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Figure 8. Emotion recognition accuracy vs au-
dio sample length.
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Figure 9. Emotion recognition latency vs au-
dio sample length.
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Figure 10. Emotion recognition energy con-
sumption vs audio sample length.

We also note that distinguishing between some narrow emo-
tions in a group is difficult given the similarity of the utter-
ances corresponding to them: for a sample length of 5 sec-
onds, the narrow emotion “happy” matches “interest” with
a probability of 0.28. Grouping these increases the accu-
racy of classification which can be observed from Figure 8.
The usage of a limited number of broader emotional classes
is also advocated by social psychologists [10]: in general,
classifying own emotions using narrow categories when fill-
ing self-report questionnaires is also difficult.

Dataset for Sensor Benchmarks
Trace files with ground-truth information for all sensors were
generated based on the data collected from 12 users for 24
hours. In order to extract the microphone sensor trace, au-
dio samples of 5 seconds length were recorded continuously
with a sleep period of 1 second between consecutive record-
ings. Co-location data for the Bluetooth sensor trace is queried
continuously with a sleep duration of 3 seconds between suc-
cessive queries. The accelerometer sensor is sampled con-
tinuously for movement information with a gap of 1 second.
The data from these sensors were processed and trace files
with event information were generated. In the traces, the
events generated from the data of each sensor can be of two
types, viz., “unmissable” and “missable” events. An unmiss-
able event is an event of interest observed in the environment
that should not be missed by the sensor. A missable event
indicates that no interesting external phenomenon has hap-
pened and the corresponding sensor can sleep during this
time. Finally, the accuracy of a rule is measured in terms of
the percentage of events missed by the corresponding sen-
sor. An event is said to be missed when there is an unmiss-
able event recorded in the trace file while the corresponding
sensor monitor is sleeping. Also, the percentage of missed
events is a relative value with respect to the percentage of
missed events for the lowest possible sampling rate; for this
reason, the results of all the plots for accuracy start with zero
percentage of missed events.

Given the space constraints we present, as an example, the
tuning of the microphone sensor: in this case, an unmissable
event corresponds to some audible voice data being heard
in the environment, and a missable event corresponds to si-
lence. These events are generated by comparing a recorded
audio sample with two pre-loaded models, the background
GMM (same as that used for speaker recognition bench-

Table 2. Confusion matrix for broad emotions.
Emotion [%] Happy Sad Fear Anger Neutral

Happy 58.67 4 0 8 29.33

Sad 4 60 0 8 28

Fear 8 4 60 8 20

Anger 6.66 2.66 9.34 64 17.33

Neutral 6 5.33 0 4 84.66

marks) and silence model. The trace file is a list of events
(tagged as missable and unmissable) with timestamps. The
main goal of benchmarks is to find optimal values for the
MIN_INTERVAL and MAX_INTERVAL parameters discussed
in the previous section.

Figures 11 and 12 show the effect of increasing the value
of MIN_INTERVAL on percentage of missed events and
energy consumption for the microphone sensor rule. Fig-
ures 13 and 14 show the effect of increasing the value of
MAX_INTERVAL on percentage of missed events and en-
ergy consumption for the microphone sensor rule. We can
observe that all these plots exhibit asymptotic behavior. Based
on these plots and energy saving as the main motivation, we
set MIN_INTERVAL to 45 seconds and MAX_INTERVAL
to 100 seconds. We performed similar experiments for the
other sensors. As a result, for the Bluetooth sensor, we set
MIN_INTERVAL to 30 seconds and MAX_INTERVAL to
100 seconds; for the accelerometer, we set MIN_INTERVAL
to 10 seconds and MAX_INTERVAL to 30 seconds; for the
GPS sensor, we set MIN_INTERVAL to 180 seconds and
MAX_INTERVAL to 800 seconds.

Social Psychology Experiment
After evaluating the accuracy of the system by means of the
micro-benchmark tests, we conducted a social psychology
experiment to evaluate the usefulness of the EmotionSense
system for social scientists. The data extracted by means
of the EmotionSense system running on the mobile phones
were compared to information provided by participants by
means of traditional questionnaires.

Overview of the Experiment
The experiment was conducted for a duration of 10 days
involving 18 users. Users were members of the local De-
partment of Computer Science. Since the system did not
require any user-phone interaction, the fact that the partici-
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Figure 11. Percentage of missed events vs minimum sampling interval
for microphone rule.
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Figure 12. Energy consumption vs minimum sampling interval for mi-
crophone rule.

pants were technology-savvy is not a determinant factor for
the outcomes of the experiment. Each user carried a Nokia
6210 mobile phone for the total duration of the experiment.
Users filled in a daily dairy questionnaire for each day of
the experiment which was designed by a social psycholo-
gist of our team following the methodology described in [6].
We divided a day into 30-minute slots, and asked the users
to fill a questionnaire about the activity/event they were in-
volved in at a particular time of day. We also asked them
if the event happened indoors or outdoors, their location, if
there were other people present (in particular, participants
involved in our study). Furthermore, we asked them to spec-
ify their mood at that time.

Results and Discussion
We analyzed the distribution of emotions detected, and also
the effect of time of day, activity, and co-location, on the
distribution of emotions. Figure 15 shows the distribution of
“broad” emotions detected by the system during the experi-
ment. We can infer that people tend to exhibit neutral emo-
tions far more than other emotions. Fear is the least shown
emotion of all. This is very much in accordance with existing
social psychological studies [9], where it is shown that most
of social activity is effectively neutral, with the exception of
rare arguments. Figure 16 shows the distribution of emotions
from the questionnaires filled by users, which shows a distri-
bution of emotions similar to that extracted by means of our
system, except for the emotion “happy”. Based on our dis-
cussions with the participants, we found that the users have
indicated the “happy” emotion to represent their mental state
but this does not necessarily mean that they were expressing
happiness in a verbal way.
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Figure 13. Percentage of missed events vs maximum sampling interval
for microphone rule.
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Figure 14. Energy consumption vs maximum sampling interval for mi-
crophone rule.

Figure 17 shows the distribution of emotions with respect
to the time of day. We can infer that users tend to exhibit
non-neutral emotions more frequently during evenings than
mornings. This is particularly true with respect to most of
the users of this experiment who were more relaxed in the
evenings than mornings. Instead of studying a global per-
centage of each of the emotions with respect to activity, we
plotted the distribution of relative percentage of broad emo-
tions when users are stationary and mobile. From Figure 18,
we can observe that these distributions are very close, and
the relative ordering is the same in both the cases. Figure 19
shows the effect of the number of co-located participants on
the emotions of users. We can observe that the total num-
ber of emotions detected in smaller groups is higher than
that in larger ones. However, this can also be due to the fact
that our users spent more time in smaller groups than larger.
In order to fathom this phenomenon better, we compared
the distributions of relative percentage of emotions detected,
which is shown in Figure 20. We can infer that the num-
ber of co-located participants has little effect on emotions
like neutral and happy. Furthermore, we can also observe
that people tend to exhibit sad and anger emotions lesser in
larger groups than smaller groups. These results which we
obtained are in-line with that of results found in social psy-
chology studies [21]. We were able to associate predominant
non-neutral emotion to location categories: we found that
the most common emotion in residential areas was “happy”
(45%), whereas in the workplaces and city center “sad” was
the mostly detected (54% and 49%, respectively). These re-
sults show the potential of a deeper analysis of correlation
between emotions and location, which we plan to investi-
gate further from the socio-psychological perspective with
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Figure 15. Distribution of broad emotions de-
tected.
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Figure 16. Distribution of broad emotions
from daily dairies.
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Figure 17. Distribution of broad emotions de-
tected with respect to time of day.
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Figure 18. Distribution of broad emo-
tions detected within a given physical state
(idle/moving).

 0

 5

 10

 15

 20

 25

 30

HAPPY SAD FEAR ANGER NEUTRAL

P
e

rc
e

n
ta

g
e

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

HAPPY SAD FEAR ANGER

1-2
3-4
5-6
7-8

Figure 19. Distribution of broad emotions de-
tected with respect to number of co-located
participants.
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Figure 20. Distribution of broad emotions de-
tected within a given number of co-located
participants.
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Figure 21. Variation of speech patterns over time.

more focused studies. We note that these findings might be
specific to the cultural context of this study. EmotionSense
can also be used to analyze the speech patterns of users with
respect to time. Figure 21 shows the speech patterns of users
over time, which reveal a considerable amount of consis-
tency in most participants’ verbal behavior across a 6-day
period (except for the first day of “user2“ that looks unique
for him/her).

We also analyzed the data collected from a meeting which
was held during the experiment when 11 of the participants
sat together and talked for 30 minutes. We identified con-
versation leaders in each time slot of length 5 minutes. The
analysis is shown in Figure 22. We considered only the top
five most active speakers for this plot. We used an audio
sample length of 3 seconds for this analysis as the differ-
ence between the speaker recognition accuracies for sample
lengths of 3 and 5 is only 3% (Figure 4). We can observe
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Figure 22. Speech time as percentage of the total speech time for all
users per time slot during the meeting experiment.

that “user4” is the leader in almost all the slots, except in
2nd and 5th slots, where he/she was challenged by “user2”
and “user5”, respectively.

RELATED WORK
In the past years, we have witnessed an increasing interest in
the use of ubiquitous technologies for measuring and mon-
itoring user behavior [24]. Experience sampling [11, 23]
is also used to evaluate human-computer interaction espe-
cially for mobile systems since the use of the devices is not
restricted to indoor environments. The most interesting ex-
ample of such systems is MyExperience [11], a system for
feedback collection triggered periodically, partly based on
the state of the on-board sensors. MyExperience does not
include components for speaker, emotion recognition and
energy saving mechanisms. In [23], the authors examined
the use of a mobile phone based experience sampling ap-



plication for cognitive behavioral therapy. The application
collects the data about users emotions and their scales, how-
ever, this data has to be manually entered into the system.
Recently, EEMSS, an energy efficient system for user ac-
tivity recognition, has been presented in [30]. With respect
to this work, EmotionSense allows for programmability and
provides additional capabilities in terms of co-location de-
tection and emotion and speaker recognition. The authors of
[14] model dominance in small group meetings from audio
and visual cues, however, they do not model emotions. Re-
cent systems for quantitatively measuring aspects of human
behavior using purpose-built devices include the Sociome-
ter [8] and the Mobile Sensing Platform [31]. EmotionSense
instead targets off-the-shelf devices that are already part of
the everyday life of billions of individuals.

With respect to voice processing technologies, a survey of
GMM-based speaker recognition technology can be found
in [26]. SoundSense [19] is a system for recognizing sound
types (music and voice) and situations based on mobile phones;
similar algorithms that are complementary to ours may be
added to EmotionSense to provide information about the so-
cial situations to psychologists. The emotion recognition
system that we implemented is close to that devised by the
Brno University of Technology team for the Interspeech 2009
Emotion challenge described in [15]; however, this system
was not based on mobile phones. In addition to voice based
emotion recognition systems, there are systems built using
wearable emotion detectors [29].

CONCLUSIONS
In this paper, we have presented EmotionSense, a novel sys-
tem for social psychology study of user emotion based on
mobile phones. We have presented the design of novel com-
ponents for emotion and speaker recognition based on Gaus-
sian Mixture Models. We have discussed the results of the
evaluation of the system by means of a series of benchmarks
and a large-scale experiment that involved 18 participants.
We have also shown how the information collected by Emo-
tionSense can be used by social scientists in order to under-
stand the patterns of interaction and the correlation of emo-
tions with places, groups, and activity.

We plan to improve the emotion classifiers by optimizing the
size of model and the PLP front-ends in order to obtain an
optimal one for emotion recognition [27] and by connecting
external sensors such Galvanic Skin Response device. We
also plan to improve the noise robustness of the system by
considering more realistic noise models. Finally, our long-
term goal is to be able to provide real-time feedback and
psychological help to users/patients in an interactive way,
also by monitoring therapies day by day and modifying them
if necessary.
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