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Abstract

The CoNLL-2015 Shared Task is on Shal-
low Discourse Parsing, a task focusing on
identifying individual discourse relations
that are present in a natural language text.
A discourse relation can be expressed ex-
plicitly or implicitly, and takes two argu-
ments realized as sentences, clauses, or in
some rare cases, phrases. Sixteen teams
from three continents participated in this
task. For the first time in the history of the
CoNLL shared tasks, participating teams,
instead of running their systems on the test
set and submitting the output, were asked
to deploy their systems on a remote virtual
machine and use a web-based evaluation
platform to run their systems on the test
set. This meant they were unable to ac-
tually see the data set, thus preserving its
integrity and ensuring its replicability. In
this paper, we present the task definition,
the training and test sets, and the evalua-
tion protocol and metric used during this
shared task. We also summarize the dif-
ferent approaches adopted by the partic-
ipating teams, and present the evaluation
results. The evaluation data sets and the
scorer will serve as a benchmark for future
research on shallow discourse parsing.

1 Introduction

The shared task for the Nineteenth Conference
on Computational Natural Language Learning
(CoNLL-2015) is on Shallow Discourse Parsing
(SDP). In the course of the sixteen CoNLL shared

tasks organized over the past two decades, pro-
gressing gradually to tackle phenomena at the
word and phrase level phenomena and then the
sentence and extra-sentential level, it was only
very recently that discourse level processing has
been addressed, with coreference resolution (Prad-
han et al., 2011; Pradhan et al., 2012). The 2015
shared task takes the community a step further in
that direction, with the potential to impact scores
of richer language applications (Webber et al.,
2012).

Given an English newswire text as input, the
goal of the shared task is to detect and categorize
discourse relations between discourse segments in
the text. Just as there are different grammati-
cal formalisms and representation frameworks in
syntactic parsing, there are also different concep-
tions of the discourse structure of a text, and
data sets annotated following these different the-
oretical frameworks (Stede, 2012; Webber et al.,
2012; Prasad and Bunt, 2015). For example, the
RST-DT Corpus (Carlson et al., 2003) is based
on the Rhetorical Structure Theory of Mann and
Thompson (1988) and produces a complete tree-
structured RST analysis of a text, whereas the
Penn Discourse TreeBank (PDTB) (Prasad et al.,
2008; Prasad et al., 2014) provides a shallow rep-
resentation of discourse structure, in that each dis-
course relation is annotated independently of other
discourse relations, leaving room for a high-level
analysis that may attempt to connect them. For
the CoNLL-2015 shared task, we chose to use the
PDTB, as it is currently the largest data set anno-
tated with discourse relations.1

1http://www.seas.upenn.edu/˜pdtb
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The necessary conditions are also in place for
such a task. The release of the RST-DT and PDTB
has attracted a significant amount of research on
discourse parsing (Pitler et al., 2008; Duverle and
Prendinger, 2009; Lin et al., 2009; Pitler et al.,
2009; Subba and Di Eugenio, 2009; Zhou et al.,
2010; Feng and Hirst, 2012; Ghosh et al., 2012;
Park and Cardie, 2012; Wang et al., 2012; Bi-
ran and McKeown, 2013; Lan et al., 2013; Feng
and Hirst, 2014; Ji and Eisenstein, 2014; Li and
Nenkova, 2014; Li et al., 2014; Lin et al., 2014;
Rutherford and Xue, 2014), and the momentum
is building. Almost all of these recent attempts
at discourse parsing use machine learning tech-
niques, which is consistent with the theme of the
CoNLL conference. The resurgence of deep learn-
ing techniques opens the door for innovative ap-
proaches to this problem. A shared task on shal-
low discourse parsing provides an ideal platform
for the community to gain crucial insights on the
relative strengths and weaknesses of “standard”
feature-based learning techniques and “deep” rep-
resentation learning techniques.

The rest of this overview paper is structured as
follows. In Section 2, we provide a concise def-
inition of the shared task. We describe how the
training and test data are prepared in Section 3. In
Section 4, we present the evaluation protocol, met-
ric and scorer. The different approaches that par-
ticipants took in the shared task are summarized in
Section 5. In Section 6, we present the ranking of
participating systems and analyze the evaluation
results. We present our conclusions in Section 7.

2 Task Definition

The goal of the shared task on shallow discourse
parsing is to detect and categorize individual dis-
course relations. Specifically, given a newswire
article as input, a participating system is asked
to return a set of discourse relations contained in
the text. A discourse relation, as defined in the
PDTB, from which the training data for the shared
task is drawn, is a relation taking two abstract ob-
jects (events, states, facts, or propositions) as argu-
ments. Discourse relations may be expressed with
explicit connectives like because, however, but, or
implicitly inferred between abstract object units.
In the current version of the PDTB, non-explicit
relations are inferred only between adjacent units.
Each discourse relation is labeled with a sense se-
lected from a sense hierarchy, and its arguments

are generally in the form of sentences, clauses, or
in some rare cases, noun phrases. To detect a dis-
course relation, a participating system needs to:

1. Identify the text span of an explicit discourse
connective, if present;

2. Identify the spans of text that serve as the two
arguments for each relation;

3. Label the arguments as (Arg1 or Arg2) to in-
dicate the order of the arguments;

4. Predict the sense of the discourse relation
(e.g., “Cause”, “Condition”, “Contrast”).

3 Data

3.1 Training and Development
The training data for the CoNLL-2015 Shared
Task was adapted from the Penn Discourse Tree-
Bank 2.0. (PDTB-2.0.) (Prasad et al., 2008;
Prasad et al., 2014), annotated over the one mil-
lion word Wall Street Journal (WSJ) corpus that
has also been annotated with syntactic structures
(the Penn TreeBank) (Marcus et al., 1993) and
propositions (the Proposition Bank) (Palmer et al.,
2005). The PDTB annotates discourse relations
that hold between eventualities and propositions
mentioned in text. Following a lexically grounded
approach to annotation, the PDTB annotates rela-
tions realized explicitly by discourse connectives
drawn from syntactically well-defined classes, as
well as implicit relations between adjacent sen-
tences when no explicit connective exists to relate
the two. A limited but well-defined set of implicit
relations are also annotated within sentences. Ar-
guments of relations are annotated in each case,
following the minimality principle for selecting all
and only the material needed to interpret the rela-
tion. For explicit connectives, Arg2, which is de-
fined as the argument with which the connective is
syntactically associated, is in the same sentence as
the connective (though not necessarily string ad-
jacent), but Arg1, defined simply as the other ar-
gument, is unconstrained in terms of its distance
from the connective and can be found anywhere in
the text (Exs. 1-3). (All the following PDTB ex-
amples shown highlight Arg1 (in italics), Arg2 (in
boldface), expressions realizing the relation (un-
derlined), sense (in parentheses), and the WSJ file
number for the text with the example (in square
brackets)).

(1) GM officials want to get their strategy to reduce
capacity and the work force in place before those
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talks begin. (Temporal.Asynchronous.Precedence)
[wsj 2338]

(2) But that ghost wouldn’t settle for words, he wanted
money and people – lots. So Mr. Carter formed
three new Army divisions and gave them to a
new bureaucracy in Tampa called the Rapid
Deployment Force. (Contingency.Cause.Result)
[wsj 2112]

(3) Big buyers like Procter & Gamble say there are
other spots on the globe, and in India, where the
seed could be grown. “It’s not a crop that can’t
be doubled or tripled,” says Mr. Krishnamurthy.
But no one has made a serious effort to trans-
plant the crop. (Comparison.Concession.Contra-
expectation) [wsj 0515]

Between adjacent sentences unrelated by any
explicit connective, four scenarios hold: (a) the
sentences may be related by a discourse relation
that has no lexical realization, in which case a con-
nective (called an Implicit connective) is inserted
to express the inferred relation (Ex. 4), (b) the sen-
tences may be related by a discourse relation that
is realized by some alternative non-connective ex-
pression (called AltLex), in which case these alter-
native lexicalizations are annotated as the carriers
of the relation (Ex. 5), (c) the sentences may be
related not by a discourse relation realizable by a
connective or AltLex, but by an entity-based co-
herence relation, in which case the presence of
such a relation is labeled EntRel (Ex 6), and (d)
the sentences may not be related at all, in which
case they are labeled NoRel. Relations annotated
in these four scenarios are collectively referred to
as Non-Explicit relations in this paper.

(4) The Arabs had merely oil. Implicit=while These
farmers may have a grip on the world’s very
heart. (Comparison.Contrast) [wsj 0515]

(5) Now, GM appears to be stepping up the pace
of its factory consolidation to get in shape for
the 1990s. One reason is mounting competition
from new Japanese car plants in the U.S. that
are pouring out more than one million vehicles a
year at costs lower than GM can match. (Contin-
gency.Cause.Reason) [wsj 2338]

(6) Pierre Vinken, 61 years old, will join the board as a
nonexecutive director Nov. 29. EntRel Mr. Vinken
is chairman of Elsevier N.V., the Dutch publish-
ing group. [wsj 0001]

In addition to the argument structure of rela-
tions, the PDTB provides sense annotation for
each discourse relation, capturing the polysemy of
connectives. Senses are organized in a three-level
hierarchy, with 4 top-level semantic classes. For
each class, a second level of types is defined, and
there are 16 such types. There is a third level of
subtype which provides further refinement to the

second level types. In the PDTB annotation, an-
notators are allowed back off to a higher level in
the sense hierarchy if they are not certain about
a lower level sense. That is, if they cannot dis-
tinguish between the subtypes under a type sense,
they can just annotate the type level sense, and if
there is further uncertainty in choosing among the
types under a class sense, they can just annotate
the class level sense. Most of the discourse rela-
tion instances in the PDTB are annotated with at
least a type level sense, but there are also a small
number annotated with only a class level sense.

The PDTB also provides annotations of attribu-
tion over all discourse relations and each of their
arguments, as well as of text spans considered as
supplementary to arguments of relations. How-
ever, both of these annotation types are excluded
from the shared task.

PDTB-2.0. contains annotations of 40,600 dis-
course relations, distributed into the following five
types: 18,459 Explicit relations, 16,053 Implicit
relations, 624 AltLex relations, 5,210 EntRel rela-
tions, and 254 NoRel relations. We provide Sec-
tions 2–21 of the PDTB 2.0 release as the training
set, and Section 22 as the development set.

3.2 Test Data

We provide two test sets for the shared task: Sec-
tion 23 of the PDTB, and a blind test set we pre-
pared especially for the shared task. The official
ranking of the systems is based on their perfor-
mance on the blind test set. In this section, we
provide a detailed description of how the blind test
set was prepared.

3.2.1 Data Selection and Post-processing

For the blind test data, 30,158 words of untok-
enized English newswire texts were selected from
a dump of English Wikinews2, accessed 22nd
October 2014, and annotated in accordance with
PDTB 2.0 guidelines.

The raw Wikinews data was pre-processed as
follows:

• News articles were extracted from the
Wikinews XML dump3 using the publicly
available WikiExtractor.py script.4

2
https://en.wikinews.org/

3
https://dumps.wikimedia.org/enwikinews/20141119/

enwikinews-20141119-pages-articles.xml.bz2
4
http://medialab.di.unipi.it/wiki/Wikipedia_

Extractor
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• Additional processing was done to remove
any remaining XML information and pro-
duce a raw text version of each article (in-
cluding its title).

• All paragraphs were double spaced to ease
paragraph boundary identification.

• Each article was named according to its
unique Wikinews ID such that it is accessible
online at http://en.wikinews.org/
wiki?curid=ID.

Initially, 30k words of text were selected from
this processed data at random. However, it soon
became apparent that some texts were too short
for PDTB-style annotation or otherwise still con-
tained remnant XML errors. Another issue was
that since Wikinews texts are written by members
of the public, rather than professionally trained
journalists, some articles were considered as not
up to the same standards of spelling and grammar
as the WSJ texts in the PDTB.

For these reasons, despite making the decision
to allow the correction of extremely minor errors
(such as obvious typos and occasional article or
preposition errors), just under half of the orig-
inal 30k word random selection was ultimately
deemed unsuitable for annotation. Consequently,
the remaining texts were selected manually from
Wikinews, with a slight preference for longer arti-
cles with many multi-sentence paragraphs that are
more consistent with WSJ-style texts.

3.2.2 Annotations
Annotation of the blind test set was carried out by
two of the shared task organizers, one of whom
(fifth author) was the main annotator (MA) while
the other (fourth author), a lead developer of the
PDTB, acted as the reviewing annotator (RA), re-
viewing each relation annotated by the MA and
recording agreement or disagreement. Annotation
involved marking the relation type (Explicit, Im-
plicit, AltLex, EntRel, NoRel), relation realiza-
tion (explicit connective, implicit connective, Al-
tLex expression), arguments (Arg1 and Arg2), and
sense of a discourse relation, using the PDTB an-
notation tool.5 Unlike the PDTB guidelines, we
did not allow back-off to the top class level dur-
ing annotation. Every relation was annotated with
a sense chosen from at least the second type level.

5
https://www.seas.upenn.edu/˜pdtb/tools.shtml#

annotator

Also different from the PDTB, attribution spans or
attribution features were not annotated.

Before commencing official annotation, MA
was trained in PDTB-2.0. style annotation by RA.
A review of the guidelines was followed by double
blind annotation (by MA and RA) of a small num-
ber of WSJ texts not previously annotated in the
PDTB, and differences were then compared and
discussed. MA then also underwent self-training
by first annotating some WSJ texts that were al-
ready annotated in the PDTB, and then comparing
these annotations, to further strengthen knowledge
of the guidelines.

After the training period, the entire blind test
data was annotated by MA over a period of a few
weeks, and then reviewed by RA. Disagreements
during the review were manually recorded using
a formal scheme addressing all aspects of the an-
notation, including relation type, explicit connec-
tive identification, senses, and each of the argu-
ments. This was done to verify the integrity of
the blind test data and keep a record of any confu-
sion or difficulty encountered during annotation.
Manual entry of disagreements was done within
the tool interface, through its commenting feature.
A recorded comment in the tool is unique to a re-
lation token and is recorded in a stand-off style.
Disagreements were later resolved by consensus
between MA and RA.

3.2.3 Inter-annotator Agreement
The record of disagreements was utilized to com-
pute inter-annotator agreement between MA and
RA. The overall agreement was 76.5%, which
represents the percentage of relations on which
there was complete agreement. Agreement on ex-
plicit connective identification was 96.0%, repre-
senting the percentage of explicit connectives that
both MA and RA identified as discourse connec-
tives. We note here that if a connective was identi-
fied in the blind test data, but was not annotated
in the PDTB despite its occurrence in the WSJ
(e.g.,“after which time”, “despite”), we did not
consider it a potential connective and hence did
not include it in the agreement calculation. When
the textual context allowed it, such expressions
were instead marked as AltLex.

We also did a more fine-grained assessment to
determine agreement on Arg1, Arg2, Arg1+Arg2
(i.e., the number of relations on which the anno-
tators agreed on both Arg1 and Arg2), and senses.
This was done for all the relation types considered
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together, as well as for Explicit and Non-Explicit
relation types separately. Sense disagreement was
computed using the CoNLL sense classification
scheme (see Section 3.3), even though the anno-
tation was done using the full PDTB sense clas-
sification scheme (see Table 2). The agreement
percentages are shown in Table 1. When multi-
ple senses were provided for a relation, a disagree-
ment on any of the senses was counted as disagree-
ment for the relation; disagreement on more than
one of the senses was counted only once. Absence
of a second sense by one annotator when the other
did provide one was also counted as disagreement.

As the table shows, agreement on senses was
reasonably high overall (85.5%), with agreement
for Explicit relations expectedly higher (91.0%)
than for Non-Explicit relations (80.9%). Over-
all agreement on arguments was also high, but in
contrast to the senses, agreement was generally
higher for the Non-Explicit than for Explicit re-
lations. Agreement on the Arg1 of Explicit rela-
tions (89.6%) is, not surprisingly, lower than for
Arg2 (98.7%), because the Arg1 of Explicit rela-
tions can be non-adjacent to the connective’s sen-
tence or clause, and thus, harder to identify. For
the Non-Explicit relations, in contrast, but again
to be expected, because of the argument adjacency
constraint for such relations, agreement on Arg1
(95.0%) and Arg2 (96.4%) shows minimal differ-
ence. Table 1 also provides the percentage of re-
lations with agreement on both Arg1 and Arg2,
showing this to be higher for Non-Explicit rela-
tions (92.4%) than for Explicit relations (88.7%).

Compared to the agreement reported for the
PDTB (Prasad et al., 2008; Miltsakaki et al.,
2004), the results obtained here (See Table 1)
are slightly better. PDTB agreement on Arg1
and Arg2 of Explicit relations is reported to be
86.3% and 94.1%, respectively, whereas overall
agreement on arguments of Non-Explicit relations
is 85.1%. For the senses, although the CoNLL
senses do not exactly align with the PDTB senses,
a rough correspondence can be assumed between
the CoNLL classification as a whole and the type
and subtype levels of the PDTB classification, for
which PDTB reports 84% and 80%, respectively.

3.3 Adapting the PDTB Annotation for the
shared task

The discourse relations annotated in the PDTB
have many different elements, and it is impracti-

cal to predict all of them in the context of a shared
task where participants have a relatively short time
frame in which to complete the task. As a result,
we had to make a number of exclusions and sim-
plifications, which we describe below.

The core elements of a discourse relation are the
two abstract objects as its arguments. In addition
to this, some discourse relations include supple-
mentary information that is relevant but not neces-
sary (as per the minimality principle) to the inter-
pretation of a discourse relation. Supplementary
information is associated with arguments, and op-
tionally marked with the labels “Sup1”, for mate-
rial supplementary to Arg1, and “Sup2”, for mate-
rial supplementary to Arg2. An example of a Sup1
annotation is shown in (7). In the shared task, sup-
plementary information is excluded from evalua-
tion when computing argument spans.

(7) (Sup1 Average maturity was as short as 29
days at the start of this year), when short-
term interest rates were moving steadily up-
ward. Implicit=for example The average seven-
day compound yield of the funds reached
9.62% in late April . (Expansion.Instantiation)
[wsj 0982]

Also excluded from evaluation, to make the
shared task manageable, are attribution relations
annotated in PDTB. An example of an explicit at-
tribution is “he says” in (8), marked over Arg1.

(8) When Mr. Green won a $240,000 verdict in
a land condemnation case against the state in
June 1983 , he says Judge O’Kicki unexpect-
edly awarded him an additional $100,000 (Tempo-
ral.Synchrony) [wsj 0267]

The PDTB senses form a hierarchical sys-
tem of three levels, consisting of 4 classes, 16
types, and 23 subtypes. While all classes are
divided into multiple types, some types do not
have subtypes. Previous work on PDTB sense
classification has mostly focused on classes
(Pitler et al., 2009; Zhou et al., 2010; Park
and Cardie, 2012; Biran and McKeown, 2013;
Li and Nenkova, 2014; Rutherford and Xue,
2014). The senses that are the target of prediction
in the CoNLL-2015 shared task are primarily
based on the second-level types and a selected
number of third-level subtypes. We made a few
modifications to make the distinctions clearer
and their distributions more balanced, and these
changes are presented in Table 2. First, senses in
the PDTB that have distinctions that are too subtle
and thus too difficult to predict are collapsed.
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Arg1 agr Arg2 agr Arg1+Arg2 agr Sense agr
Explicit 89.6% 98.7% 88.7% 91.0%
Non-Explicit 95.0% 96.4% 92.4% 80.9%
Total 92.5% 97.4% 90.7% 85.5%

Table 1: Inter-annotator agreement on blind test data annotation in various conditions.

CoNLL senses PDTB senses
Temporal.Synchronous same
Temporal.Asynchronous.Precedence same
Temporal.Asynchronous.Succession same
∗ Contingency.Cause.Reason Contingency.Cause.Reason + Contingency.Pragmatic cause
Contingency.Cause.Result same
∗ Contingency.Condition Contingency.Condition + Contingency.Pragmatic condition +

Subtypes of Contingency.Condition + Subtypes of
Contingency.Pragmatic Condition

∗ Comparison.Contrast Comparison.Contrast + Comparison.Pragmatic contrast + Subtypes
of Comparison.Contrast

∗ Comparison.Concession Comparison.Concession + Comparison.Pragmatic concession +
Subtypes of Comparison.Concession

∗ Expansion.Conjunction Expansion.Conjunction + Expansion.List
Expansion.Instantiation same
∗Expansion.Restatement Expansion.Restatement + Subtypes of Expansion.Restatement
∗ Expansion.Alternative Expansion.Alternative.Conjunctive +

Expansion.Alternative.Disjunctive
Expansion.Alternative.Chosen
alternative

same

Expansion.Exception same
EntRel same

Table 2: Flat list of 15 sense categories used in CoNLL-2015, with correspondences to PDTB senses.
Senses that involve a change from the PDTB senses are marked ∗.

For example, “Contingency.Pragmatic cause” is
merged into “Contingency.Cause.Reason”, and
“Contingency.Pragmatic condition” is merged
into “Contingency.Condition”. Second, the
distinction between “Expansion.Conjunction” and
“Expansion.List” is not clear in the PDTB and
in fact, they seem very similar for the most part,
so the latter is merged into the former. Third,
while “Expansion.Alternative.Conjunctive”
and “Expansion.Alternative.Disjunctive” are
merged into “Expansion.Alternative”, a third
subtype of “Expansion.Alternative”, “Expan-
sion.Alternative.Chosen Alternative” is kept as a
separate category as its meaning involves more
than presentation of alternatives. Finally, while
“EntRel” relations are not treated as discourse
relations in the PDTB, we have included this cat-
egory as a sense for sense classification since they

are a kind of coherence relation and we require
systems to label these relations in the shared task.
In contrast, instances annotated with “NoRel”
are not treated as discourse relations and are
excluded from the training, development and test
data sets. This means that a system needs to treat
them as negative samples and not identify them as
discourse relations. These changes have resulted
in a flat list of 15 sense categories that need to be
predicted in the shared task. A comparison of the
PDTB senses and the senses used in the CoNLL
shared task is presented in Table 2.
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Relation Sense WSJ-Train WSJ-Dev WSJ-Test

Explicit Overall 14722 680 923
Expansion.Conjunction 4323 185 242
Comparison.Contrast 2956 160 271
Contingency.Condition 1148 50 63
Temporal.Synchrony 1133 68 71
Comparison.Concession 1080 12 27
Contingency.Cause.Reason 943 38 74
Temporal.Asynchronous.Succession 842 51 64
Temporal.Asynchronous.Precedence 770 49 36
Contingency.Cause.Result 487 19 38
Comparison 347 20 1
Expansion.Instantiation 236 9 21
Expansion.Alternative 195 6 5
Expansion.Restatement 121 6 7
Expansion.Alternative.Chosen-alternative 96 6 3
Expansion 24 0 0
Expansion.Exception 13 0 0
Temporal 4 1 0
Temporal.Asynchronous 3 0 0
Contingency 1 0 0

Implicit Overall 13156 522 769
Expansion.Conjunction 3227 120 141
Expansion.Restatement 2486 101 190
Contingency.Cause.Reason 2059 73 113
Comparison.Contrast 1614 82 127
Contingency.Cause.Result 1372 49 89
Expansion.Instantiation 1132 47 69
Temporal.Asynchronous.Precedence 418 25 7
Comparison.Concession 193 5 5
Temporal.Synchrony 153 8 5
Comparison 145 1 0
Expansion.Alternative.Chosen-alternative 142 2 15
Temporal.Asynchronous.Succession 125 3 5
Expansion 73 6 3
Expansion.Alternative 11 0 0
Contingency.Condition 2 0 0
Temporal 1 0 0
Expansion.Exception 1 0 0
Contingency.Cause 1 0 0
Contingency 1 0 0

EntRel Overall 4133 215 217
EntRel 4133 215 217

AltLex Overall 524 19 19
Contingency.Cause.Result 147 4 8
Expansion.Conjunction 94 3 8
Contingency.Cause.Reason 76 5 8
Expansion.Restatement 57 0 1
Temporal.Asynchronous.Precedence 42 2 2
Expansion.Instantiation 33 1 1
Comparison.Contrast 32 2 1
Temporal.Asynchronous.Succession 18 0 0
Temporal.Synchrony 16 1 0
Comparison.Concession 4 0 1
Expansion 2 0 0
Contingency.Condition 2 0 0
Expansion.Exception 1 0 0
Expansion.Restatement 0 1 0
Expansion.Alternative 0 0 0

Table 3: Distribution of senses across the four relation types in the WSJ PDTB data used for the shared
task. The total numbers of the relations here are less than in the complete PDTB release because some
sections (00, 01, and 24) are excluded for the shared task, following standard split of WSJ data in the
evaluation community. We are intentionally withholding distribution over the blind test set in case there
is a repeat of the SDP shared task using the same test set.
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Table 3 shows the distribution of the senses
across the four discourse relations within the WSJ
PDTB data6. We are intentionally withholding the
sense distribution across the blind test set in case
there is a repeat of the SDP shared task using the
same test set.

4 Evaluation

4.1 Closed and open tracks

In keeping with the CoNLL shared task tradition,
participating systems were evaluated in two tracks,
a closed track and an open track. A participat-
ing system in the closed track could only use the
provided PDTB training set but was allowed to
process the data using any publicly available (i.e.,
non-proprietary) natural language processing tools
such as syntactic parsers and semantic role label-
ers. In contrast, in the open track, a participating
system could not only use any publicly available
NLP tools to process the data, but also any pub-
licly available (i.e., non-proprietary) data for train-
ing. A participating team could choose to partici-
pate in the closed track or the open track, or both.

The motivation for having two tracks in CoNLL
shared tasks was to isolate the contribution of al-
gorithms and resources to a particular task. In the
closed track, the resources are held constant so that
the advantages of different algorithms and models
can be more meaningfully compared. In the open
track, the focus of the evaluation is on the overall
performance and the use of all possible means to
improve the performance of a task. This distinc-
tion was easier to maintain for early CoNLL tasks
such as noun phrase chunking and named entity
recognition, where competitive performance could
be achieved without having to use resources other
than the provided training set. However, this is
no longer true for a high-level task like discourse
parsing where external resources such as Brown
clusters have proved to be useful (Rutherford and
Xue, 2014). In addition, to be competitive in the
discourse parsing task, one also has to process the
data with syntactic and possibly semantic parsers,
which may also be trained on data that is outside
the training set. As a compromise, therefore, we
allowed participants to use the following linguistic
resources in the closed track, other than the train-

6There is a small number of instances in the PDTB train-
ing set that are only annotated with the class level sense. We
did not take them out of the training set for the sake of com-
pleteness.

ing set:

• Brown clusters
• VerbNet
• Sentiment lexicon
• Word embeddings (word2vec)

To make the task more manageable for partic-
ipants, we provided them with training and test
data with the following layers of automatic lin-
guistic annotation processed with state-of-the-art
NLP tools:

• Phrase structure parses (predicted using the
Berkeley parser (Petrov and Klein, 2007))
• Dependency parses (converted from phrase

structure parses using the Stanford converter
(Manning et al., 2014))

As it turned out, all of the teams this year chose
to participate in the closed track.

4.2 Evaluation Platform: TIRA

We use a new web service called TIRA as the plat-
form for system evaluation (Gollub et al., 2012;
Potthast et al., 2014). Traditionally, participating
teams were asked to manually run their system on
the blind test set without the gold standard labels,
and submit the output for evaluation. This year,
however, we shifted this evaluation paradigm, ask-
ing participants to deploy their systems on a re-
mote virtual machine, and to use the TIRA web
platform (tira.io) to run their systems on the test
sets without actually seeing the test sets. The or-
ganizers would then inspect the evaluation results,
and verify that participating systems yielded ac-
ceptable output.

This evaluation protocol allowed us to maintain
the integrity of the blind test set and reduce the
organizational overhead. On TIRA, the blind test
set can only be accessed in the evaluation envi-
ronment, and the evaluation results are automati-
cally collected. Participants cannot see any part of
the test sets and hence cannot do iterative devel-
opment based on the test set performance, which
preserves the integrity of the evaluation. Most im-
portantly, this evaluation platform promotes repli-
cability, which is very crucial for proper evalu-
ation of scientific progress. Reproducing all of
the results is just a matter of a button click on
TIRA. All of the results presented in this paper,
along with the trained models and the software,
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are archived and available for distribution upon re-
quest to the organizers and upon the permission of
the participating team, who holds the copyrights
to the software. Replicability also helps speed up
the research and development in discourse pars-
ing. Anyone wanting to extend or apply any of
the approaches proposed by a shared task partic-
ipant does not have to re-implement the model
from scratch. They can request a clone of the vir-
tual machine where the participating system is de-
ployed, and then implement their extension based
off the original source code. Any extension ef-
fort also benefits from the precise evaluation of
the progress and improvement since the system is
based off the exact same implementation.

4.3 Evaluation metrics and scorer
A shallow discourse parser is evaluated based on
the end-to-end F1 score on a per-discourse relation
basis. The input to the system consists of docu-
ments with gold-standard word tokens along with
their automatic parses. We do not pre-identify
the discourse connectives or any other elements of
the discourse annotation. The shallow discourse
parser must output a list of discourse relations that
consist of the argument spans and their labels, ex-
plicit discourse connectives where applicable, and
the senses. The F1 score is computed based on the
number of predicted relations that match a gold
standard relation exactly. A relation is correctly
predicted if (a) the discourse connective is cor-
rectly detected (for Explicit discourse relations),
(b) the sense of the discourse connective is cor-
rectly predicted, and (c) the text spans of its two ar-
guments are correctly predicted (Arg1 and Arg2).

Although the submissions are ranked based on
the relation F1 score, the scorer also provides
component-wise evaluation with error propaga-
tion. The scorer computes the precision, recall,
and F1 for the following7:

• Explicit discourse connective identification.
• Arg1 identification.
• Arg2 identification.
• Arg1 and Arg2 identification.
• Sense classification with error propagation

from discourse connective and argument
identification.

For purposes of evaluation, an explicit discourse
connective predicted by the parser is considered

7Available at: http://www.github.com/attapol/conll15st

correct if and only if the predicted raw connective
includes the gold raw connective head, while al-
lowing for the tokens of the predicted connective
to be a subset of the tokens in the gold raw connec-
tive. We provide a function that maps discourse
connectives to their corresponding heads. The no-
tion of discourse connective head is not the same
as its syntactic head. Rather, it is thought of as the
part of the connective conveying its core meaning.
For example, the head of the discourse connective
“At least not when” is “when”, and the head of
“five minutes before” is “before”. The non-head
part of the connective serves to semantically re-
strict the interpretation of the connective.

Although Implicit discourse relations are anno-
tated with an implicit connective inserted between
adjacent sentences, participants are not required to
provide the inserted connective. They only need
to output the sense of the discourse relation. Sim-
ilarly, for AltLex relations, which are also anno-
tated between adjacent sentences, participants are
not required to output the text span of the AltLex
expression, but only the sense. The EntRel rela-
tion is included as a sense in the shared task, and
here, systems are required to correctly label the
EntRel relation between adjacent sentence pairs.

An argument is considered correctly identified
if and only if it matches the corresponding gold
standard argument span exactly, and is also cor-
rectly labeled (Arg1 or Arg2). Systems are not
given any credit for partial match on argument
spans.

Sense classification evaluation is less straight-
forward, since senses are sometimes annotated
partially or annotated with two senses. To be con-
sidered correct, the predicted sense for a relation
must match one of the two senses if there is more
than one sense. If the gold standard is partially
annotated, the sense must match with the partially
annotated sense.

Additionally, the scorer provides a breakdown
of the discourse parser performance for Explicit
and Non-Explicit discourse relations.

5 Approaches

The Shallow Discourse Parsing (SDP) task this
year requires the development of an end-to-end
system that potentially involves many compo-
nents. All participating systems adopt some vari-
ation of the pipeline architecture proposed by Lin
et al (2014), which has components for identify-
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System learning methods resources used extra resources
ECNU Naive Bayes, maxent Brown clusters, MPQA

subjectivity lexicon
no

Trento CRF++, AdaBoost Brown clusters,
dependency/phrase structure
parses

no

Soochow Maxent in Open NLP VerbNet, MPQA subjectivity
lexicon, Brown clusters

no

JAIST CRF++, LibSVM (SMO) syntactic parses, Brown
clusters

no

UIUC Liblinear Brown clusters, MPQA
lexicon

no

Concordia C4.5 (Weka) ClearTK, syntactic parse no
∗UT Dallas - - -
NTT Rule-based argument

extraction and SVM based
sense classification

Brown clusters, dependency
trees

no

AU KBC CRF++ for both arguments
and sense, and rules

MPQA, VerbNet, Brown
clusters

no

CAS OpenNLP maxent phrase structure trees no
Dublin 1 RNN (Theano) for argument

extraction, Maxent for others
syntactic features, skip-gram
word embeddings

no

Dublin 2 LibSVM, Theano, word2vec Brown clusters no
Goethe
University
Frankfurt

SVM, rule-based Brown clusters, word
embeddings

no

IIT Naive Bayes, Maxent syntactic parses, Boxer no
SJTU Maxent no external resource used no
∗PKU - - -

Table 4: Approaches of participating systems. Teams that have not submitted a system description paper
are marked with ∗.

ing discourse connectives and extracting their ar-
guments, for determining the presence or absence
of discourse relations in a particular context, and
for predicting the senses of the discourse rela-
tions. Most participating systems cast discourse
connective identification and argument extraction
as token-level sequence labeling tasks, while a
few systems use rule-based approaches to extract
the arguments. Sense determination is cast as a
straightforward multi-category classification task.
Most systems use machine learning techniques to
determine the senses, but there are also systems
that, due to lack of time, adopt a simple base-
line approach that detects the most frequent sense
based on the training data.

In terms of learning techniques, all participat-
ing systems except the two systems submitted by
the Dublin team use standard “shallow” learning

models that take binary features as input. For se-
quence labeling subtasks such as discourse con-
nective identification and argument extraction, the
preferred learning method is Conditional Random
Fields (CRF). For sense determination, a variety of
learning methods have been used, including Max-
imum Entropy, Support Vector Machines, and de-
cision trees. In the last couple of years, neural
networks have experienced a resurgence and have
been shown to be effective in many natural lan-
guage processing tasks. Neural network based
models on discourse parsing have also started to
appear (Ji and Eisenstein, 2014). The use of neu-
ral networks for the SDP task this year represents
a minority, presumably because researchers are
still less familiar with neural network based tech-
niques, compared with standard “shallow” learn-
ing techniques, and it is difficult to use a new
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learning technique to good effect within a short
time window. In this shared task, only the Dublin
University team attempted to use neural networks
as a learning approach in their system compo-
nents. In their first submission (Dublin I), Recur-
rent Neural Networks (RNN) are used for token
level sequence labeling in the argument extraction
task. In their second submission, paragraph em-
beddings are used in a neural network model to
determine the senses of discourse relations.

The discussion of learning techniques cannot be
entirely separated from the use of features and the
linguistic resources that are used to extract them.
Standard “shallow” architectures typically make
use of discrete features while neural networks gen-
erally use continuous real-valued features such as
word and paragraph embeddings. For discourse
connective and argument extraction, token level
features extracted from a fixed window centered
on the target word token are generally used, and so
are features extracted from syntactic parses. Dis-
tributional representations such as Brown clusters
have generally been used to determine the senses
(Chiarcos and Schenk, 2015; Devi et al., 2015;
Kong et al., 2015; Song et al., 2015; Stepanov
et al., 2015; Wang and Lan, 2015; Wang et al.,
2015; Yoshida et al., 2015), although one team
also used them in the sequence labeling task for
argument extraction (Nguyen et al., 2015). Addi-
tional resources used by some systems for sense
determination include word embeddings (Chiar-
cos and Schenk, 2015; Wang et al., 2015), Verb-
Net classes (Devi et al., 2015; Kong et al., 2015),
and the MPQA polarity lexicon (Devi et al., 2015;
Kong et al., 2015; Wang and Lan, 2015). Table 4
provides a summary of the different approaches.

6 Results

Table 5 shows the performance of all participat-
ing systems across the three test evaluation sets: i)
(Official) Blind test set; ii) Standard WSJ test set;
iii) Standard WSJ development set. The official
rankings are based on the blind test set annotated
specifically for this shared task. The top-ranked
system is the submission by East China Normal
University (Wang and Lan, 2015). As discussed in
Section 4, the evaluation metric is very strict, and
is based on exact match for the extraction of ar-
gument spans. For the detection of discourse con-
nectives, only the head of a discourse connective
has to be correctly detected. Errors in the begin-

ning of the pipeline will propagate to the end, and
other than word tokenization, all input to the par-
ticipating systems is automatically generated, so
the overall accuracy reflects results in realistic sit-
uations. The scores are very low, with the top sys-
tem achieving an overall parsing score of 24.00%
(F1) on the blind test set and 29.69% (F1) on the
Wall Street Journal (WSJ) test set. For compar-
ison purposes, the National University of Singa-
pore team re-implemented the state-of-the-art end-
to-end parser described in (Lin et al., 2014), and
this system achieves an F1 of 19.98% on the WSJ
test set. This shows that a fair amount of progress
has been made against the Lin et al baseline.

The rankings are generally consistent across the
two test sets, with the largest change in ranking
from the NTT team and the Goethe University
team. This is perhaps not a coincidence: both
teams used rule-based approaches to extract argu-
ments. The rules worked well on the WSJ test set
which draws from the same source as the devel-
opment set, but might not adapt well to the blind
test set, which is drawn from a different source.
Machine-learning based approaches generally can
better adapt to new data sets.

Due to the short time frame participants had
to complete an end-to-end task, teams chose to
focus on either argument extraction components
or the sense classification components, or in the
case of sense classification, either focus on the
classification of senses for Explicit relations or
senses for Non-Explicit relations. A detailed
breakdown of the performance for Explicit ver-
sus Non-Explicit discourse relations is presented
in Table 6. In general, parser performance for
Explicit discourse relations is much higher than
that of Non-Explicit discourse relations. The dif-
ficulty for Non-Explicit discourse relations mostly
stems from Non-Explicit sense classification. This
is evidenced by the fact that even for systems that
achieve higher argument extraction accuracy for
Non-Explicit discourse relations than Explicit dis-
course relations, the overall parser accuracy is still
lower for Non-Explicit relations. The lower ac-
curacy in sense classification thus drags down the
overall parser accuracy for Non-Explicit discourse
relations.

7 Conclusions

Sixteen teams from three continents participated
in the CoNLL-2015 Shared Task on shallow dis-
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Rank Participant Argument Connective Parser

O L Organization ID F P R F P R F P R

Blind Test
1 1 East China Normal University wangj 46.37 45.77 46.98 91.86 93.48 90.29 24.00 23.69 24.32
2 2 University of Trento stepanov 38.86 37.25 40.61 89.92 92.57 87.41 21.84 20.94 22.83
3 3 Soochow University kong 33.23 35.57 31.18 91.62 92.80 90.47 18.51 19.81 17.37
4 4 Japan Advanced Institute of Science and Tech. nguyen 32.11 42.72 25.72 61.66 88.55 47.30 18.28 24.31 14.64
5 5 UIUC Cognitive Computing Group song 41.31 40.48 42.18 87.98 89.11 86.87 17.98 17.62 18.36
6 6 Concordia University laali 23.29 35.67 17.29 90.19 87.88 92.63 17.38 26.62 12.90
7 7 University of Texas Dallas xue 30.22 31.70 28.87 89.90 92.73 87.23 17.06 17.89 16.29
8 8 Nippon Telegraph and Telephone Lab Japan yoshida 35.55 52.16 26.96 51.04 92.45 35.25 15.70 23.04 11.91
9 9 AU KBC Research Center devi 33.17 35.12 31.43 84.49 92.32 77.88 15.02 15.90 14.23

10 10 Chinese Academy of Sciences xu15 21.95 28.88 17.70 82.60 93.02 74.28 12.62 16.60 10.17
11 11 Dublin City University 1 wangl 22.09 19.26 25.89 79.43 84.87 74.64 11.15 9.72 13.07
12 12 Dublin City University 2 okita 21.52 18.77 25.23 79.43 84.87 74.64 10.66 9.29 12.49
13 13 Goethe University Frankfurt chiarcos 29.21 26.00 33.33 51.18 59.38 44.96 9.13 8.13 10.42
14 14 India Institute of Tech. mukherjee 21.71 18.14 27.05 89.30 91.67 87.05 7.64 6.38 9.51
15 15 Shanghai Jiao Tong University 1 chen 4.70 4.53 4.88 81.68 81.17 82.19 3.58 3.46 3.72
16 16 Peking University xu15b 12.70 10.54 15.96 59.11 58.69 59.53 0.92 0.76 1.16

Standard WSJ Test (Section 23)
1 1 East China Normal University wangj 49.42 48.72 50.13 94.21 94.94 93.50 29.69 29.27 30.12
2 2 University of Trento stepanov 40.71 39.71 41.77 92.77 93.80 91.77 25.33 24.71 25.99
8 3 Nippon Telegraph and Telephone Lab Japan yoshida 43.77 48.83 39.66 89.12 91.84 86.57 24.99 27.87 22.64
7 4 University of Texas Dallas xue 30.26 31.78 28.88 89.33 91.20 87.54 21.72 22.81 20.73
6 5 Concordia University laali 24.81 36.98 18.67 91.38 88.76 94.15 21.25 31.66 15.99
3 6 Soochow University kong 37.01 34.69 39.66 94.77 95.39 94.15 20.64 19.35 22.12
5 7 UIUC Cognitive Computing Group song 38.18 35.73 41.00 91.83 92.33 91.33 20.27 18.97 21.76
4 8 Japan Advanced Institute of Science and Tech. nguyen 35.43 52.98 26.61 63.89 91.87 48.97 20.25 30.29 15.21

13 9 Goethe University Frankfurt chiarcos 36.78 36.58 36.98 68.19 71.96 64.79 15.23 15.15 15.32
10 10 Chinese Academy of Sciences xu15 23.36 28.05 20.01 90.64 95.12 86.57 15.05 18.08 12.89
9 11 AU KBC Research Center devi 31.26 31.76 30.79 86.44 94.36 79.74 14.61 14.84 14.39

11 12 Dublin City University 1 wangl 25.46 21.74 30.74 87.99 90.40 85.70 12.73 10.87 15.37
12 13 Dublin City University 2 okita 24.55 20.95 29.65 88.06 90.32 85.92 12.30 10.49 14.85
14 14 India Institute of Tech. mukherjee 22.52 18.19 29.55 93.06 93.93 92.20 7.15 5.78 9.39
15 15 Shanghai Jiao Tong University 1 chen 4.57 4.24 4.95 78.67 77.84 79.52 4.43 4.11 4.80
16 16 Peking University xu15b 13.24 10.65 17.48 58.04 57.28 58.83 2.11 1.70 2.78

Development
1 1 East China Normal University wangj 57.21 56.84 57.59 95.14 95.28 95.00 37.84 37.59 38.09
8 2 Nippon Telegraph and Telephone Lab Japan yoshida 51.42 56.56 47.14 88.94 92.39 85.74 31.60 34.75 28.97
2 3 University of Trento stepanov 45.34 44.99 45.68 93.79 94.35 93.24 30.27 30.04 30.50
3 4 Soochow University kong 43.12 41.06 45.40 94.22 94.93 93.53 26.32 25.06 27.72
4 5 Japan Advanced Institute of Science and Tech. nguyen 40.07 58.92 30.36 65.53 91.56 51.03 26.10 38.38 19.78
9 6 AU KBC Research Center devi 42.96 42.28 43.66 92.63 98.03 87.79 25.76 25.35 26.18
6 7 Concordia University laali 29.87 44.43 22.49 92.25 89.27 95.44 25.71 38.24 19.36
5 8 UIUC Cognitive Computing Group song 43.44 41.24 45.89 91.45 93.27 89.71 25.12 23.84 26.53
7 9 University of Texas Dallas xue 35.78 37.77 33.98 93.43 94.85 92.06 24.19 25.54 22.98

10 10 Chinese Academy of Sciences xu15 26.68 32.06 22.84 91.52 95.23 88.09 18.14 21.80 15.53
13 11 Goethe University Frankfurt chiarcos 41.58 42.08 41.09 63.17 67.45 59.41 17.12 17.33 16.92
11 12 Dublin City University 1 wangl 29.75 25.59 35.52 85.65 90.10 81.62 16.51 14.20 19.71
12 13 Dublin City University 2 okita 29.09 24.98 34.82 86.33 90.35 82.65 15.36 13.19 18.38
14 14 India Institute of Technology mukherjee 26.78 21.89 34.47 93.55 95.41 91.76 8.82 7.21 11.35
15 15 Shanghai Jiao Tong University 1 chen 6.81 6.43 7.24 86.09 85.28 86.91 6.55 6.18 6.96
16 16 Peking University xu15b 12.64 9.00 21.24 51.54 42.64 65.15 1.49 1.06 2.51

Table 5: Scoreboard for the CoNLL-2015 shared task showing performance across the tasks and the
three data partitions—blind test, standard test (WSJ-23) and development. The Column O and L refer
to official and local ranks. The red highlighted rows indicate a system (JAIST) that performed poorly
on the WSJ test set, but did much better on the blind test set. The blue highlighted rows indicate the
opposite phenomena for a system (NTT) that ranked higher on the WSJ development and test partitions,
but dropped in rank on the blind test set.
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Rank Participant Explicit Non-Explicit

O E I Organization ID A12 A1 A2 Conn. Parser A12 A1 A2 Parser

Blind Test
7 1 11 University of Texas Dallas xue 40.04 49.68 70.06 89.90 30.58 21.61 25.02 34.77 5.20
1 2 1 East China Normal University wangj 41.35 48.31 74.29 91.86 30.38 50.41 60.87 74.58 18.87
2 3 2 University of Trento stepanov 39.59 49.03 70.68 89.92 29.97 38.31 43.29 56.57 15.77
6 4 15 Concordia University laali 36.60 45.18 69.18 90.19 27.32 0.00 0.00 0.00 0.00
4 5 8 Japan Advanced Institute of Science and Tech. nguyen 34.23 44.08 51.35 61.66 27.20 30.44 36.90 46.13 11.25
9 6 10 AU KBC Research Center devi 34.73 44.49 64.20 84.49 26.73 31.91 35.70 46.60 5.53
5 7 5 UIUC Cognitive Computing Group song 30.05 37.89 60.11 87.98 23.32 50.18 59.52 74.40 13.57
3 8 4 Soochow University kong 30.42 36.43 73.04 91.62 22.95 35.87 49.87 51.07 14.35

10 9 13 Chinese Academy of Sciences xu15 27.20 36.40 61.00 82.60 22.20 16.42 19.79 27.16 2.53
8 10 3 Nippon Telegraph and Telephone Lab Japan yoshida 21.61 28.13 38.02 51.04 16.93 45.59 53.66 62.29 14.82

13 11 9 Goethe University Frankfurt chiarcos 19.04 26.41 36.85 51.18 13.51 34.79 44.33 53.54 6.73
14 12 12 India Institute of Technology mukherjee 13.65 22.32 61.99 89.30 12.36 26.24 37.03 41.49 4.98
11 13 6 Dublin City University 1 wangl 12.47 18.05 36.65 87.81 9.12 27.84 39.46 44.27 12.74
15 14 16 Shanghai Jiao Tong University 1 chen 10.55 13.94 48.97 81.68 8.04 0.00
12 15 7 Dublin City University 2 okita 11.10 16.65 28.13 79.43 7.85 27.61 39.24 44.05 12.30
16 16 14 Peking University xu15b 3.57 6.07 20.89 59.11 2.32 18.02 26.46 28.85 0.10

Standard WSJ Test (Section 23)
1 1 1 East China Normal University wangj 45.20 50.66 77.40 94.21 39.96 53.09 67.17 68.41 20.74
2 2 5 University of Trento stepanov 44.58 50.05 76.23 92.77 39.54 37.44 44.50 47.56 13.28
7 3 10 University of Texas Dallas xue 41.57 49.75 68.55 89.33 37.59 19.45 24.74 25.37 6.55
8 4 3 Nippon Telegraph and Telephone Lab Japan yoshida 38.82 46.07 68.38 89.12 34.47 48.81 57.99 60.08 15.11
4 5 9 Japan Advanced Institute of Science and Tech. nguyen 38.16 43.82 56.25 63.89 33.22 32.44 38.85 38.85 8.01
6 6 15 Concordia University laali 38.07 44.69 72.34 91.38 32.60 0.00 0.00 0.00 0.00
5 7 4 UIUC Cognitive Computing Group song 30.39 37.25 66.67 91.83 27.02 44.33 57.13 60.14 14.95
9 8 11 AU KBC Research Center devi 30.77 36.64 49.68 86.44 26.78 31.66 38.28 43.29 4.82

10 9 13 Chinese Academy of Sciences xu15 28.70 36.07 63.53 90.64 25.75 17.32 23.35 23.48 2.95
3 10 2 Soochow University kong 30.21 34.02 74.48 94.77 25.30 42.38 57.71 54.95 16.97

13 11 8 Goethe University Frankfurt chiarcos 25.20 30.79 50.74 68.19 21.89 46.25 62.84 63.50 9.79
11 12 7 Dublin City University 1 wangl 19.36 24.42 46.20 93.18 17.38 30.70 43.04 40.75 11.50
12 13 6 Dublin City University 2 okita 14.66 21.10 38.20 88.06 13.21 30.73 43.01 40.72 11.72
14 14 12 India Institute of Technology mukherjee 13.78 20.34 59.38 93.06 12.90 27.42 38.47 36.44 3.93
15 15 16 Shanghai Jiao Tong University 1 chen 10.29 14.68 48.77 78.67 9.97 0.09 0.00
16 16 14 Peking University xu15b 4.28 6.31 24.05 58.04 3.53 18.40 25.60 24.25 1.29

Development
9 1 10 AU KBC Research Center devi 54.69 62.90 75.91 92.80 49.11 35.03 40.89 45.10 7.64
1 2 1 East China Normal University wangj 54.05 61.56 80.56 95.14 48.16 60.01 70.32 74.23 28.70
2 3 6 University of Trento stepanov 51.33 57.10 78.70 93.79 46.89 40.08 45.91 49.42 15.69
8 4 3 Nippon Telegraph and Telephone Lab Japan yoshida 47.90 55.68 72.16 88.94 43.02 54.92 62.48 67.47 20.27
7 5 11 University of Texas Dallas xue 48.51 57.46 72.24 93.43 41.49 23.49 27.67 29.83 7.49
4 6 8 Japan Advanced Institute of Science and Tech. nguyen 45.14 51.56 57.79 65.53 41.17 35.09 40.29 40.29 11.82
6 7 15 Concordia University laali 45.91 53.16 75.34 92.25 39.52 0.00 0.00 0.00 0.00
5 8 4 UIUC Cognitive Computing Group song 34.78 43.18 65.97 91.45 31.18 49.88 60.59 64.47 20.00

10 9 13 Chinese Academy of Sciences xu15 33.16 41.71 67.99 91.52 30.25 19.30 23.13 23.83 4.35
3 10 2 Soochow University kong 34.67 38.67 74.37 94.22 29.78 49.94 62.13 62.37 23.54

13 11 9 Goethe University Frankfurt chiarcos 27.37 33.93 48.32 63.17 23.77 53.24 66.71 70.69 11.67
11 12 5 Dublin City University 1 wangl 20.52 28.55 41.78 93.23 17.70 35.49 45.26 45.16 15.96
12 13 7 Dublin City University 2 okita 18.59 26.27 37.33 86.33 15.82 35.49 45.32 45.13 15.07
14 14 12 India Institute of Technology mukherjee 17.09 25.94 65.52 93.55 15.59 32.25 41.22 40.96 4.99
15 15 16 Shanghai Jiao Tong University 1 chen 15.15 18.35 58.27 86.09 14.57 0.36 0.00
16 16 14 Peking University xu15b 3.14 4.77 19.08 51.54 2.79 17.90 22.92 23.76 0.77

Table 6: Scoreboard for the CoNLL-2015 shared task showing performance split across Explicit and
Non-Explicit subtasks on the three data partitions—blind test, standard test (WSJ-23) and development.
The rows are sorted by the parser performance of the participating systems on the Explicit task. The
Column O, E, I refer to official, Explicit and Non-Explicit task ranks respectively. The blue highlighted
rows indicate participants that did not attempt the Non-Explicit relation subtask. The green highlighted
row shows a team that probably overfitted the development set. Finally, the red highlighted row indicates
a team that possibly focused on the Explicit relations task and even though their overall rank was lower,
they did very well on the Explicit relations subtask. This is also the system that did not submit a paper,
so we do not know more details.
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course parsing. The shared task required the de-
velopment of an end-to-end system, and the best
system achieved an F1 score of 24.0% on the blind
test set, reflecting the serious error propagation
problem in such a system. The shared task ex-
posed the most challenging aspect of shallow dis-
course parsing as a research problem, helping fu-
ture research better calibrate their efforts. The
evaluation data sets and the scorer we prepared for
the shared task will be a useful benchmark for fu-
ture research on shallow discourse parsing.
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