
Graph generation
methods
Cătălina Cangea
R250 MPhil ACS/CST Part III, 17th January 2020

Why learn to generate graphs?
● Get (more) data!
● Learn about properties of existing data

○ E.g. train encoder-decoder
○ Use encoder to get features
○ Predict graph property

● Existing data → world!

en.wiktionary.org/wiki/molecule

theverge.com/2015/11/11/9712376/london-walk-tube-underground-map

medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16

researchgate.net/publication/318316069

https://en.wiktionary.org/wiki/molecule
https://www.theverge.com/2015/11/11/9712376/london-walk-tube-underground-map
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://www.researchgate.net/publication/318316069_Graph_Convolutional_Recurrent_Neural_Network_Data-Driven_Traffic_Forecasting/figures?lo=1

https://arxiv.org/abs/1907.03950

https://arxiv.org/abs/1907.03950

Challenges
● Complexity of the output space

○ n2 values to specify graph of size n
● Permutation- and size-invariant representation

○ Don’t assume # or ordering of nodes
● Structural dependencies

○ Don’t want to model edges independently

Approaches
● Traditional models

○ e.g. stochastic block (SBM), Erdos-Renyi (ER), Barabasi-Albert (BA)
● Independent generation of graph components

○ e.g. VGAE, GraphVAE
● Auto-regressive

○ e.g. GraphRNN, GRAN
● Flow-based

○ GNF

GraphRNN: Generating Realistic
Graphs with Deep Auto-regressive

Models
You and Ying et al., 2016

GraphRNN
● Hierarchical model

○ Graph-level RNN
○ Edge-level RNN

● BFS node ordering scheme
● Worst-case O(n2) operations

GraphRNN

Modelling graph distributions

● Learning a distribution pmodel(G)
● ...based on observed graphs from pdata(G)

Modelling graph distributions

● Can think of graphs as sequences:

● Rewrite distribution by marginalising:

Modelling graph distributions

Modelling graph distributions

● Decompose:

● Restrict # of sequences using BFS ordering:

Modelling graph distributions

GraphRNN inference

Samples

GraphRNN limitations

● Scale
○ # of generation steps O(n2)
○ Permutation invariance harder to achieve

● Long-term RNN dependencies
○ 2 nearby nodes can be far apart in the sequential generation process

Efficient Graph Generation with
Graph Recurrent Attention

Networks (GRANs)
Liao et al., 2019

GRANs

● O(N) auto-regressive generation steps
○ 1 step generates a block of nodes

● Attention-based GNN for linking new nodes to existing ones
● Correlated edge modelling
● Choose optimal node ordering from “canonical” set
● Scales up to 5k nodes

GRAN

Modelling graph distributions

● Think of graphs as matrices:

Modelling graph distributions

● 1 step: generate block of B rows in Lπ; indices

Block generation
● hR

i = final embedding of node i after R message passing steps
● Mixture of Bernoulli distributions:

● Set K > 1 → correlated edges due to latent mixture components

Node orderings
● Train under family of “canonical” orderings

○ Based on universal graph properties
○ i.e. descending node degree, BFS, DFS, k-core (novel)

● Learn to maximize the lower bound:

● Trade-off: tightness of bound ←→ computational cost

Samples

Graph Normalizing Flows
Liu and Kumar et al., 2019

● Building blocks
○ Normalizing flows adapted to graph-structured data
○ Graph auto-encoders

● Competes with GraphRNN
● Still O(N2) for message passing
● ...BUT can be ||-ised

GNFs

Normalizing Flows - crash course
● NFs = generative models
● Use invertible map to transform between observed x and latent z:

● Probability density functions are related via the Jacobian:

● Key idea: map complex distribution to Gaussian while keeping the
Jacobian (efficiently) computable

NFs
● This work uses non-volume preserving flows (RealNVPs)
● Idea: partition x into x(0) and x(1) such that:

● The Jacobian is lower-triangular → efficiently computable :-)

● Message passing:

● Density transformation:

Graph NFs

Graph generation pipeline
● Encoder:

○ GNN
○ Multi-head dot-product attention

● Decoder:

Samples

What’s next?

Future directions
● Even larger graphs
● Spatio-temporal graphs!
● Getting rid of orderings / scaling GNFs
● Leveraging application-specific priors

Thank you!

