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Abstract

In this paper, we first explore the role
of inter-annotator agreement statistics in
grammatical error correction and conclude
that they are less informative in fields
where there may be more than one correct
answer. We next created a dataset of 50
student essays, each corrected by 10 dif-
ferent annotators for all error types, and in-
vestigated how both human and GEC sys-
tem scores vary when different combina-
tions of these annotations are used as the
gold standard. Upon learning that even hu-
mans are unable to score higher than 75%
F0.5, we propose a new metric based on
the ratio between human and system per-
formance. We also use this method to in-
vestigate the extent to which annotators
agree on certain error categories, and find
that similar results can be obtained from a
smaller subset of just 10 essays.

1 Introduction

Interest in grammatical error correction (GEC)
systems has grown considerably in the past few
years, thanks mainly to the success of the recent
Helping Our Own (HOO) (Dale and Kilgarriff,
2011; Dale et al., 2012) and Conference on Natu-
ral Language Learning (CoNLL) (Ng et al., 2013;
Ng et al., 2014) shared tasks. Despite this increas-
ing attention, however, one of the most significant
challenges facing GEC today is the lack of a robust
evaluation practice. In fact Chodorow et al. (2012)
even go as far to say that it is sometimes “hard
to draw meaningful comparisons between differ-
ent approaches, even when they are evaluated on
the same corpus.”

One of the reasons for this is that, tradition-
ally, system performance has only ever been eval-
uated against the gold standard annotations of a

single native speaker (rarely, two native speakers).
As such, system output is not actually scored on
the basis of grammatical acceptability alone, but
rather is also constrained by the idiosyncrasies of
the particular annotators.

The obvious solution to this problem would be
to compare systems against the gold standard an-
notations of multiple annotators, in an effort to di-
lute the effect of individual annotator bias, how-
ever creating manual annotations is often consid-
ered too time consuming and expensive. In spite of
this, while other studies have instead elected to use
crowdsourcing to produce multiply-corrected an-
notations, often concerning only a limited number
of error types (Madnani et al., 2011; Pavlick et al.,
2014; Tetreault et al., 2014), one of the main con-
tributions of this paper is the provision of a dataset
of 10 human expert annotations, annotated in the
tradition of CoNLL-2014, that is moreover anno-
tated for all error types.1

With this new dataset, we have, for the first
time, been able to compare system output against
the gold standard annotations of a larger group of
human annotators, in a realistic grammar check-
ing scenario, and consequently been able to quan-
tify the extent to which additional annotators af-
fect system performance. Additionally, we also
noticed that some annotators tend to agree on cer-
tain error categories more than others and so at-
tempt to explain this.

In light of the results, we also explore how hu-
man annotators themselves compare against the
combined annotations of the remaining annotators
and thus calculate an upper bound F0.5 score for
the given dataset and number of annotators; e.g., if
one human versus nine other humans is only able
to score a maximum of 70% F0.5, then it is unrea-
sonable to expect a machine to do better. For this
reason, we propose a more informative method of

1http://www.comp.nus.edu.sg/˜nlp/sw/
10gec_annotations.zip
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evaluating a system based on the ratio of that sys-
tem’s F0.5 score against the equivalent human F0.5

score.
Section 2 contains an overview of some of the

latest research in both GEC and SMT that makes
use of IAA statistics. Section 3 shows an example
sentence from our dataset and qualitatively anal-
yses how individual annotator bias affects their
choice of corrections. Section 4 describes the data
collection process and presents some preliminary
results. Section 5 discusses the main quantitative
results of the paper, formalizing the formulas used
and introducing the more informative method of
ratio scoring for GEC, while Section 6 summa-
rizes the results from our additional experiments
on category agreement and essay subsets. Section
7 concludes the paper.

2 Inter-Annotator Agreement (IAA)

Whenever we discuss multiple annotators, re-
searchers invariably raise the issue of inter-
annotator agreement (IAA), or rather the extent to
which annotators agree with each other. This is
because data which shows a higher level of agree-
ment is often believed to be in some way more reli-
able than data which has a lower agreement score.
Within GEC, agreement has often been reported in
terms of Cohen’s-κ (Cohen, 1960), although other
agreement statistics could also be used.2

In the rest of this section, however, we wish to
challenge the use of IAA statistics in GEC and
question their value in this field. Specifically,
while IAA statistics may be informative in areas
where items can be classified into single, well-
defined categories, such as in part-of-speech tag-
ging, we argue that they are less well-suited to
GEC and SMT, where there is often more than one
correct answer. For example, two annotators may
correct or translate a given sentence in two com-
pletely different yet valid ways, but IAA statistics
are only able to interpret the alternative answers as
disagreements.

2.1 Inter-Annotator Agreement in GEC

One important study that made use of κ as a mea-
sure of agreement between raters is by Tetrault and
Chodorow (2008) (also in Tetreault et al. (2014)),
who asked two native English speakers to insert
a missing preposition into 200 randomly chosen,

2See Hayes and Krippendorff (2007) or Artstein and Poe-
sio (2008) for the pros and cons of different IAA metrics.

well-formed sentences from which a single prepo-
sition had been removed.

Despite the simplicity of this correction task,
the authors reported κ-agreement of just 0.7, not-
ing that in cases where the raters disagreed, their
disagreements were often “licensed by context”
and thus actually “acceptable alternatives”. This
led them to conclude that they would “expect even
more disagreement when the task is preposition er-
ror detection in ’noisy’ learner texts” and, by ex-
tension, imply that detection of all error types in
’noisy’ texts would show more disagreement still.

The most important question to ask then, as a
result of this study, is whether low κ-scores in
’noisy’ texts are truly indicative of real disagree-
ment, or whether, as in this preposition test, the
disagreement is actually the result of multiple cor-
rect answers, and therefore not disagreement at all.

In a related study, and aware of the fact that
there are often multiple ways to correct individual
words in sentence, Rozovskaya and Roth (2010)
instead chose to compute agreement at the sen-
tence level. Specifically, three raters were asked
simply to decide whether they thought 200 sen-
tences were correct or not.

This time, despite operating at the more gen-
eral sentence level, the authors reported κ scores
of just 0.16, 0.4 and 0.23, surmising that “the low
numbers reflect the difficulty of the task and the
variability of the native speakers’ judgments about
acceptable usage.” If that is the case, then true dis-
agreement may be indistinguishable from native
variability, and we should be wary of using IAA
statistics as a measure of agreement or evaluation
in GEC.

2.2 Inter-Annotator Agreement in SMT

In fact, the issues regarding the reliability of IAA
metrics are not unique to GEC and we can also
draw a parallel with the field of statistical machine
translation (SMT). In the same way that there is
often more than one way to correct a sentence in
GEC, it is also well known that there is often more
than one way to translate a sentence in SMT.

Nevertheless, while several papers have suc-
cessfully discussed ways to minimize annotator
bias effects in SMT (Snover et al., 2006; Madnani
et al., 2008), IAA metrics such as κ still unhelp-
fully play a role in the field and have, for exam-
ple, been reported almost every year in the Work-
shop on Machine Translation (WMT) conference.

698



Source: To put it in the nutshell, I believe that people should have the obligation to tell their relatives about the
genetic testing result for the good of their health.

A1 To put it in a nutshell, I believe that people should be obliged to tell their relatives about their genetic test
results for the good of their health.

A2 In a nutshell, I believe that people should have an obligation to tell their relatives about the genetic testing
result for the good of their health.

A3 In summary, I believe that people should have the obligation to tell their relatives about the genetic testing
result for the good of their health.

A4 In a nutshell, I believe that people should be obligated to tell their relatives about the genetic testing result for
the good of their health.

A5 To put it in a nutshell, I believe that people should be obligated to tell their relatives about the genetic testing
results for the good of their health.

A6 To put it in the nutshell, I believe that people should have an obligation to tell their relatives about their genetic
test results for the good of their health.

A7 To put it in a nutshell, I believe that people should have the obligation to tell their relatives about the genetic
testing result for the good of their health.

A8 To put it in a nutshell, I believe that people should be obligated to tell their relatives about the genetic testing
result for the good of their health.

A9 To put it in a nutshell, I believe that people should have the obligation to tell their relatives about the genetic
test result for the good of their health.

A10 To put it in a nutshell, I believe that people should have the obligation to tell their relatives about the genetic
test results for the good of their health.

Table 1: Table showing how each of the 10 annotators edited the same source sentence in Essay 25. The
words in the source sentence that were changed are highlighted in bold.

This is in spite of the fact that the average inter-
annotator κ score across all language pairs over
the past five years has never been higher than 0.4
(Bojar et al., 2014).

One important paper that attempts to explain
why IAA metrics score so poorly in SMT is by
Lommel et al. (2014), who asked annotators to
highlight and categorize sections of automatically
translated text they believed to be erroneous. Their
results showed that while annotators were often
able to agree on the rough locations of errors, they
often disagreed as to the specific boundaries of
those errors: for instance, given the phrase “had
go”, some annotators considered just the partici-
ple “go”→ “gone” to be the minimal error, while
others considered the whole verbal unit, “had go”
→ “had gone”, to be the minimal error. Simi-
larly, the authors also noted that annotators some-
times had problems categorizing ambiguous errors
which could be classified into more than one error
category.

In short, while annotators already vary as to
what they consider an error, these observations
show that even when they do apparently agree,
there is no guarantee that every annotator will de-
fine the error in exactly the same terms. This poses
a problem for IAA statistics, which rely on an ex-
act match to measure agreement.

Finally, it is also worth mentioning that a related
study, by Denkowski and Lavie (2010), suggested
that “annotators also have difficulty agreeing with

themselves” (shown from intra-annotator agree-
ment κ scores of about 0.6), and so we should be
especially wary of using IAA metrics to validate
datasets that may even be unreliable for a single
annotator.

3 Annotator Bias

In an effort to better understand how annotators’
judgments might differ, we first carried out a
small-scale qualitative analysis on a handful of
random sentences corrected by the 10 human an-
notators in our dataset. One such sentence, and all
its various corrections, is shown in Table 1.

It is interesting to note that, for even as short an
idiom as “To put it in the nutshell’, there are still
multiple alternative edits. Although 8 out of the 10
annotators elected to replace the article “the” with
“a”, among them, A2 and A4 also deleted “To put
it” from the expression. Of the remaining 2 an-
notators, A3 chose to replace the idiom entirely
with “In summary”, while A6 made no correction
at all. Although no correction appears to be un-
acceptable to the majority of annotators, it is also
not completely ungrammatical (just idiomatically
awkward) so it may be that A6 has a higher tol-
erance for this kind of error than the other anno-
tators. Alternatively, there is also always the pos-
sibility that, given such a large amount of text to
correct, this error was simply overlooked.

Another noteworthy difference is that annota-
tors A1, A4, A5, and A8 all elected to change the
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verb “have the obligation” from active to passive,
although A1 still disagreed with the others on the
form of the participle. Similarly, there is also a
great difference of opinion on whether “testing re-
sult” should be corrected or not, and if so, how.
While half of the annotators left the phrase un-
changed, A1, A6, and A10 all changed both words
to “test results”. Meanwhile, somewhere in be-
tween, A5 decided to change “result” to “results”,
but not “testing” to “test”, while, conversely, A9
decided to do the opposite. This would suggest
that error correction of even minor phrases falls
along a continuum governed by each annotator’s
natural bias.

Finally, one of the most important results of
this qualitative evaluation is that even though all
10 annotators edited the same sentence to a level
they deemed grammatical, not one single annota-
tor agreed with another exactly. This fact alone
suggests IAA statistics are not a good way to eval-
uate GEC data and that a more robust agreement
metric must take into account the possibility of al-
ternative correct answers.

4 Data Collection

The raw text data in our dataset was originally pro-
duced by 25 students at the National University of
Singapore (NUS) who were non-native speakers
of English. They were asked to write two essays
on the topics of genetic testing and social media
respectively. All essays were of similar length and
quality. This was important because varying the
skill level of the essays is likely to further affect
the natural bias of the annotators, who may then
consistently over- or under-correct essays. These
raw essays also formed the basis of the CoNLL-
2014 test data (Ng et al., 2014). See Table 2 for
some basic statistics on the resulting 50 essays.

The 10 annotators who annotated all 50 essays
include: the 2 official annotators of CoNLL-2014,
the first author of this paper, and 7 freelancers
who were recruited via online recruitment website,
Elance.3 All annotators are native British English
speakers, many of whom also have backgrounds in
English language teaching, proofreading, and/or
Linguistics.

All annotations were made using an online an-
notation platform, WAMP, especially designed for
annotating ESL errors (Dahlmeier et al., 2013).
Using this platform, annotators were asked to

3http://www.elance.com

Total Average per essay
# Paragraphs 252 5.0
# Sentences 1312 26.2
# Tokens 30144 602.9

Table 2: Statistics for the 50 unannotated essays.

highlight a minimal error string in the source text,
provide an appropriate correction, and then cate-
gorize their selection according to the same 28-
category error framework used by CoNLL-2014.
Before commencing annotation, however, each
annotator was given detailed instructions on how
to use the tool, along with an explanation of each
of the error categories. In cases of uncertainty, an-
notators were also encouraged to ask questions.

As it was slightly harder to control the qual-
ity of the 7 independently recruited annotators via
Elance, they were each preliminarily asked to an-
notate only the first two essays before being given
detailed feedback on their work. The main pur-
pose of this feedback was to make sure that they
a) understood the error category framework, and
b) knew how to deal with more complicated cases
such as word insertions, punctuation, etc. Unless
it was felt that they had overlooked an obvious er-
ror in these first two essays, the feedback did not
go so far as to tell annotators what they should and
should not highlight in an effort to preserve indi-
vidual annotator bias.

In all, while the specific time taken to complete
annotation of all 50 essays was not calculated, all
annotators completed the task over a period of
about 3 weeks, at a rate of about 45 minutes per
essay.

4.1 Early Observations

To investigate the extent to which different anno-
tators have different biases, we first counted the
total number of edits made by each annotator and
sorted them by error category (Table 3).

As can be seen, there is quite a difference be-
tween the annotator who made the most edits (A1)
and the annotator who made the fewest edits (A7),
with A1 making more than twice the number of
edits as A7. This just goes to show how varied
judgments on grammaticality can be. Incidentally,
annotators A3 and A7, who are among those who
made the fewest edits, were also the two official
gold standard annotators in CoNLL-2014.

There is also a large difference between edits in
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Category A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Total
ArtOrDet 879 639 443 503 665 620 331 358 390 624 5452

Cit 0 0 0 0 0 1 0 2 0 0 3
Mec 227 376 493 325 411 336 228 733 598 780 4507
Nn 404 290 228 264 360 300 215 254 277 365 2957

Npos 21 21 15 21 31 28 19 25 29 23 233
Others 42 186 49 116 95 43 44 34 125 105 839
Pform 431 52 18 57 30 83 47 53 19 18 808
Pref 4 79 153 18 223 53 96 92 250 180 1148
Prep 755 488 390 421 502 556 211 276 362 459 4420

Rloc– 488 308 199 331 187 244 94 174 296 240 2561
Sfrag 1 5 1 3 1 5 13 2 12 2 45
Smod 1 4 5 0 1 0 0 3 1 1 16
Spar 0 18 24 0 2 11 3 2 8 0 68
Srun 157 38 21 16 17 18 7 15 17 37 343
Ssub 74 54 10 4 25 81 68 21 18 82 437
SVA 162 123 154 95 140 114 105 132 144 144 1313
Trans 248 100 78 147 118 81 93 199 87 95 1246
Um 5 12 42 25 25 12 12 19 7 8 167
V0 137 35 37 50 81 69 31 58 51 85 634

Vform 388 168 91 100 156 125 132 78 122 124 1484
Vm 71 48 37 67 119 24 49 39 4 62 520
Vt 100 209 150 200 82 237 133 234 117 188 1650
Wa 0 1 1 3 1 1 0 2 4 2 15
Wci 623 476 479 446 456 595 340 250 212 346 4223

Wform 126 107 103 150 136 145 77 103 107 81 1135
WOadv 23 48 27 23 61 76 12 94 41 62 467
WOinc 187 67 54 78 53 74 22 24 87 103 749
Wtone 6 30 15 65 38 27 9 10 12 15 227
Total 5560 3982 3317 3528 4016 3959 2391 3286 3397 4231 37667

Table 3: Table showing how many annotations each annotator made in terms of error category. See Ng
et al. (2014) Table 1 for a more detailed description of error categories.

terms of category use, with almost half of all edits
falling into the categories for article or determiner
(ArtOrDet), spelling or punctuation (Mec), prepo-
sition (Prep), or word choice (Wci) errors.

5 Quantitative Analysis

In the main phase of experimentation, we first in-
vestigated how different numbers of annotators af-
fected the performance of various systems in the
context of the CoNLL-2014 shared task. To do
this, we downloaded the official system output
of all the participating teams4 and then the Max-
Match (M2) Scorer5 (Dahlmeier and Ng, 2012),
which was the official scorer of the previous
CoNLL-2013 and CoNLL-2014 shared tasks.

This scorer evaluates a system at the sentence
level in terms of correct edits, proposed edits,
and gold edits, and uses these to calculate an
F-score for each team. When more than one
set of gold standard annotations is available, the
scorer will calculate F-scores for each alternative

4http://www.comp.nus.edu.sg/˜nlp/
conll14st/official_submissions.tar.gz

5http://www.comp.nus.edu.sg/˜nlp/sw/
m2scorer.tar.gz

gold-standard sentence and choose the one from
whichever annotator scored the highest. As in
CoNLL-2014, we calculate F0.5, which weights
precision twice as much as recall, because it is
more important for a system to be accurate than to
correct every possible error. See (Ng et al., 2014)
for more details on how F0.5 is calculated.

5.1 Pairwise Evaluation

In order to quantify how much the F-score can
vary in a realistic grammar checking scenario
when there is only one gold standard annotator, we
first computed the scores for a participating sys-
tem vs each annotator in a pairwise fashion. Table
4 hence shows how the top team in CoNLL-2014,
CAMB (Felice et al., 2014), performed against
each of the 10 human annotators individually.

While Tetrault and Chodorow (2008) and
Tetreault et al. (2014) reported a difference of 10%
precision and 5% recall between their two individ-
ual annotators in their simplified preposition cor-
rection task, Table 4 shows this difference can ac-
tually be as much as almost 15% precision (A1 vs
A7) and 6% recall (A1 vs A3) in a more realistic
full scale correction task. This equates to a differ-
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CAMB P R F0.5

A1 39.64 14.06 29.06
A2 35.73 17.35 29.48
A3 35.22 20.29 30.70
A4 32.69 17.88 28.04
A5 35.74 17.26 29.43
A6 35.76 17.73 29.72
A7 24.96 19.62 23.67
A8 29.17 16.92 25.48
A9 32.03 18.28 27.84

A10 35.52 16.26 28.72

Table 4: Table showing the F0.5 scores for the top
team in CoNLL-2014, CAMB, against each of the
10 annotators individually.

ence of over 7% F0.5 (A3 vs A7) and once again
shows how varied annotator’s judgments can be.

5.2 All Combinations
5.2.1 Human vs Human
Whereas previously we could only calculate F0.5

scores on a system vs human basis, when there
are two or more annotators, we can also calculate
scores on a human vs human basis. In fact, as the
number of annotators increases, we can also start
to calculate scores against different combinations
of gold standard annotations.6

To give an example, since we have 10 annota-
tors, a subset of these annotators, say annotators
a2–a8, could be chosen as the gold standard anno-
tations. We could then evaluate how each of the re-
maining annotators (i.e., annotator a1, a9, and a10)
performs against this gold standard, by comput-
ing the M2 score for annotator a1 against annota-
tors a2–a8, annotator a9 against annotators a2–a8,
and annotator a10 against annotators a2–a8. We
then average these 3 M2 scores, to determine how,
on average, an annotator performs when measured
against gold standard annotators a2–a8.

It is worth reiterating, however, that when more
than one annotator is used as the gold standard,
the M2 scorer will choose whichever annotator for
the given sentence produces the highest F-score;
i.e., if a2–a8 are the gold standard and we want
to compute the F-score for a9, the M2 scorer will
compute a9 vs a2, a9 vs a3, . . . , a9 vs a8 separately
for each sentence, and choose the highest.

6Note that by combinations of annotators, we mean sim-
ply that the M2 scorer has access to a larger number of alter-
native gold standard corrections; we do not attempt to merge
annotations in any way.

The above calculations can be formalized as
Equation 1:

g(X) =
1

|A| − |X|
∑

a∈A\X
f(a,X) (1)

where A is the set of all annotators (|A| = 10 in
our case) and X is a non-empty and proper subset
of A, denoting the set of annotators chosen to be
in the gold standard. The function f(a,X) is the
score computed by the M2 scorer to evaluate anno-
tator a against each set of gold standard annotators
X . g(X) is thus the average M2 scores for the re-
maining annotators against the input gold standard
combination X .

So far, in our example, we have chosen anno-
tators a2–a8 to be the gold standard. There are,
however, many other different ways of choosing 7
annotators to serve as the gold standard. For exam-
ple, we could have chosen { a1, a2, . . . , a7 }, { a1,
a3, a4, . . . , a8 }, etc. In fact, there are

(
10
7

)
= 120

different combinations of 7 annotators. As such,
we can also compute how an individual human an-
notator performs when measured against any com-
bination of 7 gold standard annotators, by averag-
ing these 120 M2 scores. The above calculation is
formalized in the general case in Equation 2:

hi =
1(|A|
|X|
) ∑

X:|X|=i

g(X) (2)

where
(|A|
|X|
)

is the binomial coefficient for |A|
choose |X| and 1 ≤ i < |A|. The function g(X)
is defined in Equation 1.

The resulting hi values are hence the average
F0.5 scores achieved by any human against any
combination of i other humans, and so, in some
ways, also represent the upper bound of human
performance on the current dataset. The specific
values for hi are shown in the second column of
Table 5.

5.2.2 Caveat
One caveat regarding this method is that the num-
ber of all possible combinations of annotators is
of the order 2|A|, which quickly becomes compu-
tationally expensive for large values of |A|. Fortu-
nately however, in a realistic GEC evaluation sce-
nario, it is only the last row of Table 5 that we are
most interested in, and so it is actually only neces-
sary to calculate a much more manageable

( |A|
|A|−1

)
gold standard combinations, which is conveniently
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Gold Human (hi) AMU CAMB CUUI
Annotators (i) Avg F0.5 Avg F0.5 Ratio Avg F0.5 Ratio Avg F0.5 Ratio

1 45.91 24.20 52.71% 28.22 61.46% 26.76 58.29%
2 56.68 33.47 59.05% 37.77 66.64% 36.04 63.59%
3 61.83 38.35 62.03% 42.68 69.03% 40.76 65.92%
4 65.05 41.53 63.85% 45.87 70.51% 43.77 67.29%
5 67.33 43.84 65.11% 48.17 71.54% 45.94 68.23%
6 69.07 45.62 66.06% 49.93 72.29% 47.60 68.92%
7 70.45 47.06 66.80% 51.34 72.87% 48.94 69.46%
8 71.60 48.26 67.40% 52.50 73.32% 50.05 69.89%
9 72.58 49.28 67.90% 53.47 73.67% 50.99 70.25%

Table 5: Table showing average human F0.5 scores over all combinations of 1 ≤ i < 10 gold annotators
compared to the same averages for the top 3 systems in CoNLL-2014, and the ratio percentage of each
team’s average score versus the human average score.

equal to the total number of annotators. We only
compute all combinations here in order to quan-
tify, for the first time, how much each additional
annotator affects performance.

5.2.3 System vs Human
In addition to calculating scores on a human vs
human basis, we also calculated the F-scores for
the top three CoNLL-2014 teams, AMU (Junczys-
Dowmunt and Grundkiewicz, 2014), CAMB (Fe-
lice et al., 2014), and CUUI (Rozovskaya et al.,
2014), versus all the combinations of humans
(Equation 3).

si =
1(|A|
|X|
) ∑

X:|X|=i

f(s,X) (3)

Specifically, s ∈ S, where S is the set of all
three shared task systems, i.e., {AMU, CAMB,
CUUI}, and f(s,X) is the same function in Equa-
tion 1 which is the score computed by the M2
scorer to evaluate system s against the set of an-
notators X chosen to be in the gold standard. The
average F0.5 scores for each of the team’s systems
versus increasing numbers of i annotators are also
shown in Table 5.

We notice from these scores that, as expected,
both system and human performance increases as
more annotators are used in a gold standard. We
do now, however, have data that quantifies exactly
how much each additional annotator affects the
score. This effect can be more clearly seen in Fig-
ure 1.

It is important to note, however, that even with
9 annotators, human output itself does not reach
close to 100% F0.5 and instead, the difference be-

tween the systems and the humans is about 20%
F0.5. Furthermore, the curves for humans and sys-
tems also remain roughly parallel, suggesting hu-
man corrections gain as much benefit as system
corrections from larger sets of gold standard an-
notations.

5.3 Ratio Scoring

In light of the above observation that even humans
vs humans are unable to score 100% F0.5, it thus
seems unreasonable to expect machines to do the
same. As such, we propose that it is much more
informative to score system output against the av-
erage performance of humans instead of against
the theoretical maximum score. The ratio values
for the three CoNLL-2014 teams against the hu-
man gold standards of various sizes are hence also
reported in Table 5. The most important thing to
note is that these figures are not only much higher
than the low F0.5 values currently reported in the
literature, they are also more representative of the
state of the art. For instance, it is highly significant
that we can report that the top system in CoNLL-
2014, CAMB, is actually able to perform 73% as
reliably as a human, which suggests GEC may ac-
tually be a more viable technology than was pre-
viously thought.

6 Additional Experiments

6.1 Error Categories

As well as carrying out experiments at the system
level, we also carried out similar experiments at
the error category level. More specifically, we re-
calculated the values of Equation 1 and 2 for cases
where the set of annotations consisted of only a
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Figure 1: Graph showing how average F0.5 scores
for humans and systems increase as the number of
gold standard annotators also increases (all error
types, 50 Essays).

single specific error type. Since the participating
teams in CoNLL-2014 were not asked to classify
the type of errors their systems corrected, we were
only able to calculate these new values using the
10 sets of human annotations.

Like Figure 1, we can see from Figure 2 that
the F0.5 performance of individual error types in-
creases diminishingly as the number of annotators
in the gold standard also increases. More impor-
tantly, however, we notice that some error types
achieve much higher scores than others, which
suggests some annotators agree on certain cate-
gories more than others.

In particular, noun number (Nn) and subject-
verb agreement (SVA) errors achieve the highest
scores, at just under 90% F0.5, which is also not
far from the 100% F0.5 that would be achieved if
we had gold standard answers for all possible al-
ternative corrections of this type. The most likely
reason for this is that, as the correction of these
error types typically only involves the addition or
removal of an -s suffix, i.e., a minor change in
number morphology, there is very little room for
annotators to disagree.

In contrast, the next highest category, article and
determiner errors (ArtOrDet), has a slightly larger
confusion set, {the, a/an, ε}, which may account
for the slightly lower score. Similarly, the next
group of error categories, spelling and punctuation

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

Number of Gold Standard Annotators

F 0
.5

Nn V t WOinc
SV A Wform Wci
ArtOrDet Prep
Mec Trans

Figure 2: Graph showing how average F0.5 scores
for various error categories increase as the num-
ber of gold standard annotators also increases (50
essays). Calculations based on human annotations
only.

(Mec), verb tense (Vt), and word form (Wform),
which all often involve a similar type of edit op-
eration to a word lemma, likewise have slightly
larger confusion sets that include a larger variety
of possible morphological inflections. It is likely
that the next category, prepositions (Prep), also has
a confusion set of a similar size.

The last three categories, conjunctions (all-
types) (Trans), word order (WOinc) and word
choice (Wci), are all notable because they per-
form significantly worse than the hitherto men-
tioned categories. The main reason for this is that
these error types all typically have a scope much
larger than most other categories in that they often
involve changes at the structural or semantic level;
e.g., changing an active to a passive or choosing a
synonym. For this reason, there are often many
more alternative ways to correct them, meaning
they are also much more likely to be affected by
annotator bias.
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Figure 3: Graph showing how average F0.5 scores
for humans and systems increase as the number of
gold standard annotators also increases (all error
types, 10 Essays).

6.2 Essay Subsets
Now that we had empirical evidence showing how
F0.5 scores varied with the number of annotators,
an additional question to ask was whether the same
trends for 50 essays were also present in a smaller
subset of essays. We therefore repeated the main
experiment with all error types, but this time used
just 10 essays (specifically, essays 1–10) in both
the hypothesis and gold standard. The results are
shown in Figure 3.

Compared to Figure 1, the most significant dif-
ference between these two graphs is that the rank-
ing for AMU and CUUI has changed, although not
by much in terms of F0.5. The most likely reason
for this is that the distribution of error types in the
smaller subset of essays is better suited to AMU’s
more general SMT approach than to CUUI’s more
targeted classifier based approach. For instance,
see Table 9 in Ng et al. (2014) to compare each
team’s performance on different error types in the
CoNLL-2014 shared task.

In other words, while the overall relationship
between the system and human scores on 10 and
50 essays remains more or less the same, re-
searchers must be aware that smaller datasets may
have more skewed error distributions, which in
turn may affect system performance, dependent
upon correction strategy. With a balanced test set
though, it would seem feasible to carry out future

evaluation research on as few as 10 essays (about
6000 words).

7 Conclusion

To summarize, we first showed that 10 individual
annotators can all correct the same sentence in 10
different ways, yet also all produce valid alterna-
tives. This implies that inter-annotator agreement
statistics, which rely on exact matching, are not
well-suited to grammatical error correction, be-
cause it may not be the case that annotators truly
disagree, but rather that they have a bias towards a
particular type of alternative answer.

We next showed that, as has long been sus-
pected, increasing the number of annotators in the
gold standard also leads to an increase in F0.5, al-
though at a diminishing rate. This data can be used
to help researchers decide how many gold standard
annotations should be used in GEC evaluation.

The main result of this paper however, is that by
computing scores for human against human, we
determined that it is not true that any human cor-
rection is able to score 100% F0.5. Instead, we
found that the human upper bound is roughly 73%
F0.5 and that the top 3 teams from CoNLL-2014
actually perform, on average, between 67-73% as
reliably as this human upper bound. This result
is highly significant, because it suggests GEC sys-
tems may actually be more viable than their previ-
ously low F0.5 scores would suggest.

In addition to the above, we also found that hu-
mans tend to agree on some error categories more
than others, and suggest that one of the main rea-
sons for this concerns the size of the confusion set
of the particular error type.

Finally, not only are we making the corrections
by 10 annotators of all 50 essays available with
this paper, we also showed that the trends found
in the data are also consistent with the annotations
of just 10 essays, allowing future research to be
conducted on much less text.
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