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Why learn to generate graphs?
● Get (more) data!
● Learn about properties of existing data

○ E.g. train encoder-decoder
○ Use encoder to get features
○ Predict graph property

● Existing data → world!
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Challenges
● Complexity of the output space

○ n2 values to specify graph of size n
● Permutation- and size-invariant representation

○ Don’t assume # or ordering of nodes
● Structural dependencies

○ Don’t want to model edges independently



Approaches
● Traditional models

○ e.g. stochastic block (SBM), Erdos-Renyi (ER), Barabasi-Albert (BA)
● Independent generation of graph components

○ e.g. VGAE, GraphVAE
● Auto-regressive

○ e.g. GraphRNN, GRAN
● Flow-based

○ GNF



GraphRNN: Generating Realistic 
Graphs with Deep Auto-regressive 

Models
You and Ying et al., 2016



GraphRNN
● Hierarchical model

○ Graph-level RNN
○ Edge-level RNN

● BFS node ordering scheme
● Worst-case O(n2) operations



GraphRNN



Modelling graph distributions

● Learning a distribution pmodel(G)
● ...based on observed graphs from pdata(G)



Modelling graph distributions

● Can think of graphs as sequences:



● Rewrite distribution by marginalising:

Modelling graph distributions



Modelling graph distributions

● Decompose:



● Restrict # of sequences using BFS ordering:

Modelling graph distributions



GraphRNN inference



Samples



GraphRNN limitations

● Scale
○ # of generation steps O(n2)
○ Permutation invariance harder to achieve

● Long-term RNN dependencies
○ 2 nearby nodes can be far apart in the sequential generation process



Efficient Graph Generation with 
Graph Recurrent Attention 

Networks (GRANs)
Liao et al., 2019



GRANs

● O(N) auto-regressive generation steps
○ 1 step generates a block of nodes

● Attention-based GNN for linking new nodes to existing ones
● Correlated edge modelling
● Choose optimal node ordering from “canonical” set
● Scales up to 5k nodes



GRAN



Modelling graph distributions

● Think of graphs as matrices:



Modelling graph distributions

● 1 step: generate block of B rows in Lπ; indices



Block generation
● hR

i = final embedding of node i after R message passing steps
● Mixture of Bernoulli distributions:

● Set K > 1 → correlated edges due to latent mixture components



Node orderings
● Train under family of “canonical” orderings

○ Based on universal graph properties
○ i.e. descending node degree, BFS, DFS, k-core (novel)

● Learn to maximize the lower bound:

● Trade-off: tightness of bound ←→ computational cost



Samples



Graph Normalizing Flows
Liu and Kumar et al., 2019



● Building blocks
○ Normalizing flows adapted to graph-structured data
○ Graph auto-encoders

● Competes with GraphRNN
● Still O(N2) for message passing
● ...BUT can be ||-ised

GNFs



Normalizing Flows - crash course
● NFs = generative models
● Use invertible map to transform between observed x and latent z:

● Probability density functions are related via the Jacobian:

● Key idea: map complex distribution to Gaussian while keeping the 
Jacobian (efficiently) computable



NFs
● This work uses non-volume preserving flows (RealNVPs)
● Idea: partition x into x(0) and x(1) such that:

● The Jacobian is lower-triangular → efficiently computable :-)



● Message passing:

● Density transformation:

Graph NFs



Graph generation pipeline
● Encoder:

○ GNN
○ Multi-head dot-product attention

● Decoder:



Samples



What’s next?



Future directions
● Even larger graphs
● Spatio-temporal graphs!
● Getting rid of orderings / scaling GNFs
● Leveraging application-specific priors



Thank you!


