Graph generation
methods

Catalina Cangea
R250 MPhil ACS/CST Part lll, 17th January 2020

Why learn to generate graphs?

e Get (more) datal

e |earn about properties of existing data
o E.Q.train encoder-decoder
o Use encoder to get features
o Predict graph property

e Existing data — world!

Y 2 " 4 s
rare Road ; Marylebone = zzgaker Greasttr:erzland Eusto*n 3 12
treet
o |o N . . 16 Angel 20
’ 3 ' 13 10 15, Old Street =
10 Edgware Warren Street 15 5:3?'2 14 26
y i fload 0 Farringdon 8
Regent’s Park 7 Russell = 9
: 16 Square
15 18 Barbican 10
ayswater gt?:gfe 9 6
Bond Oxford 7
Street Circus 9 8 == Moorgate| Liverpoc
Marble Arch_g% 7 Tottenham 10 Holborn _Chancery Lane 9 Street 3
otting Court Road 8 10 %
ill Gate 10 ¢ 15 14 15 12 8 e Cien 14 9 Bank
29
8 b ’ A
Queensway Gate St. Paul’s
o I Green Park 6 Leicester Square 0
Hyde Park Corner, 8
- - Piccqagéhlg 1§’ =2=Cannon Street Montmans: “Tow
en.wiktionary.org/wiki/molecule ligh Street Kensington 7, -
Knightsbridge 19 2l 2= Charing Mansion House & 2 Fenchurch St
Cross -
Gloucester 17, 3 River Than
Road St.James'’s] P
'2 s Victs |$ Park
oria
1 10 9 28
12 8 17 13 1] Emb
South Sloane
Kensington ~ Square -« 17 6
[(Waterloo — —
1”2 -——

theverge.com/2015/11/11/97 12376/london-walk-tube-underground-map

T

°
Beverty Hils

medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16 <

res

La Crescenty Montwose 3%

2G
Firt®

earchgate.net/publication/31831606

(1]

9

https://en.wiktionary.org/wiki/molecule
https://www.theverge.com/2015/11/11/9712376/london-walk-tube-underground-map
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://www.researchgate.net/publication/318316069_Graph_Convolutional_Recurrent_Neural_Network_Data-Driven_Traffic_Forecasting/figures?lo=1

https://arxiv.org/abs/1907.03950

https://arxiv.org/abs/1907.03950

Challenges

e Complexity of the output space
o n?values to specify graph of size n

e Permutation- and size-invariant representation
o Don't assume # or ordering of nodes

e Structural dependencies
o Don't want to model edges independently

Approaches

e [raditional models
o e.Q.stochastic block (SBM), Erdos-Renyi (ER), Barabasi-Albert (BA)
e |ndependent generation of graph components
o e.9. VGAE, GraphVAE
e Auto-regressive
o e.g. GraphRNN, GRAN
e [low-based
o GNF

GraphRNN: Generating Realistic
Graphs with Deep Auto-regressive
Models

You and Ying et al,, 2016

GraphRNN

e Hierarchical model
o Graph-level RNN
o Edge-level RNN

e BFS node ordering scheme
e Worst-case O(n?) operations

GraphRNN

hs

O—06
P

©
®)

hi ha hs ha
L s i i_@
SOS l l
— 1| — 1] 0
S72r E 0 21| —
53 {1
S

he
:

Sa

l
0
0
1
1

s
S3

—_—
mple + Edge-level Update

—

Node-level Update

Modelling graph distributions

e Learning adistribution p ___ (G)
e ..based on observed graphs from p_ . (G)

Modelling graph distributions

e Can think of graphs as sequences:

= fs(G,7) = (ST, ..., S™)
S’Zr:(’ir,z'a"' 1— lz) VZ€{2 }

Modelling graph distributions

e Rewrite distribution by marginalising:

Modelling graph distributions

e Decompose:
n+1

p(s™) = || p(STIST, ... ST1)
i=1

3—1

p(ST1S%;) = || »(S7;157 <5, %)

=1

Modelling graph distributions

e Restrict # of sequences using BFS ordering:

S™ = f5(G,BFS(G, 7))

GraphRNN inference

Input: RNN-based transition module f;,4,s, output mod-
ule f,y:, probability distribution Py, parameterized by 0;,
start token SOS, end token EOS, empty graph state b’

Output: Graph sequence S™ hy
F =808,k =hi=1
repeat J
i=14+1
0

h; = firans(hi—1, S 1) {update graph state}
0; = fout(hiz)
ST ~ Py, {sample node i’s edge connections }
until ST is EOS
Return S™ = (ST, ..., ST)

SJ.H qJ

Sﬂ'

nJ

Sample + Edge-level Update

Node level Update

GraphRNN Train

Samples

Grid

Community

N ASHF

GraphRNN limitations

e Scale

o # of generation steps O(n?
o Permutation invarionce harder to achieve

e Long-term RNN dependencies
o 2 nearby nodes can be far apart in the sequential generation process

Efficient Graph Generation with

Graph Recurrent Attention
Networks (GRANS)

Lioo et al,, 2019

GRANs

e O(N) auto-regressive generation steps
o 1step generates a block of nodes

Attention-based GNN for linking new nodes to existing ones
Correlated edge modelling

Choose optimal node ordering from “canonical’ set

Scales up to Sk nodes

GRAN

A WN R

Graph at t-1 step

s

_l bi—1

Adjacency Matrix

new block (node 5, 6)
augmented edges (dashed)

Output distribution on
augmented edges

Graph at t step

(2)

Adjacency Matrix

Modelling graph distributions

e Think of graphs as matrices:

p(G) =, pGm)=>,pA") A"=L"+L"T

Modelling graph distributions

e 1step: generate block of Brows in L™ indices by = {B(t —1) +1,..., Bt}

d by
p(L”T) = Hp(Lgt|L’gl’. o 7L7brt_1)

t=1

Block generation

e h” =final embedding of node i after R message passing steps
e Mixture of Bernoulli distributions:

p(L ILbla Lgt 1)_ZakH H Hk:z]a

1€by 1<5<14

- R R
ai,...,ax = Softmax (Zz‘ebt,lgg‘gi MLP,,(h;* — h;))
01,55 - - Ok,i,; = Sigmoid (MLPy(hj* — h}"))

e Set K>1- correlated edges due to latent mixture components

Node orderings

e Train under family of “canonical” orderings Q = {r1,...,7a}
o Based on universal graph properties
o i.e.descending node degree, BFS, DFS, k-core (novel)

e Learnto maximize the lower bound:

log p(G) > log Z p(G,)

TeEQ
e [rade-off: tightness of bound «— computational cost

Samples

GraphVAE

GRAN (Ours)

Gri

Gri

.v

Vi
B

Protein

Protein

Graph Normalizing Flows

Liu and Kumar et al., 2019

GNFs

e Building blocks
o Normalizing flows adapted to graph-structured data
o Graph auto-encoders

e Competes with GraphRNN
o Still O(N?) for message passing
e ..BUT con be ||-ised

Normalizing Flows - crash course

e NFs=generative models
e Use invertible map to transform between observed x and latent z:

z = f(x) x = f7H(f(x))
e Probability density functions are related via the Jacobian:
0f ()|
Plz) =4
(2) = P(x)| =5

e Keyidea: map complex distribution to Gaussian while keeping the
Jacobian (efficiently) computable

NFs

e Thiswork uses non-volume preserving flows (RealNVPs)
e |dea: partition x into x? and x such that:

z(0) — x(0)
z(H) = x) @ exp(s(x?)) 4 t(x(?)

e The Jacobian is lower-triangular — efficiently computable :-)

Graph NFs

Message passing:

HY, = B o exp (B (HY)) + F(H)
=1

0 0
Ht(-i-)l = Ht(+)l

2 oo 1 (12,)) + (12

Density transformation:

OH,

‘BHT P(Hr)= P(HT)Hdet

OH

P(G) = det

OH; 4

(1)
H,

exp(G1(HY,)

Graph generation pipeline

e Encoder:
o GNN
o Multi-head dot-product attention

t training

* inference

Decoder

e Decoder:
R 1
Y T4 exp(C([lx: — %413 — 1))

Irreversible

A H~N(©0,0%)

(Adjacency (Node
Hp ~ N (0, 1) Matrix) Features)
(Prior)

Reversible Prior - Exact Likelihood

Samples

VRS T

(a) Training data (b) GNF samples (c) GRAPHRNN samples

What's next?

Future directions

Even larger graphs

Spatio-temporal graphs!

Getting rid of orderings / scaling GNFs
Leveraging application-specific priors

Thank youl

