

The Task: An Analogy

- Error correction data is typically aligned manually or not at all.
- Human alignments can be inconsistent:

Goals

- Given parallel original and corrected sentences, extract edits automatically. The extracted edits should resemble human edits.
- Standardise treatment of ambiguous alignments in all datasets.
- Simplify the annotation of new data (reduce annotator burden).
- Facilitate more detailed evaluation of unannotated GEC system output.

Baseline: Levenshtein Alignment

companys

• Levenshtein finds a minimal way of transforming one sentence into another.

The	wide spread	propagand	la ber	nefits only	to the	e companys
The	widespread	publicity	only	benefits	their	companies

- Limitations:
 - 1. Word order errors are treated as insertions and deletions.
 - 2. Many alignments do not make linguistic sense.
 - 3. Cannot handle multi-token alignments.

Automatic Extraction of Learner Errors in ESL Sentences Using Linguistically Enhanced Alignments

Mariano Felice, Christopher Bryant and Ted Briscoe

Step 1: Damerau-Levenshtein Alignment

An extension to Levenshtein that handles two-token "transpositions".

- Further modified to handle transpositions of arbitrary length.
- Allows us to correctly extract word order errors.

Step 2: Linguistically Enhanced Damerau-Levenshtein

- Human alignments seem intuitively guided by linguistic knowledge.
- We therefore incorporated linguistic information into the token substitution cost of the automatic alignment:

5			
cost _{lemma}	=	{ 0 { 0.499	if same lemma, otherwise
cost _{pos}	=	$ \left\{\begin{array}{c} 0\\ 0.25\\ 0.5 \end{array}\right. $	if same pos, if both content, otherwise
cost _{char}	=		er alignment cost nment length
cost _{substitution}	=	cost _{lemm}	_a + cost _{pos} + cost _{char}
The wide spread propa The widespread public		nda) be) only	nefits only to the companys . benefits their companies .

The added linguistic information helps produce more human-like alignments.

Step 3: Merging

- Multi-token edits account for only 20-30% of all edits in a typical dataset.
- More than half of these multi-token edits involve no more than two tokens.
- We wrote ten rules to handle the most salient patterns; e.g. • Whitespace errors: wide spread \rightarrow widespread • Possessive errors: friends \rightarrow friend 's • Phrasal Verbs: look at \rightarrow watch wide spread propaganda benefits only to the companys. The

Merging alignments enables us to capture multi-token edits.

only	to the	companys	5.
			Ţ
its	their	companies	

their | companies |

- compute an F-score.
- Human edit spans were minimised to remove unchanged tokens: E.g. is eating \rightarrow was eating == is \rightarrow was
- Performance was measured in different settings:
 - All-split Nothing is merged.
 - All-merge All adjacent non-matches are merged.

Detect	Morging	Edit Extraction					
Dataset	Merging	ТР	FP	FN	Р	R	F ₁
	All-split	2715	1612	659	62.75	80.47	70.51
CoNLL 2013	All-merge	2194	653	1180	77.06	65.03	70.54
	This work	2784	591	590	82.49	82.51	82.50
	All-split	1858	1320	526	58.46	77.94	66.81
CoNLL 2014 (0)	All-merge	1662	415	722	80.02	69.71	74.51
	This work	1893	550	491	77.49	79.40	78.43
	All-split	2635	1699	651	60.80	80.19	69.16
CoNLL 2014 (1)	All-merge	2435	554	851	81.47	74.10	77.61
	This work	2866	598	420	82.74	87.22	84.92
	All-split	3660	1936	847	65.40	81.21	72.45
FCE-test	All-merge	3144	778	1363	80.16	69.76	74.60
	This work	3861	739	646	83.93	85.67	84.79

- uses a maximum entropy classifier to predict error types.
 - merged all adjacent non-matches.
 - entropy merging classifier.

Dataset	Method	Edit Extraction F ₁	Edit Extraction + Classification F ₁
	S&Y	70.42	52.85
CoNLL 2013	X&H	74.07	55.89
	This work	82.50	61.40
	S&Y	72.92	46.95
CoNLL 2014 (0)	X&H	74.25	49.15
	This work	78.43	51.46
	S&Y	76.39	56.18
CoNLL 2014 (1)	X&H	79.21	59.24
	This work	84.92	63.38
	S&Y	73.59	59.80
FCE-test	X&H	79.18	65.33
	This work	84.79	69.88

• Our method outperforms all previous methods on all datasets.

Evaluation

• Compare human and auto edit spans in several publicly available datasets to

• This work – Rules decide whether adjacent non-matches are merged.

• We also evaluated against previous approaches in an end-to-end system that

Swanson and Yamangil (2012) used a Levenshtein alignment and

• Xue and Hwa (2014) used a Levenshtein alignment and maximum