
Private User Discovery in
Anonymous Communication Networks

Ceren Kocaoğullar
King’s College

A dissertation submitted to the University of Cambridge
in partial fulfilment of the requirements for the degree of

Master of Philosophy in Advanced Computer Science

University of Cambridge
Department of Computer Science and Technology

William Gates Building
15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

Email: ck596@cam.ac.uk

June 11, 2021

Declaration

I Ceren Kocaoğullar of King’s College, being a candidate for the M.Phil in Ad-

vanced Computer Science, hereby declare that this report and the work described

in it are my own work, unaided except as may be specified below, and that the

report does not contain material that has already been used to any substantial

extent for a comparable purpose.

Signed: Ceren Kocaoğullar

Date: 11 June 2021

This dissertation is copyright ©2021 Ceren Kocaoğullar.

All trademarks used in this dissertation are hereby acknowledged.

Abstract

Private communications have recently become an integral part of our everyday lives
with encrypted messaging applications such as Signal, Telegram, and WhatsApp.
On the other hand, PGP, a twenty-year-old encryption system mostly used for
email, has historically seen limited adoption. A likely explanation for this disparity
is that finding friends on messaging apps is easy via using phone numbers, whereas
it is obscure and confusing on PGP, as demonstrated by research [1].

Despite having a practical user discovery mechanism and protecting message con-
tents, encrypted messaging apps do not provide metadata privacy. Therefore,
they potentially expose critical information about conversations and jeopardise
user privacy. Anonymous communication networks can solve this problem. How-
ever, similar to PGP, the current user discovery mechanisms for these networks
are unusable.

This dissertation identifies the need for a new privacy-preserving and practical user
discovery mechanism in anonymous communication networks. To satisfy this need,
I have systematically defined the properties of an ideal user discovery mechanism.
An analysis of these properties has revealed that the ideal user discovery system
is not practically achievable. Therefore, I have established two security protocols,
each representing a different point in the usability-privacy tradeoff space: ID-
Verified Pudding allows user discovery through validated email addresses, but it
cannot hide usernames from the user discovery mechanism. Incognito Pudding
solves this issue at the cost of sacrificing the ability to link Pudding usernames to
well-known external names. To investigate the completeness and liveness of these
protocols, I have developed a model checker in Python and simulated all possible
protocol runs in a finite state space. The results of this evaluation demonstrate
that both Pudding protocols are practically achievable.

Word count: 14,915

Contents

1 Introduction 1

2 Background 4
2.1 Anonymous Communication Networks 4
2.2 Private Discovery in Other Contexts 5

2.2.1 Private Set Intersection (PSI) 6
2.2.2 Private Information Retrieval (PIR) 6
2.2.3 Secure Remote Computation 7
2.2.4 Private DNS Solutions . 7
2.2.5 Distributed Hash Tables (DHTs) 8

2.3 Cryptographic Background . 9
2.3.1 Anonymous Replies . 9
2.3.2 Threshold Secret Sharing . 9
2.3.3 Hash Function . 10
2.3.4 Oblivious Pseudorandom Function (OPRF) 10
2.3.5 Digital signatures . 11
2.3.6 DomainKeys Identified Mail (DKIM) 12

2.4 Summary . 14

3 Goals and Problem Statement 15
3.1 Problem Description . 15
3.2 Threat Model . 18
3.3 System Goals . 19
3.4 Analysis of System Goals . 22
3.5 Pudding Protocols . 23
3.6 Notation & Terms . 24
3.7 Summary . 25

4 ID-Verified Pudding 26
4.1 Protocol Overview . 26

i

4.1.1 System Goals Analysis . 27
4.1.2 The Core Idea: Identity Verification 28

4.2 Registration to the System . 29
4.3 User Discovery . 36
4.4 Updating User Data . 38
4.5 Account Recovery . 39
4.6 Tradeoffs and Limitations . 39
4.7 Summary . 41

5 Incognito Pudding 42
5.1 Protocol Overview . 42

5.1.1 System Goals Analysis . 43
5.1.2 The Core Idea: Salt Creation and Username Hashing 44

5.2 An Illustrative Example . 46
5.3 Registration to the System . 49
5.4 User Discovery . 52
5.5 Updating User Data . 54
5.6 Tradeoffs and Limitations . 55
5.7 Summary . 56

6 Implementation 57
6.1 Pudding Simulation Tool . 57
6.2 Evaluation . 58

6.2.1 Completeness Evaluation . 59
6.2.2 Liveness Evaluation . 59

6.3 Limitations . 60
6.4 Summary and Results . 61

7 Summary and Conclusions 62

ii

List of Figures

2.1 (a) DKIM signature of an email sent from my Cambridge email
address, (b) explained version of the signature, and (c) details about
the DNS lookup for obtaining the public verification key. Data is
obtained through https://dkimvalidator.com. The arrow signs
(→) denote line breaks. 13

4.1 Bob’s registration process to ID-Verified Pudding. 30
4.2 Alice discovering Bob through ID-Verified Pudding. The system

consists of discovery servers A, B, C and D, and employs a (3, 4)
threshold mechanism . 36

iii

https://dkimvalidator.com

List of Tables

3.1 Matrix showing the compatibility of goals: l marks the goals that
are not compatible, and m denotes potential incompatibility un-
der certain conditions, compatible goals are unmarked. Operational
Goals are excluded, because they are the system’s essential goals,
and thus are compatible with all other goals. 22

6.1 The parameters used for testing completeness and liveness of the
protocols and their possible values. 59

6.2 Categories of success and failure cases in auto-generated complete-
ness test scenarios. 60

iv

Chapter 1

Introduction

Private communications have recently become an essential part of our daily digital

conversations with encrypted messaging apps such as Signal [2], Telegram [3], and

WhatsApp [4]. In fact, the search for private communication services and many

of the cryptographic ideas have been existing for much longer than the lifetime of

these applications. One reason behind the newfound widespread adoption of these

messaging apps is that they made finding friends practical simply by using phone

numbers. A notable earlier example, PGP, an encryption system mostly used for

email, fails to enable novice users to find other users practically, as demonstrated

by research [1]. The lack of a usable discovery mechanism is likely an important

factor in PGP’s limited adoption despite its two decades of existence.

Although the mentioned popular messaging apps hide the conversation contents

using encryption, they do not achieve strong anonymity as they do not protect

metadata. Metadata refers to information about a message other than what is said

in it, such as when, with whom, and how frequently parties communicate. This

type of data can reveal enough information to render encrypting the substance of

the messages ineffective. As Former Director of NSA and CIA General Michael

Hayden has famously stated, they “kill based on metadata” [5].

Anonymous communication networks aim to provide metadata privacy for achiev-

ing better privacy than merely encrypting message contents. Tor [6] is perhaps

1

the most well-known anonymous communication network. Nevertheless, it is not

the only one, nor does it provide perfect anonymity. Tor achieves low latency and

high throughput, which enables real-time communications. However, it does not

provide metadata privacy against a global passive adversary, who is capable of

observing multiple network links throughout the Internet [7].

On the other hand, mix networks, another type of anonymous communication

network, provide metadata privacy against global passive and active adversaries.

The higher latency and lower throughput of mix networks make them unfit for

real-time applications such as videoconferencing. However, these networks are still

able to support asynchronous messaging. As a result, some mix-based anonymous

communication networks, such as Loopix [8], Vuvuzela [9], Talek [10], and Pung

[11], specialise in messaging with metadata privacy. Every user in these anonymous

messaging systems possesses some contact information that makes them reachable.

To be able to contact a user on an anonymous messaging system, one has to learn

her contact information, or discover them.

Even though the aforementioned anonymous messaging systems provide improved

anonymity with metadata privacy, they lack a usable discovery mechanism. This

is a critical shortcoming because as illustrated by the PGP versus messaging apps

example above, usable discovery is key for enabling communication technologies

to be accessible to a broad user base.

A usable discovery mechanism in anonymous messaging systems should allow users

to find each other by their human-memorable username. This is analogous to the

idea behind DNS and address books: Users easily recall URLs and people’s names,

not IP addresses or phone numbers, because memorising random-looking strings

requires repetition over an extended period, as shown by previous research [12].

In addition to being usable, a discovery mechanism in an anonymous messaging

system should provide privacy. Specifically, it is critical for the mechanism to (1)

keep discovery relationships between users secret, and (2) make contact informa-

tion reachable only to those who know the username. These two requirements

separate user discovery in anonymous messaging systems from the rest of the dis-

covery space. Although mentioned above as usable lookup mechanisms, neither

2

DNS nor address books meet these requirements. In fact, there is seemingly no

existing solution that meets the usability and privacy demands in this problem

area. This study aims to delve into this critical yet underexplored issue and de-

velop novel approaches and solutions to make anonymous messaging systems like

Loopix more usable while preserving the metadata privacy promises of anonymous

communication networks.

Regarding the second privacy requirement, all discovery mechanisms are subject

to the friction between privacy and usability: Memorable usernames are often also

guessable [13]. This may allow adversaries to determine registered usernames and

obtain contact information by simply querying the discovery mechanism. Notwith-

standing this inherent limitation, in this dissertation, I will propose ways to protect

usernames and contact information from being easily accessed in large quantities.

This dissertation makes the following contributions:

• Identifying the need for a new usable and private user discovery mechanism

in anonymous communication networks (Section 3.1).

• A novel framework describing the requirements of an ideal privacy-preserving

and usable user discovery system from operational, usability, and security &

privacy perspectives (Section 3.3).

• An extensive analysis of system goals, as well as threat and trust models.

This analysis reveals that an ideal user discovery mechanism is unattainable,

as some system goals cannot coexist (Sections 3.2 and 3.4).

• Two original user discovery protocols meeting different subsets of the ideal

system’s goals, and might apply to different settings (Chapters 4 and 5).

• First-time application of the Oblivious Pseudorandom Function (OPRF)

concept to the user discovery space.

• A simulation tool to demonstrate practicality, completeness and liveness of

the protocols. This tool assesses the protocols with a model checking ap-

proach, mechanising the processes and simulating all protocol runs within a

finite state space (Chapter 6).

3

Chapter 2

Background

This chapter describes anonymous communication networks and reviews the cur-

rent literature about private discovery in a broad context. It begins by describing

anonymous communication networks and identifies that one type of these net-

works, anonymous messaging systems, has special requirements for discovering

users. Then, this chapter presents the prevalent mechanisms used for discovering

peers in relevant areas. However, no existing mechanism meets the criteria for be-

ing used as a user discovery mechanism in anonymous messaging systems. Finally,

this chapter provides the foundation for some key cryptographic concepts that are

used for designing protocols in consecutive chapters.

2.1 Anonymous Communication Networks

Anonymous communication networks aim to allow users to share information with

others without revealing who they are communicating with to observers of network

traffic. These networks do more than merely encrypting the transmitted data;

they aim to provide metadata privacy, hiding information such as which users

communicate, when, and how often.

As mentioned in the previous chapter, although Tor [6] has brought anonymous

communication networks to the mainstream, this line of research has produced

a myriad of designs that cover many different areas of use and employ various

4

technologies. Tor anonymises TCP-based communications like browsing the Web,

peer-to-peer real-time communications, and secure shell [14]. Other application

areas for anonymous communication networks include anonymous emails [15], e-

voting [16, 17, 18], anonymous credentials [19, 20], anonymous Voice-over-IP calls

[21], file sharing [22], electronic currencies [23], anonymous bulletin boards [24],

and anonymous auctions [25].

These different areas of specialisation come with different requirements. For in-

stance, networks aiming to anonymise credentials should allow users to prove their

identity without revealing it. On the other hand, those that are used in e-voting

have to be exceptionally robust. Therefore, there is no generic formula to designing

an anonymous communication network. Different architectures employ different

technologies such as mixing [26], onion routing [27], and Dining Cryptographers

networks (DC-nets) [28] with different approaches.

This dissertation focuses on anonymous communication networks that allow anony-

mous messaging, or anonymous messaging systems, such as Loopix [8], Vuvuzela

[9], Talek [10], and Pung [11]. Regardless of their technical intricacies, all these

systems have a requirement in common: In order to communicate with a user, one

has to learn some network-related information about them, in other words, discover

them. Although the need for discovering network entities is common among many

types of anonymous and other communication networks, some specific anonymity

requirements separate user discovery from other forms of node discovery. These

requirements are outlined in the next section and described in detail in Section

3.1,

2.2 Private Discovery in Other Contexts

This section describes some private discovery mechanisms used in settings other

than anonymous communication systems and discusses their suitability to user

discovery. Encrypted messaging apps such as Signal [2] aim to allow users to find

their contacts registered to the app easily and privately. Private contact discovery

covers the line of research and industry practices that study this issue. The first

three parts of this section discuss the three main ideas used in private contact

5

discovery, namely Private Set Intersection (PSI), Private Information Retrieval

(PIR), and using secure enclaves. The last two parts describe DNS and Distributed

Hash Tables (DHT), the two major mechanisms used for node discovery in various

anonymous communication networks.

There are two main privacy requirements that a user discovery mechanism has to

meet to retain the level of privacy that anonymous messaging networks provide.

The first one is preventing the discovery mechanism from linking the user with the

users she discovers. The second one is hiding the user’s contact information from

everyone including the discovery nodes, unless they make legal queries to discover

the user. None of the mechanisms presented in this section meets both these

privacy criteria. Therefore, they cannot be used for user discovery in anonymous

messaging systems.

2.2.1 Private Set Intersection (PSI)

The line of research on Private Set Intersection (PSI) aims to devise protocols

where parties figure out the intersection of sets of information without learning

anything else about each other’s sets, except maybe their sizes [29]. PSI is a suit-

able and widely discussed solution for the mainstream private contact discovery

problem, i.e. determining which users in a user’s address book are registered in the

system without learning nothing about the rest of the user’s address book. How-

ever, PSI is not directly applicable to user discovery in anonymous communication

networks, since this technique does not allow users to privately obtain information

that is necessary for messaging others. As the name suggests, PSI merely works

for privately finding intersections of sets of data.

2.2.2 Private Information Retrieval (PIR)

Private Information Retrieval (PIR) defines a class of cryptographic techniques

that allows retrieval of items from a server without revealing to the server which

items are retrieved [11]. PIR techniques can be grouped under two categories:

Computational PIR (C-PIR) and Information-Theoretic PIR (IT-PIR).

C-PIR methods support a very strong trust model, placing confidence in no one but

6

the communication partner, at the cost of high computational or network costs. IT-

PIR techniques are usually computationally cheaper than C-PIR schemes, however,

they support the weaker anytrust threat model, i.e. trusting that at least one

database is honest [10].

Although PIR could be helpful in achieving user discovery, significant computation

and network costs of even the less costly IT-PIR raise questions about this tech-

nique’s practicality and scalability. Moreover, these schemes are usually designed

for database queries using multiple keywords, whereas queries needed for user dis-

covery are of a much simpler form, and therefore suitable for more straightforward

solutions.

2.2.3 Secure Remote Computation

Another idea explored in the mainstream private contact discovery field is using

secure remote computation for secretly finding the intersection of the user’s address

book and the users registered to the messenger service. Specifically, Signal’s private

contact discovery mechanism [30] employs Intel Software Guard Extensions (SGX)

technology, which offers a secure remote computation environment [31]. Combining

this feature with the right computational approach, Signal aims to achieve the

desired privacy in private contact discovery. However, changing the hardware in

existing systems to support this technology is costly and burdensome. Moreover,

the SGX technology has been prone to attacks that can extract private data stored

in the enclave [32].

2.2.4 Private DNS Solutions

Domain Name Service (DNS) is used for translating human-readable domain names

to IP addresses by recursively querying servers based on a determined hierarchy

[33]. This mechanism was originally designed to make information publicly avail-

able and therefore did not aim to provide any privacy. However, as it started to be

used in services requiring stronger privacy, DNS security and privacy grew into a

topic of interest in the research community [34]. DNSSEC was introduced by the

Internet Engineering Task Force (IETF) for ensuring the integrity and authenti-

7

cating the origin of DNS data. However, these extensions do not aim to provide

privacy [35].

Most of the existing research about DNS privacy focuses on protecting DNS queries

and responses from unauthorised parties. To provide a base for private DNS

queries and responses, OpenDNS has devised two solutions: DNSCrypt [36] and

DNSCurve [37], which both use elliptic-curve cryptography to encrypt DNS com-

munications. Apart from these two best-known methods, several more drafts have

been submitted to enter IETF’s standards track, such as Confidential DNS [38]

and Private DNS [39]. In addition to these commercial and organisational efforts,

protecting the privacy of DNS queries and responses has also been a subject of

academic research [40, 41, 42, 43].

All these DNS solutions aim to hide the contents of DNS queries and responses.

However, they do not aim to prevent linking users with their queries. Therefore,

none of these private DNS solutions is suitable for user discovery. More recent ap-

proaches like Oblivious DNS [44], DNS for Tor [45], and distributed DNS [46] solve

this issue. Nevertheless, these solutions do not meet the other privacy requirement

for user discovery, which is hiding contact information from the discovery mecha-

nism.

2.2.5 Distributed Hash Tables (DHTs)

The second family of mechanisms that are used for node discovery in various

types of anonymous communication networks is Distributed Hash Tables (DHTs).

As the name suggests, a DHT is a distributed system that functions like a hash

table, which allows peers in the system to search for data objects using the keys

associated with them.

As with DNS, most DHT implementations do not provide protection against link-

ing users with queries. The ones that aim to provide this property, including Salsa

[47], AP3 [48], NISAN [49], Torsk [50] are susceptible to information leakage, as

illustrated by numerous studies [49, 51, 52, 53].

8

2.3 Cryptographic Background

This section aims to lay the groundwork for some key cryptographic concepts that

are essential for building the user discovery mechanisms presented in the following

chapters of this dissertation.

2.3.1 Anonymous Replies

Anonymous replies refer to a specific message type used in anonymous communi-

cation networks, which allows users to send a message to a receiver and receive

a response from them while remaining anonymous [15, 54]. A primitive called

single-use reply block (SURB) [15] is used for enabling anonymous replies.

One way for Alice to create a SURB is to construct a mix header with an empty

payload destined for herself. This resulting header includes a path consisting of

a number of relay nodes and finally arriving at Alice. Due to the nature of mix

headers, this header follows a path that goes to Alice, while not revealing her

identity to anyone but the last relay node in the path. Therefore, when Alice

wants to send an anonymous message to Bob and receive a reply without revealing

her identity, she attaches a SURB to her message. The SURB allows Bob to reply

to Alice without knowing who she is. Ultimately, Alice enjoys sender anonymity

when sending the message, and receiver anonymity when receiving a reply [54].

2.3.2 Threshold Secret Sharing

The concept of secret sharing was first proposed in 1979, independently by Shamir

using polynomial interpolation [55] and Blakley based on hyperplane geometry

[56]. Although numerous secret sharing schemes with different properties have

been proposed since then (e.g. [57, 58, 59, 60, 61, 62]), the core idea behind all

secret sharing schemes is the same: They allow dividing a secret into pieces in

such a way that no piece makes sense by itself, but the pieces can be collectively

used to reconstruct the secret.

A threshold secret sharing scheme, or (k, n) threshold scheme, is a secret sharing

scheme with a special property: The secret is split into n shares and distributed

9

to different participants. Any group of k or more participants can assemble their

shares to reconstruct the secret, but no group with less than k members can [55].

2.3.3 Hash Function

A hash function is a deterministic function that maps arbitrary-sized bit strings

to fixed-sized bit strings. These functions have two useful properties; they are:

1. one way, i.e. knowing only the output of a hash function H(x), it is compu-

tationally infeasible to find x except by brute-force guessing its value

2. collusion resistant, i.e. it is computationally infeasible to find two different

inputs x 6= y that yield the same hash output H(x) = H(y) [63]

2.3.4 Oblivious Pseudorandom Function (OPRF)

A Pseudorandom Function (PRF) is a function that takes a random seed and a

data value as inputs, and creates an output that is indistinguishable from an actual

random value [64].

An Oblivious Pseudorandom Function (OPRF) defines a class of protocols between

two parties that allows the parties to securely and collectively compute the keyed

PRF Fk(x) = y. This dissertation calls these two parties the key (k) holder and the

input (x) provider. As a result of performing an OPRF, the input provider learns

the output of the function (y), whereas the key holder does not learn anything

[65]. To explain the concept better, a case study is presented below.

OPRF Case Study: Password Hardening

OPRF can be used for deriving a strong secret from a weak secret, such as a low-

entropy password. One example to this is a password-to-random protocol proposed

by Jarecki et al. [66] based on Ford-Kaliski password hardening technique [67].

This protocol can be described as below.

Alice wants to use a human-memorable password in an authentication process.

She also wants to prevent adversaries from learning her password through online

and offline attacks. To achieve this, Alice performs an OPRF with a designated

10

device (D) she can communicate with, such as her mobile phone or a server. In

this OPRF, Alice is the input provider and the device is the key holder. Alice

provides her password (pwd) as an input to the OPRF and obtains a randomised

value. This is a pseudorandom value which Alice can consistently obtain from her

password when she collaborates with D, but is irreversable and unlinkable to her

password. Alice can use the randomised value to compute a strong randomised

password (rwd), with which she can register and authenticate to an authentication

server. Due to the nature of OPRFs, the device D does not learn anything about

the password during the process.

Below is the OPRF protocol that this study proposes to achieve the described

goal:

• Alice hashes her password using a hash function H ′ that maps from inputs to

elements of a prime-order cyclic group G. Then, she picks a random number

ρ and uses this number to blind the hash value H ′(pwd) by raising the value

to the power of ρ. The blinding step hides the value of pwd from anyone who

does not know the randomly chosen ρ. Alice sends this blinded hash value

to D. (H ′(pwd)ρ where H ′ : {0, 1}∗ → G).

• Upon receiving this blinded hash of the password, if the value is in the cyclic

group G, D raises it to the power of D’s secret key, k, and replies to Alice

with the resulting value. (H ′(pwd)ρk).

• Alice de-blinds the received value by raising it to the power of 1/ρ to retrieve

H ′(pwd)k. She then uses a different hash function to hash this value with

password. The resulting value is Alice’s randomised password rwd. (rwd←
H(pwd,H ′(pwd)k) where H : {0, 1}∗ → {0, 1}τ)

2.3.5 Digital signatures

A digital signature is a cryptographic primitive, which enables checking the in-

tegrity of a message and authenticating the originator. A digital signature scheme

can be described as follows: A secret signing key (sk) and a corresponding, but

non-identical public verification key (pk) are used for creating a signature and

verifying a message-signature pair, respectively. A signed message and its sig-

11

nature are presented together to the party which will validate the signature.

Through this scheme, only the owner of the secret signing key can sign a mes-

sage (sig ← Sign(msg, sk)); however, everyone can check the signature’s validity

using the public verification key (SigVerify(pk,msg, sig)) [68, 69].

2.3.6 DomainKeys Identified Mail (DKIM)

DomainKeys Identified Mail (DKIM) [70] is a method that uses digital signatures

to confirm the origin of emails. In other words, by checking the DKIM signature,

one can be confident that an email came from the domain it claims that it did.

The basic idea is as follows: The email contents, specifically the hash of the body

and some selected header fields, are signed using the signer’s secret signing key

(sk). This signature, namely DKIM signature, is added to a DKIM header and

attached to the email. The recipient can then retrieve the public verification key

(pk) that the signer has published to the DNS as a TXT record and use it to verify

the DKIM signature [70, 71].

The DKIM signature is not the only information that the DKIM header contains;

many other required and optional fields exist. Figure 2.1.a shows the fields that

are included in a sample header. The most significant fields in a DKIM header are

as follows:

• b: The DKIM signature

• h: List of the email’s header fields included in the signature

• bh: Hash of the email’s canonicalised body: Canonicalisation aims to trans-

form the message so that different ends of the communication using different

encodings calculate the same hash value

• d: Domain of the signing entity

• s: Selector used for partitioning the namespace of d

Although the signer of an email can directly be the sender, as the name suggests,

DKIM is originally intended to execute signing and verification at the domain

level. Therefore, the signer is often an entity higher in the domain hierarchy [70].

12

(a) Raw DKIM signature:

v=1; a=rsa-sha256; c=relaxed/relaxed;

d=UniversityOfCambridgeCloud.onmicrosoft.com;

s=selector2-UniversityOfCambridgeCloud-onmicrosoft-com;

h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-

→ SenderADCheck;

bh=GuD+k1F9m43ShzdNbvA0XehinfuLo1kj43NJkwxvg08=;

b=gX/0ACfK4PqBP20PccyptrTD4w5DYYIoTpD4wkD6Gu9YVT3ufEgc1JxJeR/etVrXdDyUM/

→ JDuVlo0t4lSSplvQfaWH6SQcZ3EIjPvDrmV7/U5wuf3qK1/B6DZpm8N4vn69ByWaSk8Vu

→ WU+6dovz0RaQ3jiAj8KyEx0bY0LYNeAk=

(b) Signature information explained:

v= Version: 1

a= Algorithm: rsa-sha256

c= Method: relaxed/relaxed

d= Domain: UniversityOfCambridgeCloud.onmicrosoft.com

s= Selector: selector2-UniversityOfCambridgeCloud-onmicrosoft-com

q= Protocol:

bh= GuD+k1F9m43ShzdNbvA0XehinfuLo1kj43NJkwxvg08=

h= Signed Headers: From:Date:Subject:Message-ID:Content-Type:MIME-

→ Version:X-MS-Exchange-SenderADCheck

b= Data: gX/0ACfK4PqBP20PccyptrTD4w5DYYIoTpD4wkD6Gu9YVT3ufEgc1Jx

→ JeR/etVrXdDyUM/JDuVlo0t4lSSplvQfaWH6SQcZ3EIjPvDrmV7/U5wuf3qK1/

→ B6DZpm8N4vn69ByWaSk8VuWU+6dovz0RaQ3jiAj8KyEx0bY0LYNeAk=

(c) Public key DNS lookup

Building DNS Query for

selector2-UniversityOfCambridgeCloud-onmicrosoft-com. domainkey.

→ UniversityOfCambridgeCloud.onmicrosoft.com

Retrieved this publickey from DNS: v=DKIM1; k=rsa;

p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC92TmjHQXbQcV1JqUW/IEsjGW8+i+9Q3

→ 9EWJZh9BnPGGkL5bSHoFevHIi6fDN0af3D/ab8aOetbCVslr0Ag8voucAKKfa3MkF1Q58mYC+

→ MwUkI1EPVNHzzpUVLRn2XALrxrx8WrdFuSOPLTWJrptK6OsBERE034o4zqxUJvUIsWQIDAQAB;

Figure 2.1: (a) DKIM signature of an email sent from my Cambridge email ad-
dress, (b) explained version of the signature, and (c) details about the DNS
lookup for obtaining the public verification key. Data is obtained through
https://dkimvalidator.com. The arrow signs (→) denote line breaks.

13

https://dkimvalidator.com

For instance, as Figure 2.1 illustrates, the emails that I send from my Cambridge

email address are signed by domain d=UniversityOfCambridgeCloud.

onmicrosoft.com using selector s=selector2-UniversityOfCambridgeCloud-on

microsoft-com. As described in Figure 2.1.c, verifiers of the emails that I send

from this address make a DNS lookup using these two identifiers to retrieve my

domain’s public verification key. This key is then used for verifying the DKIM

signature attached to the email.

2.4 Summary

This chapter has described some key concepts that are necessary for this disser-

tation. The first of these concepts is anonymous communication networks, i.e.

networks that aim to provide strong privacy properties by hiding metadata as well

as the communicated data. Among many use areas of these networks, this dis-

sertation focuses on anonymously sending messages to others. This chapter has

also presented some mechanisms used for discovery in different contexts, as well

as providing the foundation in some cryptographic notions which are necessary to

navigate the ideas presented in the remainder of this dissertation.

14

Chapter 3

Goals and Problem Statement

This chapter describes the problem that this dissertation aims to solve: The need

for a usable and privacy-preserving discovery system in anonymous communication

networks. It also methodically defines and analyses the objectives of an ideal user

discovery mechanism and details its threat model. Recognising that it is not

possible to implement an ideal scheme which reaches all the defined system goals,

this chapter introduces two implementations which attain different sets of goals

and have different tradeoffs.

3.1 Problem Description

Users of anonymous communication networks need to know some information

about each other to be able to communicate. The needed information differs

among schemes. Often, if not always, it includes a user’s public encryption key,

which, in some cases, is used as a system identifier as well, e.g. in Talek [10] and

Vuvuzela [9]. However, depending on the network’s architecture, knowing a user’s

public key might not always be enough to communicate with them. For instance,

Loopix [8] requires users to know each other’s network location as well, which con-

sists of the user’s network identifier and her provider’s IP address. I use the term

contact information to refer to this information.

Definition 3.1.1. Contact Information: The information that one user has to

15

know to contact another user through an anonymous communication network.

The act of learning a user’s contact knowledge is called user discovery. This term

is defined as:

Definition 3.1.2. User Discovery: A function f(x) = y where x is a human-

readable string identifying the user and y is the contact information of that user.

User discovery on anonymous communication networks should not be esoteric, but

comprehensible by the expected user base. Existing anonymous communication

research fails to address the need for user discovery, assuming that users somehow

already have the appropriate contact information [8, 9, 10, 11]. However, user dis-

covery is key for preventing anonymous communication networks from becoming

a privilege of individuals who understand their technicalities and are willing to

make extra effort to adapt to their eccentricities. Poor user discovery is one of

the reasons why PGP, an encryption system mainly used for email, is remarkably

difficult to use, while encrypted messaging services such as Signal [2], Telegram

[3], WhatsApp [4] are wildly popular. The seminal work of Whitten and Tygar

has shown that one of the main issues with PGP 5.0 was its explicit key gener-

ation/distribution processes and inability to navigate users through them, which

made it very difficult for cryptography novices to contact other users using PGP

[1]. In other words, this research illustrated that user discovery in PGP has poor

usability, as it is too difficult for everyday users to execute.

Having mentioned the terms usability and privacy, this dissertation defines them

in the context of user discovery as:

Definition 3.1.3. Usability: A user discovery function is usable if (1) users do

not have to leave the primary communication system and communicate through

an external channel to perform it, and (2) its input can be a human-memorable

username, and if desired, an established public identifier such as phone number or

email address.

Definition 3.1.4. Privacy: A user discovery function is private if no party other

than Alice, who is a user initiating the user discovery for Bob (1) learns Bob’s

contact information or (2) can link Alice to Bob.

16

Many practical applications that are concerned with sharing contact information

do not fit the usability definition above, as they require users to exchange contact

information through external channels (e.g. sharing links, reading QR codes). This

is not only a usability problem. More importantly, it undermines the whole purpose

of using an anonymous communication network by leaking the information that

certain users are communicating through some potentially insecure channel, such

as SMS.

On the other hand, usable discovery mechanisms such as DNS and DHT are not

private according to the above definition, as described in Sections 2.2.4 and 2.2.5.

Even private DNS solutions do not provide privacy as defined above, since they

do not prevent the DNS servers from linking queries with users, although they

satisfy the second condition by encrypting queries. On the other hand, most DHT

implementations do not satisfy the second condition, and the ones that aim to

satisfy it are vulnerable to information leakage. As a result, there is no existing

solution in the user discovery space that is both usable and private.

Another family of usable discovery mechanisms is called private contact discovery

[29, 72, 73, 74]. Some encrypted messaging apps employ private contact discovery

techniques for allowing users to discover others using phone numbers. Since phone

numbers are already-known identifiers typically stored in the user’s mobile address

book, this approach makes the privacy offered by these messaging systems accessi-

ble to everyday users. However, existing private contact discovery applications do

not achieve the first privacy goal since they do not hide the contact information

from servers that store it.

Ultimately, a usable and privacy-preserving mechanism by which users can dis-

cover other users on an anonymous messaging system has not been established.

Moreover, a systematic understanding of the requirements of this solution space is

still lacking. As previously stated, I propose an ideal user discovery mechanism to

define these requirements. Before discussing that in Section 3.3, the next section

describes the threat and trust assumptions of this ideal mechanism.

17

3.2 Threat Model

I assume that my user discovery mechanism runs on top of an anonymous com-

munication network and comprise four types of entities: (1) Users, who use the

discovery mechanism to discover and be discovered by other users; (2) User devices,

which allow users to connect to the user discovery mechanism and the underlying

anonymous communication network; (3) Discovery nodes, which are responsible

for storing user data and responding to discovery queries; and (4) Discovery node

operators, who manage the discovery nodes.

In terms of security, I assume that the user discovery mechanism employs a (k, n)

threshold secret sharing scheme for storing contact information in the discovery

nodes. Adversaries are assumed to be interested in disrupting the user privacy

defined in Definition 3.1.4. In other words, adversaries try to link users to their

discovery queries and learn registered user information, i.e. contact information

and/or username. It is important to note that since the discovery mechanism runs

on an anonymous communication network, the usual network attackers eavesdrop-

ping and actively interfering with packets do not pose a threat.

As I pointed out in the introduction to this dissertation, this discovery mechanism

cannot hide contact information from an adversary who acts as a user and issues

legal discovery queries. Similarly, such an attacker can query the system with bulk

data to compile a list of registered usernames. This problem, called crawling, is

considered an intrinsic issue of discovery systems, as the main function of these

systems is allowing users to find others registered to the system [13]. However,

this user discovery mechanism provides much stronger security when it comes to

hiding who is searching for whom.

Adversarial assumptions of the system can be examined further on the basis of

actor types:

1. Users can be malicious. They might try to crawl usernames and contact

information. Users may also try to change other users’ contact information.

2. User devices can also be malicious. They may be curious, passively

collecting information. Also, they may actively deviate from the protocol,

18

e.g withholding messages from being sent or received or sending arbitrarily

malformed messages.

3. Discovery nodes are also considered potentially malicious. Similar to

user devices, they can perform passive attacks by secretly gathering infor-

mation, or active attacks by providing faulty answers, using wrong functions,

not responding, etc.

4. Discovery node operators can be malicious under a non-collusion

assumption, i.e. no single operator should control more than or equal to a

determined threshold (k) number of discovery nodes.

5. Attackers can act as any or multiple of the actors mentioned above; he can

control user devices or discovery nodes, act as a user, or be a discovery node

operator as long as he controls less than threshold-many discovery nodes.

An attacker with the described capabilities does not compromise security or pri-

vacy through active attacks, except the intrinsic crawling issue. However, he might

degrade the availability of the system. Specifically, the discovery mechanism can-

not maintain its functionalities if the number of malfunctioning or offline discovery

nodes is more than the threshold (k) value. Also, a misbehaving or inaccessible

user device can prevent the user from using the discovery mechanism.

In terms of passive attacks where an adversary stealthily observes communications,

the threat model of the underlying anonymous communication network affects

the user discovery mechanism’s security and privacy promises. For instance, if

I deploy my user discovery mechanism in Loopix, which protects against global

passive adversaries, my mechanism is also resilient against such adversaries.

3.3 System Goals

This section defines the ideal usable (Definition 3.1.3) and private (Definition

3.1.4) user discovery mechanism (Definition 3.1.2) for anonymous communication

networks. It aims to provide a framework that is universal and adaptable to

different networks and needs.

19

The goals that I set for the ideal user discovery mechanism span three categories:

Operational Goals are the essential goals that a system has to meet to be able to

function as a user discovery mechanism. Security and Privacy Goals and Usability

Goals allow the system to not only satisfy the minimum privacy and usability

definitions, respectively, but also enhance it with additional properties. Following

the taxonomy strategy that Bonneau et al. use for evaluating password alternatives

[75], every goal is referred to with an italicised mnemonic title and labeled with a

letter and a number for later reference.

An ideal private user discovery system meets the following goals:

A. Operational Goals

O1 registration: users can sign up to the system with a username and other

required contact information to be discoverable by other users

O2 discoverability: all registered users can be discovered using the mechanism

O3 user-discovery: registered users can query the system by providing user-

names and learning the corresponding contact information

O4 availability: the system maintains its operability as long as threshold (k) or

more discovery nodes are alive and functioning normally

B. Security and Privacy Goals

S1 unlinkability: an adversary controlling any nodes or observing any commu-

nications is not able to learn who is searching for whom, provided that the

querying user device is not compromised

S2 contact-information-privacy: no one (including discovery nodes under the

non-collusion assumptions described in Section 3.2) other than the user herself

or someone who queries the discovery mechanism with the user’s username can

learn a user’s contact information

S3 username-anonymity: usernames are stored privately in the system in a

way that discovery nodes, even if threshold-many or more of them collude,

cannot feasibly learn usernames stored in their databases

20

S4 internal-identity-verification: it is possible to confirm that a user is the

owner of the username and contact information she claims to own

S5 external-identity-verification: a user’s identity within the system can be

verifiably associated with an external identity, e.g. an email address

S6 membership-unobservability: it is not possible to learn if a username be-

longs to a member of the system or not by querying the system

C. Usability Goals

U1 all-internal-execution: users do not need to use a secondary channel or

interact with an auxiliary system for any functionality that the system offers

U2 human-memorable-username-selection: users are allowed to pick any

string as their username provided that it is not already being used by an

existing user

U3 authorised-user-data-updates: users can make authorised modifications

to their contact information on the system, including deleting it

U4 account-recovery: if a user loses access to her account, she can reclaim it

It is important to note that these goals are not of equal importance. However,

providing a fixed scale to quantify definitive values for these system goals is not

possible. Different anonymous communication networks in different practical set-

tings might value these goals differently. For instance, membership-unobservability

may be seen as an essential goal in a scenario where the anonymous communica-

tion network is known to be used by the LGBTQ+ community in an oppressive

state where members of this community are heavily punished. On the other hand,

the same goal might be dispensable in a setting where a great portion of users

publishes their usernames on their public-facing social media pages. In essence,

these goals aim to paint the picture of a complete user discovery mechanism, while

allowing room for different tradeoffs.

21

S1 S2 S3 S4 S5 S6 U1 U2 U3 U4

S1

S2

S3 l m m

S4

S5 l l

S6 m

U1 l

U2

U3

U4 m

Table 3.1: Matrix showing the compatibility of goals: l marks the goals that are
not compatible, and m denotes potential incompatibility under certain conditions,
compatible goals are unmarked. Operational Goals are excluded, because they are
the system’s essential goals, and thus are compatible with all other goals.

3.4 Analysis of System Goals

The many system goals described in Section 3.3 describe a conceptual framework.

However, these goals might be in conflict in practice. Table 3.1 shows which system

goals are compatible, i.e. can coexist in an implementation; which are incom-

patible; and which are potentially incompatible, depending on implementation

choices.

Since Operational Goals pertain to the system’s the core functionalities, they are

compatible with all other goals. Therefore, these are not included in the matrix.

Some other goals as well, namely unlinkability (S1), contact-information-privacy

(S2), internal-identity-verification (S4), human-memorable-username-selection (U2),

and authorised-user-data-updates (U3), work with every other goal.

For the remaining goals, the reasons causing incompatible or potentially incom-

patible goal couples are explained as below:

S3 – S5: username-anonymity and external-identity-verification are incompat-

ible, because, the first one hides the usernames from the discovery nodes,

22

making them impossible to be used for communication through external

channels. For example, the discovery nodes cannot send an email to some-

one without knowing their email address or send them a text message without

knowing their phone number.

S3 – U4: username-anonymity and account-recovery are potentially incom-

patible depending on how account recovery is implemented. Specifically,

the implementation might practice account-recovery by sending a link or

code to the user via email, SMS, etc. As username-anonymity withholds

usernames from the discovery nodes while account-recovery requires them

to know the user’s email address or phone number, the two goals will be in

conflict in this scenario.

S3 – S6: username-anonymity and membership-unobservability are potentially

incompatible. The only visible way for the discovery system to achieve

membership-unobservability is to respond to the queries for non-registered

usernames with realistic fake contact information. If the system achieves

username-anonymity in such a way that the discovery nodes cannot link

different discovery queries for the same user to each other, then the dis-

covery nodes will not able to answer with the consistent fake contact infor-

mation for the same non-registered username, which disrupts membership-

unobservability.

S5 – U1: external-identity-verification and all-internal-execution are incompat-

ible, since verifying ownership of an identifier which can be used for con-

tacting a user through external channels can only by achieved through users

communicating with the discovery nodes through that external channel.

3.5 Pudding Protocols

The previous section has illustrated that a single user discovery mechanism meet-

ing all the system goals is unattainable. Therefore, this dissertation introduces a

new family of protocols named Pudding, which is a play on the abbreviation of

Private User Discovery (PUD). I present two concrete Pudding protocols, which

23

satisfy different subsets of these goals and that might be preferable in different con-

texts. The two protocols are called ID-Verified Pudding (Chapter 4) and Incognito

Pudding (Chapter 5).

ID-Verified Pudding, as the name suggests, verifies user identity by linking user

presence within the system with email addresses, achieving external-identity-verific

ation (S5). However, this design falls short in providing username-anonymity

(S3), as email addresses are not hidden from the system.

Incognito Pudding solves this privacy issue by hashing usernames with specially

generated salt values and storing the resulting hashes in the system instead of

plaintext usernames. This solution achieves username-anonymity global passive

adversaries, however, it sacrifices the external-identity-verification (S5) feature.

Aside from these differences in username management, both ID-Verified Pudding

and Incognito Pudding share a number of security and privacy features. First,

they both attain unlinkability goal (S1) by using anonymous replies (Section 2.3.1)

for all communications between discovery nodes and users. Second, both systems

employ (k, n) threshold secret sharing to meet the contact-information-privacy

goal (S2). Third, both Pudding protocols allow internal-identity-verification (S4),

as users can look up each other in the system to confirm their Pudding identities.

3.6 Notation & Terms

This section describes some terms that will be used in the remainder of this dis-

sertation when describing the two Pudding protocols, and provides their notation.

ID: Username is the unique identifier that users use to search and discover others

through Pudding. It can be an email address, or a system-specific identifier, similar

to a social media handle. Preferably, it should be easy to say, read, and remember.

γ: Contact information is the information that is necessary for contacting a

user via the underlying anonymous communication network (see Definition 3.1.1).

Contact information can include different types of information depending on a

network’s architecture. For instance, in Loopix, this is the user’s network address,

consisting of her network identifier and the IP address of her provider [8]. More-

24

over, contact information can include the user’s public key (a) if an additional

key exchange protocol is undesirable, (b) if it is also used as the user’s network

identifier as in Vuvuzela [9], or (c) if it is used for bootstrapping as in Pung [11].

D: Discovery Nodes hold the information and interact with users to allow them

to privately discover other users. These nodes are known to each other and the

users, i.e. their network locations, identifiers, and public keys are provided to users

when they join the network. Every discovery node has a user registry, which can

be thought of as a dictionary. Each user entry in a registry is a (key, value) pair.

According to the system design, a key can be an ID or another type of identifier.

Every value is user data consisting of a γ secret share and a digital signature

public verification key used for signing and updating user data.

A Searcher is a user who looks up another user through Pudding.

A Searchee is a user who is looked up through Pudding.

3.7 Summary

This chapter has discussed the lack of a user discovery mechanism that makes

finding other users on anonymous communication networks as practical as en-

crypted messaging apps, while protecting user privacy to a greater degree. It also

described the threat and trust assumptions, adversaries, and their capabilities in

this problem space. An ideal user discovery mechanism which solves this prob-

lem and provides additional functionalities is characterised through a number of

operational, security & privacy, and usability goals. The chapter acknowledges

that this ideal system is practically unattainable. Therefore, two protocols that

partially meet these goals, namely ID-Verified Pudding and Incognito Pudding,

are described in the next two chapters.

25

Chapter 4

ID-Verified Pudding

This chapter describes ID-Verified Pudding, one of the two Pudding protocols.

By linking user identities within Pudding to email addresses, ID-Verified Pudding

allows users to practically search for others and know that the user they discover is

actually who she claims to be, assuming at least threshold-many discovery nodes

are honest. This chapter begins by laying out the protocol’s features, concerns,

security and privacy goals, and core idea, which is identity verification. It then de-

scribes the protocol’s functionalities, namely registration, user discovery, updating

user data, and account recovery. Finally, it finishes by explaining the shortcomings

of the protocol.

4.1 Protocol Overview

ID-Verified Pudding allows users to use their email addresses as usernames. This

has two benefits: First, email addresses are non-secret, unique, and mostly easy to

remember. Therefore, users can search for others practically, using identifiers that

are typically already in their contact address books. Second, using email addresses

as usernames enables verifying them through DKIM, allowing users to be confident

that someone whom they have discovered through Pudding with an email address

is actually in control of that email address.

This external-identity-verification feature comes with a privacy tradeoff: It cannot

26

be achieved at the same time with username-anonymity (see Section 3.4). This

makes the system suitable for those who want to hide what their contact infor-

mation is, and whom they are searching for, but are not worried about publicly

testifying whether they are a member of the network. On the other hand, the lack

of username-anonymity might upset users who require a higher level of anonymity

over better usability.

4.1.1 System Goals Analysis

ID-Verified Pudding meets all Operational Goals, as well as all Security and Pri-

vacy but two, namely username-anonymity (S3) and membership-unobservability

(S6). This protocol’s name comes from its core feature, which is external-identity-

verification (S5). In addition, the protocol achieves unlinkability (S1), since mes-

sages from user device to discovery node are sent via the anonymity network, and

the messages from discovery node to user device are anonymous replies to the

former. Employing a (k, n) threshold secret sharing scheme where contact infor-

mation is split into secret shares and distributed to discovery nodes, this protocol

provides contact-information-privacy (S2). Since users are able to use the discov-

ery mechanism to look up the users who initiate communication with them and

verify their contact information, ID-Verified Pudding supports internal-identity-

verification (S4) as well.

Regarding Usability Goals, ID-Verified Pudding meets three out of four of them.

Specifically, this protocol allows users to pick their email addresses as their user-

name, reaching the human-memorable-username-selection goal (U2). Moreover,

it employs digital signatures to support authorised-user-data-updates (U3). ID-

Verified Pudding uses the verified external communication channel it establishes

through external-identity-verification to achieve account-recovery goal (U4). On

the other hand, since users have to interact with another system to verify their

external identity, all-internal-execution (U1) is not supported.

27

4.1.2 The Core Idea: Identity Verification

As pointed out in Section 4.1, this Pudding design uses DKIM signatures to achieve

external-identity-verification (S5), i.e. to verify the ownership of an email address

a user picked as a username and to provide trust to those who discover the user.

A single discovery node verifying the DKIM signature of a registration email is not

sufficient to verify an email address. Since ID-Verified Pudding employs a (k, n)

threshold secret sharing scheme, for the discovery system to confidently say that

an email address belongs to a user, at least threshold-many discovery nodes have

to verify a user’s external identity through DKIM.

It is important to note that although DKIM verifies the source of an email, it

cannot verify if the email is genuinely sent for registration. Therefore, at least

threshold-many discovery nodes also have to check this. Two straightforward

solutions to this issue are: (1) allowing discovery nodes to observe each others’

email traffic, or (2) having a system where each discovery node sending an email

to the user can satisfy this need. The first solution causes an access control issue,

since misbehaving nodes’ access to the email address(es) should be revoked. The

second solution is problematic in usability terms since it requires users to reply to

multiple emails. This usability issue might be circumvented by sending the user

a single email where at least threshold-many discovery nodes’ email addresses are

secondary recipients. However, this solution is prone to user errors. Consequently,

neither of these solutions is suitable to verifying email addresses. My system

implements a different method to make sure that all discovery nodes involved in

registration are also included in the preparation of a single verification email. This

method is described below and is also illustrated in Figure 4.1.

Summary of the Authentication Mechanism: When a user initiates regis-

tration with an email address, the user assigns one discovery node the responsibility

of sending the verification email. All the other discovery nodes send this selected

node a randomised challenge value. The selected node also generates a random

challenge and sends an email including all these challenge values to the user’s email

address. The registering user responds with an email that contains challenge val-

ues in its body. Since email applications usually attach the original message to the

28

response, the user typically does not have to type or copy-paste any value. Upon

receiving the user’s response, the selected discovery node distributes the response

email’s contents and DKIM signature to the other discovery nodes. This allows

each discovery node to confirm that the received email is (1) a genuine registration

request by checking if their challenge value was included in the email and (2) sent

by the owner of the email address by checking the validity of its DKIM signature.

Usability: Although this mechanism disrupts the all-internal-execution goal, it

is highly practical as it requires the user to typically click only two buttons –

reply and send. Therefore, although responding to an email is not a commonplace

account verification practice, its usability is arguably comparable to the prevalent

method of clicking a link.

Substitutability of DKIM: Although this implementation uses DKIM, it is

not the only viable verification method. If DKIM verification fails, the system can

fall back to a method where each discovery node sends the user a verification link.

Indeed, this method has the usability downside of requiring multiple confirmation

emails and link clicks.

4.2 Registration to the System

The registration phase of the protocol involves important steps for achieving

privacy and verification (Figure 4.1). Specifically, to accomplish the contact-

information-privacy (S2) goal, the user secret shares her contact information (γ)

with the discovery nodes. For achieving the external-identity-verification (S5),

the discovery nodes verify email usernames (IDs) through DKIM, as explained in

Section 4.1.2. Finally, creating and sharing digital signature keys allows the user

to make authorised-user-data-updates (S3) later if needed (Section 4.4).

Below is a step-by-step description of the registration process described in three

parts: (A) Preparation, (B) Verification, and (C) Registration and Confirmation.

Moreover, the process is described in Algorithm 1 and Algorithm 2, and Figure

4.1.

29

Anonymous communication network the Internet

1

2

3

4

5

Discovery
nodes

Bob

A B C D

1 • Bob sends ID, svk, secreti and Dauth (picked as D) to A, B, C, and D

2 • A, B, and C generate random challenges and send them to D

3 • D combines all the challenges in an email and sends this email to Bob

• Bob responds to this email

• D verifies the response email’s DKIM signature

4 • D shares the email contents and the DKIM signature with A, B and C

• A, B, and C check that their challenges are included in the email and verify

the DKIM signature
5 • A, B, C and D verify DKIM signature and register Bob as ID : (svk, secreti)

• Each discovery node notifies Bob that he was successfully registered

Figure 4.1: Bob’s registration process to ID-Verified Pudding.

A. Preparation

1. The registering user chooses an email address that she has access to as her

ID (U2).

2. The user’s device creates a public-private key pair (pk, sk) for secure and

30

authenticated communication on the underlying anonymous communication

network, and an account update key pair (pku, sku) to be used for digitally

signing data updates later (Section 4.4) (S3).

3. Using a threshold secret sharing scheme such as Shamir’s secret sharing [55],

the user divides her contact information (γ) into n secret shares (S3).

4. The user randomly picks a discovery node as Dauth, i.e. the discovery node

responsible for sending the verification email.

5. The user prepares n registration messages in the form that allows anonymous

replies (S1). The message for each discovery node Di contains one secret

share, the user’s ID and pk, as well as Dauth’s identifier: registration msgi ←
(Dauth, secreti, ID, pk, pku).

6. After sending out the prepared messages to each of the n discovery nodes,

the user starts waiting for a verification email to arrive at the email address

chosen as ID.

(a) If the user receives a verification email within a predetermined timeout

period, the registration process continues without disruption.

(b) Otherwise, the user picks a different Dauth and re-sends the registration

message, i.e. goes back to Step A.4.

B. Verification (S5)

1. After receiving a registration message, each discovery node checks if it has a

user record with the ID in this message. If ID belongs to an existing record,

the registration message is dropped and verification at this node fails. The

node replies to the user with a suitable error code.

2. Every discovery node also checks if it is selected as Dauth.

(a) If this is the case, it generates a challenge value, and starts waiting for

all other discovery nodes to send challenge values.

(b) Otherwise, it creates a random value as a challenge and sends it to

Dauth.

31

3. Dauth waits for a predetermined timeout period to collect at least k − 1

challenges (O4).

(a) If Dauth receives at least k − 1 challenges within this time period, it

creates and sends a verification email to the email address provided as

the user’s ID. This email includes all the challenges.

(b) Otherwise, it drops the registration message, aborting the registration

and sending the user a relevant error code.

4. The user waits for this verification email.

(a) If the user receives the email within a predetermined timeout period,

she responds to it. The only requirement about the response email’s

content is that it should include all challenge values. Typically, email

applications automatically attach the replied email’s body to the reply.

(b) Otherwise, she goes back to Step A.4 to pick a new Dauth and try

registering again.

5. Upon receiving the user’s response, Dauth verifies the DKIM signature.

(a) If the DKIM signature is invalid, Dauth drops ID’s registration infor-

mation. User verification and registration fails.

(b) Otherwise, Dauth marks ID as verified. It then sends n − 1 encrypted

verification check messages to all other discovery nodes. Each of these

messages include the contents and DKIM signature of the user’s re-

sponse to the verification email.

6. Upon receiving a verification check message from Dauth, each of the n − 1

discovery nodes checks (1) if its challenge was included in the email, and (2)

if the DKIM signature is valid.

(a) If both of these conditions hold, it labels ID as verified.

(b) Otherwise, it drops ID’s registration information. Authentication at

this node fails.

C. Registration and Confirmation

32

1. At each discovery node Di, if verification for ID is successful, the user is

registered to the node, i.e. a record for the user is created and added to the

user registry as ID : (secreti, ID, pk, pku).

2. Upon registering the user, each discovery node uses the SURB (see Section

2.3.1) attached to the registration message to create a registration confirma-

tion message destined to the registering user. This message confirms to the

user that the registration at this discovery node has been completed.

3. If the user receives at least k registration confirmation messages within a pre-

determined timeout period, the user knows that she is successfully registered

and verified in Pudding. For better usability, the confirmation messages do

not have to be separately reported to the user but tracked automatically by

the user device instead.

ID-Verified Pudding is a distributed system, which can experience network latency

and node failures. Therefore, it is important that the mechanism described above

meets the availability goal: The user can register to the system as long as at least k

discovery nodes are functioning properly. If some discovery nodes are unavailable

during registration, the user device automatically and periodically retries register-

ing to these nodes.

33

Algorithm 1: Registering to ID-Verified Pudding as a user

1 user id← Pick an email address you have access to

2 pk, sk ← Generate a public-private key pair for encryption-decryption

3 pku, sku ← Generate a digital signature key pair

4 secret shares []← Divide contact info into n secret pieces, e.g. using Shamir’s secret

sharing

5 Dauth ← Pick the discovery node responsible for sending verification email

6 for i← 1, n do

7 . Algorithms used for these steps are set by the underlying anonymous communication

network

8 payload← (Dauth, secret shares[i], user id, pk, pku)

9 outgoing path← Randomly select a determined number of relay nodes

10 outgoing path.append(discovery nodes[i])

11 onion header ← Create onion header from outgoing path

12 surb← Generate SURB

13 registration msg ← Prepare a message using payload, onion header, and surb, in the

form that allows anonymous replies

14 Pass registration msg to the next node in the msg path

15 end

16 Wait for a verification email until timeout limit tverif

17 if Verification email received before tverif then

18 Respond to the email

19 end

20 else

21 Jump back to line 5

22 end

23 Wait for n registration msg responses until timeout limit treg

24 if n registration msg responses arrived before treg then

25 Success! End of registration

26 end

34

.

Algorithm 2: Discovery node message processing in ID-Verified Pudding
Input: A msg consisting of payload, onion header, and surb

1 if msg is a registration message then

2 Dauth, secret piece, user id, pk ← payload

3 if A user record with user id does not exist then

4 random challenge← Generate random challenge

5 if Dauth is self then

6 Wait for n− 1 random challenges from other discovery nodes

7 Send a verification email to user id including all the challenges

8 Wait for a verification response email for timeout value tverif resp

9 if Verification response email received before tverif resp then

10 if DKIM signature of the response email can be validated and contains

random challenge then

11 Register the user user registry [user id]← (secret piece, pk)

12 Send the verification response email to all discovery nodes

13 Send the user confirmation message using surb

14 end

15 else

16 Drop the msg

17 end

18 end

19 end

20 else

21 Send random challenge to Dauth

22 Wait for verification response email until timeout limit tverif resp

23 if Verification response email received before tverif resp then

24 if DKIM signature of the response email can be validated and contains

random challenge then

25 Register the user

26 Send the user confirmation message using surb

27 end

28 else

29 Drop the msg

30 end

31 end

32 end

33 end

34 else

35 Drop the msg

36 end

37 end 35

4.3 User Discovery

To discover a user through ID-Verified Pudding, a searcher sends messages to all

discovery nodes asking for the searchee’s ID. In turn, each queried node uses

the SURB attached to the message to respond with the contact information (γ)

secret share it has for that ID (Figure 4.2). Since a (k, n) threshold secret sharing

scheme is used for storing contact information, the searcher only needs responses

from k discovery nodes, meeting the availability goal (O4). Upon initial contact,

the searchee can look up the searcher’s ID on the system to verify her username

and contact information, achieving internal-identity-verification goal (S4). Using

anonymous replies for discovery queries, these operations also meet the unlinka-

bility goal (S1).

User discovery in ID-Verified Pudding is described both in pseudocode (Algorithm

3) and through a step-by-step scenario below. The process is also outlined in

Figure 4.2.

Anonymous communication network

1

2

Discovery
nodes

Alice

A B C D

1 • Alice randomly selects A, C, and D to query and sends Bob’s ID to these

2 • A, C, and D each send Bob’s (svk, secreti) to Alice via SURB

Figure 4.2: Alice discovering Bob through ID-Verified Pudding. The system con-
sists of discovery servers A, B, C and D, and employs a (3, 4) threshold mechanism

36

When Alice searches for Bob through ID-Verified Pudding, where a

(k, n) threshold scheme is deployed:

1. Alice creates n discovery messages in the form that allows anonymous replies

(S1). Payloads of all these messages are IDBob.

2. She sends these discovery messages out to the corresponding discovery nodes.

3. Upon receiving a discovery message, each discovery node Di checks if it has

a record for IDBob in its user registry.

(a) If so, it uses the SURB attached to the discovery message to respond

to Alice with Bob’s username and the secret share mapped to it (S1):

discovery msgDi ← (IDBob, secreti).

(b) Otherwise, the discovery node responds to Alice with an error code.

4. If all k responses arrive at Alice within a predetermined timeout period, she

combines the secret shares to learn Bob’s contact information and terminates

the process.

Algorithm 3: User discovery in ID-Verified Pudding

1 payload← []

2 picked discovery nodes← Select k random discovery nodes

3 for node in picked discovery nodes do

4 payload← searchee id

5 outgoing path← Randomly select a determined number of relay nodes

6 outgoing path.append(node)

7 onion header ← Create onion header from outgoing path

8 surb← Generate SURB

9 discovery msg ← Prepare a message using payload, onion header, and surb

10 Pass discovery msg to the next node in the msg path

11 end

12 Wait for k discovery msg responses to return for timeout limit tdiscovery timeout

13 if k discovery msg responses received before tdiscovery timeout then

14 Combine the secret pieces to learn searchee’s contact info

15 end

16 else

17 Start over and retry

18 end

37

4.4 Updating User Data

ID-Verified Pudding employs a digital signature scheme to enable authorised-user-

data-updates (S3). To update some information on the discovery nodes, the user

signs it with her secret account update key (sku) and sends the signature along

with the data to every discovery node. The discovery nodes check the validity of

the signature using the user’s account update verification key (pku) and update

the data as demanded if the signature is valid. This scheme can be described more

systematically as below.

1. The user calculates n secret shares of her new contact information.

2. The user then signs each piece of secret with her secret account update key:

sigi ← Sign(secreti, sku).

3. The user creates and sends n update request messages which allow anony-

mous replies. Each of these messages include user ID, a payload, and the

corresponding digital signature: update request secreti ← (ID, secreti, sigi).

4. Upon receiving an update request message, each discovery node Di verifies

the signature using the user’s pku: (SigVerify(pku, secreti, sigi)).

(a) If the signature is valid, the discovery node updates the user’s informa-

tion as requested and uses the SURB to send a confirmation message

to the user.

(b) Otherwise, it drops the update request message.

This mechanism meets the availability goal, because as long as k or more discov-

ery nodes have the updated information, the user remains discoverable. If some

discovery nodes are offline during the update process under this assumption, the

user device periodically retries updating information at these nodes.

It is also worth noting that since the system maintains unlinkability (S1), it cannot

keep track of who has outdated information about the users and cannot notify them

directly. Instead, users who perform an update can message the users on their

address book via the underlying anonymous communication network to inform

them.

38

4.5 Account Recovery

Thanks to the external-identity-verification feature, if an ID-Verified Pudding user

loses her secret account update key, she can regain access to her account via email

(sku). This process is considerably similar to the registration process (Section 4.2).

The only difference is that that the Update Preparation stage described below

replaces the Preparation (Section 4.2.A) stage:

A. Update Preparation

When a user has lost their sku, and therefore wants to recover her Pudding account:

1. The user arbitrarily picks a discovery node as Dauth. This node bears the

responsibility of exchanging emails with the user during the account recovery

process.

2. She also generates a new account update key pair (pku new, sku new).

3. The user sends an account recovery message to each discovery node Di in the

form that allows anonymous replies. Each message includes the user’s ID,

an indicator showing that the user wants to recover the Pudding account

tied to this ID, as well as Dauth’s identifier:

account recovery msgi ← (Dauth, ID, pku new, account recovery flag)

For the remainder of the account recovery process, this stage is followed by the

stages Verification (Section 4.2.B) and Registration and Confirmation

(Section 4.2.C). Indeed, the term registration should be changed to update.

It is worth mentioning that this account recovery mechanism meets the availability

goal, since it allows the user to regain access to her account as long as k or discovery

nodes are available.

4.6 Tradeoffs and Limitations

This section describes the four essential shortcomings of ID-Verified Pudding: It

fails to meet the username-anonymity (S3) and membership-unobservability (S6)

goals; uses email as the only external-identity-verification (S5) channel, which

39

might cause vulnerabilities; and it meets contact-information-privacy (S2) under

specific conditions.

No username-anonymity (S3): As mentioned earlier in Section 3.4, ID-

Verified Pudding does not provide username-anonymity, because this goal is in con-

flict with external-identity-verification goal (S5). This single notable privacy defi-

ciency of ID-Verified Pudding must not be overlooked, since username-anonymity

is an essential goal for the users who are concerned about keeping their usernames

hidden from the system. The second type of Pudding, Incognito Pudding sets to

serve as a remedy for ID-Verified Pudding’s this main deficiency (Chapter 5).

No membership-unobservability (S6): An adversary who wants to tell if a

username belongs to a member of the network or not can assume two different

roles in the Pudding network: If the adversary (1) controls a discovery node, it

can easily see the whole list of registered usernames; (2) as a user, it might perform

crawling, as described in Section 3.2. Although rate limiting might be employed

to mitigate this issue, as demonstrated by a recent study, [13] it is problematic to

employ rate limiting to prevent crawling while maintaining functionality. Another

mitigation technique to crawling might be responding with realistic dummy user

data when queried with an unregistered username. Although the first adversarial

capability is inherent to this protocol and therefore unavoidable, the mentioned

mitigation strategy against malicious users might still be useful in certain settings.

Email as the Only Form of external-identity-verification : Li et al. showed

that using emails for verification and account recovery among different services cre-

ates a single point of failure. The same study also demonstrated that many leading

email service providers do not make enough effort to protect email addresses [76].

However, email address compromise is a much larger issue than its consequences

in ID-Verified Pudding.

Specific Conditions for contact-information-privacy (S2): As indicated

previously in Section 3.3, it is important to once again acknowledge that contact-

information-privacy is subject to the assumption that threshold-many or more

40

discovery nodes do not collude. Moreover, even under non-collusion assumptions,

a rogue discovery node can make legitimate queries using the IDs in its user

registry to learn contact information associated with them.

4.7 Summary

This chapter has described ID-Verified Pudding, one of the two Pudding imple-

mentations presented in this dissertation. This Pudding variant allows users to

register to the system with an email address and verify that they have access to

that email address using DKIM. Through this feature, users can discover others

using their email addresses and be confident that they are who they claim to be.

In other words, ID-Verified Pudding transfers the practicality and trust that email

provides to anonymous communication networks.

41

Chapter 5

Incognito Pudding

This chapter presents Incognito Pudding, the second Pudding implementation pre-

sented in this dissertation. Storing specially salted hashes of usernames in the

discovery nodes, this implementation allows users to use Pudding incognito, i.e.

keep their usernames hidden from the discovery nodes. This chapter begins by

presenting an overview of the Incognito Pudding protocol, listing the system goals

it aims to meet, and explaining its core idea, which is OPRF-salted hashing. Fol-

lowing this section, it presents a detailed illustrative scenario, and moves on to

describing the protocol’s functionalities, namely registration, user discovery, and

user data updates. Finally, the chapter finishes by describing the limitations of

the protocol.

5.1 Protocol Overview

Incognito Pudding keeps usernames secret from the discovery nodes, achieving

username-anonymity (S3). This has great importance in private user discovery,

because several studies have shown that usernames, even without any additional

information, can be used for linking user presence across different online platforms,

which can lead to tying those to real-world identities as well [77, 78, 79, 80]. Be-

ing a serious privacy threat in the larger context, user identification is particularly

undesirable for users of an anonymous communication network, since they presum-

42

ably seek superior anonymity compared to users of non-anonymous communication

systems. Even though crawling remains as an issue, preventing usernames from

being easily accessible to discovery nodes in large quantities is still valuable. To

hide usernames from the system, Incognito Pudding does not store usernames but

their salted hashes created using the particular method explained in Section 5.1.2.

Keeping usernames hidden from the discovery nodes comes at the cost of foregoing

the ability to tie user presence within Pudding to email addresses as external

identifiers. This is because the user is not able to prove to the discovery nodes

that an identifier that allows communication through external channels, such as an

email address, belongs to her without revealing information about the identifier.

5.1.1 System Goals Analysis

Incognito Pudding achieves all Operational Goals. Regarding Security and Privacy,

it reaches all goals except from two, namely external-identity-verification (S5) and

membership-unobservability (S6), because in this context, these goals are in con-

flict with Incognito Pudding’s fundamental goal, username-anonymity (S3). The

protocol achieves the remaining Security and Privacy Goals, namely unlinkability

(S1), contact-information-privacy (S2), and internal-identity-verification (S4)

the same way as ID-Verified Pudding (see Section 4.1.1).

In terms of Usability, this protocol achieves all goals but account-recovery (U4),

since this goal cannot be optimally realised simultaneously with username-anonymity

(a discussion about suboptimal ways to achieve this can be found in Section 5.6).

Incognito Pudding allows the users to remain within the system for all operations,

achieving all-internal-execution (U1); supports picking any string as username,

enabling human-memorable-username-selection (U2); and allows authorised-user-

data-updates (U3) using digital signatures.

43

5.1.2 The Core Idea: Salt Creation and Username Hashing

This section explains the core idea behind Incognito Pudding, which is a special

salt creation and salted hashing method.

Hashing is not enough: Incognito Pudding’s main goal is hiding usernames

of registered users from the discovery nodes. One common approach to storing

information in an obfuscated form is storing the hash of it. However, storing

simple hashes of usernames is not sufficient to meet the desired level of username-

anonymity. A key study by Perito et al. showed that although the necessity for

usernames to be unique within a platform may drive users to pick high-entropy

usernames, users tend to choose similar usernames across different platforms [77].

Therefore, storing hashes of usernames in Incognito Pudding would be prone to

offline attacks because not only usernames might consist of words found in a dic-

tionary, but also they are mostly related to other usernames of users, which might

be publicly available. This would potentially cause a major privacy risk since Pud-

ding identities could even be linked to real-world identities through other identities

in different platforms.

Regular salted hashing is not suitable: The described problem with storing

hashed usernames might seem similar to that with passwords. Therefore, using

the same commonly used solution, i.e. creating distinct arbitrary salt values, might

come to mind as a cure. However, this solution cannot be applied to these two

problems in the same way. In password hashing, salted hash values are linked to

plaintext usernames. This allows the discovery nodes to search their databases for

the asked username and find the password hash mapped to it to do the necessary

checks. On the other hand, in Incognito Pudding, since the usernames should be

kept private, salting them would make it impractical to find them in a database

without any searchable identifier.

Using OPRF to generate salts: To create searchable identifiers from user-

names without compromising their privacy, Incognito Pudding uses OPRF with

an approach that is similar to password hardening case presented in Section 2.3.4.

The main idea is deriving strong secrets from low-entropy data in an unlinkable, ir-

44

reversible, yet reproducible way. To achieve this, at least threshold-many discovery

nodes and a searcher evaluate OPRFs. In each evaluation, one discovery node is

the key holder with a distinct secret key (k), and the searcher is the input provider

supplying searchee’s username as input (x). Once the searcher obtains separate

values (y) from OPRF evaluations with the discovery nodes, she uses these values

as salts to compute a hash value of the username and query the discovery nodes

with this value.

Note that in this setting, all searchers compute the same salts with the same

discovery nodes for a given username. Inversely, a searcher who does not know

the username cannot generate the salts, and therefore cannot compute the salted

hashes. Moreover, knowing the username is not enough to compute the salt values

unless the OPRF keys secretly stored in discovery nodes are exposed. In addition,

the pseudorandomness of these salt values means that they are irreversible, i.e.

one cannot feasibly figure out a username from its salts. Since each username is

salted with multiple salt values from different discovery nodes’ OPRF evaluations,

a discovery cannot brute-force search usernames running the OPRF protocol with

its own key either. Ultimately, this approach allows usernames to be hidden from

the discovery nodes, but still discoverable by those who know them.

Generating handles: Incognito Pudding uses the term handle to refer to salted

hashes of usernames.

Definition 5.1.1. Handle: A handle is a salted hash of a username, which is

used as an input to Incognito Pudding’s user discovery function.

In other words, handles are mapped to the contact information to create key-value

pairs. As Incognito Pudding uses (k, n) threshold secret sharing scheme, having a

single handle corresponding to a username can be achieved through either (a) all

discovery nodes having the same key to use in salt generation through OPRF, or

(b) users querying all n discovery nodes for user discovery. Both these options are

problematic: The first option diminishes the number of distinct salts per username

from n to 1, which increases the chance of malicious discovery nodes brute-force

retrieving plaintext usernames from hashes. The second option, on the other hand,

overthrows the practical advantage of querying k < n nodes being sufficient.

45

For this reason, each username is represented with multiple (specifically,
(
n
k

)
-many)

handles instead of a single one. Each of these handles is a k-many-times salted

hash of the username so that there exists one handle for each of the k-combinations

of the n discovery nodes. Each discovery node Di receives the handles for the

combinations that include Di. This allows the users to pick any of the k discovery

nodes for user discovery.

Moreover, to prevent colluding servers from being able to match handles among

each other, users hash each handle with a known unique value for each discovery

node, such as a node name, before submitting it to the discovery nodes. The

resulting unique handles allow the user to be represented with distinct identifiers

among all discovery nodes.

5.2 An Illustrative Example

This section puts the OPRF salt computation and handle generation processes in

context by presenting an example scenario with registration and user discovery

in Incognito Pudding. It is important to note that the registration and discovery

mechanisms are described in detail in Sections 5.3 and 5.4. This section only pre-

views these mechanisms with the intention of demonstrating the core idea behind

Incognito Pudding, as specified in Section 5.1.2. The scenario below happens in

a system that employs a (3, 4) threshold secret sharing scheme and has discovery

nodes (A,B,C,D).

Registration of a user:

1. The user creates a public-private key pair and determines her ID as abc123@

cam.ac.uk.

2. Using OPRF, the user contacts each of the discovery nodes to generate 4

salts; saltA, saltB, saltC , saltD:

saltA ←− OPRF (A, ‘abc123@cam.ac.uk’)

saltB ←− OPRF (B, ‘abc123@cam.ac.uk’)

saltC ←− OPRF (C, ‘abc123@cam.ac.uk’)

saltD ←− OPRF (D, ‘abc123@cam.ac.uk’)

46

3. The user generates
(
n
k

)
=

(
4
3

)
= 4 handles using different combinations of the

generated salts.

handle1 ←− H(saltA ‖ saltB ‖ saltC ‖ ‘abc123@cam.ac.uk’)

handle2 ←− H(saltA ‖ saltB ‖ saltD ‖ ‘abc123@cam.ac.uk’)

handle3 ←− H(saltA ‖ saltC ‖ saltD ‖ ‘abc123@cam.ac.uk’)

handle4 ←− H(saltB ‖ saltC ‖ saltD ‖ ‘abc123@cam.ac.uk’)

4. The user then computes
(
n−1
k−1

)
=

(
3
2

)
= 3 hashes for each of these values by

hashing them with the name of each discovery node. As a result, the user

has [
(
n−1
k−1

)
·
(
n
k

)
]-many unique handles :

u handle1A ←− H(A ‖ handle1)
u handle1B ←− H(B ‖ handle1)
u handle1C ←− H(C ‖ handle1)
u handle2A ←− H(A ‖ handle2)
u handle2B ←− H(B ‖ handle2)
u handle2D ←− H(D ‖ handle2)
u handle3A ←− H(A ‖ handle3)
u handle3C ←− H(C ‖ handle3)
u handle3D ←− H(D ‖ handle3)
u handle4B ←− H(B ‖ handle4)
u handle4C ←− H(C ‖ handle4)
u handle4D ←− H(D ‖ handle4)

5. The user secret shares her contact information along with
(
n−1
k−1

)
=

(
3
2

)
unique

handles to each discovery node. The set of unique handles each discovery

node receives consists of all the values generated using the handles that

include the salt that this discovery node has generated. The discovery nodes

consequently add the user to their registers as follows:

A registers (u handle1A , u handle2A , u handle3A) : secret shareA

B registers (u handle1B , u handle2B , u handle4B) : secret shareB

C registers (u handle1C , u handle3C , u handle4C) : secret shareC

D registers (u handle2D , u handle3D , u handle4D) : secret shareD

47

Once the user’s registration is complete, a searcher discovers the user

with username abc123@cam.ac.uk as follows:

1. The searcher arbitrarily selects A,B, and C as the k = 3 discovery nodes to

query.

2. She then generates the 3 salt values for abc123@cam.ac.uk through perform-

ing OPRF with every discovery node (saltA, saltB, saltC):

saltA ←− FkA(‘abc123@cam.ac.uk’)

saltB ←− FkB(‘abc123@cam.ac.uk’)

saltC ←− FkC (‘abc123@cam.ac.uk’)

3. Using these salts, the searcher then calculates the handle for this combination

of discovery nodes:

handle←− H(saltA ‖ saltB ‖ saltC ‖ ‘abc123@cam.ac.uk’)

4. Then, the user calculates 3 unique handles by hashing the handle with the

name of each selected discovery node:

u handleA ←− H(A ‖ handle)
u handleB ←− H(B ‖ handle)
u handleC ←− H(C ‖ handle)

5. The searcher queries each discovery node with the corresponding unique

handle.

6. Each discovery node A,B and C correspondingly searches in its register

u handleA, u handleB and u handleC . As they are the same as u handle1A ,

u handle1B and u handle1C of Step 4, respectively, they successfully find

the secret pieces secret shareA, secret shareB, secret shareC and send them

back to the user using the SURB received along with the discovery message.

7. The user combines the secrets to learn contact information of the searchee.

48

5.3 Registration to the System

Incognito Pudding’s registration phase provides the preconditions for achieving

some of the system goals. To meet the protocol’s essential goal, username-anonymity

(S3), the registering user follows the OPRF salt calculation, as well as the handle

generation and distribution logic described in Section 5.1.2. Similar to ID-Verified

Pudding, the user secret-shares her contact information with the discovery users

to achieve contact-information-privacy (S2), and includes digital signature key

generation and sharing for authorised-user-data-updates (S3).

Below is a step-by-step description of the registration process for a user. How

registration takes place in practice is also illustrated with an example in Section

5.2 and with pseudocode in Algorithms 4 and 5.

The registering user

1. determines an ID, which can be any string.

2. creates a public-private key pair (pk, sk) and an account update key pair

(pku, sku) (S3).

3. splits her contact information (γ) into n secret shares (S2).

4. obtains at least k salts from the ID by performing an OPRF with each

discovery node. If some discovery nodes are unavailable during this process,

the user can still register as long as k or more discovery nodes are available

(O4). In this case, the user device keeps track of the unavailable discovery

nodes and continues the registration with them when they are serviceable

again.

saltDi
←− FkDi

(ID)

5. computes
(
n
k

)
handles (S3).

handlei ←− H(salta ‖ saltb ‖ saltc ‖ . . . ‖ ID)

for each k-combination (Da, Db, Dc, . . .) of n discovery nodes.

49

6. prepares n registration messages in the form that allows anonymous replies.

The registration messages have the following properties:

• Each message carries a set of
(
n−1
k−1

)
-many unique handles, a secret piece,

and the user’s pk.

• Each set of unique handles per discovery node Di is computed by hash-

ing each handle that has the salt generated with Di with a known unique

value tied to Di, e.g. its node name.

u handle seti ← H(Di ‖ handle | handle contains Di’s salt)

• Each message payload is constructed as:

payloadi ← (secreti, u handle seti , pk, pku)

7. Sends out the prepared registration messages to the discovery nodes.

Upon receiving a registration message, each discovery node Di

1. checks if a user record already exists with the received u handle seti .

(a) If this is the case, it drops the message.

(b) Otherwise, it adds the new user to its user registry, mapping the unique

handles to the secret piece and public keys:

u handle seti : (secreti, pk, pku)

2. uses the SURB attached to the registration message to create a new message

directed to the user without knowing her identity. This message lets user

know that her registration at Di was successful.

The registration process completes when the user receives confirmation messages

from at least k discovery nodes within a predetermined timeout period. As with

ID-Verified Pudding, better usability can be achieved by tracking these messages

automatically at the user device.

50

.

Algorithm 4: Registering to Incognito Pudding as a user

1 user id← Pick an owned email address or any string

2 pk, sk ← Generate a public-private key pair for encryption-decryption

3 pku, sku ← Generate an account update key pair

4 secret shares []← Divide contact info into n secret pieces

5 salts← Empty dictionary

6 discovery node combinations []← k-combinations of the discovery nodes

7 for discovery node in discovery nodes do

8 salts[discovery node]← OPRF (self .ID , discovery node)

9 end

10 for discovery node in discovery node do

11 combinations with discovery node []← All combinations in

discovery node combinations containing discovery node

12 u handles []← Empty array

13 for combination in combinations with discovery node do

14 salt combination← Values in salts that have elements of combination array as

keys, concatenated in deterministic order (e.g. lexicographic order by discovery

node name) to form a string

15 u handle ← Hash(discoverynode.name ‖ Hash(salt combination ‖ self .ID))

16 u handles.append(u handle)

17 end

18 payload← (secret shares.pop(), u handles, pk, pku)

19 outgoing path← Randomly select a determined number of relay nodes

20 outgoing path.append(discovery nodes[i])

21 onion header ← Create onion header from outgoing path

22 surb← Generate SURB

23 registration msg ← Prepare message using payload, onion header, and surb, in the

form that allows anonymous replies

24 Pass registration msg to the next node in the msg path

25 end

26 Wait for n registration msg responses until timeout limit treg

27 if n registration msg responses arrived before treg then

28 Success! End of registration

29 end

51

Algorithm 5: Discovery node message processing in Incognito Pudding
Input: A msg consisting of payload, onion header, and surb

1 if msg is a registration message then

2 secret piece, u handles, pk ← payload

3 if No user record with any of the handles in u handles i found then

4 Register the user, i.e. user registry[u handles]← (secret piece, pk)

5 end

6 else

7 Drop the msg

8 end

9 end

10 else if msg is a discovery message then

11 searchee id ← payload

12 if A user record with user id found then

13 Using surb, respond to the user with (searchee id,secret piece)

14 end

15 else

16 Drop the msg

17 end

18 end

5.4 User Discovery

In Incognito Pudding, to discover a searchee, a searcher computes salt values for

the searchee’s username with any k discovery nodes using an OPRF, and computes

a single salted hash value using these salts. The searcher can then hash this value

once again for each selected discovery node with the discovery node’s fixed known

value, such as its name. The resulting unique handles can be used by the searcher

to discover the searchee.

As in ID-Verified Pudding, the user discovery phase achieves unlinkability goal

(S1) and internal-identity-verification (S4). This phase also reaches the avail-

ability (O4) goal, since users can discover others as long as k or more discovery

nodes are functional.

Steps of the user discovery protocol in a scenario where Alice is the searcher and

Bob is the searchee are described below. Additionally, Algorithms 5 (line 10 - 18)

52

and 6 explain the process in pseudocode.

When Alice searches for Bob through Incognito Pudding, where a (k, n)

threshold scheme is deployed.

1. Alice randomly picks k discovery nodes.

2. She then obtains k salts for Bob’s ID performing an OPRF with each discov-

ery node. This process happens over the anonymous communication network,

using anonymous replies.

3. She computes Bob’s handle for the selected set of k discovery nodes, hashing

his ID with each of them:

handle←− H(salta ‖ saltb ‖ saltc ‖ . . . ‖ IDBob)

for the selected k-combination of n discovery nodes: (Da, Db, Dc, . . .)

4. Alice creates k discovery messages in the form that allows anonymous replies.

Each discovery node’s message payload is a unique handle (u handle), pre-

pared by hashing handle with the discovery node’s name or another known

unique value.

5. Alice then sends discovery messages to the k selected discovery nodes.

6. Upon receiving the discovery message, each discovery node Di searches for

a user entry with u handle in its user registry.

(a) If it has a matching user record, it uses the SURB attached to the

discovery message to respond to Alice with the secret share it has along

with the u handle: payloadDi
← (u handle, secreti)

(b) Otherwise, it drops the message and responds to Alice with a suitable

error code.

7. If all k responses arrive at Alice within a predetermined timeout period, she

combines the secret shares to reveal Bob’s contact information. Otherwise,

she retries the whole process picking different nodes than the non-responding

ones.

53

This mechanism meets the availability goal, since Bob is discoverable as long

as k discovery nodes are available. Moreover, it also supports internal-identity-

verification, since Bob can repeat the discovery process for Alice to confirm her

internal identity upon initial contact.

Algorithm 6: User discovery in Incognito Pudding

1 payload← []

2 picked discovery nodes← Select k random discovery nodes

3 salts← Empty dictionary

4 for discovery node in picked discovery nodes do

5 salts[discovery node]← Fkdiscovery node
(searchee id)

6 end

7 handle = Hash(salt combination ‖ searchee ID))

8 for discovery node in picked discovery nodes do

9 payload← Hash(discovery node.name ‖ handle))
10 outgoing path← Randomly select a determined number of relay nodes

11 outgoing path.append(discovery node)

12 onion header ← Create onion header from outgoing path

13 surb← Generate SURB

14 discovery msg ← Prepare an anonymous reply message using payload, onion header,

and surb

15 Pass discovery msg to the next node in the msg path

16 end

17 Wait for k discovery msg responses to return for timeout limit tdiscovery timeout

18 if k discovery msg responses received before tdiscovery timeout then

19 Combine the secret pieces to learn searchee’s contact info

20 end

21 else

22 Start over and retry

23 end

5.5 Updating User Data

Incognito Pudding’s mechanism for authorised-user-data-updates (U3) is essen-

tially the same as ID-Verified Pudding’s (Section 4.4): It uses digital signatures to

authorise updates to user data. As a reminder, the update mechanism works as

follows: When a user wants to amend any data, she digitally signs the new data

54

with her sku, and submits the signature along with the data. The discovery nodes

use the user’s pku to validate the signature and update her data as requested, if

the signature is valid.

5.6 Tradeoffs and Limitations

The apparent shortcomings of Incognito Pudding are as follows: This protocol

does not support external-identity-verification (S5), membership-unobservability

(S6), and account-recovery (U4) goals. Moreover, the crawling issue discussed

in Sections 3.2 and 4.6 affects Incognito Pudding as well. This section discusses

these limitations in detail.

No external-identity-verification (S5): Incognito Pudding’s main goal, user

name-anonymity, prevents the discovery nodes from linking user accounts to email

addresses as a form of verified external identity. This is because one simply has to

know an email address to be able to send emails to it. Likewise, to learn the public

verification key for verifying a DKIM signature, a discovery node has to make a

DNS query using the sender’s email address or some identifying information about

it, such as its domain.

Having a trusted verification server to handle the email verification can allow

external-identity-verification. However, this solution creates a single point of fail-

ure in the system. Still, this may be a compromise that Incognito Pudding system

providers and users might be willing to make in certain settings.

Crawling: Although Incognito Pudding hides usernames from discovery nodes,

it still does not provide membership-unobservability (S6), because crawling re-

mains a problem. As mentioned in Section 4.6, contact-information-privacy (S2)

is also subject to the crawling issue. In spite of these shortcomings, preventing

malicious discovery nodes from learning registered usernames in bulks is a valuable

privacy factor, as noted earlier in Section 5.1.

No account-recovery (U4): Since Incognito Pudding does not support external-

identity-verification (S5), the discovery nodes do not have an external channel to

55

access a user and verify her identity to grant access to her account. Although

allowing account recovery through so-called security questions is possible, both

research [81, 82] and anecdotal evidence (a well-known example being the Sarah

Palin email hack [83]) indicate that these questions are vulnerable to account hi-

jacking. A second alternative for allowing account-recovery might be following a

method similar to Facebook trusted contacts [84], who can collectively help recover

a Facebook user’s account. However, the risk of maliciously gaining control of a

user account through phishing and social engineering attacks must be noted.

5.7 Summary

This chapter has described the second Pudding protocol that this dissertation

presents, namely Incognito Pudding. This protocol design allows the user to

register to the system without revealing her username. However, this core aim

is in conflict with external-identity-verification, membership-unobservability, and

account-recovery goals. Despite these tradeoffs, hiding usernames from the dis-

covery nodes is a valuable goal, as studies show that usernames can be used for

linking user identities accross platforms [77, 78, 79, 80], which might be a par-

ticularly critical privacy concern for the users of an anonymous communication

network.

56

Chapter 6

Implementation

Thus far, this dissertation has presented ID-Verified and Incognito Pudding pro-

tocols theoretically. To empirically evaluate these protocols and substantiate their

practicality and availability promises, I have implemented a simulation tool. The

simulations tested by this tool cover all possible runs of the protocols in a finite

state space. This chapter describes the capabilities and limitations of this imple-

mentation.

6.1 Pudding Simulation Tool

ID-Verified Pudding (Chapter 4) and Incognito Pudding (Chapter 5) protocols

claim to achieve practicality by meeting non-conflicting subsets of the ideal dis-

covery system’s goals (Section 3.3). Both protocols promise liveness, since all

operations remain functional as long as at least threshold-many discovery nodes

are available. The protocols also aim completeness, fully describing the processes

they involve. The main objective of this simulator is to demonstrate the practical-

ity of the two Pudding protocols by testing their liveness and completeness with

a model checking approach.

Model checking is a formal analysis method, where all possible inputs of a system

are automatically traversed and all possible outputs are checked for a finite state

space [85]. This simulation tool functions as a model checker, since it aims to check

57

all possible runs of the two Pudding protocols in a state space bounded by the

parameters presented in Table 6.1 and explained in the next section. It is worth

mentioning that this simulator does not intend to formally verify the protocols nor

measure their performance.

In terms of technicalities, this tool is a discrete-event simulator that runs on a single

machine and represents all actors and messages as objects. This object-oriented

approach enables effective examination of the relationships between entities. The

Pudding simulator is written in Python language and uses PyCryptoDome package

to implement the main cryptographic primitives. The simulator represents time

with an event-driven tick-based approach, where every request-response round

between a user and a discovery node is executed within a tick.

As the main intention of the simulation tool is to demonstrate practicality, it uses

abstractions to hide the details of the actions whose inner workings do not affect

the logic of the protocols. For instance, the actions of email sending and DKIM

signature checking are treated as black boxes. Similarly, OPRF is simplified as a

function that takes a username as an input and returns a pseudorandom string

using the username as a seed.

6.2 Evaluation

The developed simulation tool tests the core protocol functionalities, i.e. registra-

tion, discovery, and user data update, in a comprehensive set of scenarios. To

cover scenarios with all possible state configurations in a determined state space,

I implemented a scenario generator. This state space is bounded by the values of

five parameters listed Table 6.1, namely Pudding type, number of users, number of

discovery nodes, threshold value, and user action. The generator follows separate

approaches for generating scenarios for evaluating completeness and liveness of the

protocols.

58

Parameter
Possible values for
completeness

Possible values for
liveness

Num. of users (U) 1 <U <3 1 <U <2
Num. of discovery nodes (N) 1 <N <5 1 <N <4
Threshold value (K) 1 <K <N 1 <K <N
User action REGISTRATION, UPDATE, DISCOVERY
Pudding type ID VERIFIED, INCOGNITO

Table 6.1: The parameters used for testing completeness and liveness of the pro-
tocols and their possible values.

6.2.1 Completeness Evaluation

Completeness evaluation aims to demonstrate that the protocols represent the

system behaviour for all possible user behaviours. To achieve this, it investigates

the scenarios where the users may behave arbitrarily, assuming that all discovery

nodes are available.

The set of scenarios used for evaluating completeness consists of all possible combi-

nations and orderings of user actions under each parameter configuration presented

in Table 6.1. In a logical sense, these scenarios can be regarded as collections of

several success and failure cases, which can be grouped under the categories listed

in Table 6.2. For instance, a successful scenario can be as follows: Alice registers

to the system, Bob registers to the system, Bob updates his user data; or SI, SI,

SII. Changing the ordering of the second and third events results in a different

scenario represented with cases SI, FII, SI, and is expected to fail. Despite their

simplicity, these cases and parameters are comprehensive and expressive to enough

to generate 37,080 completeness test scenarios.

6.2.2 Liveness Evaluation

Liveness evaluation aims to demonstrate that the discovery mechanism maintains

its functionality as long as at least threshold-many discovery nodes are available

within a timeout period. The scenarios for this evaluation assume that discovery

nodes may deviate from the protocol, while users attempt to legitimately register,

update user data, and discover a user following the protocols. To achieve this,

59

Code Success case
SI A user registers to the system
SII A registered user attempts to update
SIII A registered searcher attempts to discover a registered searchee

Code Failure case
FI Multiple users attempt to register with the same username
FII An unregistered user attempts to update her data
FIII A registered searcher attempts to discover an unregistered searchee
FIV An unregistered searcher attempts to discover an registered searchee
FV An unregistered searcher attempts to discover an unregistered searchee

Table 6.2: Categories of success and failure cases in auto-generated completeness
test scenarios.

liveness scenarios span all possible configurations of discovery nodes independently

becoming available or unavailable at any point of execution for every parameter

configuration, within a timeout period determined by the value of N.

The described configurations result in 7492 liveness scenarios. The reason why

this number is smaller when compared to completeness tests is that increasing the

K and N value ranges escalate the number of scenarios exponentially. For instance,

incrementing the current upper boundary of N by one results in more than one

million (1,195,876) scenarios. Therefore, liveness parameters were adjusted to be

able to test protocol runs exhaustively within a reasonable time period.

6.3 Limitations

As mentioned earlier in this chapter, this simulation tool should not be treated as a

formal verification tool. In other words, although this simulator is helpful in finding

errors in a Pudding protocol, the lack thereof does not guarantee correctness.

Besides, this tool does not aim to evaluate security or performance of the protocols.

It is also worth noting that the scenarios tested in this implementation is lim-

ited both in ranges and types of parameters due to time constraints. For instance,

possible failure cases in email verification could not be investigated. Chapter 7 pro-

vides some suggestions for further research in these areas. Despite its exploratory

60

nature, this simulator offers concreteness for the claims of the Pudding protocols.

6.4 Summary and Results

The simulation tool presented in this chapter aims to demonstrate that the two

Pudding protocols are practical by testing their liveness and completeness promises.

As a result of testing all possible protocol runs in a total of 44,572 scenarios, the

protocols behaved as expected in all of them. Putting the full logic of the protocol

into action through this tool, it is apparent that in a large number of scenarios,

both Pudding protocols are realistic and functional.

Another significant outcome of this simulation tool is that it has resulted in an im-

provement in one of the protocols. Initially, to discover a user through ID-Verified

Pudding, the searcher would send discovery requests to k discovery nodes and retry

discovery with a different combination if some of them are unavailable. Liveness

tests demonstrated that it is simpler and more time-efficient to send discovery

requests to all discovery nodes instead and terminate the process once threshold-

many responses are achieved. Therefore, the protocol was revised according to

this finding.

61

Chapter 7

Summary and Conclusions

Anonymous communication networks can allow messaging with metadata privacy,

providing better privacy than popular encrypted messaging applications. However,

these networks currently lack a usable and privacy-preserving mechanism that

enables users to discover others on the network, which is a barrier to the adoption of

anonymous communication networks for messaging, as previous research suggests

[1]. This dissertation is the first study to explore the whole landscape of this acute

yet underexplored problem.

There are several important areas where this study makes an original contribution

to the literature. One is proposing an ideal mechanism for user discovery that is

both usable and privacy-preserving. Regarding usability, this mechanism allows

users to search for others through human-memorable usernames without leaving

the anonymous communication network. In terms of privacy, it essentially aims

to (1) allow retrieval of the user information needed to contact them, (2) while

keeping usernames private from the discovery mechanism, and (3) making the

whole process unlinkable in the sense that the discovery mechanism cannot figure

out who is searching for whom.

Another contribution of this dissertation is analysing the ideal mechanism’s system

goals and describing its threat and trust assumptions. This analysis has identified

that some properties of the ideal user discovery mechanism are in conflict in prac-

62

tice. Therefore, this study has established two concrete user discovery protocols

which achieve different subsets of the the ideal mechanism’s goals and represent

different points in the usability-privacy tradeoff space.

The first protocol, ID-Verified Pudding, allows users to use email addresses as

usernames. Using DKIM, this protocol links the user’s identity within the discov-

ery mechanism to an external identity, email address. This provides the searchers

confidence that the user they discover is who she claims to be. Besides these ad-

vantages, ID-Verified Pudding makes usernames known to discovery nodes, which

might be undesirable for users who require to hide that they are a member of the

anonymous messaging system.

The second protocol, Incognito Pudding, aims to provide better anonymity by

hiding usernames from discovery nodes, while allowing discovery without the need

to know anything but the username. However, to achieve this level of anonymity,

Incognito Pudding sacrifices the ability to link the user’s internal identity to an

external one.

Through the second protocol design, this dissertation has applied Oblivious Pseu-

dorandom Functions (OPRFs) to the context of discovery for the first time. One

existing use area of OPRFs is hardening human-memorable passwords by deriv-

ing strong secrets from them. I have adapted this idea to privacy-preserving user

discovery to derive strong secrets from low-entropy usernames in an irreversible

and unlinkable way. However, it is important to note that it is possible to brute-

force search registered usernames, or crawl them. This is considered an intrinsic

problem of discovery mechanisms [13].

The last contribution of this dissertation is a simulation tool, which functions as a

model checker. This tool checks all possible runs of the two protocols within a finite

state space to evaluate the two Pudding protocols for completeness and liveness.

The evaluation results demonstrate that both Pudding protocols are attainable at

the logical level.

One limitation of this study is that it is unable to encompass the entire testing

and verification scope for security protocols, as noted in Section 6.4. Therefore,

further experimental investigations are needed to estimate the performance of the

63

Pudding protocols. Performance measurements can be carried out by conducting

experiments on real anonymous communication networks or running simulations on

appropriate simulation tools such as Mixim [86], Shadow [87], or the Rollercoaster

[88] open-source Loopix simulator. On the same note, further research should be

undertaken to formally analyse the Pudding protocols. This can be done by mod-

elling the protocols mathematically in a finite state space and using model checkers

such as CL-Atse [89], OFMC [90] and SAT-MC [91], or an unbounded space by

induction and using model checkers like ProVerif [92], Athena [93], or Scyther [94].

Finally, this study has not evaluated the usability of the protocols because such

studies can only be conducted once the protocol-level capabilities are explored and

established. A systematic user study to investigate how these features translate to

real-life applications is an important next step. One interesting question to answer

is how unavailable discovery nodes affect usability.

Although usability and security & privacy have been historically considered as

competing notions, this has been changing with the rise of encrypted messaging

apps such as Signal, WhatsApp, and Telegram. For the first time, private mes-

saging is accessible to a broad and heterogeneous user base, igniting demand for

better privacy from everyday users. A recent example is a widespread backlash

fuelled by social media against WhatsApp’s change to its privacy policy at the

beginning of 2021 [95].

Despite there exists forces against anonymity, such as the Online Safety Bill of

the British government [96], I argue that the trend towards increased privacy

will eventually result in widespread adoption of anonymous messaging systems.

At the time of writing, anonymous messaging apps such as Briar [97] and Jami

[98] exist outside the academic literature. These apps also need usable discovery

mechanisms. Moreover, it is important to note that although this dissertation has

presented these ideas in the context of messaging, the proposed ideas can also

allow users to find others to collaborate on a document, to-do list, calendar, etc.

in anonymous communication networks.

64

Bibliography

[1] Alma Whitten and J Doug Tygar. Why Johnny can’t encrypt: A usability
evaluation of pgp 5.0. In USENIX Security Symposium, pages 169–184, 1999.

[2] Signal. https://signal.org/, accessed 2021-25-03.

[3] Telegram. https://telegram.org/, accessed 2021-12-05.

[4] Whatsapp. https://www.whatsapp.com/, accessed 2021-20-04.

[5] General Michael Hayden. The Johns Hopkins foreign affairs symposium
presents: The price of privacy: Re-evaluating the NSA, May 2018. https:

//www.youtube.com/watch?v=kV2HDM86XgI&t=1070s, accessed 2021-21-05.

[6] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. Technical report, Naval Research Lab Washington
DC, 2004.

[7] Steven J Murdoch and George Danezis. Low-cost traffic analysis of Tor. In
IEEE Symposium on Security and Privacy, pages 183–195. IEEE, 2005.

[8] Ania M Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George
Danezis. The Loopix anonymity system. In USENIX Security Symposium,
pages 1199–1216, 2017.

[9] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich.
Vuvuzela: Scalable private messaging resistant to traffic analysis. In 25th
Symposium on Operating Systems Principles, pages 137–152, 2015.

[10] Raymond Cheng, William Scott, Elisaweta Masserova, Irene Zhang, Vipul
Goyal, Thomas Anderson, Arvind Krishnamurthy, and Bryan Parno. Talek:
Private group messaging with hidden access patterns. In Annual Computer
Security Applications Conference, pages 84–99, 2020.

65

https://signal.org/
https://telegram.org/
https://www.whatsapp.com/
https://www.youtube.com/watch?v=kV2HDM86XgI&t=1070s
https://www.youtube.com/watch?v=kV2HDM86XgI&t=1070s

[11] Sebastian Angel and Srinath Setty. Unobservable communication over fully
untrusted infrastructure. 12th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2016, 2016.

[12] Joseph Bonneau and Stuart Schechter. Towards reliable storage of 56-bit
secrets in human memory. In USENIX Security Symposium, pages 607–623,
2014.

[13] Christoph Hagen, Christian Weinert, Christoph Sendner, Alexandra
Dmitrienko, and Thomas Schneider. All the numbers are US: Large-scale
abuse of contact discovery in mobile messengers. NDSS. Internet Society,
2021.

[14] Kun Peng. Anonymous communication networks: Protecting privacy on the
Web. CRC Press, 2014.

[15] George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: Design
of a type III anonymous remailer protocol. IEEE Symposium on Security and
Privacy, 2003.

[16] Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme. In Inter-
national Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 393–403. Springer, 1995.

[17] Markus Jakobsson, Ari Juels, and Ronald L Rivest. Making mix nets robust
for electronic voting by randomized partial checking. In USENIX Security
Symposium, pages 339–353. San Francisco, USA, 2002.

[18] Dan Boneh and Philippe Golle. Almost entirely correct mixing with applica-
tions to voting. In ACM Computer and Communications Security Conference,
pages 68–77, 2002.

[19] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation. In
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 93–118. Springer, 2001.

[20] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya,
and Mira Meyerovich. How to win the clonewars: efficient periodic n-times
anonymous authentication. In ACM Computer and Communications Security
Conference, pages 201–210, 2006.

[21] Stevens Le Blond, David Choffnes, William Caldwell, Peter Druschel, and
Nicholas Merritt. Herd: A scalable, traffic analysis resistant anonymity net-

66

work for VoIP systems. In ACM Conference on Special Interest Group on
Data Communication, pages 639–652, 2015.

[22] Haoyu Zhang, Brian Cho, Ergin Seyfe, Avery Ching, and Michael J Freedman.
Riffle: optimized shuffle service for large-scale data analytics. In EuroSys
Conference, pages 1–15, 2018.

[23] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-
cash. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 302–321. Springer, 2005.

[24] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anony-
mous messaging system handling millions of users. In IEEE Symposium on
Security and Privacy, pages 321–338. IEEE, 2015.

[25] Michael Harkavy, J Doug Tygar, and Hiroaki Kikuchi. Electronic auctions
with private bids. In USENIX Workshop on Electronic Commerce, 1998.

[26] David L Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[27] Paul Syverson, Gene Tsudik, Michael Reed, and Carl Landwehr. Towards an
analysis of onion routing security. In Designing Privacy Enhancing Technolo-
gies, pages 96–114. Springer, 2001.

[28] David Chaum. The dining cryptographers problem: Unconditional sender
and recipient untraceability. Journal of Cryptology, 1(1):65–75, 1988.

[29] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. PIR-PSI: scal-
ing private contact discovery. Privacy Enhancing Technologies Symposium,
2018(4):159–178, 2018.

[30] Moxie Marlinspike. Signal blog - technology preview: Private contact discov-
ery for Signal. https://perma.cc/G385-EMCB, accessed 2021-23-05.

[31] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryptol.
ePrint Arch., 2016(86):1–118, 2016.

[32] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and
Raoul Strackx. Foreshadow: Extracting the keys to the Intel SGX kingdom
with transient out-of-order execution. In USENIX Security Symposium, pages
991–1008, 2018.

[33] Paul V Mockapetris and Kevin J Dunlap. Development of the Domain Name
System. Computer Communication Review, 18(4):123–133, 1988.

67

https://perma.cc/G385-EMCB

[34] Sergio Castillo-Perez and Joaquin Garcia-Alfaro. Anonymous resolution of
DNS queries. In OTM Confederated International Conferences” On the Move
to Meaningful Internet Systems”, pages 987–1000. Springer, 2008.

[35] Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy Arends. DNS
Security Introduction and Requirements. https://rfc-editor.org/rfc/

rfc4033.txt, March 2005.

[36] OpenDNS. DNSCrypt. https://perma.cc/UDW6-7HYA. accessed on
05/01/2021.

[37] Matthew Dempsky. DNSCurve: Link-level security for the Do-
main Name System - Internet draft. https://tools.ietf.org/id/

draft-dempsky-dnscurve-00.html, 2009.

[38] Wouter Wijngaards and Glen Wiley. Confidential
DNS - Internet draft. https://tools.ietf.org/html/

draft-wijngaards-dnsop-confidentialdns-03, 2015. accessed on
07/01/2021.

[39] Phillip Hallam-Baker. Private DNS - Internet draft. https://tools.

ietf.org/html/draft-hallambaker-privatedns-00, 2014. accessed on
07/01/2021.

[40] Fangming Zhao, Yoshiaki Hori, and Kouichi Sakurai. Analysis of privacy dis-
closure in DNS query. International Conference on Multimedia and Ubiquitous
Engineering (MUE), pages 952–957, 2007.

[41] Rafail Ostrovsky and William E Skeith. A survey of single-database private
information retrieval: Techniques and applications. In International Work-
shop on Public Key Cryptography, pages 393–411. Springer, 2007.

[42] Sergio Castillo-Perez and Joaquin Garcia-Alfaro. Evaluation of two privacy-
preserving protocols for the DNS. In 2009 Sixth International Conference on
Information Technology: New Generations, pages 411–416. IEEE, 2009.

[43] Liang Zhu, Zi Hu, John Heidemann, Duane Wessels, Allison Mankin, and
Nikita Somaiya. Connection-oriented DNS to improve privacy and security.
IEEE Symposium on Security and Privacy, 2015-July:171–186, 2015.

[44] Paul Schmitt, Anne Edmundson, Allison Mankin, and Nick Feamster. Oblivi-
ous DNS: Practical privacy for DNS queries. Privacy Enhancing Technologies
Symposium, 2019(2):228–244, 2019.

[45] Mahrud Sayrafi. The Cloudflare blog: Introducing DNS resolver for Tor, May
2018. https://perma.cc/NJY9-GDMD, accessed 2021-14-05.

68

https://rfc-editor.org/rfc/rfc4033.txt
https://rfc-editor.org/rfc/rfc4033.txt
https://perma.cc/UDW6-7HYA
https://tools.ietf.org/id/draft-dempsky-dnscurve-00.html
https://tools.ietf.org/id/draft-dempsky-dnscurve-00.html
https://tools.ietf.org/html/draft-wijngaards-dnsop-confidentialdns-03
https://tools.ietf.org/html/draft-wijngaards-dnsop-confidentialdns-03
https://tools.ietf.org/html/draft-hallambaker-privatedns-00
https://tools.ietf.org/html/draft-hallambaker-privatedns-00
https://perma.cc/NJY9-GDMD

[46] Nguyen Phong Hoang, Ivan Lin, Seyedhamed Ghavamnia, and Michalis Poly-
chronakis. K-resolver: towards decentralizing encrypted DNS resolution.
arXiv preprint arXiv:2001.08901, 2020.

[47] Arjun Nambiar and Matthew Wright. Salsa: a structured approach to large-
scale anonymity. In ACM Computer and Communications Security Confer-
ence, pages 17–26, 2006.

[48] Alan Mislove, Gaurav Oberoi, Ansley Post, Charles Reis, Peter Druschel, and
Dan S Wallach. Ap3: Cooperative, decentralized anonymous communication.
In ACM SIGOPS European Workshop, pages 30–es, 2004.

[49] Andriy Panchenko, Stefan Richter, and Arne Rache. Nisan: network infor-
mation service for anonymization networks. In ACM Computer and Commu-
nications Security Conference, pages 141–150, 2009.

[50] Jon McLachlan, Andrew Tran, Nicholas Hopper, and Yongdae Kim. Scalable
onion routing with Torsk. ACM Conference on Computer and Communica-
tions Security, pages 590–599, 2009.

[51] Prateek Mittal and Nikita Borisov. Information leaks in structured peer-to-
peer anonymous communication systems. ACM Transactions on Information
and System Security, 15(1):1–28, 2012.

[52] Qiyan Wang, Prateek Mittal, and Nikita Borisov. In search of an anonymous
and secure lookup: attacks on structured peer-to-peer anonymous communi-
cation systems. In ACM Computer and Communications Security Conference,
pages 308–318, 2010.

[53] George Danezis and Paul Syverson. Bridging and fingerprinting: Epistemic
attacks on route selection. In Privacy Enhancing Technologies Symposium,
pages 151–166. Springer, 2008.

[54] George Danezis and Ian Goldberg. Sphinx: A compact and provably secure
mix format. In IEEE Symposium on Security and Privacy, pages 269–282.
IEEE, 2009.

[55] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–
613, 1979.

[56] George Robert Blakley. Safeguarding cryptographic keys. In International
Workshop on Managing Requirements Knowledge, pages 313–313. IEEE Com-
puter Society, 1979.

69

[57] Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing scheme realizing
general access structure. Electronics and Communications in Japan (Part III:
Fundamental Electronic Science), 72(9):56–64, 1989.

[58] Maurice Mignotte. How to share a secret. In Workshop on Cryptography,
pages 371–375. Springer, 1982.

[59] Charles Asmuth and John Bloom. A modular approach to key safeguarding.
IEEE Transactions on Information Theory, 29(2):208–210, 1983.

[60] Josh Benaloh and Jerry Leichter. Generalized secret sharing and monotone
functions. In Conference on the Theory and Application of Cryptography,
pages 27–35. Springer, 1988.

[61] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing.
In Annual Symposium on Foundations of Computer Science, pages 427–438.
IEEE, 1987.

[62] Torben Pryds Pedersen. Non-interactive and information-theoretic secure ver-
ifiable secret sharing. In Annual International Cryptology Conference, pages
129–140. Springer, 1991.

[63] Elaine Barker, Elaine Barker, William Burr, William Polk, Miles Smid, et al.
Recommendation for key management: Part 1: General. National Institute
of Standards and Technology, Technology Administration, 2006.

[64] Lily Chen. Recommendation for key derivation using pseudorandom func-
tions. NIST special publication, 800:108, 2008.

[65] Michael J Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Key-
word search and oblivious pseudorandom functions. In Theory of Cryptogra-
phy Conference, pages 303–324. Springer, 2005.

[66] Stanislaw Jarecki, Hugo Krawczyk, Maliheh Shirvanian, and Nitesh Saxena.
Device-enhanced password protocols with optimal online-offline protection.
In ACM Asia Conference on Computer and Communications Security, pages
177–188, 2016.

[67] Warwick Ford and Burton S Kaliski. Server-assisted generation of a strong
secret from a password. In IEEE International Workshops on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises (WET ICE 2000), pages
176–180. IEEE, 2000.

[68] Cameron F Kerry and Patrick D Gallagher. Digital signature standard (DSS).
FIPS PUB, pages 186–4, 2013.

70

[69] Tolga Acar, Mira Belenkiy, and Alptekin Küpçü. Single password authenti-
cation. Computer Networks, 57(13):2597–2614, 2013.

[70] Dave Crocker, Tony Hansen, and Murray Kucherawy. DomainKeys Identified
Mail (DKIM) signatures. ser. RFC6376, 2011.

[71] Barry Leiba and Jim Fenton. DomainKeys Identified Mail (DKIM): Using
digital signatures for domain verification. In Conference on Email and Anti-
Spam, 2007.

[72] Moxie Marlinspike. Signal blog - the difficulty of private contact discovery.
https://perma.cc/6Y82-QK48, accessed 2021-08-04.

[73] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and
Christian Weinert. Mobile private contact discovery at scale. In USENIX
Security Symposium, pages 1447–1464, 2019.

[74] Ágnes Kiss, Jian Liu, Thomas Schneider, N Asokan, and Benny Pinkas. Pri-
vate set intersection for unequal set sizes with mobile applications. Privacy
Enhancing Technologies Symposium, 2017(4):177–197, 2017.

[75] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot, and Frank Stajano.
The quest to replace passwords: A framework for comparative evaluation of
web authentication schemes. In IEEE Symposium on Security and Privacy,
pages 553–567. IEEE, 2012.

[76] Yue Li, Zeyu Chen, Haining Wang, Kun Sun, and Sushil Jajodia. Under-
standing account recovery in the wild and its security implications. IEEE
Computer Architecture Letters, (01):1–1, 2020.

[77] Daniele Perito, Claude Castelluccia, Mohamed Ali Kaafar, and Pere Manils.
How unique and traceable are usernames? In Privacy Enhancing Technologies
Symposium, pages 1–17. Springer, 2011.

[78] Yongjun Li, You Peng, Zhen Zhang, Hongzhi Yin, and Quanqing Xu. Match-
ing user accounts across social networks based on username and display name.
World Wide Web, 22(3):1075–1097, 2019.

[79] Reza Zafarani and Huan Liu. Connecting corresponding identities across
communities. In International AAAI Conference on Web and Social Media,
volume 3, 2009.

[80] Reza Zafarani and Huan Liu. Connecting users across social media sites: a
behavioral-modeling approach. In 19th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 41–49, 2013.

71

https://perma.cc/6Y82-QK48

[81] Joseph Bonneau, Elie Bursztein, Ilan Caron, Rob Jackson, and Mike
Williamson. Secrets, lies, and account recovery: Lessons from the use of
personal knowledge questions at google. In 24th International Conference on
World Wide Web, pages 141–150, 2015.

[82] Stuart Schechter, AJ Bernheim Brush, and Serge Egelman. It’s no secret.
measuring the security and reliability of authentication via “secret” questions.
In IEEE Symposium on Security and Privacy, pages 375–390. IEEE, 2009.

[83] Wendy Goucher. Email passwords: pushing on a latched door. Computer
Fraud & Security, 2012(9):16–19, 2012.

[84] Facebook. Facebook help centre: How can I choose friends to help me log in if I
ever get locked out of my Facebook account? https://perma.cc/NN2X-37D3,
accessed 2021-09-05.

[85] Edmund M Clarke Jr, Orna Grumberg, Daniel Kroening, Doron Peled, and
Helmut Veith. Model checking. MIT press, 2018.

[86] Iness Ben Guirat, Devashish Gosain, and Claudia Diaz. Mixim: A general
purpose simulator for mixnet. Privacy Enhancing Technologies Symposium -
HotPETs Workshop, 2020.

[87] Rob Jansen and Nicholas Hopper. Shadow: Running tor in a box for accurate
and efficient experimentation. In Symposium on Network and Distributed
System Security (NDSS). Internet Society, February 2012.

[88] Daniel Hugenroth, Martin Kleppmann, and Alastair Beresford. Rollercoaster
: An Efficient Group-Multicast Scheme for Mix Networks. In submission to
USENIX Security, 2021.

[89] Mathieu Turuani. The CL-Atse protocol analyser. In International Conference
on Rewriting Techniques and Applications, pages 277–286. Springer, 2006.

[90] David Basin, Sebastian Mödersheim, and Luca Vigano. OFMC: A symbolic
model checker for security protocols. International Journal of Information
Security, 4(3):181–208, 2005.

[91] Alessandro Armando and Luca Compagna. SATMC: a SAT-based model
checker for security protocols. In European Workshop on Logics in Artificial
Intelligence, pages 730–733. Springer, 2004.

[92] Bruno Blanchet et al. An efficient cryptographic protocol verifier based on
prolog rules. In CSFW, volume 1, pages 82–96. Citeseer, 2001.

72

https://perma.cc/NN2X-37D3

[93] Dawn Xiaodong Song. Athena: a new efficient automatic checker for security
protocol analysis. In IEEE Computer Security Foundations Workshop, pages
192–202. IEEE, 1999.

[94] Cas JF Cremers. The Scyther tool: Verification, falsification, and analysis of
security protocols. In International Conference on Computer Aided Verifica-
tion, pages 414–418. Springer, 2008.

[95] Mike Isaac. WhatsApp delays privacy changes amid user backlash, January
15 2021. https://perma.cc/EZ2N-GL7X, accessed 2021-25-05.

[96] UK Department for Digital, Culture, Media & Sport. Draft Online
Safety Bill, May 12 2021. https://www.gov.uk/government/publications/
draft-online-safety-bill, accessed 2021-02-06.

[97] Briar Project. https://briarproject.org/, accessed 2021-14-03.

[98] Jami. https://jami.net/help/, accessed 2021-14-03.

73

https://perma.cc/EZ2N-GL7X
https://www.gov.uk/government/publications/draft-online-safety-bill
https://www.gov.uk/government/publications/draft-online-safety-bill
https://briarproject.org/
https://jami.net/help/

	Introduction
	Background
	Anonymous Communication Networks
	Private Discovery in Other Contexts
	Private Set Intersection (PSI)
	Private Information Retrieval (PIR)
	Secure Remote Computation
	Private DNS Solutions
	Distributed Hash Tables (DHTs)

	Cryptographic Background
	Anonymous Replies
	Threshold Secret Sharing
	Hash Function
	Oblivious Pseudorandom Function (OPRF)
	Digital signatures
	DomainKeys Identified Mail (DKIM)

	Summary

	Goals and Problem Statement
	Problem Description
	Threat Model
	System Goals
	Analysis of System Goals
	Pudding Protocols
	Notation & Terms
	Summary

	ID-Verified Pudding
	Protocol Overview
	System Goals Analysis
	The Core Idea: Identity Verification

	Registration to the System
	User Discovery
	Updating User Data
	Account Recovery
	Tradeoffs and Limitations
	Summary

	Incognito Pudding
	Protocol Overview
	System Goals Analysis
	The Core Idea: Salt Creation and Username Hashing

	An Illustrative Example
	Registration to the System
	User Discovery
	Updating User Data
	Tradeoffs and Limitations
	Summary

	Implementation
	Pudding Simulation Tool
	Evaluation
	Completeness Evaluation
	Liveness Evaluation

	Limitations
	Summary and Results

	Summary and Conclusions

