DOCUMENT-LEVEL GRAMMATICAL ERROR CORRECTION
ZHENG YUAN AND CHRISTOPHER BRYANT

INTRODUCTION

• Grammatical error correction (GEC) attempts to automatically detect and correct grammatical errors in text.
• Document-level context can provide valuable information, which is crucial for correcting certain errors and resolving inconsistencies.
• Sentence-level systems may fail to correct document-level errors.

Example (a)
In the chat room, she created a close relationship with eight people. She talks (talked) to them every night, trust (trusted / trusted to) them and share (shared / shares) her life with them. Then eventually, she discovered that the eight people were one as the other person was using eight different identities to chat with her all the time.

Example (b)
I would like to recommend walking. Because there are a lot of beautiful trees. → I would like to recommend walking because there are a lot of beautiful trees.

DOCUMENT-LEVEL GEC MODELS

Figure 1: Document-level GEC models (FF: Feed Forward, MHA: Multi-Head Attention). The newly introduced components are highlighted in yellow.

DOCUMENT-LEVEL EVALUATION

• We perform the first document-level GEC evaluation with the ERRANT Scorer.
• We produce new reference files at the document level to retain edits that cross sentence boundaries.
• For datasets with multiple references (i.e. CoNLL-2014), scores are computed against all the document-level edits of a single annotator simultaneously rather than mixed-and-matched from different annotators for each sentence.

RESULTS

Document-level evaluation:

<table>
<thead>
<tr>
<th>Model</th>
<th>BEA-dev</th>
<th>FCE-test</th>
<th>CoNLL-2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P R F</td>
<td>P R F</td>
<td>P R F</td>
</tr>
<tr>
<td>Baseline</td>
<td>58.49 38.29 52.91</td>
<td>63.65 42.27 57.80</td>
<td>59.96 27.08 48.25</td>
</tr>
<tr>
<td>SingleEnc</td>
<td>56.94 43.16 53.52</td>
<td>61.63 44.95 57.37</td>
<td>59.78 27.27 48.27</td>
</tr>
<tr>
<td>MultiEnc-enc</td>
<td>62.06 41.71 56.54</td>
<td>65.35 42.68 59.20</td>
<td>63.23 27.96 50.49</td>
</tr>
<tr>
<td>MultiEnc-dec</td>
<td>62.64 40.72 56.55</td>
<td>65.36 44.17 59.64</td>
<td>64.57 28.65 51.62</td>
</tr>
</tbody>
</table>

Sentence-level evaluation (comparison with NMT-based GEC systems):

<table>
<thead>
<tr>
<th>System</th>
<th>FCE-test</th>
<th>CoNLL-2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P R F</td>
<td>P R F</td>
</tr>
<tr>
<td>MultEnc-dec</td>
<td>69.9 44.2 62.6</td>
<td>74.3 39.0 62.9</td>
</tr>
<tr>
<td>Chollampatt et al. (2019)</td>
<td>52.2 28.3 44.6</td>
<td>65.6 30.1 53.1</td>
</tr>
<tr>
<td>Kaneko et al. (2020)</td>
<td>65.0 49.6 61.2</td>
<td>69.2 45.6 62.6</td>
</tr>
<tr>
<td>Lichtarge et al. (2020)</td>
<td>- - -</td>
<td>69.4 43.9 62.1</td>
</tr>
</tbody>
</table>

ERROR ANALYSIS

• The biggest gains are observed for subject-verb agreement, preposition, noun number, determiner and pronoun errors.
• This confirms our hypothesis that correction of errors involving agreement, coreference or tense is more likely to rely on information outside the current sentence.
• Our system is good at handling errors that cross sentence boundaries.
• Manual inspection reveals that improvements also come from topic-aware lexical choice.

Example (a)
Context Then we went to Taxco.
Source We stay in a very luxurious hotel.
Baseline We stay in a very luxurious hotel.
Our model We stayed in a very luxurious hotel.

Example (b)
Context The motorcycle is the most dangerous transport ...
Source ... some riders still keep breaking the rule.
Baseline ... some cyclists still keep breaking the rule.
Our model ... some riders still keep breaking the rule.

CONCLUSION

• Context is useful in GEC but very long context is not necessary for improved performance.
• Our best system outperforms all NMT-based single-model GEC systems and achieves state of the art on FCE-test.
• By drawing attention to this understudied area in GEC, we hope to motivate future efforts to build better context-aware GEC systems.